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Abstract
In this paper we investigate whether long run time series of income per capita are
better described by a trend-stationary model with few structural changes or by unit
root processes in which permanent stochastic shocks are responsible for the observed
growth discontinuities. For a group of advanced and developing countries in the Mad-
dison database, we employ a unit root test that allows for an unspecified number of
breaks under the alternative hypothesis (up to some ex ante determined maximum).
Monte Carlo simulations studying the finite sample properties of the test are reported
and discussed. When compared with previous findings in the literature, our results
show less evidence against the unit root hypothesis. We find even fewer rejections
when relaxing the assumption of Gaussian shocks. Our results are broadly consis-
tent with the implications of evolutionary macro models which posit frequent growth
shifts and fat-tailed distribution of aggregate shocks.
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1 Introduction

Among empirical growth economists a consensus has begun to emerge concerning
the unstable nature of economic growth. It is now widely recognized that the vast
majority of growth experiences, even when considering now-rich countries, do not
comply with a simple steady-state growth model (Ben-David and Papell 1995; Papell
and Prodan 2014). Growth experiences are remarkably heterogeneous. Considering
aggregate income data, it is common to observe several growth discontinuities of
different kinds such as accelerations, collapses, sudden stops or level jumps (Easterly
et al. 1993; Pritchett et al. 2000; Hausmann et al. 2005; Lamperti and Mattei 2018b).
Nevertheless, there is clearly less consensus when it comes to characterizing growth
instability with econometric models.

A major issue is whether growth paths are better described by a trend-stationary
model with relatively few structural breaks or by unit root processes in which perma-
nent stochastic shocks are responsible for continuous changes. From an observational
point of view, stationary models (or I(0) models) describe relatively stable growth
dynamics with few changes in trend (e.g. growth accelerations or decelerations) or in
levels (e.g. jumps or sudden falls). On the contrary, unit root processes (or integrated
I(1) models) show an open trajectory depicted by random shocks with levels and
trend continuously shifting at potentially any point in time. As pointed out by Perron
et al. (2006), one should not restrict the analysis to these two limiting cases as there
are several interesting instances in between. The key question is therefore: do the
data reveal frequent and large growth discontinuities or do structural changes occur
at most occasionally? From this standpoint, testing for unit roots, rather than discern-
ing definitively between stationary vis-à-vis integrated models, allows for inferences
to be drawn on where we stand between these two alternatives.

Addressing this question has strong empirical and theoretical implications for
practitioners working in the field of economic growth, by allowing researchers to
inform new generations of growth models and to discern among existing ones,
including for instance a comparison between endogenous growth and evolutionary
models. Moreover, information on the presence of unit roots and structural breaks
has clear relevance in many empirical applications such as convergence tests or
the identification of growth episodes. We discuss these implications extensively in
Section 2.

This paper contributes to the literature by investigating the presence of unit roots
and structural breaks in long run time series of per capita GDP. Methodologically,
we build upon the test in Kapetanios (2005) and add novel features to the literature,
mainly along three dimensions: (i) we treat the number of breaks (not only their
location) as unknown; (ii) we exploit the sequential approach of Bai (1997) to extend
the number of breaks to four and, consequently, we include in the analysis also a
group of developing countries with more volatile series; and (iii) we implement a
robust search algorithm that resembles the practices for the identification of growth
episodes adopted in the empirical literature.

Our results provide less support for trend stationarity than previous contributions.
In a sample of 34 countries we find 17 rejections of the unit root null hypothe-
sis. Interestingly, developing countries exhibit only four rejections, thus, showing a
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more complex and unstable dynamics than advanced ones. Moreover, even less evi-
dence against the unit root hypothesis is found when we relax the assumption of
Gaussian innovations by using bootstrapped critical values. This points to the gen-
eral conclusion according to which the dismissal of the unit root hypothesis in GDP
series may be premature. In particular, more attention should be devoted to inves-
tigating the role of the various search algorithms implemented in unit root tests, as
well as of the assumptions on the distribution of the shocks, in driving the evidence
against integrated models. From a theoretical perspective, we conjecture a relation-
ship to evolutionary growth models which point at remarkably heterogeneous growth
trajectories with frequent discontinuities and non-Gaussian distributions of shocks.

The remainder of this work proceeds as follows: Section 2 discusses the theoretical
and empirical implications of our analysis; Section 3 presents a literature review of
existing tests and their applications; Section 4 describes the methodology; Section 5
shows some Monte Carlo experiments to assess power and size properties of the test
in finite samples; Section 6 presents the empirical strategy while in Section 7 we
introduce and discuss the results; Section 8 concludes.

2 Unit roots and structural breaks: theoretical and empirical
implications for economic growth

Figure 1 reports simulated time series for different models: a trend-stationary model
with no breaks; a trend stationary model with a level break at t = 70 and a slope break
at t = 140; and an integrated (unit root) model. The difference between stationary

Fig. 1 A comparison between stationary and unit roots models Notes: The I(0) model (red line) is: yt =
0.04 + 0.04t + 0.3yt−1 + et ; The I(0) model (green line) with breaks is: yt = 0.04 + 0.04t + 0.3yt−1 −
DU(70) − 0.03DT (140)et ; The I(1) model (blue line) is: yt = 0.04 + yt−1 + et ,; For each model we
have: et ∼ N (0, 1)
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and unit root models is immediately apparent. In the former, stochastic shocks are
mean-reverting and do not alter the long-run trajectory of the time series. Deviations
from steady growth may only occur when we exogenously impose structural changes
in the main parameters. I(1) models, in contrast, depict an unstable growth pattern
characterized by frequent shifts resulting from the accumulation of stochastic shocks.
Thus, structural changes occurs continuously in these class of models.

As stated in the Introduction, unit root tests allow us to draw inferences on
how frequent structural changes are. This provides relevant implications for applied
macroeconomists studying economic growth. In fact, a better characterization of
growth instability using empirical data may provide important stylized facts for
growth models since the ability to account for the frequency and nature of growth
discontinuities is a key element for discriminating among different models. As an
illustrative example, let us focus on the dynamics of GDP per capita in three major
classes of theoretical growth models (i.e. Neoclassical, Endogenous growth and Evo-
lutionary). The standard Solow model implicitly suggests a log-linear trend with
level shifts in response to changes in policy parameters (affecting e.g. physical
and human capital accumulation). Deviations from the trend are transitory, with
the speed of reversion to the trend depending on the so-called speed of conver-
gence (i.e. a measure of how fast countries converge to their equilibrium trend).1

The emergence of level effects is also a characteristic of semi-endogenous growth
models with decreasing returns to scale in the research sector (Jones 1995, 2005).
In these models, public policies (e.g. R&D subsidies) only affect the level of GDP
per capita but not its growth rate. This is a fundamental difference with respect to
endogenous growth models in which parameter shocks regulating the accumulation
of physical and human capital (Romer 1986; Lucas 1988) or R&D expenditures
(Grossman and Helpman 1991; Aghion and Howitt 1992) cause shifts in the equilib-
rium growth rate of the economy.2 On the contrary, evolutionary models emphasize
out-of-equilibrium dynamics and can hardly be reconciled with a trend-stationary
data generating process.3 Frequent growth discontinuities are emergent properties
resulting from non-linearities and from the aggregation of endogenous stochastic
innovations at the microeconomic level. In addition, the complex interactions and
the correlating mechanisms among agents tend to generate fat-tailed shocks at all
levels of aggregation. Hence, evolutionary models are probably better approximated
by path-dependent I(1) processes with fat-tailed stochastic errors. Policy shocks still
play a crucial role but their effect is far from being deterministic, depending on
the specific realization of events associated with the arrival of innovations and to
their “disruptive” consequences on the economic system.4 These properties charac-

1As convergence to equilibrium may occur at a relatively slow pace (e.g. 20-30 years) it is important to use
long run data when testing for unit roots, in order to capture both transitional dynamics and equilibrium
growth.
2For an empirical classification of countries’ growth paths according to the “constant trend”, “level shifts”
or “trend shifts” hypothesis see Papell and Prodan (2014) and Sobreira et al. (2014).
3For a comparative survey of evolutionary and endogenous growth theories see Castellacci (2007).
4One may argue that the evolutionary view on the role of stochastic events and path dependence in growth
trajectories is shared also by some economic historians (Gerschenkron 1962; Kuznets 1971; Abramovitz
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Table 1 Implications of growth models in terms of unit roots and structural breaks

Class of models References Structural breaks GDP per capita process

Neoclassical/
semi-endog.

Solow (1956),
Mankiw et al.
(1992), and Jones
(2005)

Only few level
breaks

I(0) with a
deterministic
(log-linear) trend
and level breaks

Endogenous
growth

Romer (1986);
Lucas (1988)
and Aghion and
Howitt (1992)

Few level and
trend breaks

I(0) with broken
trends and level
breaks

Evolutionary Silverberg and
Verspagen
(1995); Dosi
et al. (2010) and
Dosi et al. (2019)

Frequent level
and trend breaks

I(1) with
fat-tailed shocks

RBC/DSGE Nelson and
Plosser (1982);
Kydland and
Prescott (1982)
and Smets and
Wouters (2007)

Frequency of
breaks depends
on shocks per-
sistence and
propagation

I(1) or I(0)
(depending on
shocks per-
sistence and
propagation) with
Gaussian shocks

terize both early models (Nelson and Winter 1982; Silverberg and Verspagen 1994,
1995; Dosi et al. 1994) and second generation ones with a stronger focus on empir-
ical validation (Dosi et al. 2010, 2015, 2019, 2020; Lamperti et al. 2018a). Yet,
evolutionary models have not, as yet, been adopted to replicate the observed dynam-
ics of growth episodes.5 In this respect, our empirical analysis may encourage new
studies using evolutionary growth models to explicitly address such new evidence.
Finally, albeit not primarily concerned with long run growth, Real Business Cycle
and DSGE models often generate I(1) time series when technology shocks are highly
persistent. Nevertheless, differently from evolutionary models, it has been shown
that the propagation mechanisms in these models do not lead to fat-tailed distribu-
tions of macroeconomic shocks (Ascari et al. 2015). In Table 1 we summarize the
implications from different growth models in terms of structural breaks and unit
roots.

The practical relevance of distinguishing models with stochastic trends from sta-
tionary alternatives also extends to empirical applications. First, economists are
interested in studying empirical patterns of cross-country convergence/divergence,
i.e. understanding whether poor countries are catching up with rich ones or whether
they are falling behind. It has been shown that knowledge of the time series prop-
erties of income per capita should inform statistical tests for convergence. When a

1986; David 2001). On the contrary, theories pointing out different stages of growth (Rostow 1960) may
be more consistent with I(0) models featuring deterministic trend shifts.
5A partial exception is represented by the models in Dosi et al. (2019, 2020) which employ a framework
akin to the “K+S” to investigate long-run growth patterns among several inter-dependent economies.
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series presents frequent trend and level shifts (as with I(1) models), standard conver-
gence tests based on cross-sectional or panel growth regressions (see Mankiw et al.
1992; Islam 1995, for early contributions) may lead to misleading results (Pritch-
ett et al. 2000; Lee et al. 1997). These are, in fact, grounded on a trend-stationary
characterization of the growth process and are intended to estimate the rate at which
each country converges to its own steady growth rate. Alternatively, time series tests
that estimate cointegration relations among countries are well suited to deal with
unit root processes (Bernard and Durlauf 1995; Pesaran 2007). A recent literature
focuses instead on the identification of specific growth episodes and their determi-
nants. For instance, a key question concerns the drivers of sustained growth episodes
as opposed to short-lived expansions. The search for growth episodes is generally car-
ried out either by formal tests for structural breaks (Jones and Olken 2008; Kerekes
2007; Berg et al. 2012) or by imposing filters based on subjective economic crite-
ria (Hausmann et al. 2005, 2006; Aizenman and Spiegel 2010; Bluhm et al. 2016).6

Nevertheless, the search is often not informed by evidence from unit root tests and
the economic filters adopted generally reflect time-invariant and deterministic char-
acteristics which are not suited to capturing the stochastic nature of structural shifts
observed in integrated models. Accounting for unit roots may allow for the design
of better filtering criteria and may inform the decision to use the series in levels or
first-differences. Finally, when using formal statistical tests for structural breaks, it
is recommended to use new techniques which are consistent under both I(0) and I(1)
models (Kejriwal and Perron 2010; Perron and Yabu 2009; Harvey et al. 2009).

3 Unit root tests with structural breaks and long-run growth:
a review of the literature

Stemming from Nelson and Plosser (1982), researchers have started to pay attention
to the possible presence of stochastic trends in macroeconomic data. This interest was
originally motivated by the fact that in I(1) type processes the distinction between
secular movements and business cycles becomes blurred as the trend component
itself displays fluctuations. Nevertheless, when a time series exhibits a unit root, it
is equally complicated to distinguish growth episodes occurring at medium run fre-
quencies from the secular stochastic trend. As a consequence, the identification of
unit roots and structural breaks has gained increasing relevance also in the field of
growth empirics (see e.g. Papell and Prodan 2014; Kejriwal and Lopez 2013).

Following Perron (1989), it is now common practice to incorporate structural
breaks in unit root tests, with evidence suggesting that omitting dummies for struc-
tural change in Dickey-Fuller regressions results in a failure to reject the unit root
null hypothesis (Perron 1989). Drawing on Zivot and Andrews (1992) and Chris-
tiano (1992) these tests now also feature a data-dependent algorithm to determine the

6A compromise between formal testing and subjective criteria is found in Kar et al. (2013) and Pritchett
et al. (2016). They propose a “fit and filter” methodology in which potential breaks are estimated looking
at the best econometric fit and, secondly, relevant ones are selected according to economic filters.
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location of the structural shifts under the alternative hypothesis. However, a major
drawback of such an approach concerns the assumption of a fixed number of breaks,
typically determined ex ante.7 This creates a gap with the empirical literature in
which data-driven procedures are used, not only to identify break dates, but also to
select the number of relevant structural changes. To deal with this issue, Kapetan-
ios (2005) presents a test of the unit root hypothesis against I(0) alternatives with an
unspecified number of breaks (up to some exogenously given maximum). The test,
nevertheless, features a search algorithm based on the minimization of t-statistics
which has been shown to perform poorly in identifying the correct number of shifts
and their dates (Vogelsang and Perron 1998; Lee and Strazicich 2001). Recent con-
tributions in the field have addressed specific aspects such as the possibility of I(1)
models with breaks (Carrion-i Silvestre et al. 2009; Harvey et al. 2013), extensions to
spatial panel models (Baltagi et al. 2016; Sengupta et al. 2017) and the consistency
of trend break locations (Yang et al. 2017).8

Unit roots and structural break tests have been applied to a wide range of macroe-
conomic time series including inflation and interest rates (Clemente et al. 2017),
unemployment (Garcı́a-Cintado et al. 2015; Cheng et al. 2014), exchange rates
(Månsson and Sjölander 2014), and commodity and oil prices (Gadea et al. 2017;
Winkelried 2018). Relatively few empirical applications of unit root tests have
focused on countries’ long-run growth paths, although a number of studies test for the
presence of unit roots in historical time series of real GDP per capita, generally for
a few advanced countries.9 (Ben-David and Papell 1995) apply the test of Zivot and
Andrews (1992), allowing for a break in both the trend and the constant, in a sample
of OECD countries and reject the unit root hypothesis for 7 out of 16 series. In a fol-
low up paper, Ben-David et al. (2003) show that by incorporating an additional break
it is possible to reject the null for 12 out of 16 countries. Extending previous anal-
ysis, Papell and Prodan (2014) consider various models with different break forms
for a sample of 19 OECD countries and 7 Asian economies. Their results report,
respectively, 15 rejections for the OECD group and 6 rejections for the Asian one.
An alternative framework is proposed by Kejriwal and Lopez (2013). They present
an econometric procedure that uses in a sequential manner various tests allowing
for up to two structural breaks under both the null and the alternative. In contrast to
existing results, their approach indicates no evidence against the unit root hypothe-
sis. For the sake of comparison, results from these studies are summarized in Table 5.

7Another shortcoming is related to the fact that structural breaks are allowed only under the alternative
hypothesis. Although we do not address directly this problem, we provide a discussion in Section 4.
Recently, various tests have been put forward which rely on a GLS detrending procedure similar to that
presented by Elliott et al. (1996). These new tests investigate unit roots in the noise function of a series and
have the advantage of incorporating breaks under both the null and the alternative hypothesis (Narayan
and Popp 2010; 2013; Harris et al. 2009; Carrion-i Silvestre et al. 2009; Harvey et al. 2013).
8Several recent contributions to the literature are collected in a special issue of Econometrics (Perron
2017).
9A skeptical point of view on this line of research is provided by Gaffeo et al. (2005). The authors run
different unit roots tests and find substantial heterogeneity in the results depending on the type of procedure
adopted. They interpret this evidence as questioning the possibility to characterize income per capita series
with a sufficiently invariant statistical model.
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Finally, Zerbo and Darné (2018) conducts a similar analysis using shorter time series
for developing countries, also finding no evidence against the unit root model.

4 Methodology

Our methodology builds upon and extends (Kapetanios 2005). We consider the
following null hypothesis:

yt = μ + yt−1 + �∗(L)vt , (1)

where: �∗(L) = A∗(L)−1B(L); A∗(L) and B(L) are lag polynomials respectively
of order p and q with all the roots outside the unit circle and v is a zero-mean
sequence of iid random variables.

The alternative model considered takes the form:

yt = μ + βt + �(L)
[ m∑

i=1

θiDU(Ti)t +
m∑

i=1

γiDT (Ti)t + vt

]
(2)

where: �(L) = A(L)−1B(L); A(L) = (1 − αL)A∗(L). The intercept and trend
break dummies are and with

being the indicator function and Ti a generic break date. Notice that, according to
the so-called innovation outlier specification, changes in the trend or in the constant
evolve as any other shock. For instance, while the immediate impact of a generic
variation in the constant is θi , the corresponding long-run effect will be �(1)θi .

Both the null and the alternative model can be nested in a general DF-type of
regression:

yt = μ + βt + αyt−1 +
m∑

i=1

θiDU(Ti)t +
m∑

i=1

γiDT (Ti)t +
k∑

j=1

cj�yt−j + εt (3)

In our analysis, the number of breaks (m), the lag-truncation parameter (k) and
the break dates (T1, ..., Tm) are treated as unknown. Therefore, for a given number of
breaks m, the null and the alternative hypothesis are defined as:

H0 : α = 1, θi = γi = 0 ∀ i ∈ [1, m]

H1 : α < 1
Let us now focus on some methodological considerations. First, we are using the

most general model that includes for each break both the intercept and the trend shift
dummy. As discussed by Sen (2003), when the form of the breaks is unknown, the
preferred strategy is to adopt a general specification allowing for changing intercept
and trend in order to minimize power distortions.10 Second, structural breaks are
allowed only under the alternative hypothesis whereas the null model is described

10Power simulations in Section 5 corroborate the results of Sen (2003). When adopting the mixed model
(including both intercept and trend dummies) the test does not show dramatic power losses.
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by an I(1) process without exogenous shifts in its deterministic components. Such
asymmetric treatment of breaks characterizes several unit root tests proposed in the
literature (Zivot and Andrews 1992; Banerjee et al. 1992; Lumsdaine and Papell
1997; Perron 1997). However, Vogelsang and Perron (1998) and Lee and Strazicich
(2001) show that size distortions arise when structural breaks are present under the
null as a result of the nuisance parameter associated with the trend function. Although
it has been pointed out that serious distortions only emerge in the presence of large
shifts and may not be particularly relevant in practice (Vogelsang and Perron 1998;
Perron et al. 2006), several works have directly addressed the issue (Lee and Strazi-
cich 2003; Narayan and Popp 2010, Narayan and Popp; Harris et al. 2009; Carrion-i
Silvestre et al. 2009; Harvey et al. 2013). In this paper, however, we do not include
breaks in the null model since we are interested in discriminating among a pure
I(1) specification and alternative models with a small number of exogenous shifts.
From an economic point of view, this amounts to testing the hypothesis that growth
episodes are generated by frequent stochastic events rather than by a few exogenous
structural changes. Hence, the results from the test proposed here have to be inter-
preted in a conservative way since rejections may occur when the data follows an
integrated process with few breaks. As will be reported subsequently, despite the evi-
dence in favor of I(1) models tending to be negatively biased, our results still suggest
fewer rejections than in previous works.

As for other tests in the literature, we implement a data-driven procedure to
estimate the break locations. Also, following Kapetanios (2005), we allow for an
unspecified number of breaks under the alternative hypothesis, up to some maximum
M . This represents a major improvement with respect to early tests found in the liter-
ature which assumed a fixed number of breaks (Zivot and Andrews 1992; Lumsdaine
and Papell 1997). As stressed by Kejriwal and Lopez (2013), it is desirable to select
the model with the appropriate number of breaks before proceeding with the unit root
test as the imposition of extraneous dummy variables leads to considerable power
losses. In this respect, the paper provides a first step in incorporating in the unit root
test a methodology for the identification of structural shifts that is broadly in tune
with the one actually used by practitioners in the field of growth empirics when look-
ing for growth episodes (Kerekes 2007; Jones and Olken 2008; Berg et al. 2012; Kar
et al. 2013).

The search algorithm used to choose m and (T1, ..., Tm) is grounded in the sequen-
tial (one-by-one) break estimation approach proposed by Bai (1997). With respect
to Kapetanios (2005) we introduce two innovations. First, we select the number of
breaks and their location by minimizing the sum of squared residuals instead of the
test statistic for α = 1.11 Second, as the sequential procedure leads to limiting distri-
butions of locations that diverge from the ones obtained via simultaneous estimation,
we implement the repartition procedure suggested by Bai (1997) to correct for this
bias. The algorithm can be described by the following steps:

11As shown by simulations exercises (Lee and Strazicich 2001; Vogelsang and Perron 1998) the standard
practice of locating breaks by minimizing the t-statistic for α generally leads to inconsistent estimates and,
therefore, approaches based on minimization of the squared sum of residuals are preferred
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• Step 1. Sequential estimation: For each m ∈ [1, M] and holding k = K fixed,
where M and K refer to exogenously determined upper bounds respectively for
the number of breaks and the truncation-lag parameter, obtain the break locations
sequentially by minimizing the sum of squared residuals from Eq. 3 conditional
on past breaks estimation. Thus, a generic break date is estimated as:

T̂m = argminTm
S(T̂1, ..., T̂m−1, Tm), (4)

where:

S(T̂1, ..., T̂m−1, Tm) =
T∑

t=k+2

(

yt − μ̂ − β̂t − α̂yt−1−
m−1∑

i=1

θ̂iDU(T̂i )t −θ̂mDU(Tm)t

−
m−1∑

i=1

γ̂iDT (T̂i )t − γ̂mDT (Tm)t −
K∑

j=1

ĉj�yt−j

⎞

⎠

2

(5)

• Step 2. Repartition procedure: For each m ∈ [2, M] and the associated par-
tition (T̂1, ..., T̂m), each break date is re-estimated by fitting a one-shift model
in the data interval defined by [T̂i−1; T̂i+1].12 The new estimates (T ∗

1 , ..., T ∗
m)

are consistent and share the same asymptotic distributions as those obtained by
global maximization (Bai 1997).13 The intuition underlying the repartition pro-
cedure is rather simple: it entails fine tuning by re-estimating separately each
break date in the data segment defined by the preceding break (or the initial
observation for the first break point) and the subsequent shift (or the final obser-
vation for the last break point). Notice that the whole search scheme is carried
out imposing a trimming parameter h, expressed as a share of the sample size, to
ensure a minimum length for each segment between breaks.

• Step3. Model selection: As we are left with M + 1 possible partitions (includ-
ing also the case with no breaks), the model with the appropriate number of
breaks (m∗) is chosen using the BIC criteria. The truncation-lag parameter k∗ is
then selected using the general-to-specific approach advocated by Ng and Per-
ron (1995), i.e. starting from the upper bound (K) we remove one lag at the time
until the last lag in an autoregression of order k∗ is significant while the last lag
in an autoregression of order k∗ + 1 is not significant.

Concerning model selection, different approaches have been proposed in the
econometric literature. Kapetanios (2005) proposes to select the optimal partition by
minimizing the t-statistic for α. As for selecting breaks locations, such an approach
is unlikely to deliver satisfactory results since the imposition of more dummies will

12Notice that for i = 1, T̂i−1 = 1 and for i = m, T̂i+1 = T .
13Although asymptotic distributions are identical, they may diverge in finite samples. As a robustness
check, we carried out simulations using also the simultaneous approach of Bai and Perron (2003) for a T

equal to the average of our sample. Results are not considerably different and, therefore, we decided to
opt for the repartition procedure. Simulation evidence on break location in finite samples is reported in
Section 5. Estimating breaks one at a time also has the advantage of being significantly computationally
less expensive as compared to the grid search scheme by Bai and Perron (2003).
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generally overestimate the true number of shifts.14 The recommended strategy by Bai
and Perron (2003) is to test for the presence of an additional shift in all the segments
between break dates.15 This supF(l|l + 1) test allows one to discriminate between l

and l+1 breaks, and when used sequentially can be used to choose the model with the
correct number of structural changes. Simulation evidence in Bai and Perron (2006)
shows that both the sequential procedure and the BIC criteria perform better than
other approaches. The former has the advantage of taking into account heterogeneity
across segments and of being robust when serial correlation is present. Nevertheless,
the sequential testing method presents serious power losses in small samples as it is
typically carried out with ever fewer observations (Antoshin et al. 2008). Therefore,
for this specific application, the BIC criteria appears to be more suited.16 A general
issue with the BIC criteria concerns its poor performance under the null (i.e. when
breaks are not present) when serial correlation is not accounted for. In our case, how-
ever, such a problem is addressed by directly controlling for serial correlation via the
inclusion of k lags in the regression.

Finally, having selected (T ∗
1 , ..., T ∗

m), m∗ and k∗, we fit the corresponding regres-
sion and use as test statistics both the standard t-statistic (tα) for the null of α = 1
and the Wald statistic (FT ) for the joint null: α = 1; θ1 = ... = θm∗ = γ1 = ... =
γm∗ = 0.17

5 Finite sample size, power and break selection properties

In this section we present the critical values and explore the finite sample size and
power properties of our testing strategy via Monte Carlo simulations.18 Table 2
reports finite sample critical values for different M , h and T .19 Following Kapetanios
(2005), to generate critical values, we compute the distributions of the test statis-
tics (tα and FT ) under the null via Monte Carlo simulations of standard random

14The reason is that I(1) can be seen as a limiting case of a I(0) process with several breaks, i.e. a I(0)
process in which both the trend and the constant change permanently at any point in time. Hence imposing
additional dummies leads to more evidence against the alternative and, accordingly, to a lower t-statistic.
For a detailed discussion of the issue see Perron (1989). Simulation evidence in Section 5 corroborates
such a conclusion.
15The test is equivalent to the maximization of the Wald statistic (F − test) over all the data points in a
specific segment.
16In this regard, we run some Monte Carlo exercises comparing the two approaches. Simulations results
show the superiority of the BIC criteria, given the specificities of our application. We also found that the
sequential procedure displays further power losses when, as in our case, the form of the breaks is not
known a priori.
17The properties of FT (in the case of one break) are largely explored in Sen (2003). Here we generalize
to the case of multiple breaks. Thus, the statistic can be computed as: FT = (SUR−SR)/(1+2m∗)

(1−SUR)/(T −3−2m∗−k∗)
, where

SUR and SR are for the sum of squared residuals respectively of the unrestricted and the restricted model.
18Considering the specific application of this paper, in which the average sample size of the GDP series
is 164, we are only interested in the finite sample performance of the test. Accordingly, only finite sample
critical values are derived.
19In deriving critical values the upper bound (K) for the lag truncation parameter is set to 7 for h = 0.1
and to 2 for h = 0.05. Results using other values are available upon request from the authors.
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walks (10,000 replications).20 Then, we compute the thresholds for different levels
of confidence.

Let us now present simulation results to investigate size and power properties of
the test. The experimental design follows that of Vogelsang and Perron (1998) and
Sen (2003). The simulated model takes the general form:

[1 − (α + ρ)L + ρL2]yt = (1 + λL)[
A∑

i=1

θiDU(Ti)t +
B∑

i=1

γiDT (Ti)t + et ], (6)

where et ∼ N (0, 1). For each experiment we run 1000 replications of length
T = 200 and report the rejection rate at the 5% level using the appropriate crit-
ical values for M = 4 and h = 0.1. The following combinations of ρ and λ

are tested: {(0, 0); (0.5, 0); (−0.5, 0); (0, 0.5); (0, −0.5)}. In the size simulations we
impose α = 1 and A = B = 0, while for the power simulations we experiment for
α ∈ {0.9; 0.8; 0.7; 0.6; 0.5} introducing different number of breaks of different forms
and magnitudes.21 Results are reported in Table 3. Let us now emphasize some key
features emerging from simulations:

1. The size of tα and FT is reasonably close to the nominal value. A well-known
exception is the case with a negative moving average component in which both
the test statistics are slightly over-sized.22

2. In the absence of breaks, FT displays uniformly higher power than tα across all
the experiments.

3. When the number of structural changes increases, some loss in power has to be
expected, ceteris paribus, as a result of the introduction of additional dummies
(see Kapetanios 2005, for a discussion of this issue).

4. Convergence to 100% power occurs fast as the magnitude of the breaks increases.
As documented by Sen (2003), FT converges faster than the standard t-statistic
since it incorporates information on the presence of breaks. Notice that the power
gains associated with increasing break magnitudes (holding constant the vari-
ance of shocks) are symmetrical to those associated with lower variance (holding
constant the size of the breaks).

5. The power generally increases monotonically as we move away from the null
(i.e. as α decreases). Nevertheless, in the presence of a negative autoregressive
term, the power of FT may slightly decrease between α = 0.9 and α = 0.6.

6. For α = 0.9, FT has a higher power than tα in almost all the experiments, i.e.
it is better suited to investigate cases with the autoregressive parameter close
to unity.

20More precisely, we simulate the null model: yt = yt−1 + et ; where: et ∼ N (0, 1).
21In all the experiments we assume break locations to be symmetrically distributed across the time span.
22The size does not coincide exactly with the nominal value because we introduce some degree of serial
correlation in the simulations and because the number of Monte Carlo runs is lower than those used to
obtain critical values. For a larger number of replications we expect perfect coincidence with the nominal
value.
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Fig. 2 The effect on power of different time series lengths

We also study the effects of changing the length of the time series (cf. Figure 2).23

As expected, for shorter time series the test has lower power. Nevertheless, it is
reassuring that for sufficiently large breaks FT do not display strong power losses.

Let us now compare the power performance of tα and FT with the standard
Kapetanios test. Results are reported in Fig. 3 for M ∈ {2; 3; 4} and different
parameter values of the simulated model. Some important aspects stand out from
the simulations. First, as pointed out by Ohara (1999), the power of all the statistics
falls dramatically when M is lower than the true number of breaks. Second, for tα
and the Kapetanios test statistic a less pronounced reduction in power also appears
when increasing M , given the number of true breaks. The performance of FT , on
the contrary, remains largely unaffected by this second effect. Most importantly, the
Kapetanios test exhibits higher power than both tα and FT in a limited set of instances
when no breaks are present under the null. Generally, FT tends to outperform the
other statistics, especially when the upper bound M increases (cf. the panels with
M = 4 in Fig. 3).

In Figs. 4 and 5 we show that our search scheme leads to a more precise estimation
of the number of breaks and their locations, as compared to the standard approach
based on the minimization of the t-statistic.24 Figure 4 assumes the number of breaks
to be known (equal to 4) and plots the distributions of the estimated break dates under
different degrees of serial correlation. We report a substantial improvement with the
distributions of break locations becoming more symmetric and centered around the
true dates, in particular for the first two breaks. Figure 5 compares the selected num-
ber of structural shifts under both procedures. Once again, the minimization of the
t-statistic performs poorly as it tends to always select a number of breaks equal to the

23For this exercises we impose two breaks. We refer to (θ, γ ) = (2, 0.025), while “large breaks” stands
for (θ, γ ) = (4, 0.05). For simplicity we use ρ = λ = 0 in all the simulations. The same approach is
followed in Fig. 3.
24In both Figs. 4 and 5 we assume the size of each break to be (θ, γ ) = (2, 0.025).
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Fig. 3 General power comparison - FT , tα , the Kapetanios statistic (min-tα)

upper bound M , resulting in a general overestimation, while using the BIC criteria
entails a higher probability to choose the correct number of breaks.

Overall, according to our simulation exercises, the testing procedure proposed here
turns out to yield gains in terms of both power performance and the precision of
breaks estimation. In particular, one should expect a generally higher power for FT

than for tα .25 However, since the Wald statistic may exhibit non-monotonic power
in the few specific instances described above, in the empirical application we also
report results using tα .

6 The empirical strategy

We investigate the presence of unit roots and structural breaks in income per capita
series. Table 4 summarizes the results from previous studies. Data are taken from
the last release of the Maddison database (Bolt et al. 2018).26 To preserve the
robustness of our analysis we focus exclusively on time series with at least 100 con-
secutive observations, leaving us with a sample of 34 countries (20 OECD and 14
developing).27

Concerning the choice of M , as documented in Section 5, a parsimonious specifi-
cation of M may improve the power of the test when the true number of shifts is less

25This is in line with the evidence reported by Sen (2003) for the case of a single break, suggesting
generally higher power of the Wald statistic.
26More precisely, we use the variable RGDPNApc based on a single price benchmark (1990 US dollars).
27Sufficiently long time series are needed to preserve the general power of the test. Also, for stationary
processes “near unit root” (i.e. with roots close to unity) rejection requires very long time series. Hence,
our setting is not intended to deal with near unit root specifications.
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Fig. 4 Distribution of break dates - Two step minimization of SSR (left panels) vis-à-vis sequential
minimization of tα (right panels)

than or equal to the specified maximum. However, large power losses exist when the
number of breaks is greater than the maximum allowed. Therefore, we report results
for both M = 3 and M = 4 and find no evidence of power losses.28 Indeed, it is
reassuring that the number of rejections does not fall when allowing for an additional
break. In all tests the trimming parameter is set to h = 0.1.

In contrast to previous studies which rely on asymptotic critical values (Lums-
daine and Papell 1997; Kejriwal and Lopez 2013; Papell and Prodan 2014), for each
country in the sample (and each M) we obtain series-specific critical values to take

28In tune with the discussion in Kejriwal and Lopez (2013), allowing for a greater number of breaks is not
desirable given the available sample sizes (which range from 111 to 197 observations).
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Fig. 5 Frequency of selected number of breaks - BIC criteria (left panels) vis-à-vis sequential minimizia-
tion of tα (right panels)

into account the idiosyncratic characteristics of each time series.29 The key intu-
ition is that under the null the first differences of the series can be described by a
stationary ARMA process with no breaks. Following Christiano (1992) and Zivot
and Andrews (1992), for each series we take first differences and estimate a battery
of ARMA(p, q) models. To determine the appropriate number of lags p and q we
use the BIC criteria. After selecting the appropriate null model, the distribution of
both tα and FT as well as the associated critical values are approximated via Monte
Carlo simulations (with 5000 replications). In the simulations we allow for two alter-
native assumptions regarding the nature of the stochastic disturbances: (i) Normal
shocks with zero mean and standard deviation estimated from the residuals; (ii) Ran-
domly drawn shocks (with replacement) from the distribution of residuals. Hence,
critical values are computed both assuming the Gaussianity of the shocks and via

29Series-specific critical values differ from the finite sample ones reported in Table 2 because the under-
lying null model accounts for some series-specific characteristics (e.g. number of observations, volatility,
presence of serial correlation). Hence, they allow more robust inference on unit roots (see e.g. Zivot and
Andrews 1992; Christiano 1992, on this point).
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Table 4 Rejection rates and break dates from other studies using Maddison data

Country Ben-David et al. (2003) Kejriwal and Lopez (2013) Papell and Prodan (2014)

Break dates Rej. lev. Break dates Rej. lev. Break dates Rej. lev

OECD

Australia 1891, 1927 10% 1891, 1929 − 1931 10%

Austria 1944, 1959 1% 1913, 1944 − 1944, 1950, 1976 1%

Belgium 1916,1939 5% 1917, 1939 − 1939, 1976 1%

Canada 1908, 1928 1% − − 1930, 1940 5%

Denmark 1939, 1975 1% 1914, 1939 − 1939, 1969 1%

Finland 1916, 1943 1% 1917 − − −
France 1939, 1974 1% 1917, 1945 − 1939, 1973 1%

Germany − − 1922, 1945 − 1944, 1950 1%

Italy − − 1918, 1944 − 1942, 1948 5%

Japan 1944, 1973 1% 1944, 1973 − 1944, 1971, 1991 1%

Netherlands − − 1918, 1945 − 1945, 1951 1%

New Zealand 1907, 1935 − − −
Norway 1917, 1939 1% 1921 − − −
Portugal 1936 − − −
Spain 1937 − 1935, 1959, 1971 5%

Sweden 1916, 1963 1% 1917 − 1915, 1970 5%

Switzerland − − 1916, 1944 − 1944 5%

UK 1918, 1945 5% 1919 − 1939, 1945 5%

USA 1929, 1945 1% 1931, 1945 − 1929, 1942 1%

Asia

India − −
Indonesia 1941 10%

Malaysia 1944 10%

Philippines 1946, 1952 5%

Taiwan 1942 1%

South Korea 1944 1%

Sri Lanka 1900, 1966 10%

Notes: Blank spaces denote countries not included in the study while ‘ - ’ indicates the failure to reject at
the 10% confidence level. Papell and Prodan (2014) only report break dates obtained from structural break
tests for stationary series. The dates may not coincide with those emerging from unit root tests

bootstrapping (cf. Table 9 in the Appendix B). The latter technique has the advan-
tage of restraining from parametric assumptions but may lead to spurious results in
small samples, in particular when the criteria used for model selection fail to identify
serial correlation in the error term. As a consequence, results are reported for both
approaches in Table 5.
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7 Discussion of results

For OECD countries, our methodology rejects the null of the unit root in only 13
of 20 instances under the assumption of Gaussian shocks (cf Table 5). Consistently
with the power simulations reported in Section 5, we find a higher number of rejec-
tions when using the Wald statistic. Although our results do not contrast strongly
with the previous literature (cf. Table 4), we find additional failures to reject the null
(i.e. Canada, Denmark, Sweden, Switzerland). These differences reflect the different
break search methodology adopted and, possibly, the use of series-specific critical
values vis-à-vis asymptotic ones. Somewhat consistently with Kejriwal and Lopez
(2013), relying on the minimization of the SSR rather than the t-statistics produces
less evidence against the unit root hypothesis.30

This paper also presents new evidence for developing countries. In particular, we
find only 4 rejections in a sample of 14 developing economies. Intuitively, those
countries tend to experience more erratic growth processes with persistent and fre-
quent (possibly more than four) shifts in both level and trend. This is in line with
several contributions emphasizing the ubiquitous presence of growth discontinuities
in poor- and middle-income countries (Pritchett et al. 2000; Hausmann et al. 2005;
Lamperti and Mattei 2018b). Yet, it should be noticed that results may be affected by
the shorter time series (the average number of observations for developing countries
is 147) or by higher variance. Although we can partially correct these biases when
using series-specific critical values, it is not possible to unambiguously disentangle
their magnitude.

Another relevant contribution of our work regards the possibility of departing from
the assumption of Gaussian shocks by deriving bootstrapped critical values. Rejec-
tion levels using bootstrapped critical values are reported in brackets in Table 5.
Interestingly, this leads to considerably less evidence against the unit root hypothe-
sis. In Fig. 6, the empirical distribution of the residuals under the null is contrasted
with the best Normal fit. Departures from Normality appear to exist in some coun-
tries in terms of skewness and, most importantly, excess kurtosis.31 This seems to
suggest that the assumption of Gaussianity may bias the results in favour of trend-
stationary models. One may conjecture, instead, that GDP time series may be well
described by I(1) models with fat-tailed innovations. Such a characterization is con-
sistent with empirical findings which identify Laplacian distributions of aggregate
growth shocks (Castaldi and Dosi 2009; Fagiolo et al. 2008). Fat-tailed distributions
of shocks entail a growth process driven by large and lumpy events. They typically
emerge when some of the assumptions of the central limit theorem are violated. In
particular, it has been pointed out that the presence of dynamic increasing returns
and strong correlating mechanisms (e.g. competition, network externalities) at the
firm level may lead to a non-trivial aggregation of microeconomic shocks, which in

30Zerbo and Darné (2018) apply the methodology in Kejriwal and Lopez (2013) to the GDP per capita
series of 28 sub-Saharan African countries for the period 1960-2014. Although their results may suffer
from small sample bias, they also find no evidence against the unit root hypothesis.
31Consistently, Campi and Dueñas (2019) provide strong evidence in favour of fat-tailed distributions of
growth rates for Maddison series.

738 E. Russo, N. Foster-McGregor



−0.2 0.0 0.1 0.2

0
4

8
12

Australia

Residuals

D
en

si
ty

−0.8 −0.4 0.0

0
4

8
12

Austria

Residuals

D
en

si
ty

−0.2 0.0 0.1 0.2

0
5

10
15

Belgium

Residuals

D
en

si
ty

−0.2 −0.1 0.0 0.1

0
4

8

Canada

Residuals

D
en

si
ty

−0.20 −0.10 0.00 0.10

0
5

10
15

Denmark

Residuals

D
en

si
ty

−0.2 0.0 0.1 0.2

0
4

8

Finland

Residuals

D
en

si
ty

−0.2 0.0 0.2 0.4

0
4

8

France

Residuals

D
en

si
ty

−0.6 −0.2 0.2

0
5

10
15

Germany

Residuals

D
en

si
ty

−0.6 −0.2 0.2 0.6

0
2

4
6

Greece

Residuals

D
en

si
ty

−0.2 0.0 0.2

0
5

10
15

Italy

Residuals

D
en

si
ty

−0.6 −0.2 0.2

0
2

4
6

8

Japan

Residuals

D
en

si
ty

−0.4 0.0 0.2 0.4

0
5

10
15

Netherlands

Residuals

D
en

si
ty

−0.2 0.0 0.1 0.2

0
2

4
6

8

New Zealand

Residuals

D
en

si
ty

−0.15 −0.05 0.05 0.15

0
4

8
12

Norway

Residuals

D
en

si
ty

−0.15 −0.05 0.05 0.15

0
4

8

Portugal

Residuals

D
en

si
ty

−0.3 −0.1 0.1

0
2

4
6

8

Spain

Residuals

D
en

si
ty

−0.10 0.00 0.10

0
5

10
15

Sweden

Residuals

D
en

si
ty

−0.2 0.0 0.2

0
2

4
6

8

Switzerland

Residuals

D
en

si
ty

−0.15 −0.05 0.05

0
5

10
15

United Kingdom

Residuals

D
en

si
ty

−0.20 −0.05 0.05 0.15

0
4

8
12

USA

Residuals

D
en

si
ty

−0.20 −0.05 0.05 0.15

0
4

8
12

India

Residuals

D
en

si
ty

−0.6 −0.2 0.0 0.2
0

2
4

6
8

Taiwan

Residuals

D
en

si
ty

−0.15 0.00 0.10 0.20

0
4

8

Sri Lanka

Residuals

D
en

si
ty

−0.3 −0.1 0.1

0
2

4
6

Argentina

Residuals

D
en

si
ty

−0.15 −0.05 0.05

0
5

10
15

Bolivia

Residuals

D
en

si
ty

−0.2 0.0 0.1 0.2

0
2

4
6

8

Brazil

Residuals

D
en

si
ty

−0.3 −0.1 0.1

0
4

8

Chile

Residuals

D
en

si
ty

−0.05 0.05 0.10

0
5

15
25

Colombia

Residuals

D
en

si
ty

−0.10 0.00 0.10

0
5

10
20

Ecuador

Residuals
D

en
si

ty

−0.20 −0.05 0.05

0
4

8

Mexico

Residuals

D
en

si
ty

−0.20 −0.10 0.00 0.10

0
4

8
12

Panama

Residuals

D
en

si
ty

−0.3 −0.1 0.1

0
2

4
6

8

Peru

Residuals

D
en

si
ty

−0.3 −0.1 0.1 0.3

0
2

4
6

Uruguay

Residuals

D
en

si
ty

−0.3 −0.1 0.1

0
2

4
6

Venezuela

Residuals

D
en

si
ty

Fig. 6 Residuals from the selected I(1) model - empirical density (in green) vs. Normal fit

turn may lead to the emergence of fat tails in macroeconomic data (Bottazzi and Sec-
chi 2006; Dosi 2007; Fagiolo et al. 2008). An I(1) characterization of the GDP per
capita series with non-Gaussian innovations is common to many evolutionary growth
models.32 These models generally describe the growth process as a result of com-
plex interactions across individuals and organizations which, in turn, lead to path
dependency and irreversibility of shocks as well as to the emergence of fat-tailed
distributions at all levels of aggregation. The lack of evidence against I(1) processes
may be interpreted as pointing towards a strong degree of “complexity” and inter-
relatedness across economic units, thus, providing support for evolutionary models.
For instance, Dosi et al. (2019) present a multi-country agent-based model in which
firms interact both domestically and in international markets following idiosyncratic
learning trajectories. Simulation results show that countries endogenously differen-
tiate and cluster into two groups of winners and losers exhibiting extremely erratic
paths with fat-tailed distributions of growth rates. As stated in Section 2, RBC and
DSGE models may also be consistent with I(1) aggregate time series even though
they can hardly generate fat-tailed distributions of growth rates.

32See for instance early evolutionary growth models (Verspagen 1992; Dosi et al. 1994; Silverberg and
Verspagen 1995). For some agent-based evolutionary models see Ciarli et al.; Dosi et al., Dawid et al.
2014, Dosi et al. 2019, 2020; Caiani et al. 2016; Lorentz et al. 2016; Ciarli et al. 2019; Caiani et al. 2018;
Dawid et al. 2018.
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Fig. 7 Time series of income per capita and estimated break dates

Figure 7 reports the estimated structural breaks for each time series. Break dates
are estimated under the I(0) alternative and, therefore, they have a meaningful inter-
pretation when the unit root null is rejected. Nevertheless, it should be noticed that
break locations for all countries tend to capture major historical events such as wars,
booms and crisis. In this respect, the endogenous identification of relevant episodes
provides a further validation of the search algorithm proposed here. Moreover, con-
sistent with previous contributions, there is no evidence of a single steady state
model as each country displays at least one structural break. In Table 6 we report
estimates of break dummy coefficients for the series which appear to be stationary.
Most countries with I(0) time series tend to exhibit significant changes in both their
intercepts and trends. As an illustrative example consider the case of France whose
experience is representative of those of many OECD countries. Our break selection
procedure suggests two major crashes associated with the two world wars, which
are both accompanied by subsequent periods of growth acceleration. The phase of
strong catching up in the aftermath of World War two is then followed by a period
of relative stagnation (i.e. a negative trend shift) at the end of the 1970s following
the oil crisis (Perron 1989). The presence of (relatively few) changes in growth rates
within-country, possibly associated also to level shifts, is a feature of endogenous
growth models exhibiting “strong” scale effects. Less evidence is found supporting
pure Neoclassical and semi-endogenous models which predict only level effects. This
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is broadly consistent with the results of Papell and Prodan (2014), who find growth
effects in the majority of the time series considered.33

The evidence presented here has some relevant implications for applied work in
the field of growth empirics. First, the presence of unit roots in many GDP series
affects significantly the identification of specific kinds of growth episodes. Several
empirical papers disregard prior unit root testing when looking for structural changes
in the data. The choice of a level versus first-difference specification is crucial for
the appropriate implementation of structural breaks search procedures, however. Our
results indicate that for most GDP time series, especially in developing countries, the
first-difference variant has to be preferred. Moreover, the results call into question the
widespread practice of using simple economic filters, based on invariant criteria (e.g.
a jump in growth rates of a given amount lasting for some years), to identify growth
shifts. In fact, the evidence in favour of I(1) models hints at extremely frequent
growth discontinuities which hardly obey deterministic and recurrent characteristics.

To corroborate our results we performed robustness checks. First, we ran the test
assuming a fixed number of structural changes in order to identify possible power
losses arising due to the selection of the appropriate number of breaks. Results are
reported in Appendix A (cf. Table 7). Although showing general consistency with
the baseline case, they indicate even fewer rejections, thus, excluding the possibil-
ity that our results are being driven by power losses due to the selection procedure
adopted. As a second robustness check, we run the test imposing a smaller trimming
parameter (h = 0.05, cf. Table 8) in order to allow for more consecutive break dates.
This results in three extra rejections for OECD countries while the coefficient of
New Zealand becomes statistically insignificant. Hence, allowing for shorter growth
segments provides only limited additional evidence against the unit root hypothesis.

8 Conclusion

In this paper we test the unit root hypothesis in long-run income time series against
the alternative of stationary models with multiple structural breaks. Our approach
extends the test in Kapetanios (2005) by introducing a more robust search procedure
which provides substantial improvements in terms of power and breaks identification
(cf. the evidence in Section 5).

As argued in Section 2, distinguishing I(1) models from stationary alternatives has
relevant theoretical and empirical implications in the field of economic growth. The
tension between integrated and trend stationary models (with breaks) can be summa-
rized by the following question: how frequently do countries experience structural
breaks in their GDP per capita series? In the limit, unit root models are stationary
processes in which both the intercept and the trend change permanently at any point
in time. Hence, if structural breaks occur particularly often, the distinction between
I(1) and I(0) specifications becomes extremely blurred. In this perspective, testing for
unit roots amounts to testing for the frequency of structural changes. The procedure

33More mixed evidence is presented by Sobreira et al. (2014). Using structural breaks tests robust to the
presence of unit roots they find that countries distribute quite uniformly across the “constant trend”, “level
shifts” or “trend shifts” hypothesis.
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introduced in this paper has the aim of distinguishing between models with several
permanent changes in mean and trend and alternatives with relatively few variations.
Our results are more favorable to the first alternative.

Even in advanced countries we find less evidence against I(1) processes in com-
parison to previous studies that tend to find a relatively large number of rejections
(Ben-David et al. 2003; Papell and Prodan 2014), with our results being more in
line with new results pointing at a resurgence of the unit root hypothesis in GDP
data (Kejriwal and Lopez 2013; Zerbo and Darné 2018). Another contribution of
this paper is the inclusion of developing countries in the analysis. However, even by
allowing for up to four breaks, we fail to reject the null of a unit root in most of the
countries considered. Such results suggest the presence of strong growth discontinu-
ities in backward economies which make their growth paths hardly distinguishable
from a random walk. Finally, the number of rejections fall when using bootstrapped
critical values instead of Gaussian shocks, possibly hinting at the presence of I(1)
models with fat-tailed innovations.

In Section 7, such results have been interpreted as providing support to evolution-
ary growth models which stress path dependency, nonlinearities and the non-trivial
aggregation of microeconomic shocks. At the macroeconomic level, these charac-
teristics typically lead to the emergence of series exhibiting several growth shifts,
similar to I(1) models.

From the point of view of growth empirics, we emphasize the importance of unit
root testing prior to (or jointly with) structural break identification. Indeed, if countries
exhibit growth trajectories similar to random walks, the practice of fitting structural
change models on the series in levels may lead to spurious and inconsistent results.

Our results also suggest some future lines of research. First, it becomes crucial
to move towards testing methodologies that are robust to the presence of fat-tailed
shocks. Quantile autoregressions (QAR) are a natural candidate in this respect, as
they allow for the investigation of persistence properties of a time series at different
quantiles of the conditional distribution (Koenker and Xiao 2004, 2006). Recently,
structural break tests have been developed in the framework of QAR (Qu 2008; Oka
and Qu 2011). Incorporating unit root tests in this setting would clearly be a key
achievement. Second, there is a lot to learn from the growth dynamics of developing
countries. The unstable and complex patterns shown by this group of economies call
for further research efforts. As a matter of fact, most empirical papers investigating
growth episodes in less developed countries tend to adopt a deterministic character-
ization of growth discontinuities, relying on constant and recurrent criteria (e.g. 2%
acceleration in growth rates for a minimum number of years) to define episodes. The
evidence presented here partially challenges this approach since we have shown that
for developing countries, growth shifts are extremely frequent and exhibit random
characteristics in terms of form and magnitude. Unfortunately, long run time series
are available only for a limited sample of economies while both unit root and struc-
tural break tests suffer from finite sample biases. As a first attempt to address the
issue, Antoshin et al. (2008) present a methodology for structural break testing suited
for short time series. More generally, improving the small sample performance of
unit root tests would allow one to perform a similar investigation using post-war data
for a larger set of economies.
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