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Abstract
The Firm EcosystemModel is a dynamical model based on the empirical finding that
firm characteristics, such as the tendency to innovate and competitive advantages,
vary according to firm size. Firm dynamics leading to various population distribu-
tions are considered as a competition-colonization scenario in a spatially defined
market, where firms of differing sizes are treated as separate species with different
competition and colonization characteristics. Smaller firms, given adequate invest-
ment funds to innovate, are able to colonize available space more quickly than larger
firms, and larger firms are assumed to have stronger competition characteristics and
are able to outcompete smaller firms for occupied space. With startup and mortal-
ity parameters determined empirically, firm populations reach equilibria dependent
on the values of the capital investment parameters. The model predictions provide a
good qualitative fit to empirical data from the Business Dynamics Statistics database.
Finally, we explore how alternative mortality or investment conditions affect the firm
size distributions.
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1 Introduction

Firms are the medium through which individuals participate in the productive aspect
of an economy, and in aggregate compose the domain of business that is one of
the three pillars of macroeconomic theory. Despite the central role in a myriad of
economic questions, an individual firm is classically modeled as a black box that
essentially serves as a vehicle for a production function. This formulation is unsatis-
fying to anyone interested in understanding the macroeconomic implications of firm
dynamics where heterogeneity in firm characteristics is important, firms interact with
each other and dynamics are endogenous.

Firm dynamics determine the relative proportions of different size firm popula-
tions, and these proportions are linked to macroeconomic questions, such as what
types of firms provide the most employment (Birch 1981; Haltiwanger et al. 2013),
which types innovate (Acs and Audretsch 1987; Hathaway and Litan 2014) and
whether a large variety of firm types promotes social well-being (Hannan and Free-
man 1993). Understanding the drivers of firm dynamics is therefore of importance
not only to academics but also to management professionals and policy makers.

Early models exploring firm dynamics focused on empirical firm size distribu-
tions and the equations that described them. In 1931, Robert Gibrat examined firm
plant sizes across France and derived a logarithmic relationship between firm popula-
tion and size where firm growth was in proportion to its size. This became popularly
known as Gibrat’s Law of Proportional Effect. Later work built on this law and pro-
duced variants that modified birth, growth and mortality parameters (Kalecki 1945;
Simon and Bonini 1958; Mansfield 1962). The Gibrat distribution and its variants fit
the larger end of the firm size spectrum well but failed to adequately predict the dis-
tribution of small firm sizes, as demonstrated in Fig. 1 where the Gibrat distribution
is mapped against empirical firm size data from the Business Dynamics Statistics
(BDS) database. The BDS dataset is an aggregated longitudinal dataset with com-
plete representation across all firm size categories.1 Firm sizes are organized into 12
categories based on numbers of employees: 1 to 4, 5 to 9, 10 to 19, 20 to 49, 50 to
99, 100 to 249, 250 to 499, 500 to 999, 1000 to 2499, 2500 to 4999, 5000 to 9999
and 10000+. Econometric work attempting to clarify these breakdowns in the Gibrat
assumption (Hall 1986; Dunne et al. 1988) found statistical regularities in the empir-
ical data, namely that survival increases with size and growth decreases with size.
Smaller firms fail more often and grow faster than larger firms. These results appear
to hold regardless of how size is defined, whether by output, plant size or employees
(Sutton 1997; deWit 2005).

More recent size distribution work proposes alternative distributions such as the
Zipf (Axtell 2001; Bottazzi et al. 2015), Rank (Podobnik et al. 2010), log-log OLS
(Di Giovanni et al. 2011) and Hill (Gabaix 2009). These distributions are considered
valid only above a minimum firm size and don’t attempt to explain the distributions at
the smaller end of the size spectrum, in part due to data collection methods that focus
on larger firms. Our use of the BDS dataset with representation across all firm sizes

1The BDS database is explained in Appendix A.1 and discussed extensively in Section 3.
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Fig. 1 BDS Statistics for
Average Size. The Business
Dynamics Database (BDS) firm
size distribution averaged over
all industries and all years from
1977 to 2014 is shown as solid
blue line with a dashed line
describing the classic Gibrat
distribution, and a dotted line
the Zipf distribution. Note the
‘hump’ toward the left hand side
of the empirical distribution

should mitigate this issue, as well as the fact that we are not seeking a statistical fit to
the empirical data. Of particular interest is the ‘hump’ between the second and sixth
size category presented by the empirical data, which is unexplained by the Gibrat or
related distributions.

A more descriptive exploration of firm dynamics arises out of the management
literature, where populations of firms are considered in the context of industries
and firm dynamics considered as industry life cycles. This industry life cycle work
identified regularities in behavior within populations of various sized firms such as
shakeouts, where a large number of entrants falls to a small number of persistent
firms, explained as the process of winnowing excess capacity and settling on a mini-
mum efficient scale, as well as a positive correlation between firm entry and exit rates
within an industry, known as turbulence2 Klepper and Miller (1995), Klepper (1996),
Klepper (1997), and Haltiwanger et al. (2013). This industrial dynamics theory con-
siders competition as monopolistic, an imperfect form of competition as understood
classically, whereby firm offerings are differentiated and surviving firms’ products
and services address the needs of a particular niche. But there also exists a hetero-
geneous institutional3 competitive advantage enjoyed by established firms by way
of supply chain relationships, established brands and legal protections, which is not
explicitly addressed in these studies. These institutional advantages create barriers to
entry for new firms (Bain 1954; Stigler 1964; Caves and Porter 1977; Demsetz 1982).

Meanwhile, organizational ecologists viewed firm dynamics as determined by
processes of competition (Sleuwaegen and Goedhuys 1998). Hannan and Freeman
(1977), in particular, considered questions of firm dynamics to be “fundamentally
ecological in nature”. Organizational ecologists paid considerable attention to the
institutional setting in which firms complete (Nugent and Nabli 1992; Hannan and
Carroll 1992; Hannan and Freeman 1993). Firm growth and survival depend on the

2This turbulence was previously described by Joseph Schumpeter in 1942 as creative destruction.
3Here we employ Douglass North’s (North 1991) definition of an institution as any form of constraint
that shapes interactions, which include formal institutions such as laws and policies as well as informal
institutions such as cultural norms.
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competitive characteristics of other firms as well as the institutional settings that
determine such factors as access to capital and the nature of competitive advantage.
Generally speaking, “If processes generating variation and retention are present in
a system and that system is subject to selection processes, evolution will occur”
(Aldrich 1999). In this view, firms are adaptive entities that respond, according to
their unique characteristics, to the environments in which they operate (Nelson and
Winter 1982; Beinhocker 2006; Ebeling and Feistel 2011). Firms that don’t adapt
will fail due to institutional and competitive selection pressures.4 Hannan and Free-
man theorized that firms don’t necessarily adapt to changing conditions due to the
difficulties for large established organizations to change quickly, a quality described
as structural inertia (Hannan and Freeman 1984).

Larger firms may enjoy institutional competitive advantage, but smaller firms are
more agile when it comes to adapting to new market opportunities because they are
less inertial. Small firms also tend to have less available capital than larger firms to
pursue innovations, but they also enjoy more attention from external investors, and
the degree to which small firms can take advantage of their agility depends on the
availability of this external investment. Venture capital typically funds startup firms
for five years, at which point investment falls off dramatically as investors turn their
attention toward exit strategies and realizing returns (Hall and Lerner 2010; Feld
and Mendelson 2013; Gompers and Lerner 2001).5 Venture capital chases startups
because they have potential for higher growth through innovation and market capture
than incumbent firms.6

Putting this ecological picture together with the observed size-specific characteris-
tics previously described, we could consider firms of various sizes as unique species
with size-specific behaviors and characteristics, all competing within an institutional
context. The outcome of these competitive dynamics produces a particular firm pop-
ulation distribution. Specifically, larger firms have a stronger competitive advantage,
both through economies of scale and institutional barriers to entry, but are less able to
adapt to changing environments due to structural inertia. They have lower mortality
and growth rates than smaller firms. Smaller firms are better at adapting to change
because they are less inertial, but the degree to which they can innovate is dependent
on external investment. In summary, a brief inventory of the empirical regularities
described gives us a list of seven stylized facts:

1. Firm survival increases with size (Dunne et al. 1988)
2. Firm growth decreases with size (Hall 1986)

4A unique twist to modeling economic considerations through population ecology is that we have a
great deal of agency in determining the evolutionary selection pressures and responses in an economic
ecosystem (Jones and Breslin 2012).
5By investment we refer to money a firm attracts from outside sources for the development of new prod-
ucts and services, and not exchanges of existing shares or money used as leverage to obtain operating
efficiencies.
6Alternatively, venture capitalists can obtain a much larger ownership stake in startups than incumbent
firms for relatively little investment.
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3. A new market will initially generate a large numbers of small firms that fail
(shakeout) (Klepper and Miller 1995)

4. When mortality increases, more firms enter the market (turbulence) (Klepper
1997)

5. Larger firms enjoy a competitive advantage over smaller firms (Demsetz 1982)
6. Smaller firms attract more outside investment than larger firms (Feld and

Mendelson 2013)
7. Smaller firms are more agile than larger firms because they have less structural

inertia (Hannan and Freeman 1984).

The last two items are of particular interest, because taken together they suggest
multiple flavors of competition at play in firm dynamics: institutional competitive
advantage in established markets and agility in capturing new markets. Our premise
of established firms operating under comparative advantages and newer firms inno-
vating is reflective of the early Schumpeterian or entrepreneurial technology regime
described by Winter (1984) and demonstrated econometrically by Breschi et al.
(2000).

We postulate that smaller firms are particularly susceptible to institutional effects,
such as barriers to entry and investment incentives, and a model that directly
addresses these realities will provide useful insights into firm dynamics, better
explain how those dynamics affect the distribution of firms at the small end of the
spectrum, and serve as an experimental sandbox to explore how modifications to the
institutional context that modulate the selection pressures and innovation opportu-
nities may affect firm size distributions. Given the emphasis on competition in the
standard narratives of firm dynamics, combined with the growing understanding that
firm size distributions are not fully explained by of market selection forces, minimum
efficient scales, relative efficiencies or profitability (Dosi 2005; Dosi and Nelson
2010), we believe ecological modeling of firm dynamics is underutilized. Is there an
ecological analogy that would apply to the multilevel competition description of firm
population dynamics described above?

We believe we have found such an analogy in David Tilman’s spatially structured
competition-colonization dynamics (Hastings 1980; Tilman 1994). Tilman describes
a Wisconsin prairie populated by different species of grass. One particular species
has superior nitrogen-fixing ability, so tends to overrun areas populated by species
with lesser ability. But all grass organisms have a mortality rate so regions of empty
patches are continuously emerging, which can be populated by lesser-fixating grass
species. The population dynamics on the prairie therefore consist of empty patches
colonized by lesser fixating species that were eventually overrun by superior fixating
species, while new space regularly becomes available for colonization through the
deaths of individual plants.

In the context of firm dynamics, a market could be analogous to a prairie, and
larger firms with superior competitive advantage will take over the marketshare pop-
ulated by smaller firms. Meanwhile, smaller firms will populate new marketshare
(empty prairie in our analogy) before larger species because they are more agile. The
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degree to which they can populate empty space is governed by investment. Large
firms excel at competition, while small firms excel at colonization, and we make use
of the distinction between the types of competitive dynamics identified previously.

The remainder of this paper will further develop the competition-colonization firm
dynamics model with appropriate modifications. We will then propose a parameteri-
zation scheme based on empirical US firm size data and demonstrate that our model
fit is superior in the small firm region than other distribution fits. We will then use
the model to conduct experiments by altering a subset of the institutional parameters
and observing the effects on firm size distributions.

2 Themodel

In building the model, we assume that firms of differing sizes have different com-
petition, mortality and investment profiles. Firms of various sizes compete over
marketshare, conceived as a spatial entity and henceforth referred to as marketspace,
and are considered analogous to different species competing over any bounded
resource, such as prairie grasses competing for space in a field (Tilman 1994).7 Com-
petition describes firms vying for space in populated marketspace, and differences in
competitive ability are decided by disparities in economies of scale and barriers to
entry. Colonization, on the other hand, describes firms vying for empty marketspace
by innovating to develop new offerings. Each size category of firms is considered a
species with different effective competition and colonization characteristics, where
size is defined by number of employees. However, firms are not completely analo-
gous to species of grass because a firm of a given size can either grow or contract
into a firm of another size. We account for this additional dynamic by allowing for a
given size-species to mutate into an adjacent size-species. The model further assumes
that all firms will grow to the greatest extent possible and are not intended to remain
small concerns or limited by economies of scale.

Firm populations for each size-species i are specified by μi . Larger firms will
outperform smaller firms in acquiring occupied marketspace because of efficiencies
of scale and institutional competitive advantage. Smaller firms will outperform larger
firms in populating empty marketspace because they are more agile since they have
less structural inertia; however, the degree to which a small firm can take advantage
of this agility is mitigated by its available capital. All firms face a mortality rate,
which decreases with size, so at every time step a portion of firms will fail and their
marketspace will become empty and available for colonization.

The rate of change of marketspace that firms occupy in each size-species is the
sum of the marketspace change acquired through colonization and that acquired
through competition, minus the proportion of firms that fail due to mortality
processes (Fig. 2).

Empty marketspace is all the space not currently filled by firms, modeled as
1 − ∑n

1μj where j indexes all the size species categories. Species colonize this

7There are myriad reasons for firms to fail, and in this analogy we consider failures as resulting from
changing market conditions, therefore colonization implies innovation to address these new conditions.
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Fig. 2 Schematic of the model dynamics

empty space at a rate proportional to their current population, μi , and an investment
parameter νi , and the colonized marketspace is represented as

μiνi

(

1 −
n∑

1

μj

)

. (1)

Larger firms win populated marketspace from smaller firms due to economies of
scale and institutional competitive advantages, so species will win marketspace from
smaller species and lose marketspace to larger species. This process is modeled as

μi

⎛

⎝
∑

j<i

μj −
∑

j>i

μj

⎞

⎠ . (2)

The change in marketspace, si , for a given size-species i is therefore

si = μiνi

(

1 −
n∑

1

μj

)

+ μi

⎛

⎝
∑

j<i

μj −
∑

j>i

μj

⎞

⎠ − miμi . (3)
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We can compare this competition-colonization firm dynamics model with the original
Tilman model, which was8

dpi

dt
= cipi

⎛

⎝1 −
i∑

j=1

pj

⎞

⎠ − mipi −
⎛

⎝
i−1∑

j=1

cjpjpi

⎞

⎠ (4)

Aside from notational differences (pi in the Tilman model is the population of
species i and ci is that species competitive value) we see that Equations 3 and 4 are
structurally similar, both consisting of a colonization term, a competition term and
a mortality term. The mortality terms are identical, and differences in the remain-
ing terms are due to the specifics of modeling firm dynamics where competition
and colonization are governed by different parameters and firms grow or shrink into
neighboring size-species.

In our model, mortality is modeled linearly and described by

mi = ia + eb (5)

where a is the slope and b is the intercept. Investment, as a proxy for innovation, is
modeled as a logistic function with three parameters, K, p and q, which respectively
control the height, position and steepness of the curve. This innovation investment
curve describes the tendency of smaller firms to innovate more than larger firms due
to structural inertia, and the parameterization of the curve describes the availability
and conditions on external investment which makes small firm innovation activity
possible.

νi = K

1 + e
i−p
q

. (6)

A detailed discussion of the parameterizations for m and ν can be found in
Appendices B.1 and B.2.

Growth and decline are considered to be instantaneous so any change in quantity
of marketspace for a size species will result in that quantity moving to an adjacent
species category, either a smaller or larger category depending on the sign of the
change. Thus any net change in the marketspace of a given size-species will come
from firms of the smaller category growing and firms from the larger category declin-
ing. In other words, since firms of a given size-species can grow or decline into
another size-species according to changes in marketspace, if the marketspace for a
size-species increases or decreases, that marketspace should be attributed to either
the larger or smaller size-species.

According to our definition of size, as a firm grows it obtains more employees.
Ultimately, the model will need to describe a population distribution of size-species
in order to compare with empirical distributions, so we need to transformmarketshare
into a number of firms. For example, consider x dollars of marketspace populated
by small firms. If that same x dollars were populated by larger firms, the number
of larger firms would necessarily be less than the number of smaller firms popu-
lating that marketspace. To resolve this logical inconsistency, we assume a fixed

8Equation 6 (Tilman 1994).
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proportional relationship between an employee and marketshare, and then scale the
marketshare transferred from growing or declining size-species such that marketshare
effectively contracts as it moves up to larger firms and expands as it moves down to
smaller firms by a growth scaling factor, γ . This growth scaling allows us to speak
of marketspace and number of firms synonymously.

The growth scaling factor gamma is modeled as

γ = g− 1
N (7)

where N is the number of size-species categories. A discussion of the derivation and
parameterization of γ can be found in Appendix B.3, and is essentially describing a
power law between the number of employees and marketshare.

The total change in size-species population over time will involve competition-
colonization dynamics along with growth and decline dynamics. Therefore

dμi

dt
= γ si−1θ(si−1) − 1

γ
si+1θ(−si+1) − |si | (8)

where si is given by Eq. 3 and θ is the step function defined by

θ(x) =
{
1 for x > 0
0 for x ≤ 0.

. (9)

The boundary conditions for the largest and smallest firms size-species, i = [1, n],
are handled as exceptions. For i = 1, new firms occupy empty marketspace at a
startup rate σ and this smallest species population also grows through declines in
i = 2 species.

dμ1

dt
= σ

(

1 −
n∑

1

μj

)

− 1

γ
s2θ(−s2) − |s1|. (10)

The largest size category retains the species that otherwise would have grown into
larger species, as well as through growth in the n − 1 size species.

dμn

dt
= γ sn−1θ(sn−1) + γ snθ(sn) − |sn|. (11)

This model complements many historical and recent models attempting to explain
firms size distributions. Instead of explicitly specifying entry, exit or growth, we
model dynamics between various populations of firms with each population of a
given size having distinct behaviors. Since firms are economic entities, microeco-
nomics are implied in these dynamics. The prairie grasses in our analogy have
innate production functions which cause them to exist and to grow or die, like-
wise firms have production functions which cause them to maintain, acquire, or lose
marketspace. While prairie grasses don’t have preferences, our marketspace repre-
sents aggregate demand which shifts according to changing household preferences,
and this shifting causes firms to fail and opens up space for new firms. Investment
activity in the model changes according to free marketspace and the number of invest-
ing firms. The size-specific firm characteristics represent a complex interaction of
production decisions, costs, and efficiencies of scale as well as non-market driven
institutional effects. Previous work has explored neoclassical formulations of these
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size-specific characteristics, such as modeling the competitive advantage versus inno-
vation tradeoff (Winter 1984) or shakeouts (Dietrich and Krafft 2012). Based on
this work we use derived firm characteristics to model the ecological processes that
evolve a national industry structure. This approach is also based on previous work.
For example competitiveness of entrants has been modeled as available opportunities
(free marketspace), entry barriers and average competitiveness of incumbents (Dosi
et al. 1995), and growth rates have been modeled as a function of entry conditions,
financial availability (investment), adjustment gaps (free marketspace) and intensity
of competition (Saviotti and Pyka 2004).

3 Results

The model in its full representation is analytically intractable,9 yet analysis is
straightforward computationally using an Euler method. The model dynamics pro-
duce distributions of either one, two or three peaks of varying sizes in the equilibrium
population distribution, depending on parameter value combinations for K , p, q, a,
b, g, and σ . Of particular importance is the ratio between maximum investment K

and startup rate σ . Both ν, investment, and σ , startup rate, produce gains related to
empty space. Too high a value of σ leaves too little space for other firms to obtain
investment gains. Too low a value of σ with respect to ν produces too few startups
to allow for sustained growth, and the equilibrium state has all firms in the smallest
size category and zero populations in larger categories.

The single peak occurs at either the first size category or in the size category just
above the inflection point of the investment curve, specified by p. Two peaks will
occur at the smallest size and the inflection size (p + 1) for certain ratios of K and
σ , and the dynamics are sensitive to small changes in this ratio. In these scenarios,
startup dynamics continually populate the smallest size and investment encourages
growth up to the inflection category p. The growth dynamics slow down for larger
firm sizes so the larger categories have small but non-zero populations. Three peaks,
in the first, last and inflection categories, manifest in cases where the growth scaling
factor γ is greater than 1. This three-peak scenario occurs when a significant number
of firms to grow through to the largest size category, but is not consistent with the
firms and marketspace paradigm described in Section 2.

We began our exploration with the model by recreating the observed distribu-
tion of US firms. We modeled mortality, mi , as a negatively sloped line, with values
parameterized from the Business Dynamics Statistics (BDS) database. We also mod-
eled investment, νi , as a logistic function with inflection point, p, and gradient, q,

9With a grossly simplified two-dimensional version of the model, neglecting growth dynamics, fixing
four out of six parameters and using only two firm sizes (the smaller being x, the larger y), we could
demonstrate 1) a stable node at (0, 0) when mortality rate exceeded investment rate for both sizes, 2) a
stable x-axis with mx < νx and my > νy , 3) a stable y-axis if mx > νxand my < νy and 4) nonzero
populations for x and y which under some parameter conditions was a stable spiral, under others a linear
center.
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set to represent a steep drop at the second size-species to mimic observed innova-
tion investment behavior, where small firms are funded for short time periods. These
parameterizations account for observations 1, 6 and 7 of our stylized facts inventory,
namely that survival increases with size and that the will to innovate is higher for
smaller firms because they are more agile and attract more innovation investment.
The growth scaling factor, γ , is also parameterized from the BDS data.10

The BDS data gives a mean entry rate over the last thirty years as 10% of the exist-
ing population each year. This metric is not directly applicable to the model since σ

multiplies the empty space in order to determine the entry into the first size category.
Therefore using a σ value of .1 would significantly underestimate the startup rate.

Because the model is sensitive to K and σ values, for which we don’t have a clear
empirical parameterization, we have conducted a detailed analyses over a large por-
tion of the K-σ parameter space. The model produces distributions as output so we
needed to identify a single-valued measure to describe these distributions for compar-
ison purposes.We therefore developed a stylized version of the Kolmogorov-Smirnov
D-statistic to obtain a measure of similarity between the model distributions and the
empirical BDS distribution. The D-statistic can be understood as the maximum dis-
tance between corresponding points of two cumulative distributions, thus a smaller
value suggests a better match between the distributions (the null hypothesis is that
the distributions are identical with a D-statistic of 0).

The BDS data represented in Fig. 1 demonstrates two features, one we’ll call the
‘peak’ in the smallest firm size, and the other a ‘hump’ between the second and fifth
size categories, and similar D-statistic values can be obtained either by the model
distribution replicating the peak or the hump. To generate the stylized D-statistic, we
first found the maximum distance between corresponding population values at each
size category in a model distribution (scaled up to a total population of one) and the
BDS distribution for both the full distribution and then for all sizes greater than 1. We
then multiplied these two values to obtain a measure of fit that attempts to balance
the peak fit with the hump fit as well as corrects for the distance between distri-
butions due to the model producing an equilibrium result that leaves empty market
space. Values of this statistic are plotted as a heat map over the two-dimensional K-σ
parameter space in Fig. 3.

For our base model parameterization, we chose a σ value of .4 to represent 40%
of empty space each year being populated by startups, and a corresponding value
of K = 2.5 to represent the maximum investment over all small firms to be 2.5
times the empty marketshare. This combination of parameters falls within the dark
blue diagonal band in Fig. 3 describing the σ/K ratios that give the best fits to the
BDS data according to our stylized D-statistic. Higher values of σ produce more
pronounced peaks in the first size category.

Figure 4 shows the resulting population distribution as a histogram for investment
parameterized by K = 2.5, p = 2 and q = .1, mortality parameterized by a =
−1.8 and b = −1.8, and with growth scaling factor γ = .5 and the startup rate

10Details about this database and our use of it for the parameterization of m, ν and γ are explained in
Appendix B.
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Fig. 3 Heat map demonstrating
values of the stylized D-statistic
over the K-σ space. Note the
diagonal band indicating the
‘best fit’ region. Selected base
model parameter values for K

and σ are indicated by the white
asterisk

σ = .4. Competitive advantage due to economies of scale and other institutional size
advantages is built into the model dynamics as described by Eq. 2, accounting for
observation 5 that larger firms enjoy a competitive advantage over smaller firms.

Regardless of parameterization, the model’s equilibrium values are independent
of starting conditions so the same equilibrium distribution emerges regardless of the
initial conditions. Figure 5 demonstrates this by comparing the results of a simulation
starting from empty marketspace with a simulation starting with equal populations
across all size-species. We also see in the left hand plot Fig. 5 the differences in
growth rates between firm sizes, with smaller firms having steeper slopes than larger
firms, thus accounting for observation 2 in our inventory that smaller firms having
faster growth rates than larger firms. We also see in the right hand plot the expected
shakeout in small firm populations where initially the population grows then falls,
thus accounting for observation 3, shakeout, but without any reference to minimum
efficient scale.

Also of note is that the model populations do not add to one, suggesting that there
is always empty marketspace and unrealized opportunity for expansion and growth
within the economic ecosystem.

Fig. 4 Histogram of
Equilibrium Firm Sizes.
Investment is parameterized by
K = 2.5, p = 2 and q = .1.
Mortality is parameterized by
a = −1.8 and b = −1.8. The
growth scaling factor γ = .5
and the startup rate σ = .4
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Fig. 5 Evolution of Equilibrium State from Different Initial Conditions. The figure on the left shows the
model results starting with all populations equal to zero, and the figure on the right shows the results
starting with equal populations. Investment is parameterized by K = 2.5, p = 2 and q = .1. Mortality is
parameterized by a = −1.8 and b = −1.8. The growth scaling factor γ = .5 and the startup rate σ = .4

In Fig. 6 we show the model results plotted against empirical data from the BDS
dataset. We also include the classic Gibrat and Zipf distributions for comparison.
We see that the model prediction qualitatively follows the shape of the empirical
curve for smaller firm sizes compared to the Gibrat or Zipf curves. Table 1 shows the
results for Kolmogorov-Smirnov tests comparing each theoretical distribution with
the empirical distribution, and though the Zipf distribution is a better fit than the
Gibrat distribution, we see our model fit is superior to that of the Zipf. Therefore, as
postulated, competition and investment dynamics could indeed be important drivers
of firm size distributions at the lower end of the spectrum.

Despite the greatly improved fit in small firm sizes, the model predicts signif-
icantly lower populations of the smallest size category than indicated by the data.
A possible explanation could be that there is a distinction between small business

Fig. 6 BDS Statistics for
Average Size with Model
Results. Business Dynamics
Database (BDS) statistics for
average size distribution
averaged over all industries and
all years from 1977 to 2014 is
described by the blue line. The
model-predicted size
distribution for the described
parameter set is shown by the
red line. The dashed line
describes the classic Gibrat
distribution and the dotted line
the Zipf distribution. Note the
model’s approximation of the
‘hump’ in the empirical data
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Table 1 Kolmogorov-Smirnov
test results for theoretical fits to
the empirical distribution

Distribution D statistic p-value

Model 0.25 0.869

Gibrat 0.667 0.008

Zipf 0.417 0.256

owners and entrepreneurs, where small businesses are structures to provide profes-
sional services while entrepreneurial firms are innovators. Hurst and Pugsley (2011)
demonstrate that a significant portion of firms in the first size categories are small
businesses that do not intend to grow or innovate. Since these firms aren’t founded
with the intent to grow, they do not fully participate in the described dynamics. The
model results show that the predicted population of smallest size firms is smaller than
actually found in data, though the strength of this finding is somewhat dependent on
the choice of σ .

Next we conduct some experiments with the model whereby we modify the selec-
tion pressures by changing the mortality and investment parameters, singly and in
combination in order to explore how modifications in the institutional conditions
controlling competitive advantage and innovation investment affect the distribu-
tions of smaller firms. We first modified the mortality parameter to represent a
reduction in the institutional competitive advantage enjoyed by larger firms, mean-
ing that more larger firms will fail. We then modified the external investment
parameter such that investment is available to firms in small to medium size cat-
egories, which represents a lengthening in the timelines for innovation investment.
Next we combined both these modifications, and finally we combined both mod-
ifications with a smoothing of the investment curve, which represents larger firms
innovating more. Table 2 summarizes the four experiments described above with
their parameter configurations. To see how the dynamics change with an increase

Table 2 Model experiments

Experiment Parameter modification Interpretation

Mortality a = −.01 Decreased slope of mortality so that
larger firms have higher mortality
rate

Investment p = 4 Move inflection point of investment
curve to right so that middle size
firms experience more investment

Investment & Mortality a = −.01 and p = 4 Combine longer term investment
with increased mortality

Smoothed Investment a = −.01, p = 4 and q = .5 Combine longer term investment
and increased mortality, and smooth
the investment curve such that larger
firms innovate more.
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Fig. 7 Model Results for the
Long-Run Equilibrium Size
Distribution with Increased
Mortality. Investment is
parameterized by K = 2.5,
p = 2 and q = .1. Mortality is
parameterized by a = −.01 and
b = −1.8. The growth scaling
factor γ = .5 and the startup
rate σ = .4

in mortality for larger firms, corresponding to a lessening of competitive advantage,
we increased the mortality rate across larger size-species by flattening the slope of the
mortality line, setting a = −.01, and produced the distribution described in Fig. 7.
This figure demonstrates that, compared to the BDS parameterized fit, an increase
in mortality rates does indeed result in an increase in the population of the smallest
size category, thus accounting for observation 4, that turbulence increases firm entry.
(Thus we have now accounted for all seven of the size-specific firm observations in
our inventory; see Table 3 for a summary.) There is also a slight increase in the second
size category and decreases in the populations for the remaining size categories.

If we increase the length of time an innovation investment is made, then investment
would be available to intermediate firms sizes. If we effect this change by moving
the inflection point of our investment logistic to p = 4 we obtain the equilibrium
shown in Fig. 8. Notice the emergence of a second peak in the fifth size category.
Compared to the BDS parameterized fit, the populations decrease for the first four
size categories and increase for the remaining categories.

Table 3 The seven stylized facts in the model

Stylized fact Model element or result

1 survival rate increases with size Equation 5 & Appendix B.1

2 growth rate decreases with size Figure 5 left, Equation 7 & Appendix B.3

3 shakeout Figure 5 right

4 turbulence Figure 7

5 larger firms enjoy competitive advantage Equation 3

6 smaller firms innovate more Equation 6 & Appendix B.2

7 smaller firms have less structural inertia Equation 6 & Appendix B.2.
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Fig. 8 Model Results for the
Long-Run Equilibrium Size
Distribution with Longer Term
Investment. Investment is
parameterized by K = 2.5,
p = 4 and q = .1. Mortality is
parameterized by a = −1.8 and
b = −1.8. The growth scaling
factor γ = .5 and the startup
rate σ = .4

Modifying both mortality and investment results by a = −.01 and p = 4, we
arrive at the equilibrium shown in Fig. 9. Now there is less of a decrease in the first
four size categories than with just an investment change.

In Fig. 9 we moved the inflection point of the investment curve, but left the
investment curve steep, which means larger firms spend little investment funds on
innovation. We can smooth the investment curve so that the drop off is more gradual,
which represents larger firms being more willing and able to innovate. Combining all
three modification, mortality slope and investment inflection and steepness changes,
we obtain the equilibrium given in Fig. 10. With the smoothed curve, the middle peak
is not as prominent and size categories two, three, and eight through ten see slight
population increases.

In summary, Fig. 11 shows all five model configurations together: the BDS param-
eterization with investment only in small firms with a sharp investment drop off,
an increased mortality rate for larger firms, increased investment for middle-size
firms, both increased mortality for larger firms and increased investment for smaller

Fig. 9 Model Results for the
Long-Run Equilibrium Size
Distribution with Both Increased
Mortality and Longer Term
Investment. Investment is
parameterized by K = 2.5,
p = 4 and q = .1. Mortality is
parameterized by a = −.01 and
b = −1.8. The growth scaling
factor γ = .5 and the startup
rate σ = .4
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Fig. 10 Model Results for the
Long-Run Equilibrium Size
Distribution with Increased
Mortality and Longer-Term
Investment with a Smooth
Investment Curve. Investment is
parameterized by K = 2.5,
p = 4 and q = .5. Mortality is
parameterized by a = −.01 and
b = −1.8. The growth scaling
factor γ = .5 and the startup
rate σ = .4

firms, and increased mortality and smoothed increase in investment. Note that the
smoothest increase in middle-sized firms emerges from the combination of parame-
ter modifications for m, p and q. This suggests that increasing available marketspace
by decreasing the competitive advantage is not enough on its own, and innovation
investment by both small and large firms is also required for a vibrant middle-size
firm population.

Fig. 11 Comparison of Distributions for Selected Model Configurations. Model predictions of firm-size
population distributions for five different parameter scenarios: BDS parameterization with small firm
investment and sharp drop off, same investment with increased mortality, same mortality with increased
investment, with both increased mortality and investment, and both increased investment and mortality
with smoothed investment curve
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A regression-based response surface analysis exploring the parameter space
defined by K , σ , p, q and a, using the distribution entropy as a response, is presented
in Appendix B.4 (Table 4).

4 Discussion

Several model assumptions warrant specific consideration. We have modeled all
startup firms as populating the smallest size category, which is mostly accurate but
not always true, notably in the case of spin-offs, and we have neglected merger and
acquisition dynamics. Also, real firms grow or contract in a sticky manner. Thus the
instantaneous growth assumption would not necessarily hold in the short term but
are reasonable over the long term. Finally, we have been using interchangeably size-
specific and age-specific characteristics, which are correlated but don’t always hold
in specific instances (Haltiwanger et al. 2013). For example, we have used invest-
ment cutoffs according to size, when actually the investment cutoff is determined by
time, therefore a function of age rather than size. Further model exploration could
examine if and where these size/age equivalency assumptions break down.

This model is both dynamic and explanatory, so while it isn’t detailed enough
to advocate and test the expected outcomes of specific policies, it can serve as a
sandbox for consideration of different institutional arrangements on firm-size distri-
butions. For example, there is a noted decline in the scale-up of young American
firms (Hathaway and Litan 2014). Yet the intermediate-aged firms are also the biggest
contributors to net employment growth, and it is suggested that firms under ten years
of age may require institutional support in order to persist into the middle age ranges
(Haltiwanger et al. 2013). Given that this middle phase of a firm life-cycle is vital
to employment, policy intervention could be justified. How could this support be
implemented?

This model proposes three possible levers: longer-term innovation investment,
reducing the effects of institutional competitive advantage, and encouraging larger
firms to innovate. Investment exits could be curtailed such that investments extend
over longer periods of time than the typical five to ten year window. This doesn’t

Table 4 Population values for selected model configurations

Size category BDS fit Investment Mortality Both Smooth

1 0.3183 0.4002 0.2206 0.2425 0.2415
2 0.1324 0.1329 0.0783 0.0864 0.0934
3 0.1046 0.0982 0.0357 0.0389 0.0490
4 0.0369 0.0343 0.0297 0.0341 0.0320
5 0.0166 0.0154 0.0435 0.0611 0.0240
6 0.0079 0.0074 0.0181 0.0217 0.0168
7 0.0039 0.0036 0.0084 0.0098 0.0098
8 0.0019 0.0018 0.0041 0.0047 0.0051
9 0.0009 0.0009 0.0020 0.0023 0.0026
10 0.0005 0.0004 0.0010 0.0011 0.0013
11 0.0002 0.0002 0.0005 0.0006 0.0006
12 0.0002 0.0002 0.0005 0.0006 0.0006
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directly mitigate structural inertia for older, larger firms, but it does supply investment
for R&D and innovation to a broader swath of more agile firms. This contin-
ued investment allows intermediate size firms to participate more aggressively in
colonization activity.

Creative destruction theoretically should ensure a failure rate for older, larger firms,
but there is evidence that mortality for larger firms is mitigated through institutional
mechanisms such as non-competitive consolidation and legislated industry protec-
tions, all of which encourage the persistence of larger firms and construct barriers
to entry for smaller firms. If larger firms were to fail more often, more marketspace
would become available for smaller and even intermediate firms to populate.

Increasing turbulence could also incentivize larger firms to participate in coloniza-
tion activity. If the reward for seeking institutional competitive advantage were to
diminish, and firms were required to actively compete in order to survive, larger firms
may be willing to overcome structural inertia issues and innovate (Baumol 1996).

The experimental results illustrated in Fig. 11 suggest a balanced combination
of all three of these effects, increased competition, focus on innovation investment
for middle-sized firms and encouraging larger firms to innovate, could be effec-
tive. Increasing competition alone increases the population of small firms but not
middle-sized firms. Raising the cutoff size for innovation investment commitments
produces a second peak at the cutoff point, suggesting that the investment money
props up growth to that point since the growth doesn’t continue. Extending innovation
investment throughout the spectrum of firm sizes as well as increasing competition
produces a smooth curve with increased middle size populations. (This last exper-
iment produces conditions similar to the intermediate technology regime described
by Dosi et al. (1995).) These experimental results are indications of effects of policy
outcomes, and don’t make distinctions between the sources of entry barriers, reduced
competition, or mechanisms for innovation and growth which actual policies would
explicitly address.

Asmentioned in the Section 3, the total population of firms is less than one, suggesting
that marketspace is left unfilled. We have not increased the total amount of invest-
ment, K , in our experiments, which should increase that colonization activity that
fills empty marketspace. It would be interesting to explore what the model can tell us
about when firm activity fills a marketspace and when it does not. We are reminded
here again of the market adjustment gap modeled by Saviotti and Pyka (2004).

We’ve also neglected sector heterogeneity and haven’t made a distinction between
firm-level technological learning made by innovation versus imitation. As demon-
strated in Appendix A.1, the hump in the population distributions in small firm sizes
persists across sectors, and even revolutionary advances such as information and
communication technologies (ICT) do not generate industries with significantly dif-
ferent structures (Dosi et al. 2008). These ICT industries may include yet another
dynamic, whereby a firm ecosystem develops as series of symbiotic relationships
(Adner 2017; Adner and Kapoor 2016; Jacobides et al. 2018). It would be interesting
to add this cooperative dynamic to our model, where symbiotic firms are established
around a keystone species, perhaps building on Polya urn geographical or opportunity
preference models (Bottazzi and Secchi 2006; Bottazzi et al. 2007).

In conclusion, we have shown that modeling competition and colonization as an
endogenous driver of firm dynamics not only offers a viable theoretical explanation
for those dynamics, but also provides the current best fit to empirical observations
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for US firm data. The model also is demonstrably useful as an experimental tool
to explore modifications to innovation investment and competition conditions, sug-
gesting that working the levers of competition and investment could indeed alter
distributions of firm sizes, but that they need to work in conjunction with each other.
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Appendix A: Supplementary materials

A.1 The BDS database

We use the Business Dynamics Statistics (BDS) database produced by the US Census
Bureau to explore firm size distribution empirically. The BDS is public database of
anonymized and aggregated data from the Longitudinal Business Database (LBD),
a research database developed by the Center for Economic Studies, which contains
data from 1975 to present.

The LBD contains information on all U.S. business establishments that have paid
employees andwho are listed in theCensusBureaus business register.Data for theLBD
is collected through the Standard Statistical Establishment List (SSEL) and is com-
pleted on a voluntary basis by firms. The SSEL collects information such as establish-
ment size, payroll, age, industry, location, ownership, and legal form of organization
as well as characteristics of the firms they belong to including firm age and firm size.

Despite numerous shortcomings and challenges arising from its aggregated nature,
the BDS database is the most comprehensive and complete longitudinal picture of
US firm dynamics publicly available.

This model uses BDS firm size data from the bds f szsic release.csv
dataset available at https://www.census.govcesdataproductsbdsdata firm.html . Firm
sizes are organized into 12 categories based on numbers of employees: 1 to 4, 5 to 9,
10 to 19, 20 to 49, 50 to 99, 100 to 249, 250 to 499, 500 to 999, 1000 to 2499, 2500
to 4999, 5000 to 9999 and 10000+. Firm size distributions described by this dataset
are shown for all industries in Fig. 12 and for representative years in Fig. 13.
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Fig. 12 BDS Firm Size Distributions by Industry. BDS firm size distributions broken out by industry
averaged over all years from 1977 to 2014. The black line representing average size distribution across
industries

Fig. 13 BDS Average Size Distributions Across Industries for Representative Years. BDS firm size distri-
butions for selected year averaged over all industries, showing the persistence of the general distribution
trend over time

Appendix B: Model parameterization

B.1 Parameterization of mortality

The parameterization of mortality was obtained by fitting a straight line with slope a

and intercept b to the logarithmic plot for average exit rates per year for each firm size
over industries and years from the BDS data, shown in the left hand plot in Fig. 14.
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Fig. 14 Parameterized Fits of BDS Exit Data, both Logarithmic and Standard. On the left the circles are
the BDS data graphed logarithmically, the line is the generalized linear model fit with slope a = −1.7823
and intercept b = −1.8265. The plot on the right shows the actual BDS data fitted to xaeb

The right hand plot uses the same a and b parameters to predict the fit of the actual
BDS exit data values with xaeb.

B.2 Parameterization of ν

Investment is modeling as a logistic curve with maximum investment K , inflection
point p and steepness q. The model results are based on the three investment curves
shown in Fig. 15.

B.3 Parameterization of γ

We assume a constant relationship p between marketshare si and a single employee
such that s1p ∝ x1 and s2p ∝ x2. We then need to find γ such that x1 = γ x2 and
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Fig. 15 Investment Curves Used in the Model. The plot on the left shows ν values with p = 2, q = .1
and K = 2.5, and is intended to mimic current investment behavior. The figure in the middle modifies this
behavior by changing the inflection point parameter p = 4, thus extending the length of an investment.
The right hand plot is a smoothed version of the middle plot, with p = 4 and q = .5
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less than 1 in order for marketspace to shrink as it moves to larger firms. Substituting
for x1 and x2 we have

s1p = γ s2p (12)

s1 = γ s2 (13)

∴ γ = s1
s2

(14)

Since the ratios of consecutive sizes are constant, we infer sn = Aan
N where aN is a

function of N and

γ = Aan
N

Aan+1
N

(15)

γ = 1
aN

. (16)

The exponent needs to be normalized for any value ofN so that the model will behave
as intended for any number of size divisions. Therefore

aN = g
1
N

and

γ = g− 1
N .

Figure 16 shows a plot of the integer size categories against the geometric mean of
each size category, and the fit of sn = Aan

N where aN ≈ 2 therefore g ≈ 4096 and
γ ≈ .5. The largest size category was omitted since the geometric mean of the size
category 10,000+ is unknown.

B.4 Response surface analysis

To gain a better understanding of the model behavior, we conducted a response sur-
face analysis using the distribution entropy as the response variable, which we have
chosen to maximize. A single, sharp peak will produce a low entropy value while a
distribution with equal populations in each size category will produce the maximum

Fig. 16 Gamma
Parameterization from BDS
Data. Fit of the geometric mean
by integer size category,
sn = (2.2)(2)n, described by the
blue line with the BDS data for
categories 1 through 11
described by the red circles
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entropy value of ln(12) ≈ 2.5. This analysis gives us some indication of how the dis-
tribution shape responds to the model parameters K, σ, p, q and a. Since simulation
experiments in this case were inexpensive, we ran a 35 full factorial design exper-
iment and then explored different linear regression fits. The best fit is described in
Table 5, with only the significant terms retained. We note that with respect to pre-
dicting the evenness of the distribution, only the investment parameters, K , σ and p,
along with their interactions and a quadratic term in p, have significance. The pre-
dicted stationary point indicating the highest value of entropy (see Table 6), or the
flattest distribution, is out of bounds of the model with a negative σ , which would
mean negative market space is occupied by startups. Regardless, we can still see that
the most even predicted distribution occurs with high investment running through the

Table 5 Regression results for
response surface analysis Constant 0.378∗∗∗

(0.014)

K 0.167∗∗∗

(0.010)

σ −0.169∗∗∗

(0.010)

p 0.170∗∗∗

(0.010)

K:σ 0.059∗∗∗

(0.012)

K:p 0.074∗∗∗

(0.012)

σ :p −0.039∗∗∗

(0.012)

K:σ :p 0.135∗∗∗

(0.015)

p2 −0.125∗∗∗

(0.017)

Observations 244

R2 0.827

Adjusted R2 0.821

Residual Std. Error 0.124 (df = 235)

F Statistic 140.567∗∗∗ (df = 8; 235)∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6 Predicted stationary point and eigenvalues

K σ p q a

Stationary point 10.393 −0.137 5.432 0.142 −3.659

Eigenvalues 0.043 −0.002 −0.003 −0.016 −0.142

fifth size category, low mortality for large firms and no startups. As the eigenvalues
are of mixed sign, this stationary point is not a strict maximum, but a saddle point.
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