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Abstract
This study sheds light on how recombination of different kinds of knowledge changes
along the technology life cycle. From a theoretical point of view, the cyclical tech-
nology life cycle model is extended to account for the influence of recombination
of different kinds of knowledge in the different life cycle phases. This model is
empirically tested for the technological life cycle of wind power and photovoltaics in
Germany for the period from 1970 until 2006. Patent forward citations are considered
as recombinatorial success and inventors’ patenting experience proxy different kinds
of knowledge. Negative binomial regressions as well as rolling-window regressions
are used to estimate the relevance of different kinds of knowledge along the tech-
nology life cycle. Results reveal that different kinds of knowledge matter along the
technology life cycle. In the era of ferment, knowledge from domains external to the
technology is relevant, but for the dominant design and the era of incremental change,
new and specialized knowledge is most important. However, there are technologi-
cal differences and deviations from the model. Rolling-window regressions reveal
nuanced changes in the life cycle phases. The results have several policy and man-
agement implications, especially for the timing of whom to fund or hire for inventive
activity.
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1 Introduction

Technologies develop by the inducement of new knowledge into the knowledge base,
which is the result of the recombination of already existing knowledge and artifacts
(Schumpeter 1912; Nelson and Winter 1982; Dosi and Nelson 2010, 2013). While
there is an extensive stream of literature exploring the factors of recombinatorial suc-
cess at the firm level (Kogut and Zander 1992; Savino et al. 2017), the influence of
knowledge recombination on the technology knowledge base and its evolution over
time is so far not well understood. It is well known that technologies evolve along
their knowledge base, which itself shows certain dynamics and evolves over time
(Malerba and Orsenigo 1996, 2000). Besides internal knowledge accumulation, the
in-flow of knowledge from sources external to a technology is crucial for its evo-
lution in terms of initiating, redirecting and refreshing the knowledge accumulation
processes (Dosi and Nelson 2013). The way external knowledge diffuses into a tech-
nology, the source from which it comes, and the type of actors involved appear to be
core determinants of that technology’s further development (Grant 1996; Dosi and
Nelson 2013).

The evolution of a technology can be stylized along a life cycle. Anderson and
Tushman (1990) propose a cyclical model of a technological life cycle (TLC). The
model distinguishes four phases, an era of ferment, the emergence of a dominant
design, an era of incremental change and a discontinuity, which restarts the cycle.
This TLC model has been widely used to analyze technological development and is
extended into various dimensions, for example covering the influence of cognitive
factors (Kaplan and Tripsas 2008), specific phases (Murmann and Frenken 2006) or
the level of granularity (Taylor and Taylor 2012). However, knowledge, the technol-
ogy’s knowledge base and the influence of different types of knowledge along the
TLC have been neglected from a theoretical and empirical perspective. While there
is first empirical evidence that different kinds of knowledge matter along the techno-
logical development (Krafft et al. 2011, 2014a), no theoretical foundation has been
provided explaining the underlying factors and processes. The aim of the paper is
to close this gap by extending the Anderson and Tushman (1990) model proposing
how recombination of different kinds of knowledge shapes a technology over its life
cycle. The extension states that in each TLC phase different sources of knowledge
are required for successful recombination and technological evolution.

The proposed extension of the Anderson and Tushman (1990) model is empiri-
cally tested for two technologies, namely, wind power (WP) and photovoltaics (PV).
In particular the development in Germany for the period from 1970 until 2006 is ana-
lyzed. After the oil crisis in the 1970s both technologies were considered as means to
reduce the dependency on fossil fuels and to mitigate climate change (Jacobsson and
Johnson 2000). Since then, severe effort has been put forward to enhance the tech-
nologies and both are nowadays competitive with incumbent technologies (REN21
2015). These makes WP and PV ideal cases to analyze how technologies evolve and
mature over their life cycle. The period covers several TLC phases and allows us to
draw conclusions how knowledge recombination patterns change over time. Patent
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data is used to proxy the technological knowledge base, while inventors and their
inventive experience are used to characterize different sources of knowledge. Patent
forward citations are taken as recombinatorial success and proxy the contribution to
the knowledge base (Carpenter et al. 1981; Harhoff et al. 1999, 2003, Jaffe and de
Rassenfosse 2017). Negative binomial regressions are used to estimate the effect of
different kinds of knowledge embedded in the inventors on the patents contribution
to the knowledge base. Regressions are estimated for the overall period as well as
for the different TLC phases. Furthermore, rolling-window regressions are used as a
novel approach to capture dynamics on a fine grained level over time.

Results show that different sources of knowledge matter for technological evolu-
tion in general but differently in the phases of the TLC, by and large in line with
the proposed theoretical model. For the overall technological development, inventors
who possess specialized knowledge are most influential. In WP also, de-novo inven-
tors matter, those who induce knowledge that has not been used before, as well as
inventors who were previously active in unrelated technologies. Along the phases
of the TLC, the era of ferment in WP is mainly shaped by inventors with unrelated
knowledge but relevance shifts over time towards specialized and de-novo inventors.
In PV, the era of ferment is shaped by several types of inventors, but here also a shift
towards specialized inventors takes place over time. The rolling window regressions
provide a more detailed picture and show how different kinds of inventors and their
knowledge is also changing inside the phases.

These results contribute to a deeper understanding of the evolution of a technol-
ogy’s knowledge base and the knowledge dynamics that take place along the TLC.
The understanding how knowledge matter in different stages of a technology is cru-
cial for policy maker to implement relevant policies and support the relevant actors,
as well as for management to pursue an appropriate R&D strategy. Furthermore,
the theoretical contribution by the extension of the Anderson and Tushman (1990)
model provides a general framework to understand technological evolution and the
respective knowledge dynamics, as well as the influence of knowledge from differ-
ent origins and its integration success into the knowledge base. This complements
previous work and allows a detailed approach to understand recombination and tech-
nological development along the TLC. From an methodological point of view, the
utilization of previous patents of inventors to distinguish different sources of knowl-
edge allows us to analyze long term developments, which cannot be captured, for
example, by surveys (Conti et al. 2014). Additionally, rolling-window regressions
prove to be a useful approach to shed light on dynamics in technology evolution.

In the following, Section 2 reviews the literature about knowledge base, knowl-
edge recombination and their relevance for technological evolution and integrates
these concepts into the TLC model, providing the theoretical framework for the
empirical analysis. Section 3 introduces WP and PV as the technologies under
consideration and discusses how they develop over time. Section 4 presents the
data, econometric approach and the results. The last Section discusses findings and
concludes.
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2 Amodel for knowledge recombination along the technology life
cycle

2.1 Knowledge recombination and the technology’s knowledge base

The notion of a knowledge base describes a set of knowledge, practices and routines
attributed to an object of observation, such as a firm, a technology or a country. The
relevance of the knowledge base has been studied extensively at the micro (firm) level
(e.g. Nesta and Saviotti 2005; Krafft et al. 2014a; Roper and Hewitt-Dundas 2015),
but also on more macro dimensions such as the regional (e.g. Leydesdorff and Fritsch
2006b; Cantner et al. 2010) and the country level (e.g. King 2004; Leydesdorff et al.
2006a). The knowledge base is of central importance for innovative activity at the
firm level (Nesta and Saviotti 2005; Antonelli and Colombelli 2013) and for firm sur-
vival (Colombelli et al. 2013). Concerning the knowledge base of a technology, the
understanding how the knowledge base shapes technological development is scarce.
While some studies focus on the structure of the knowledge inside an industry and
show that there are certain dynamics in the knowledge base evolution (Yayavaram
and Ahuja 2008; Krafft et al. 2011, 2014a) and shifts between different Schumpete-
rian regimes (Maleki et al. 2018), a general understanding how the knowledge base
evolves and how the respective technologies are shaped is scarce.

The evolution of the knowledge base is driven by knowledge accumulation and
introducing new knowledge into it (Malerba and Orsenigo 1996). This new knowl-
edge stems from the recombination of previously existing knowledge, either from
within the knowledge base, or from outside. The idea of knowledge recombination
was already proposed by Schumpeter (1912) using the phrase “Neue Kombinatio-
nen”. This recombination basically leads to a never ending cycle, as Arthur and Polak
(2006, p. 23) put it: “New technologies are never created from nothing. They are
constructed—put together—from components that previously exist; and in turn these
new technologies offer themselves as possible components—building blocks—for the
construction of further new technologies.” This continuous knowledge recombina-
tion extends and refreshes the knowledge base with new contributions of previously
existing knowledge, which can be utilized to create new products, improve processes
and foster economic growth (Weitzman 1996, 1998).

The knowledge recombination process is an increasingly complex (Jones 2009)
and uncertain task (Fleming 2001). Several determining factors for success have been
identified at the firm level (e.g. Kogut and Zander 1992; Savino et al. 2017). For
example, the previous or stock of knowledge that the firm possess is of importance
(Liyanage and Barnard 2003) as well as its characteristics in terms of structure and
complementarity (Dibiaggio et al. 2014). The recombination of knowledge present
in the firm is relevant, as well as the reconfiguration of existing combinations
(Carnabuci and Operti 2013). Also, the combination of new and old knowledge is
important for technological advancement (Nerkar 2003). Especially, the ability to tap
on new or external sources of knowledge that can be integrated in the knowledge
base is relevant (e.g. labor mobility, hiring specific labor, acquisitions, collaboration,
suppliers, customers, ...; see Savino et al. (2017) for an overview). These underlying
processes partly apply to the level of the technology.
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The determinants of knowledge recombination on the technological level are not
as well understood as on the firm level.1 However, generic determinants such as
uncertainty and the increasing complexity apply in a similar vein. Similar to the rele-
vance of integrating external knowledge into the knowledge base of the firm, Nemet
(2012) shows for energy technologies that tapping on knowledge from outside the
technological domain results in a higher recombinatorial success than knowledge
from within the technological domain. Also, Schoenmakers and Duysters (2010)
show that radical inventions rely more likely on existing knowledge and combine
knowledge across multiple domains compared to non-radical inventions. With respect
to the accumulation of knowledge in a technology, Popp (2002) shows that the qual-
ity adjusted accumulation of knowledge in a technology has a positive effect on
recombinatorial success.

Knowledge recombination takes place across the knowledge space. A technology
can be viewed as a specific area of the knowledge space that constitutes its knowledge
base. If knowledge is recombined within such a knowledge base, it can be considered
specialized, since it combines parts of knowledge that are familiar already. The rela-
tion between a technology and knowledge that is outside its knowledge base can be
characterized by the distance or proximity in the knowledge space. The distance is
relevant for example in collaborations, where the decision to collaborate is influenced
by the distance between partners in knowledge space (e.g. Cowan et al. 2007; Baum
et al. 2010) or the overlap of firms’ knowledge bases (Rosenkopf and Almeida 2003).
The knowledge distance for recombination can be constructed either in a continu-
ous way using patent classifications to calculate Euclidean distances or classification
overlaps (e.g. Breschi et al. 2003; Benner and Waldfogel 2008; Bar and Leiponen
2012; vom Stein et al. 2015) or using binary categories such as related and unrelated
knowledge. Applying this binary categorization to different technologies, Nemet and
Johnson (2012) show that the use of related knowledge (they use the term “near”)
leads to more valuable inventions, in terms of forward citations. Youn et al. (2015)
distinguish knowledge in “broad” and “narrow” to analyze general recombinatorial
patterns for US patents and show that there is an increase of “narrow” recombinations
over time.

2.2 Knowledge and the technology life cycle

The knowledge base of a technology is central to a technology’s development.
Malerba and Orsenigo (1996, p. 470) propose that the knowledge base itself is
dynamic and “changes in Schumpeterian patterns occurring during a technology and
an industry life cycle”. These changes in the knowledge base occur because different
kinds of knowledge enter the knowledge base and their contribution to technologi-
cal development might be conditioned on the stage of the technology. The process of
technological evolution can be modeled by a TLC similar to the product or industry

1There is a large body of literature on intra- and inter-technology spillover. However, this stream of lit-
erature captures the presence of such spillover, not their determinants and how they result in successful
recombination of knowledge.
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life cycle. In the TLC, neither the actual product is of importance nor the structure of
the firms in the industry, but rather the application of the technology (see Taylor and
Taylor 2012, for a discussion of the differences). With the technology as the unit of
observation, the TLC allows us to understand how different kinds of knowledge alter
the knowledge base over time.

There are several approaches to model a TLC. According to Taylor and Taylor
(2012), these approaches can be generally distinguished into S-shaped and cyclical
models. S-curve models depict technical progress usually in terms of cumulative dif-
fusion or technical improvements over time. The S-curve models are closely related
to the product life cycle covering a embryonic, growth, maturity and aging stage
(Taylor and Taylor 2012). These stages are frequently applied to patent data to elabo-
rate the state of a specific technology (Haupt et al. 2007). Cyclical models, especially
the one by Anderson and Tushman (1990), present a macro view on the technol-
ogy. In this model, a new discovery or breakthrough opens up new technological
opportunities or trajectories and starts an era of ferment. This phase is followed by
a phase in which a dominant design emerges and a main trajectory is established.2

After the emergence of a dominant design, an era of incremental change follows in
which the technology incrementally evolves along the trajectory until a new techno-
logical discontinuity disrupts the technology and the cycle begins again with a new
or dramatically altered technology, replacing the current one.

While the TLC has been studied frequently in general, so far the underlying
knowledge dimension that shapes the technological development has been neglected.
However, with a focus on the knowledge base that constitutes a technology, there
might be differences in the kind of knowledge necessary to alter and extend the
knowledge base in different phases of the TLC. While it is widely accepted that a
discontinuity in the knowledge base creates a new trajectory leading to a new tech-
nology (Dosi 1982), there is no general model of how different kinds of knowledge
influence technological development over the TLC. There is the general concept of
exploration and exploitation (March 1991) and the tendency to move from the for-
mer to the latter over time (Utterback and Abernathy 1975; Klepper 1996), along
with the emergence of a dominant design (Utterback and Abernathy 1975; Murmann
and Frenken 2006). However, a theoretical framework to integrate knowledge into
the different phases of the TLC is missing.

Some empirical analyses try to understand how knowledge matters along the TLC
and shape the evolution of a technology. Antonelli et al. (2010) use the co-occurrence
of technological classes within patent applications to shed light on the dynamics of
knowledge recombination for information and communication technologies, but do
not consider a life cycle. Krafft et al. (2011) use social network analysis to elabo-
rate on the relationship in co-occurrence of technological classes and show that, in
biotechnology, the search process changes from exploration to exploitation in the

2While Anderson and Tushman (1990) rather see the emergence of a dominant design and a new dis-
continuity as a point in time, it is a short phase in which these phenomenon emerge, get recognized and
development adapts towards it, especially on the technology level, which has different characteristics than
the product level. See also Van de Ven and Garud (1993) and Kaplan and Tripsas (2008) who talk about
the convergence towards a dominant design.
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Technological discontinuity

  • New science
  • Breakthrough/revolutionary technology
  • Radical performance improvement

 �  Unrelated knowledge
 �  New knowledge

Dominant design

  • Industry standard emerges
  • Well-established preferences
  • Economies of scale and scope

 �  Specialized knowledge
 �  Related knowledge

Era of ferment

  • Technical uncertainty
  • High variation
  • Ambigious user preferences

 �  Related knowledge
 �  Unrelated knowledge

Era of incremental change

  • Retention
  • Incremental technological progress

 �  Specialized knowledge
 �  New knowledge

Fig. 1 Technology life cycle phases and respective relevant knowledge. Source: Extension based on
Tushman and Rosenkopf (1992), Kaplan and Tripsas (2008), and Taylor and Taylor (2012)

recombination process. Krafft et al. (2014a) use the properties of the biotechnology
and telecommunication knowledge base to elaborate on the phases of exploration and
exploitation. They show that sectoral differences can be attributed to the phases of the
knowledge base. Furthermore, Krafft et al. (2014b) explore the relationship between
the structure of the biotechnology knowledge base and technological alliances along
the TLC. They find that during the evolution of the biotechnology, the search pat-
tern become less random and more organized and knowledge becomes more related.
However, they point out that, along a trajectory, this sequence is not always the case.

In the following, the missing link between the evolution of a technology’s knowl-
edge base and the phases of the TLC is proposed by extending the Anderson and
Tushman (1990) TLC model. In each phase of the TLC the relevance of different
sources of knowledge is derived and how these knowledge can alter and extend the
knowledge base.3 The result is summarized in Fig. 1, which expands the initial graph-
ical representation presented in Tushman and Rosenkopf (1992) with the relevant
knowledge in each phase.

1. Era of ferment: The era of ferment starts the development of a new technol-
ogy, following the discovery of a new technological principle, technological
disruption or scientific discovery (Anderson and Tushman 1990; Tushman and
Rosenkopf 1992). The new technology is not well understood and uncertainty
prevails about the technology’s characteristics and application (Kaplan and Trip-
sas 2008). The knowledge base is rather small and unstructured (Krafft et al.

3The proposed extension can also be adapted to other models of the TLC, for example, the S-shape devel-
opment proposed in Haupt et al. (2007) or Cetindamar et al. (2016). See also Taylor and Taylor (2012),
who try to unify the different TLC models.
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2011). Here, experimentation and exploration are the main inventive activities
(March 1991). First applications are derived and (product) variation is high (Van
de Ven and Garud 1993). Niche markets emerge or are created, in which exper-
imentation can take place to gain further understanding of the technology and
required characteristics (Kemp et al. 1998).

Since in the era of ferment the knowledge base itself is rather small and
unstructured, related and unrelated knowledge from other technological fields
is important. This external knowledge is induced into the knowledge base and
supports the development of the technology by recombination with existing
knowledge already present in the knowledge base. This related and unrelated
knowledge is able to provide new combinatorial possibilities from different
fields and experiment with new ways of applications and characteristics. How-
ever, due to the high technological uncertainty, failure is very likely (Fleming
2001).

2. Dominant design: The emergence of a dominant design is characterized by
increasing economies of scale and scope, network externalities and standardiza-
tion (Utterback and Abernathy 1975; Arthur 1989; Anderson and Tushman 1990;
Klepper 1996; Murmann and Frenken 2006). The knowledge base becomes
broader and structured, which supports the emergence of the dominant design
(Krafft et al. 2011). There are several factors on the firm and environmental level
that are influential as well (Suarez 2004), such as the emergence of institutions
that facilitate knowledge exchange among actors (Kaplan and Tripsas 2008).
The dynamics in the knowledge base play also a role, since the structure of the
knowledge base changes and becomes denser (Krafft et al. 2011).

The knowledge base is enhanced with knowledge from related fields that
share the same principles and allow useful recombinations to establish wider lev-
els of application for the dominant design (Murmann and Frenken 2006). At the
same time, the number of variation is reduced and a single trajectory emerges
and development focuses along this trajectory (Metcalfe 1995). Here, specialized
and detailed knowledge about the core principles of the technology is relevant
to increase performance and application opportunities to expand the number of
possible adopters.

3. Era of incremental change: After the emergence of a dominant design, incre-
mental change by solving rather small problems or improving performance along
the technological trajectory takes place (Dosi 1982; Sahal 1985; Anderson and
Tushman 1990). In this phase, the knowledge base is large and detailed, the
technological principles are well understood and the dominant design is work-
ing. This era is characterized by exploitation of the knowledge base by localized
search along the trajectory (Nelson and Winter 1982; Levitt and March 1988).
Incremental improvements occur in a routinized way (Henderson and Clark
1990) and inertia exists towards switching the direction of search (Kaplan and
Tripsas 2008). Social, political and organizational routines are established as
well (Tushman and Rosenkopf 1992). Nevertheless, certain dynamics still exist
along the trajectory (Funk 2009; Dokko et al. 2012; Lee and Berente 2013).
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In the era of incremental change, specialized knowledge is necessary to solve
the incremental problems, which allows further progress. Very detailed knowl-
edge and experience is necessary for the incremental improvements. But also
new knowledge might be relevant for further progress. New knowledge might
come from a new generation of scientists and engineers, who are not primed
towards a specific concept or way of thinking and can integrate their new
ideas. Since over time specific educational facilities are established that pro-
vide detailed training in the field, this new knowledge can become particularly
relevant in the era of incremental change (Baumol 2004; Vona and Consoli
2015).

4. Technological discontinuity: The emergence of a technological discontinuity
disrupts the technology and might establish a new trajectory. In this phase, the
knowledge base is exhausted and technical opportunities are scarce. The disrup-
tion is usually assumed to be exogenous to the technology (Dosi 1982; Tushman
and Anderson 1986). It can occur if the technology reaches its natural limits
(Sahal 1985), the opportunity space for further improvement is exhausted (Flem-
ing 2001; Adner 2004) or customers radically shift their preferences (Tripsas
2008). However, recently the idea that the discontinuity can emerge out of the
incremental improvements, which become radical by accumulation (Funk 2009)
or social interaction (Dokko et al. 2012), is discussed.

In this stage, the exhausted knowledge base can be rejuvenated by a disrup-
tion that can open up new recombinatorial possibilities. For the further evolution
of the knowledge base, unrelated knowledge is most likely to refresh the tech-
nology in a disruptive way. Radical new ways of recombination can emerge out
of these new opportunities. Furthermore, new unexploited ideas and knowledge
can induce the discontinuity, especially if accumulated over time. If the unre-
lated or new knowledge gets successfully recombined with the knowledge base,
a rejuvenation of the technology takes place and the life cycle starts again with a
drastically altered or completely new technology.

2.3 Inventors and knowledge recombination

To understand the development of a technology, it is crucial to determine which fac-
tors influence the evolution of the underlying knowledge base. Since knowledge is
embodied in people, the inventor who is able to create new and recombine exist-
ing knowledge is the core determinant for the evolution of the knowledge base.
The individual person possess knowledge and competences, especially tacit ones,
which are relevant for recombination and technological advancement (Grant 1996;
Mascitelli 2000). The inventor can gain and use his knowledge from learning-by-
doing, experimentation and application (Arrow 1962). This extends the inventor’s
stock of knowledge and makes the inventor more effective in future inventive activity
in recombination (Conti et al. 2014), but with diminishing returns to novelty (Audia
and Goncalo 2007; Conti et al. 2014). However, the process of recombination is
influenced by uncertainty about the usefulness of the outcome of the recombination
process (Fleming 2001), and specific characteristics of the inventor play an important
role for recombinatorial success.
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Several findings reveal which inventor characteristics lead to successful recom-
binations and inventions. Gruber et al. (2013) show that the kind of education an
inventor received influences the ability to combine knowledge from different fields.
They show that scientists are better in integrating distant knowledge than engineers.
Besides the kind of training the inventor receives, the breadth and depth of the knowl-
edge the inventor possesses also has an influence, as shown by Boh et al. (2014).
Conti et al. (2014) find that the previous inventive activity positively influences
new inventions. In addition, Mohammadi and Franzoni (2014) show that for scien-
tists’ knowledge relatedness influences the technological value of inventions. Meyer
(2006) demonstrates that scientists in nanotechnology who invent at the same time
are more effective than non-inventing scientists. Scandura (2019) shows that the suc-
cess of inventors is influenced by the type of knowledge they use. Based on survey
data, she reveals that combining scientific and market knowledge enhances inventive
output.

While the characteristics of inventors are of importance, their origin in the knowl-
edge space also play a role. Mobile inventors, which enter a technology from outside
the technology’s knowledge domain, may alter a technology’s knowledge base and
enhance recombination possibilities. Those inventors can transport or spill over their
knowledge about a specific technology to a new one by moving between technolo-
gies and industries and carrying their knowledge and experience with them (Song
et al. 2003; Hoisl 2007). By entering a technology, in terms of creating an invention
in this field, the knowledge these people possess may increase the knowledge base of
the technology into which they move. It can be assumed that, during the process of
invention, the knowledge an inventor holds is recombined with knowledge present in
the technology to which the inventor moves and increases the knowledge base, espe-
cially if the invention is followed up by other inventors. This transfer of knowledge is
important for the technology’s progress and shapes the direction into which a technol-
ogy develop (Schoenmakers and Duysters 2010). Here, the distance in the knowledge
space plays a role again, since these inventors can originate from related technologies
that are near or familiar with the technology or from unrelated technologies, which
do not share common principles. Their movement from one technological field to
another allows them to combine their previous knowledge with the one present in the
technology’s knowledge base into which they move.

Based on the different characteristics and technological origin of inventors,
inventors can be distinguished into four different groups based on their inventive
experience. The characteristics these inventors have may influence their success of
recombination, especially in different phases of the TLC. The distinction between
different kinds of inventors can be drawn from the inventor’s personal knowledge and
the knowledge base of a technology.

1. New Inventors: Inventors have no inventive experience, which implies that their
first invention contributes to the technology’s knowledge base. They may have
gotten educational training in this field (Vona and Consoli 2015) but show no
experience with inventive activities yet. They can also be customers who want
specific features or characteristics of a technology and introduce them on their
own (von Hippel 1976, von Hippel 1988, 2010) or the classical tinkerer (Bettiol
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et al. 2014). They have the advantage that they are not primed by any previous
inventive activity and can bring novel and unexploited ideas with them. However,
they lack experience and tacit knowledge in inventive activity and may not fully
understand the technology.

2. Specialized Inventors: Specialized inventors have contributed to the technol-
ogy’s knowledge base by previous inventive activity. Due to their repetitive
inventive activity, they benefit from learning-by-doing (Arrow 1962) and have
accumulated knowledge in the technology that gives them a deep understand-
ing of it (Conti et al. 2014). They are able to see opportunities for further
improvement of the technology or their previous inventions. However, it can be
assumed that they face diminishing returns of success, since they might follow
an exploitative path, as suggested by Audia and Goncalo (2007).

3. Related Inventors: Related inventors have contributed to technological fields
that are related to the technology into which they move. These inventors are
familiar with the technological field or underlying technological principles and
can transfer related knowledge from other technologies or technical applica-
tions to the knowledge base under consideration. These inventors are able to
recombine their previous knowledge with the knowledge already present in the
knowledge base. Uncertainty about the recombinatorial success should be low,
but radical contributions are not that likely.

4. Unrelated Inventors: Unrelated inventors show no inventive background related
to the technology’s knowledge base into which they move. These inventors
generated inventive output in unrelated technologies and changed their field of
inventive activity. By the shift from one technology to another, they carry with
them specific knowledge from the former field of activity that may not be present
in the technology’s knowledge base and they may combine this knowledge with
the knowledge present already in the knowledge base. However, the knowledge
they possess for recombination might be difficult to integrate into knowledge
present in the technology and unsuccessful recombinations are likely (Fleming
2001).

These different types of inventors are the carriers of specific knowledge and can
by their inventive activity recombine their knowledge with the knowledge present
in a technology. In line with the extension of the Anderson and Tushman (1990)
model, they provide the necessary different kinds of knowledge that influences the
technological progress along the TLC. In the following the extended model and the
influence of different kinds of inventors along the technology life cycle is tested with
renewable energy technologies in Germany.

3 Renewable energies and their technology life cycle

3.1 Wind power and photovoltaics in Germany

To test the proposed extension and the effect of different sources of knowledge along
the TLC, wind power (WP) and photovoltaics (PV) are chosen from the field of
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renewable energies. In the light of emerging environmental problems such as cli-
mate change, but also resource scarcity and rising energy consumption, alternative
energy technologies are demanded. Since the oil crisis in the 1970s, renewable energy
technologies, especially WP and PV, emerged and diffused in the electricity market
(Jacobsson and Johnson 2000). During the last 40 years, these technologies under-
went a remarkable development to catch up with incumbent technologies in terms of
efficiency and cost competitiveness. The evolution of these technologies is driven by
inventions and knowledge accumulation extending the knowledge bases of the tech-
nologies. Nowadays, WP and PV are cost competitive and contribute a substantial
share of electricity in several countries (REN21 2015).

The technologies developed globally but, in the following, only the situation in
Germany from 1970 until 2012 is considered. Germany can be seen as a forerun-
ner for both technologies due to high inventive activity, installed capacity and policy
support. The German government implemented various policy instruments to sup-
port the development and served in some period as the largest market (Lauber and
Mez 2004). Figure 2 shows the R&D expenditures as well as the diffusion (by annual
installed capacity) of both technologies over the last 40 years as well as the main
demand pull policies. Over time, there was a shift from direct R&D subsidies to
demand inducing policies that created a niche market for the technologies and sup-
ported their diffusion. This favorable environment helped the technologies to develop
and the different instruments had vast effect on inventive activity (Johnstone et al.
2010; Wangler 2013; Cantner et al. 2016).

3.2 Technology life cycle phases

Several attempts to distinguish technological phases for WP and PV are proposed in
the literature, which mimic the TLC but also to some extend an industry life cycle.
For example, Bergek and Jacobsson (2003) distinguish two phases in the world-
wide WP development, a phase of experimentation from about 1975 until 1989 and
a phase of turbulence and growth from 1990 until 1999. Wilson (2012) derives simi-
lar phases for the development in Denmark. Harborne and Hendry (2009) argue that,
even though a dominant design seemed to emerge at the end of the 1980s, variation
and experimentation was still high at the end of the 1990s. According to Huenteler
et al. (2016b), WP follows a complex-products and systems life cycle (Davies 1997)
and a dominant design emerged already in the late 1980s. Since then, WP has been
in the era of incremental change. Hemmelskamp (1998) does not analyze a TLC in
particular, but points out that even two dominant designs emerge for small and large
wind turbines in the middle of 1990s. For Germany, the development for WP can,
according to Bruns et al. (2009) and Bruns and Ohlhorst (2011), be distinguished
in a pioneering phase from 1975 to 1985 followed by a rethinking/adopting frame-
work period until 1990 succeeded by a breakthrough period until 1995. Then a three
year transitory setback period was proposed followed by a second boom period until
2002. After 2002, consolidation in the industry took place and, according to them, a
divergence of the trajectory took place.
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PV can, according to Peters et al. (2012), be distinguished in three phases on
the global level. The period 1974-1985 is a first boom phase, followed by a stag-
nation phase until 1994 and from 1995 onwards a second boom phase. Huenteler
et al. (2016b) analyze the technology in detail and conclude that PV followed a mass-
produced goods life cycle (Abernathy and Utterback 1988) and a dominant design
emerged in the early 1990s. Since then, PV has been in the era of incremental change.
For the development specifically in Germany, Jacobsson et al. (2004) distinguish the
development of PV in two phases, a first until 1989, which they consider a science-
based experimentation phase, and a growth phase from 1990 until 2001. Bruns et al.
(2009) distinguish the development of PV in five phases. They attribute the period
1970-1985 as a pioneering phase, followed by a phase with reduced private and pub-
lic R&D until 1991, when a demand inducing policy instrument was implemented
that allowed first larger scale tests. From 1994 until 1998 there was a phase of slow
down and uncertainty, followed by a breakthrough phase form 1999 until 2003 and
from 2004 onwards a booming phase.

Since there is no clear distinction of the TLC phases in the literature, the tech-
nologies are separated in phases based on the diffusion and the political support
they received in Germany (see Fig. 2 and Table 1).4 For this purpose, especially the

4Since technological development unfolds over time, retrospective identification of phases is difficult
and depends on the point in time the distinction is made. This explains the above variation in periods
and assessments in the future will most likely derive different phases than the ones distinguished in the
following. However, there are methods available to distinguish TLC phases based on patent data (e.g.
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distinction between demand-pull and technology-push policies is useful (Mowery
and Rosenberg 1979), since the policy support changed over time towards more
demand oriented support. Several studies show that policy instruments decisively
influenced the technological development, especially demand pull policies (John-
stone et al. 2010; Wangler 2013; Cantner et al. 2016). These policies induced demand
for the technologies, which reaped economies of scale and helped to establish a
dominant design.

In the case of WP, the technological development can be separated into three
phases until today.5 The era of ferment starts in Germany around 1970 and lasts
until 1995. This period covers the experimental phase in the beginning of the 1980s
where the large scale pilot turbine GROWIAN was constructed but failed in operation
(Bergek and Jacobsson 2003). However, the first successful small scale applications
were supported by the 100/250 MW wind program in the end of the 1980s, which
proved the technological feasibility (Harborne and Hendry 2009). Additionally, the
first feed-in tariff was introduced in 1991 and supported technology independent dif-
fusion of renewable energy (see Bergek and Jacobsson 2003; Bruns et al. 2009, for
a detailed discussion of the policy instruments). These instruments created a niche
market that provided opportunities and testing ground for commercial applications.
The emergence of a dominant design took place from 1996 until 2000 and is charac-
terized by massive up-scaling of the turbine size and a surge in installed capacity in
Germany due to the demand policies. The turbine design converged to a three blade
rotor facing the wind with a variable-speed gearbox (Harborne and Hendry 2009;
Milborrow 2011; Huenteler et al. 2016b). This so called Danish-design is used in
nearly all wind turbines today. The era of incremental change starts in 2001 and is
characterized by a reduced annual installed capacity, but increasing exports and fur-
ther up-scaling. The focus of inventive activity switched to other components such as
mounting and encapsulation or grid connection of turbines (Huenteler et al. 2016a),
which are not fundamental to the technical principle. Also, offshore turbines were
developed and installed, but they do not substantially differ from onshore turbines
and a discontinuity seems not yet to have emerged.

In the case of PV, the era of ferment covers the years from 1970 until 1997
and is characterized by massive R&D subsidies and first experimental demand poli-
cies that created a niche market (Jacobsson et al. 2004).6 In this phase, various
actors engaged in PV R&D and research institutes were founded, providing scien-
tific infrastructure and public funding allowed experimentation with the technology

Haupt et al. 2007; Lizin et al. 2013; Chang and Fan 2016), but this approach is neglected since the same
data will be used to explain changes in the phases later on.
5In the case of WP, it is hard to track a discontinuity that opened up the trajectory. The underlying techno-
logical principle has been used for several hundred years in wind-mills to create mechanical energy. The
first wind turbine to produce electricity was constructed in 1888 and the technology was used in small
scale until 1950 but then disappeared in favor of other technologies until its renaissance after the oil crisis
(Shepherd 1994; Nielsen 2010).
6The photovoltaic effect was discovered already in 1839, but the first conventional photovoltaic cell was
developed by Chapin et al. (1954). This can be seen as the emergence of the trajectory. However, due to
high costs, application was limited and PV was mainly used to power satellites and off-grid applications
(Perlin 2002). Only after the oil crisis was PV seriously considered for large scale electricity production.
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Table 1 Summary of the TLC
phases for wind power and
photovoltaics

Wind power Photovoltaics

Era of ferment 1970-1995 1970-1997

Dominat design 1996-2000 1998-2006

Era of incremental change 2001- 2007-

(Jacobsson et al. 2004; Herrmann and Töpfer 2016). The emergence of a dominant
design lasted from 1998 until about 2006 and covered the vast increase in installed
capacity due to implemented demand policies and cost reductions. The 100,000 roof
program created favorable economic conditions to install PV and the later introduced
renewable energy source act substantially improved the investment conditions and
created strong market demand, which provided secure grounds to invest in R&D.
During this period, manufacturing capacity and automation of production processes
were established, which led to severe cost reductions and economies of scale. From
2007 onwards, the era of incremental change began with reduced policy support and
international competition for German PV cell producers.

However, in PV, the phases represent only a general pattern, since there are sev-
eral PV sub-trajectories with respect to the different cell types (Kalthaus 2019). For
example, dye-sensitized solar cells were discovered in 1991 (O’Regan and Grätzel
1991) and the underlying principle is far different from the market dominating silicon
wafer cells and their efficiency is far from conventional cells. These sub-trajectories
emerged at different points in time and are in different phases of the development
(see for example Lizin et al. (2013), who look at the life cycle of organic PV cells).7

4 Econometric approach

In the following, data as well as variables and the econometric approach to test the
extended TLC model for WP and PV are explained. Negative-binomial regressions
are used to analyze the relationship between different sources of knowledge and the
success of knowledge recombination. Descriptive statistics and correlations can be
taken from Appendix A.2 and A.3.

4.1 Data and variables

4.1.1 Patent data

The technological advancement and evolution of the renewable energy technologies
and their knowledge bases can be observed in patent data. Patents are, despite their

7It could also be argued that the presence of sub-trajectories indicates that no dominant design emerged
yet. But these sub-trajectories have different fields of application from application in space to integration
in textiles or windows and are hardly competing in their specific field of application (Kalthaus 2019).
For large scale, mass market applications silicon wafer cells are the most frequent ones (Huenteler et al.
2016b).
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broadly discussed disadvantages, a good proxy for inventive activity and a technol-
ogy’s knowledge base (Griliches 1990; Hall and Harhoff 2012). Even though only a
part of all inventions are patented (Arundel and Kabla 1998; Cohen et al. 2000), the
codification of knowledge in a patent allows other inventors to utilize the knowledge
and build upon it.

Patent data for the analysis is retrieved from the Worldwide Patent Statistical
Database (PATSTAT) (EPO 2014). Patents for WP and PV are extracted by a combi-
nation of technology specific IPCs (International Patent Classification) and keywords
(see Appendix A.1 for details). All priority application filed by German inventors in
the period from 1970 to 2011 are considered. A patent is selected if at least one of
its inventors resides in Germany. There are 3,765 WP and 3,589 PV patents in total
(Fig. 3). However, for the following analysis, only a subset until 2006 is considered,
since the patents need some time to receive forward citations, which are the infor-
mation of interest. For the set until 2006, there are 1,984 WP patents and 1,691 PV
patents that are the units of observation.

4.1.2 Dependent Variable: Forward citations

The success of knowledge recombination and the contribution of a patent to the
knowledge base can be approximated by the forward citations it receives. A forward
citation of a patent is a citation of this patent by another patent, which considers the
cited patent as prior art. The general assumption is that the more forward citations
a patent receives, the more valuable in technological terms it is for the evolution of
a specific technology (Carpenter et al. 1981; Trajtenberg 1990; Harhoff et al. 1999,
2003; Czarnitzki et al. 2011; Jaffe and de Rassenfosse 2017). If a patent receives
many citations it can even be considered radical or breakthrough (Ahuja and Lam-
pert 2001; Conti et al. 2014), while if it receives no citations, it is most likely that the
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recombination was a failure and the patent has no value for the knowledge base or
further inventions.

The forward citations are collected on the patent family level in the first five years
after the priority application (Bakker et al. 2016). This five year truncation is used to
grant all patents the same time span to receive citations and avoid a bias towards older
patents (Lanjouw and Schankerman 2004). Forward citations added by examiners
are not considered separately, even though they can indicate higher importance of
the cited patent (Alcácer and Gittelman 2006; Yasukawa and Kano 2014). Figure 4
displays the distribution of forward citations by technology. The distribution is highly
skewed and 33% of the PV and 40% of the WP patents receive no citation in the first
five years after application. On average, WP receives about 2.6 citations and PV 2.7
citations per patent in the first five years after application.

4.1.3 Explanatory variables: Type of inventor

To understand the influence of different sources of knowledge on the technological
development, the inventors on the patent are assigned to the four different groups,
elaborated in Section 2.3. Since the assignment to the different groups is sensitive to
the data quality, cleaning up the patent data is necessary. The inventor names were
manually harmonized by correcting obvious typos8, academic titles or name order,
controlling for patent applicant, address and year of application, to avoid inflating the
number of inventors.9 In total, there are 1,675 unique inventors on WP patents and
2,203 unique inventors on PV patents.

8There have been different algorithms proposed to clean patent data (Raffo and Lhuillery 2009; Miguélez
and Gómez-Miguélez 2011) but they were not able to provide appropriate results. However, there are
several sets of harmonized inventor names, but these sets were either not available for different application
offices or were specified for a certain group of inventors, such as scientists.
9Technically, the different person-IDs from the PATSTAT database for one person are attributed to one
unique identifier used to describe the inventor.
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All filed patents for each inventor are collected from PATSTAT to construct the
inventor’s patenting history, similar to the approach used by Jones (2009). The patent-
ing history is used to determine the type of inventor. Thereby, the type of inventor is
reassessed with every new patent he files in the technology. The first type, New Inven-
tors, are those without previous patenting experience who patent their first patent in
the technology. The second type of inventors, Specialized Inventors, are inventors
who patented previously only in the respective technology. If a New Inventor patents
a second patent in the technology, he becomes a Specialized Inventor on this second
patent. For the third and fourth type of inventors, who have an inventive history in
either related or unrelated technologies, the distinction becomes a bit different: The
field of former patenting activity of an inventor is indicated by the IPCs to which his
previous patents are assigned.10 The inventor is considered to be related to the tech-
nology, so a Related Inventor, if one of the IPCs on previous patents not belonging
to the technology has also been used in the respective technology before; if not, the
inventor is considered an Unrelated Inventor.11 The IPCs of all previous patents in
WP or PV are accumulated over time and compared to the inventor’s patenting his-
tory.12 If any of the inventor’s patents IPCs coincides with an IPC that is already
used in the technology, the inventor belongs to Related Inventors.13 This approach
allows a dynamic change of the criteria for Related Inventors and Unrelated Inven-
tors if new concepts are introduced into the knowledge base. The first time an IPC is
introduced by an inventor in the technology, it is no longer unrelated to the technol-
ogy but related.14 Since the empirical analysis is conducted on the patent level, the
different types of inventors on a patent enter the regression as a count variable each.

The distribution of the different kinds of inventors over time is presented in Fig. 5.
In both technologies, New Inventors are the largest group. This is persistent over
time, indicating that there is a high number of new people starting inventive activity

10Using IPCs to assign inventors to related and unrelated knowledge has some caveats. For example,
classifications can change over time and a related inventor can become unrelated (or vice versa) due to
changes in the classification system.
11If an inventor has patented in related and unrelated fields, the inventor is assigned to Related Inventors.
If an inventor patents first in an unrelated field and afterwards in a related field, he becomes then a Related
Inventor.
12Patents from 1965 until 1969 are used to create an initial set of IPCs, otherwise the first inventors would
be unrelated by default.
13The distinction between Related Inventors and Unrelated Inventors is influenced by how detailed the
technological relatedness is constructed. The minuteness of detail of the technological relatedness can be
proxied by the hierarchical nature of the patent classification system. The IPC consists of eight differ-
ent fields, e.g. physics or electricity. These fields have several classes and subclasses (about 640, usually
referred to as four-digit IPCs). Several studies use these four-digit IPCs to distinguish between different
technological fields (e.g. Nemet and Johnson, 2012). There are also groups (about 7,000) and subgroups
(more than 70,000) that represent more fine grained distinctions of the technology. In the current case,
the level of groups is used to assign the inventors to the related and unrelated category. Using the sub-
group level would drastically reduce the related group, since there would be no overlap on a higher level,
while using only the subclasses would drastically reduce the unrelated group, since general technological
principles would be the same in most cases.
14Since this is a rather strong assumption, a robustness test is done where inventors are assigned to the
related and unrelated group if the patent belongs to a similar technology field or not. See Section 4.4 for
this robustness test.
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Fig. 5 Share of inventor types per technology over time

in these technologies. Furthermore, since inventions are a rare event, a considerable
amount has only one invention, or they change their focus and continue their inventive
activity in other domains (Menon 2011). Related Inventors are the second biggest
group in both technologies. But in WP, Unrelated Inventors have a high share in the
early years, indicating an experimental phase. Specialized Inventors are the smallest
group in both technologies, indicating that specialization in one technology does not
take place that much. Further information about the number of patents per inventor
and the overall number of inventors is provided in Appendix A.4.

To understand better the effect of different kinds of knowledge embedded in
the inventors, intermediate groups are created to assess the effect if inventors are
separated into different types. Two intermediate groups are constructed: First, Expe-
rienced Inventors who are all the inventors who have patenting history (sum of
Specialized Inventors, Related Inventors and Unrelated Inventors) to test if it matters
if an inventor has previous experience. The second group, Knowledgeable Inventors,
are the inventors who come from outside the technology’s domain and patented in
related and unrelated fields (sum of Related Inventors and Unrelated Inventors).

4.1.4 Control variables

While the source of knowledge embodied in inventors and their success of recom-
bination has an influence on the received forward citations, other influential factors
may be related to the patent itself. In the following, relevant control variables are
discussed.15

15Besides the variables presented, there are several others that could have been considered, but are not
used due to several reasons. For example, triadic patents are indicators of high value (Dernis and Khan
2004; Sternitzke 2009), but they are highly correlated with the family size and in favor of the family size
neglected. Cited non-patent literature is also frequently used, but the data have hardly any such references
and are according to Harhoff et al. (2003) only relevant for pharmaceutical and chemical patents. Claims
per patent are also frequently counted (Lanjouw and Schankerman 1999), but most patents are filed at the
German patent office, which does not publish the number of claims.
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Team Size: An influential factor for the success of a patent, and also for knowledge
recombination, is invention in teams. Patents invented in teams have usually a higher
technological value than inventions by a single inventor (e.g. Wuchty et al. 2007;
Jones 2009). The number of inventors on the patent is the sum of the different types
of inventors.

Foreign Inventors: International collaboration has a positive effect on research and
inventive activity in general (Adams 2013; Kerr and Kerr 2018). Patents might be
invented in international teams and inventors from other countries are counted.

Number of IPCs: The technological breadth of the patent influences its techno-
logical importance. More basic patents, which can be applied to different kinds of
technologies, might be more relevant for future development than highly specified
patents (Lerner 1994). To approximate the breadth of the patent, the number of IPC
groups to which a patent is assigned are counted.

Family Size: The size of the patent family to which the patent belongs is considered
to be relevant for the technological importance of a patent. The bigger the family of
a patent, which means that the priority patent is registered in other patent offices as
well, the higher the number of forward citations (Putnam 1996; Lanjouw et al. 1998;
Harhoff et al. 2003). Here, the size of the DocDB family is considered (Martı́nez
2011).

Backward Citations: The previous patents the inventor relied on to create the
patent may influence its technological value (Harhoff et al. 2003). Lanjouw and
Schankerman (1999), for example, show that patents with many backward citations
are rather incremental compared to patents with no or only a few backward citations.

Granted Patent: If the patent is granted it usually is a good indicator of its novelty
and relevance (Guellec and van Pottelsberghe de la Potterie 2000).

PCT Patent: If a patent is filed under the Patent Cooperation Treaty (PCT) the
technological value can be higher (Guellec and van Pottelsberghe de la Potterie
2000).

New Combination: A patent can introduce a new IPC into the knowledge base
that has not been used in the technology before. This might be a new combination
that can be of higher value. Arts and Veugelers (2015) use a similar idea to capture
previously uncombined technologies. A dummy variable is constructed by comparing
all previous IPCs used in the technology and the patent under consideration. The
dummy variable turns 1 if a patent introduces a new combination into the knowledge
base.

USPTO: Patents filed at the United States Patent and Trademark Office (USPTO)
receive usually a higher number of forward citations, since the USPTO requires indi-
cation of all prior art that could be relevant and this leads to a higher number of
forward citations than a patent from the German or European patent office would
receive (Michel and Bettels 2001; Nagaoka et al. 2010).

Year Effects: Year dummies capture time variant effects such as macroeconomic
changes, political support, patent legislation changes or other factors that may influ-
ence patenting activity and quality in a specific year. Furthermore, the variable
captures also the effect that due to the general increasing patenting trend younger
patents have a larger pool of patents that could cite them.
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PV Sub-trajectories: A PV system consists of different components and cell tech-
nologies, which develop intertwined with each other. There are different approaches
to utilize the photovoltaic effect based on different light-absorbing materials. Sim-
ple PV cells use silicon wafers to produce electricity, while nowadays also thin-film
materials and very recently organic and nano materials are used. Since they emerge
at different points in time, they might require different kinds of inventive activity and
have overlapping life cycle phases. To account for this, the patents for PV are dis-
tinguished into PV Modules, which is generic for each cell type and deals with the
overall construction and installation of the cell, and the cell sub-trajectories, which
can be distinguished based on their material into Silicon Wafer Cells, Thin-Film Cells
and Emerging Cells. However, not all patents can be attributed to a specific technol-
ogy and the distinction serves only as a rough indicator. Details about the distinction
are provided in Kalthaus (2019).

4.2 Econometric approach

The dependent variable, the forward citations per patent, measures the success of the
knowledge recombination and the resulting technological contribution to the knowl-
edge base. Forward citations are non-negative and discrete and require non-linear
count data models. Poisson distributions and regression models based on them are the
natural starting point for econometric analysis of such data. However, Poisson regres-
sions require equidispersion of the data. I test for equidispersion in the data and have
to reject it, so the data are over-dispersed (the conditional variance exceeds the con-
ditional mean of the data) and the standard errors are biased. This requires a negative
binomial distribution, which allows for a more flexible parametric regression model,
accounting for overdispersion (Cameron and Trivedi 1986; Hilbe 2011). Since the
patent is the object of analysis (i), the data set is cross-sectional but has time infor-
mation that allows separation of different life cycle stages. The stylized regression
model is:

Forward Citationi = β1Inventor T ypei + β2Controlsi (1)

where Inventor Type is a vector of the four different kinds of inventors, namely,
New Inventors, Specialized Inventors, Related Inventors and Unrelated Inventors, the
explanatory variables of interest.

In the following, seven models for WP and six models for PV are estimated to
analyze the relationship of different types of inventors and the number of forward
citations. The first four models (see Section 4.3.1) cover the full period and are
used to elaborate the relevance of the different inventor types in general. The first
model uses only the Team Size of the inventor team to estimate whether the number
of inventors on a patent has an effect. In the second model, the inventors are sepa-
rated into New Inventors and Experienced Inventors to see if it makes a difference
whether previous knowledge is present.16 The third model separates the Experienced
Inventors into Specialized Inventors who only invent in the respective technology and

16The Team Size is the sum of the different inventor types that are itself count variables and therefore Team
Size is dropped due to multicollinearity in the following regressions.
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Knowledgeable Inventors who have experience in other fields. Model four further-
more separates the Knowledgeable Inventors into Related Inventors and Unrelated
Inventors to estimate whether the kind of previous knowledge has an effect. In the
case of PV, two alternatives are estimated, distinguishing PV in sub-trajectories.
Model 4a controls for patents that belong to PV Modules and the three PV cell sub-
trajectories Silicon Wafer Cells, Thin-Film Cells and Organic Cells to account for
different developments between cell technologies.

The next models (see Section 4.3.2) cover the different periods of the TLC derived
in Section 3. In models five to seven for WP, the first three stages of the TLC are
analyzed. For PV, only two periods are considered. Model five covers the period
1970-1997 and model six 1998-2006. Again, distinctions between the PV module
and different cell sub-trajectories are made.

Since the proposed sub-periods in the last models are static and results could be
sensitive to the exact separation of periods, rolling-window regressions are used to
illustrate the importance of different types of inventors over time. Rolling-window
regressions (alternatively called moving-window regressions) are usually applied to
time series data to analyze whether structural changes occur in a specific subsample
of a time-series (Fama and MacBeth 1973; Nyakabawo et al. 2015). The approach
uses a fixed window of years sequentially from the start to the end of the overall
observation period by dropping one year from the end and adding one to the begin-
ning. In the current case, a time-series is not present, but based on the filing year of
the patent, time periods can be constructed. When using this method, the selection of
the window of years is of importance and has to make a trade-off between the accu-
racy of the effect, the degrees of freedom, and the coverage of the relevant period.
This is especially a problem for time-series (see Pesaran and Timmermann (2005)
for a discussion), but not necessarily for the current case, since multiple observa-
tions are present in each period, providing a sufficient degree of freedom. However,
if the selected time period is too short, overall time variant effects that are other-
wise captured by year dummies might influence the result. In the following, a time
period of eight years is considered covering a sufficient large time period and degree
of freedom per window. Furthermore, robustness tests for five and eleven years are
discussed in Section 4.4.

4.3 Results

4.3.1 General influence of different inventor types

The regression results for the influence of different types of inventors for WP and PV
are presented in Table 2. In the case of WP, the first model, the baseline, illustrates
the overall influence of patent characteristics on forward citations. As suggested in
the literature, most control variables influence the number of forward citations pos-
itively except PCT Patent, which does not have a significant coefficient. However,
the negative coefficient of New Combination is surprising. The introduction of a new
IPC into the technology seems to have a negative influence on the contribution to the
knowledge base. This indicates that the extension of the knowledge base by bringing
in new principles seems not beneficial. This is, however, in line with the argument of
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Fleming (2001), who claims that recombination is risky and may lead to failure. The
negative effect can also indicate that the trajectory is already defined and integrat-
ing further technological principles in the knowledge base does not provide useful
recombinations. In model 2, the inventors are separated into New Inventors and Expe-
rienced Inventors. We see that both have a highly significant coefficient, indicating
that both sources of knowledge are relevant. This influence sustains if Experienced
Inventors is further separated in Specialized Inventors and Knowledgeable Inventors
in model 3. However, in model 4, the separation of the Knowledgeable Inventors
reveals that only Unrelated Inventors has a weakly significant coefficient, while the
Related Inventors has no significant influence in WP. In all models, Foreign Inven-
tors has a significant coefficient, too, indicating that international collaboration are
relevant for the technological development.

The regression results for PV show that, in the baseline model 1, the results are
nearly similar to the ones for WP, but here, Granted Patent does not have a sig-
nificant coefficient. Again, New Combination has a negative coefficient, which is
significant, indicating that inducing new principles into the PV knowledge base is
also not successful or necessary. Model 2 shows that, in PV, New Inventors does
not have a significant coefficient, while Experienced Inventors does. This indicates
that recombination in PV is only successful, if inventors possess previous experi-
ence and knowledge. Model 3 presents the distinction between Specialized Inventors
and Knowledgeable Inventors. Both are statistically significant, but the Specialized
Inventors has a comparably large coefficient, indicating that knowledge accumulation
seems to matter more than a diverse set of knowledge. In model 4, only Specialized
Inventors contributes to the technological development and the distinction between
Related Inventors and Unrelated Inventors seems not to explain recombinatorial suc-
cess. However, controlling for different sub-trajectories in model 4a reveals that
Related Inventors has a weak significant coefficient, indicating that sub-trajectories
have distinct recombination pattern and that the relevance of related knowledge is
conditioned on the sub-trajectory. Contrary to WP, Foreign Inventors is not signif-
icant and inventive activity for PV in Germany does not benefit from international
collaboration.

Overall, different sources of knowledge are relevant and the distinction reveals
that knowledge embodied in different types of inventors influence recombinatorial
success. There are differences between the technologies as well. While in WP New
Inventors has a significant coefficient, it does not matter in PV. Also, the kind of
knowledge from domains external to the technology’s knowledge base matters. While
in WP Unrelated Inventors is relevant for useful recombinations, in PV Related
Inventors is relevant. Also the difference concerning Foreign Inventors is remarkable.
However, the technological difference between WP and PV has also been shown by
Cantner et al. (2016) and Huenteler et al. (2016b), but not with respect to the process
of knowledge recombination.

4.3.2 Technology life cycle phases

In this section, the phases of the TLC are analyzed and regression results are pre-
sented in Table 3. For WP, model 5 shows the era of ferment in which New Inventors
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and especially Unrelated Inventors show significant coefficients. While it was pro-
posed in the extended TLC model that Related Inventors and Unrelated Inventors
are decisive in this phase, only Unrelated Inventors seems to be able to successfully
integrate distant knowledge into the knowledge base. The significance of New Inven-
tors is interesting, since it shows that the technology benefited from inventors who
started their inventive activity in WP. Here, anecdotal evidence supports the results.
Inventors in the era of ferment were tinkerers and engineers who wanted to improve
environmental conditions and provide technical alternatives to conventional energy
production (Simmie et al. 2014). Concerning the control variables, Number of IPCs
and Backward Citations lose their significance as well as the negative coefficient of
New Combination compared to the full model. Interestingly, Foreign Inventors has a
negative coefficient, indicating that knowledge from other countries goes along with
lower recombinatorial success in this phase. Here, it could be that German inventors
follow their own trajectory, and concepts developed in other countries seem not to be
relevant in this phase.

Model 6 presents the results for the emergence of the dominant design. New Inven-
tors as well as Specialized Inventors are decisive. It is, however, proposed in the
model that Specialized Inventors and Related Inventors are relevant sources of knowl-
edge in this phase. The results indicate that the dominant design in WP emerges out
of the established trajectory and rely on acquired and accumulated knowledge and
does not rely on further knowledge from related fields. Concerning the control vari-
ables, Foreign Inventors still has a negative coefficient, but the effect size decreases.
Also, PCT Patent shows a significant negative coefficient.

In the era of incremental change, presented in model 7, again, New Inventors and
Specialized Inventors have significant coefficients, which is in line with the proposed
model. Additionally, Related Inventors seems to be able to integrate knowledge from
adjacent technologies into the WP knowledge base, as indicated by the weakly signif-
icant coefficient. This could hint towards an upcoming discontinuity, maybe related
to offshore WP. There is some evidence that the struggling German ship-building
industry diversifies in offshore WP and provides competences for the development of
offshore turbines and components (Fornahl et al. 2012). In this phase Foreign Inven-
tors has a positive and significant coefficient, possibly integrating knowledge, which
is not present in the knowledge base yet and increases the knowledge base. The other
control variables show no unusual pattern, except Granted Patents, which is no longer
significant.

For the different phases of the TLC in PV, model 5 and 6 present the results for
the era of ferment and the emergence of a dominant design. Model 5 indicates that
only New Inventors contributes to technological development. However, controlling
for different sub-trajectories in model 5a reveals that also Specialized Inventors and
Related Inventors have a positive and significant coefficient. Unrelated Inventors,
as proposed in the model, does not matter, but New Inventors as well as Special-
ized Inventors do. Overall, a diverse set of knowledge is integrated in the knowledge
base in this phase. Related literature shows that especially in the 1980s and 1990s a
diverse set of actors (firms, research institutes, universities, ...) engage in PV R&D
(Jacobsson et al. 2004) and the Fraunhofer Institute for Solar Energy Systems ISE
was founded, which is until today central in Germany’s PV research (Herrmann and
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Töpfer 2016). Furthermore, contrary to WP, PV had in the era of ferment various
applications to power off-grid solutions from calculators to satellites (Perlin 2002;
Jacobsson et al. 2004). These diverse areas of application could explain the different
sources influencing the technology, especially at the sub-trajectory level where either
costs (mass production) or efficiency (space application) are relevant. The control
variables show except from the very large coefficient for PCT Patents no unusual
results and are invariant towards controlling for sub-trajectories. Similar to the overall
models, Foreign Inventors is not significant.

During the emergence of the dominant design, only Specialized Inventors con-
tributes to the technological development, whether controlling for sub-trajectories
or not. Contrary to the theoretical expectation, Related Inventors shows no signifi-
cant coefficient. The shift towards the Specialized Inventors from experimentation in
knowledge recombination to a more routinized inventive process could be a result of
the complexity of PV. If the basic principle of the material to convert radiation into
electricity is understood, improvements require a sound understanding of the material
to improve it further. This specialized knowledge seems to be generated according to
(Jacobsson et al. 2004) by inventors in research institutes and universities. Consider-
ing the control variables, it is interesting to see that the negative coefficient of New
Combiantions is not significant anymore.

Overall, it is immanent for both technologies that the knowledge relevant for fur-
ther development changes over time from an explorative way to a more exploitative
or routinized approach, as suggested by March (1991). Partially in line with the pro-
posed model, the relevant sources shift from knowledge outside the knowledge base
towards knowledge present in the knowledge base over the course of the TLC. In
WP, the era of ferment is influenced from knowledge provided by New Inventors
and Unrelated Inventors and in PV New Inventors, Specialized Inventors and Related
Inventors. The dominant design is shaped in both cases by Specialized Inventors, in
WP also by New Inventors. Related Inventors as proposed in the model does not mat-
ter in both cases. The era of incremental change in WP is as proposed influenced by
New Inventors and Specialized Inventors, but also by Related Inventors which could
lead the way towards a discontinuity. Noteworthy is also that in WP Foreign Inven-
tors becomes important over time, indicating that either knowledge from outside the
country’s domain becomes relevant, or inventors emigrate but still collaborate with
German inventors.

4.3.3 Rolling-window regressions

The dynamics along the technological development can be analyzed fine grained by
rolling-window regressions. They allow us to analyze changes in the coefficient sizes
of the different types of inventors, also inside the TLC phases. The rolling-window
regressions here use an eight-year window17 sequentially from the start to the end of
the overall observation period by dropping on year from the end and adding one to

17Sensitivity tests for five and eleven years are discussed in Section 4.4.
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Fig. 6 Eight year long rolling-window regression results for wind power and photovoltaics
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the beginning. For WP, model 4 is used and for PV, model 4a to estimate the rolling-
window regressions. Figure 6 presents the results for WP and PV graphically.18 The
coefficients for the different inventor types of the regressions are plotted along with
the 10 % confidence intervals for each eight-year period. To test the proposed TLC
model, the time periods in which the respective inventor type should be relevant are
non-shaded in Fig. 6. Since the periods are overlapping, the transition periods are
symbolized by an increasing brightness, indicating the increasing relevance of the
respective inventor type.

In the rolling-window regressions for WP, New Inventors should have an effect
in the era of incremental change, which begins in 2001. There is a significant coef-
ficient already from the end of the 1980s onward, which is persistent until the end
of the observation period. This indicates that fresh knowledge is constantly recom-
bined and introduced into the knowledge base. Shedding more light on the results
from the analysis of the TLC phases, we see that in the era of ferment, the coefficient
for New Inventors is not significant for about the first 15 years, but has a comparable
large coefficient onward, which is partly captured by the regression of the complete
era of ferment. The influence of New Inventors can be the result of the changing
approach towards WP in Germany after the failure of the GROWIAN project in the
beginning of the 1980s. Since this large scale wind turbine failed, focus was put on
small scale turbines and new actors entered the technology (Bergek and Jacobsson
2003). Specialized Inventors is supposed to be relevant in the emergence of the dom-
inant design and the era of incremental change. The results show that the coefficient
for these inventors become significant from the beginning of the 1990s onwards and
contribute substantially to the technological development until the end of the obser-
vation period. Besides two periods in the 1980s, they are not significant in the era of
ferment. Here, the results are in line with the results from the TLC regressions.

Related Inventors should play a role in the era of ferment and the emergence of
the dominant design. In the era of ferment they have a significant coefficient only in
a few periods and even reduce the number of forward citations a patent receives in
some periods covering the emergence of the dominant design. Only towards the end
of the observation period, Related Inventors becomes slightly significant and seems
to play a role again, which is also shown in the TLC regression. The rolling-window
regressions reveal a significant negative coefficient in some periods, which is unno-
ticed in the TLC regressions. Unrelated Inventors is supposed to have an effect in
the era of ferment. The results show basically no significant coefficient at all. Only
in some periods in the era of ferment, the coefficient is close to being significant.
This contrasts with the results from the regression for the era of ferment, which esti-
mates a significant coefficient. However, the number of observations are quite low in
these rolling-window regressions and the power of the regression could be too low.
Towards the end of the observation period, there is no significant coefficient of these

18The variation in the plotted graph is can be influenced by the drop of observations from the last year and
the inclusion of the added year. Furthermore, the number of observation changes, which also influences the
regression results, especially the precision of the estimate. This implies that each period can be considered
on its own, but changes from one period to another should be interpreted with caution.
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inventors at all, indicating that knowledge from outside the technology’s domain does
not matter and Unrelated Inventors seems not to disrupt the technology until then.

In PV, only the first two phases can be analyzed in which New Inventors is not sup-
posed to have an influence. Concerning the results, this seems to be the case. Only in
a few periods in the beginning of the 1990s is there a significant positive coefficient.
This significant coefficient is also present in the TLC regression. Specialized Inven-
tors is supposed to matter while the dominant design emerges. Here, we can see an
increase of the coefficient in this period in line with the model. In the earlier periods,
there are only a few periods in which these inventors have a significant coefficient,
which is also reflected in the TLC regression for the era of ferment.

Related Inventors should have an influence in both phases. However, the results
indicate only a few periods where these inventors actually have a significant coeffi-
cient. While the TLC regressions show that in the era of ferment the Related Inventors
has a quite large coefficient, the rolling-window regressions reveal that, in the dif-
ferent periods, the coefficient is not that large, although this might be influenced by
the low number of observations in each window. Unrelated Inventors is supposed
to recombine successfully knowledge in the era of ferment. The results indicate that
especially in the early years this is the case, although later on, the significance of the
coefficient vanishes. Contrary, the TLC regression finds no significant coefficient in
the era of ferment at all, neglecting an influence in the early years of this phase.

Overall, the rolling-window regression provide further insights into the dynam-
ics of knowledge recombination. In both technologies we see shifts of relevance
of different inventor types over time. For WP, we can observe that New Inventors
and Specialized Inventors become relevant, New Inventors even much earlier than
expected. In line with the model, but only partially significant in the era of ferment
are Related Inventors and Unrelated Inventors. Contrary to the expectation, Related
Inventors has a negative coefficient in some periods of the dominant design. In PV,
the results are in general not that pronounced, but partially in line with the model.
New Inventors plays basically no role, as expected, and Specialized Inventors has a
significant coefficient only while the dominant design emerges. Related Inventors
should have had an influence along the whole observation period, but shows only
a significant coefficient in some periods. Unrelated Inventors shows as expected an
influence early on, but not during the whole era of ferment. The results of the rolling-
window regression mirror pretty much the results of the TLC phases in WP, while
in PV there are some differences which show up in the era of ferment and are not
captured by the TLC regressions.

4.4 Robustness

Several robustness test are performed concerning the distinction of inventors, pos-
sible team effects and the rolling-window regression length. The distinction of the
inventors into Related Inventors and Unrelated Inventors is based on the presence of
the IPCs in the knowledge base of the technology. This criterion changes over time
as the knowledge base grows. A robustness test is done to see if this distinction and
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the change of classification criteria influences the overall results. The assignment of
inventors to the two groups is in the following exogenously imposed using technology
fields based on an extended version of the OST-INPI/FhG-ISI technology nomen-
clature classification (OECD 1994; Schmoch 2008). This classification contains five
main technological fields and 35 subgroups. The subgroups provide the possibility
to assign the inventor type according to the general field of previous application. To
distinguish between Related Inventors and Unrelated Inventors, inventors who pos-
sess experience in the technological field “electrical machinery, apparatus, energy”
for both technologies, and “engines, pumps, turbines” for WP and “semiconductors”
for PV are assigned to be Related Inventors. These fields cover the underlying prin-
ciples of the technologies and most IPCs of the WP and PV patents are assigned to
these fields. If inventors do not have experience in these fields, they are supposed to
be Unrelated Inventors.

Table 10 shows the results for WP and PV for model 4 and the TLC phases. For
WP, we see in model 4 that Unrelated Inventors is no longer significant. In the first
phase of the TLC, the coefficient of Unrelated Inventors becomes slightly larger,
but New Inventors is no longer significant. In the second phase, the coefficient for
Unrelated Inventors becomes significant, however, with a negative coefficient. In the
last phase, no changes occur. In PV, Model 4a shows basically no differences, while
in the era of ferment Specialized Inventors loses its weak significance. In the second
phase, no changes occur. In general the results show that there is some sensitivity
towards the distinction between Related Inventors and Unrelated Inventors, but the
effects are only marginal and do not affect the overall pattern.

While the results show that different kinds of inventors are relevant for successful
knowledge recombination along the TLC, inventive activity is increasingly conducted
in teams (Wuchty et al. 2007). While the general trend of increasing team size over
time is captured by the year dummies, the team composition is not accounted for. The
effect of team composition and heterogeneous teams on knowledge recombination
and creativity is an increasing stream of literature (Singh and Fleming 2010; Uzzi
et al. 2013; Lee et al. 2015). To account for possible effects of team composition,
interactions between the different kinds of inventors are estimated.

The results of the interaction of different inventors are presented in Table 11. In
general, the average team size is rather low, with 1.4 for WP and 2.1 in PV and
heterogeneous teams are a rare event, as shown in Table 9 in the Appendix. For
WP, accounting for different interactions does not change the results in model 4, but
increases the coefficients. The interactions are mostly negative and significant, indi-
cating that knowledge recombination in heterogeneous teams does not increase the
invention’s usefulness in general. In the era of ferment, the results do not change,
but the interaction between Related Inventors and Unrelated Inventors is positive and
significant, indicating that in this phase combining knowledge from different fields
external to the technology influences recombinatorial success. The phase in which
the dominant design emerges shows deviating results. New Inventors and Specialized
Inventors are no longer significant and Related Inventors is negative and significant.
The interaction terms, however, show that again Related Inventors and Unrelated
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Inventors but also Specialized Inventors and Related Inventors are positive and sig-
nificant. In this phase, the team composition really seem to matter and influence the
emergence of the dominant design. However, the number of team compositions is
very low. For example, the very large and negative coefficient of Specialized Inven-
tors and Unrelated Inventors is striking, but this team composition occurs only three
times. The era of incremental change shows again no deviation and the interactions
are mostly negative and significant.

In the case of PV, there are differences in model 4a. Here, New Inventors and
Unrelated Inventors become significant as well. Concerning the interactions, there
is a negative, significant coefficient of the combination of New Inventors and Unre-
lated Inventors. This indicates that their joint inventive activity produces less valuable
patents as if they invent on their own. Specialized Inventors and Related Inventors
keep their positive and significant coefficients. In the era of ferment, we observe that
Specialized Inventors and Related Inventors are no longer significant, but Unrelated
Inventors becomes significant. However, none of the interactions is significant. This
result is quite puzzling. In the emergence of the dominant design, there are no devia-
tions from the initial model. Here, also the interaction New Inventors and Unrelated
Inventors has a negative coefficient.

Overall, the general results seem to be robust towards the inventor interaction and
the effect of heterogeneous teams matter in WP for the emergence of the dominant
design and in PV for the era of ferment. In most cases, heterogeneous teams exhibit
a negative influence, which is contrary to the previous findings of this stream of lit-
erature. Especially in PV, controlling for team composition reveals effects for New
Inventors and Unrelated Inventors in the full model. Nevertheless, the measurement
of team composition is rather crude, since inventor types are counted and larger teams
have an overproportional influence. Interestingly, there are some hints that the influ-
ence of team composition changes along with the TLC, but a more detailed analysis
is left for further research.

The rolling-window regression provided interesting insights about the dynamics
inside the TLC phases. However, the effects might be dependent on the length of the
time window. Shorter time periods should increase the volatility, since the number
of observations is decreased and opposing effects might not be averaged out. Longer
time windows will increase the model fit and outlier effects are not that pronounced.
To illustrate and analyze the sensitivity of the previously applied eight-year window,
a five-year as well as an eleven-year window are estimated to capture more short term
as well as long term patterns. The results are presented in Appendix A.5.

As expected, with a shorter time window the results are more volatile and not as
often significant as in the eight-year case. Here, the lower number of observations
per regression is a problem and the first five periods are omitted because they cannot
be reliably estimated. The overall pattern, however, stays in both technologies the
same. In the eleven-year case the volatility of the coefficients is smaller and also the
confidence intervals are smaller. However, the overall results converge and smaller
changes are not that frequent anymore. In general, the results stay by and large the
same as in the eight-year case.
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5 Discussion and conclusion

The aim of the paper is to understand how recombination of different kinds of knowl-
edge changes along the technology life cycle. For this purpose, the Anderson and
Tushman (1990) model is extended to integrate different kinds of knowledge in
the technology life cycle (TLC) phases. The proposed model extension is empiri-
cally tested for the TLC of wind power (WP) and photovoltaics (PV) in Germany.
Different kinds of knowledge are proxied by inventors’ patenting experience. This
experience can be absent in the case of new inventors, specialized in the technology
or earned by inventive activity in related or unrelated fields. Overall, the results indi-
cate that different kinds of knowledge matter along the TLC and are mostly in line
with the theoretical model. While it has been proposed that the utilization of knowl-
edge changes from exploration towards exploitation over time (March 1991; Klepper
1996), the results presented here reveal a more detailed picture of the utilization of
different sources of knowledge along the TLC. The different phases of the TLC are
characterized by specific knowledge and even inside the phases, relevant sources of
knowledge change, providing a more detailed picture compared to previous empirical
findings (Krafft et al. 2011, 2014a). The results help to better understand the pro-
cess of knowledge recombination, technological development and provides relevant
insides for policy and management.

Summarizing the results reveals technological differences in the relevance of
knowledge for technological advancement, but the general expected shift of different
sources of knowledge over time is evident. For the overall technological development
from 1970 until 2006 specialized knowledge is relevant in both technologies. While
WP is also influenced by new and unrelated knowledge, PV benefits from related
knowledge, indicating first technological differences. Concerning the TLC phases, in
the era of ferment, WP benefits from unrelated knowledge as expected, while related
knowledge does not play a role. In PV it is the opposite: related knowledge is relevant,
but not unrelated knowledge. While PV uses the same material as the semiconductor
technologies, which explains the strong influence of related knowledge, WP seems
not to have such an adjacent technology from which it can benefit, but relies on
unrelated knowledge from other fields instead. Furthermore, both technologies ben-
efit from new knowledge and PV also from specialized knowledge, indicating that
a diverse set of knowledge is required for technological development in the era of
ferment. The emergence of the dominant design is as expected highly influenced by
specialized knowledge in both technologies. However, related knowledge, as pro-
posed in the model, does not matter for either technology. In WP, also new knowledge
is of importance. The era of incremental change can only be observed in WP and is as
proposed highly influenced by new and specialized knowledge. Furthermore, related
knowledge contributes to some extend, maybe paving the way towards a discontinu-
ity in offshore WP. The results are overall robust to an alternative distinction between
related and unrelated knowledge, as well as controlling for team composition.

The rolling-window regressions depict the influence of different sources of knowl-
edge in a continuous way and results are not bound to the pre-defined phases of
the TLC. In general, the relevance of different kinds of knowledge varies over time
similar to the TLC phases but relevant differences are revealed. In WP, the earliest
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windows show that no specific kind of knowledge seems to matter, but this could
be attributed to the rather small sample size in the early periods. In the beginning of
the 1980s, related and unrelated knowledge have an effect in some windows, which
is in line with the theoretical proposition. However, not noticed in the TLC regres-
sion, related knowledge has a negative effect in some later periods. New knowledge
becomes relevant from the 1990s onwards and some years later specialized knowl-
edge as well. In PV, new knowledge hardly matters for technological development.
Specialized knowledge is especially relevant towards the end of the observation
period and an increasing trend is observable. Related and unrelated knowledge is
relevant in some periods in the era of ferment, but the magnitude is smaller than sug-
gested in the normal regressions. Since the effects of different kinds of knowledge
vary over time and are not always in line with an imposed distinction of TLC-phases,
using rolling-window regression to determine the TLC phase of a technology can be
used as new way to characterize technological development in a continuous way.

While the relevance of the different types of knowledge in the phases in most
cases is in line with the proposed model extension, notable deviations exist. Some
deviations can be attributed to the nature of the technology, for example, the presence
of a large sector of related knowledge in the case of PV and the absence of such
a sector in WP, which seem to drive the results in the era of ferment. However, in
the phase of the dominant design, in both technologies related knowledge does not
play a role. The model could be adapted to incorporate this and remove the expected
relationship. The results also show that new knowledge is relevant, especially in the
early phase and the constant inflow of fresh inventors seems relevant to extends the
knowledge base.

Overall, the findings help to better understand the development of both technolo-
gies. As shown previously, WP and PV show different patterns in their development
(e.g. Cantner et al. 2016; Huenteler et al. 2016a). This holds also for knowledge
recombination. Especially in WP it is evident that various kinds of knowledge are
recombined to generate useful inventions. In line with qualitative evidence (Bergek
and Jacobsson 2003; Fornahl et al. 2012; Simmie et al. 2014), external knowledge
and competencies refresh the knowledge base and the technology continuously over
time. In PV, knowledge accumulation is the main diving force and specialization of
the technology seems to be key for successful inventive activity. Since PV became
a mass-market product over time, technological advancement is rather incremental
(Huenteler et al. 2016b), where this specialized knowledge is of particular impor-
tance. However, in PV, different sub-trajectories with respect to the cell technology
are present and they develop simultaneously, but have partly different areas of appli-
cation. They have their own life cycle, as previously shown by Lizin et al. (2013) for
organic PV cells. In WP, such different technological concepts are not present, but, as
shown by Huenteler et al. (2016a), the design hierarchy matters and the focus on dif-
ferent components changes over time. For both technologies, additional research is
necessary to provide further insights how knowledge is relevant for technical progress
in different sub-trajectories or components.

From a theoretical perspective, integrating a knowledge dimension in the Ander-
son and Tushman (1990) model joins the TLC concept with research on knowledge
recombination and with research concerning inventor’s personal characteristics. The
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proposed framework proved useful to analyze knowledge dynamics and has impli-
cations for further research. First, the paper provides a theoretical foundation and
empirical evidence for a more profound understanding of the relevance of knowl-
edge along the TLC and that recombinatorial patterns change over time. Previously,
these dynamics had not been considered, but different kinds of knowledge seem to
be decisive for recombinatorial success and technological development in the TLC
phases. Second, the results show that the technology’s knowledge base is shaped over
time by different kinds of knowledge. Knowledge accumulation and refreshing the
knowledge base with knowledge from outside the technology’s knowledge domain
are necessary, but conditioned on the TLC phase. This provides some implications for
studies of industrial dynamics. The dynamics in an industry’s underlying technology
allow us to infer towards the life cycle of the industry as well, since here actors trans-
form the knowledge into products and eventually in market shares. This knowledge
is, however, generated by a diverse set of actors, such as research institutes, universi-
ties, users, tinkerers and knowledge is not bound to the firm. Integrating the overall
TLC in studies on industrial dynamics helps us to understand how technologies and
the related industry and its firms evolve. Third, the personal characteristics of inven-
tors seems to be relevant for knowledge recombination. This dimension was absent in
previous studies of knowledge recombination and the actual persons involved in the
recombinatorial process needs further research. Fourth, the chosen technologies pro-
vide new cases besides the commonly used biotechnology and ICT studies considered
for knowledge recombination. Using WP and PV, it is demonstrated that the suc-
cess of recombination is technology dependent and expanding the set of considered
technologies enhances the general understanding of recombinatorial processes.

From a methodological point of view, using rolling-window regressions provide
an interesting approach to track dynamics over time and should be included in the
toolbox for research on dynamics in the economics of innovation. Furthermore, the
use of inventor’s previous patents to reason about the embodied knowledge and expe-
rience seems to provide interesting possibilities to observe aggregated phenomena
but also individual inventive biographies. However, here manual data cleaning was
necessary and applying it to larger scale studies requires higher data quality. Never-
theless, this approach has several advantages compared to surveys, which are limited
in size and time period and reachability of inventors.

The results lead to several policy and managerial implications. First, different
kinds of knowledge are relevant in different phases of technological development.
These changing requirements need to be considered in instrument and funding deci-
sions by policy maker. While the effect of different types of policy instruments has
been studied previously (Mowery and Rosenberg 1979; Peters et al. 2012; Cantner
et al. 2016; Rogge and Reichardt 2016), the effect of instruments in specific phases
of the TLC needs to be on the policy maker’s agenda as well. If policy aims to support
R&D of a technology in the era of ferment, funding should be granted to actors from
diverse fields, and while increasing the efficiency along the established trajectory,
specialized actors should be in the focus. The same principle holds for firms and their
decision whom to hire for inventive activity. Second, technological development is
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not a uniform process across technologies but different kinds of knowledge are rele-
vant for each technology. The technology inherent differences need to be considered,
which is a difficult task for policy making.

The analysis faces certain shortcomings and limitations that leave room for further
research. First, the proposed framework has been only applied to two technologies
in Germany. Here, further technologies and broader geographical coverage are nec-
essary. Also, not all phases of the TLC could be analyzed due to the technologies’
nature. Especially in PV, only two phases are covered by the analysis. Testing this
model with other technologies, especially with ones that faced a discontinuity, would
improve its reliability. The framework can also be refined and extended to capture
other dimensions of knowledge, such as tacit components or search behavior. Second,
there are several areas that could not be explored in more detail, such as the team com-
position, which seems to matter partly, and changes along the TLC. Sub-trajectories
play a role in the TLC and a more detailed analysis could provide further insights
on technological development. Third, the analysis relies on patent data, which has
several limitations. Among them is the use of IPCs as a rough proxy of related and
unrelated knowledge, which can be quite ambiguous. Also, not all inventions are
patented and the knowledge base and its dynamics are not fully captured. To comple-
ment the understanding of knowledge recombination along the TLC, other sources
such as publication data, related product characteristics or interviews with inventors
can be considered to overcome limitations of patent data. Lastly, there are several
sources of endogeneity that need to be addressed in further research. Especially the
fact that the decision to engage in inventive activity is conditioned on the life cycle
(for example, costs, market size, policy support, ...) and can influence the results. The
development of the technology and the knowledge it requires co-evolves and imposes
challenges on the econometric approach.
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A Appendix

A.1 Patent selection approach

The WP and PV patents were queried from Patstat (EPO 2014) by combining
IPCs and keywords. Title and abstract of the patent documents are searched for the
keywords, while restricted to the specific IPCs. The selection criteria for WP is based
on the suggestions from the WIPO Green Inventory and own elaboration. For PV, a
detailed elaboration on keywords and IPCs is provided in Kalthaus (2019). The “ ”
and the “%” symbol are used as wildcards for single and multiple characters. “|” an
“+” are logic operators for “or” and “and” combinations of keywords. The SQL code
for the search strategy is available on request.

Table 4 List of IPC and keywords for patent selection

Tech. Sub-trajectory IPCs Keyword combination

WP F03D%

H02K 7/18 (%wind% + (%turbine% | %power% | %mill% | %energ%))

B63B 35/00

E04H 12/00

PV Silicon wafer cells H01L 21% ((%monocrystalline silicon% | %monocrystal silicon% |
%crystal silicon% |

H01L 31% %silicon crystal% | %silicon wafer% ) + (%photovoltai% |
%solar% ))

C30B 15% | %back surface passivation% | (%pyramid% + %etching% +
%silicon% )

C01B 33% ((%polycrystalline silicon% | %multicrystalline silicon% |
%poly si% | %polysilicon%)

C30B 15% + (%photovoltai% | %solar% )) | (%ribbon% + (%photo-
voltai% | %solar% | %silicon% ))

C30B 29% | (%edge defined film fed growth% + %silicon%) |
%metal wrap through% |

H01L 21% %emitter wrap through% | %ribbon growth%

H01L 31%

Thin-film cells C23C 14% ((%chemical vapour deposition% | %PECVD% | %physi-
cal vapour deposition% | %PVD% |

C23C 16% %solid phase crystallization% | %laser crystallization% |
%nanocrystalline% | %microcrystalline%)

H01L 21% + (%photovoltai% | %solar% | %silicon% )) | ((%tandem% |
%amorphous silicon% |

H01L 27% %silicon substrate% | %silicon film%) + (%photovoltai% |
%solar%)) | %staebler wronski%

H01L 29%

H01L 31%

C23C 14% ((%cadmium Telluride% | %CdTe% | %cop-
per indium diselenide% | %CIS% |%CuInSe%|

C23C 16% %indium tin oxide% | %gallium arsenide% | %GaAs% |
%roll to roll% | %surface textur% |
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Table 4 (continued)

Tech. Sub-trajectory IPCs Keyword combination

H01L 21% %thin film% | %thinfilm%) + (%photovoltai% | %solar%)) |
%Copper indium gallium diselenide% |

H01L 25% %CuInGeSe% | %CIGS% | %copper zinc tin sulfide% |
%CZTS% | %kesterite%

H01L 27%

H01L 29%

H01L 31%

Emerging cells C08K 3% ((%dye sensiti% | %titanium oxide% | %titanium dioxide% |
%TiO2% | %organic% | %polymer%)

C08G 61% + (%photovoltai% | %solar)) | %gr tzel% | %graetzel% |
%hybrid solar cell%

H01B 1%

H01G 9%

H01L 21%

H01L 31%

H01L 51%

H01M 14%

H01G 9% ((%quantum dot% | %perovskite% | %organic inorganic% |
%plasmon% | %nanowire% |

H01L 31% %nanoparticle% | %nanotube%)) + (%photovoltai% |
%solar))

H01L 51%

H01M 14%

PV modules H01L 21% ((%anti reflection% | %encapsulat% | %back contact% |
%buried contact% | %bypass diode% |

H01L 25% %rear surface protection% | %back sheet% | %build-
ing integrat% | %mounting system%)

H01L 27% + (%photovoltai% | %solar)) | %solar panel% | %photo-
voltaic panel% | %solar modul% |

H01L 31% %solar cell modul% | %photovoltaic modul% |
%solar cable% | %photovoltaic wire% | %solar array% |

H01R 13% %photovoltaic array% | %BIPV% | %solar park% | (%space-
craft% + (%photovoltai% | %solar cell%))

H02N 6%

H02S 20%

H02S 30%

B64G 1%

E04D 13%

Other B64G 1% (%photovoltai% | %solar cell%)

C01B 33%

C08K 3%
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Table 4 (continued)

Tech. Sub-trajectory IPCs Keyword combination

C08G 61%

C23C 14%

C23C 16%

C30B 29%

C30B 15%

E04D 13%

F21S 9%

G05F 1%

H01B 1%

H01G 9%

H01L 21%

H01L 25%

H01L 27%

H01L 29%

H01L 31%

H01L 51%

H01M 10%

H01M 14%

H01R 13%

H02J 7%

H02M 7%

H02N 6%

H02S 99%

H02S 20%

H02S 30%

A.2 Decriptives

Table 5 Descriptive statistics for wind power and photovoltaics

Tech. Min Median Mean Max SD

Forward Citation WP 0 1 2,628 103 6,202

PV 0 1 2,723 41 4,008

New Inventors WP 0 0 0,546 6 0,753

PV 0 1 0,820 10 1,053

Specialized Inventors WP 0 0 0,208 4 0,475

PV 0 0 0,260 4 0,574

Related Inventors WP 0 0 0,362 6 0,633
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Table 5 (continued)

Tech. Min Median Mean Max SD

PV 0 1 0,808 8 1,052

Unrelated Inventors WP 0 0 0,221 4 0,454

PV 0 0 0,136 3 0,379

Team Size WP 1 1 1,384 8 0,886

PV 1 2 2,132 13 1,465

Experienced Inventors WP 0 1 0,791 7 0,776

PV 0 1 1,205 8 1,129

Knowledgeable Inventors WP 0 0 0,583 7 0,715

PV 0 1 0,944 8 1,075

Foreign Inventors WP 0 0 0,047 7 0,405

PV 0 0 0,108 5 0,477

Number of IPCs WP 1 2 2,042 10 1,343

PV 1 2 2,381 10 1,414

Backward Citations WP 0 2 3,236 171 7,307

PV 0 3 4,263 154 6,388

New Combination WP 0 0 0,148 1 0,355

PV 0 0 0,225 1 0,418

Family Size WP 1 1 3,033 35 4,682

PV 1 1 2,957 31 3,059

PCT Patent WP 0 0 0,011 1 0,102

PV 0 0 0,008 1 0,091

Granted Patent WP 0 0 0,290 1 0,454

PV 0 0 0,357 1 0,479

USPTO WP 0 0 0,027 1 0,161

PV 0 0 0,018 1 0,132

PV Modules PV 0 0 0,215 1 0,411

Silicon Wafer Cells PV 0 0 0,021 1 0,142

Thin-Film Cells PV 0 0 0,100 1 0,300

Emerging Cells PV 0 0 0,054 1 0,227

A.3 Correlations

A.4 Inventor Types

In this section, detailed information about the number of the different kinds of inven-
tors, their patents and team composition are presented. Table 8 shows the number
of different types of inventors. These numbers do not sum up to the total number
of inventors, since the inventor type can change over time, for example, if a New
Inventor continues his inventive activity and becomes a Specialized Inventor.
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Table 7 Correlations for photovoltaics

1 2 3 4 5 6 7

1 Forward Citation —

2 New Inventors −0.005 —

3 Specialized Inventors 0.071 −0.046 —

4 Related Inventors 0.145 −0.158 −0.156 —

5 Unrelated Inventors 0.011 −0.048 −0.051 −0.119 —

6 Team Size 0.165 0.566 0.235 0.520 0.101 —

7 Experienced Inventors 0.175 −0.187 0.346 0.812 0.199 0.638 —

8 Knowledgeable Inventors 0.146 −0.172 −0.171 0.937 0.236 0.545 0.865

9 Foreign Inventors 0.105 −0.026 0.004 0.025 −0.055 0.312 0.006

10 Number of IPCs 0.083 0.018 −0.097 0.081 0.015 0.036 0.030

11 Backward Citations 0.076 0.015 0.058 −0.048 −0.022 0.017 −0.022

12 New Combination −0.015 0.021 −0.069 −0.001 0.075 0.004 −0.011

13 Family Size 0.378 0.041 0.088 0.180 −0.014 0.227 0.208

14 PCT Patent 0.011 −0.022 0.061 −0.033 0.002 −0.008 0.001

15 Granted Patent 0.051 0.064 0.047 −0.003 −0.023 0.079 0.014

16 USPTO 0.122 −0.024 0.025 −0.031 −0.048 0.077 −0.032

17 PV Modules −0.052 −0.060 −0.012 −0.097 −0.055 −0.151 −0.115

18 Silicon Wafer Cells −0.056 −0.007 0.064 0.105 −0.019 0.095 0.125

19 Thin-Film Cells −0.052 0.021 0.076 0.036 0.021 0.086 0.079

20 Emerging Cells 0.048 0.076 −0.032 0.163 −0.059 0.160 0.116

Table 7 (continued)

8 9 10 11 12 13 14 15 16 17 18 19 20

—

0.005 —

0.084 −0.001 —

−0.054 0.070 −0.005 —

0.025 −0.006 0.532 −0.010 —

0.171 0.115 0.124 0.042 0.056 —

−0.032 0.020 −0.029 0.025 −0.049 −0.009 —

−0.011 0.070 0.044 0.248 0.041 0.105 −0.068 —

−0.047 0.364 −0.046 0.265 −0.008 −0.020 −0.012 0.105 —

−0.115 −0.058 −0.038 0.041 −0.117 −0.158 0.000 0.015 −0.038 —

0.096 0.011 −0.024 −0.016 −0.029 −0.014 0.078 −0.030 −0.020 −0.076 —

0.043 0.028 −0.069 0.049 −0.048 −0.055 −0.030 0.101 0.149 −0.059 0.021 —

0.139 0.050 0.105 −0.036 0.052 0.028 0.036 −0.081 0.027 −0.024 −0.017 −0.019 —

Figure 7 displays the number of patents each inventor possesses in the technolo-
gies. The very skewed distribution is common for patent data (Menon 2011) and
scientific output in general (Lotka 1926). It is not possible to infer from the number
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Table 8 Number of inventors
Wind power Photovoltaics

New Inventors 1083 1387

Specialized Inventors 413 440

Related Inventors 596 920

Unrelated Inventors 560 677

of patents to the type of inventor. Related Inventors and Unrelated Inventors can have
only one patent or inventors who start and continue their inventive activity have more
than one patent. Remarkably is the WP inventor with 127 patents. This inventor is
the founder of a major German wind turbine manufacturer.19
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Fig. 7 Number of wind power and photovoltaics patents each inventor possess

Table 9 shows the team composition frequency in WP and PV. It shows how often
a specific combination of inventors occurs together on the same patent. The diagonal
elements indicates cases, where only one or multiple inventors with the same kind
of knowledge are inventors of the patent. Off-diagonal values count the frequency of
the specific team composition on a patent. Teams with more than two different kinds
of inventors are neglected but hardly present. The data shows that WP has hardly any
heterogeneous teams and most patents are filed by one or multiple inventor of the
same type. In both technologies, teams comprising New and Related as well as New
and Specialized Inventors are the most frequent.

A.5 Robustness tests

19Reestimating the WP models without patents from this inventor does not change the results. To account
for frequent inventors in general, a dummy variable is created for patents with an inventor who has ten or
more patents in the respective technology. The overall results did not change if for such frequent inventors
is controlled. Results are available on request.
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Fig. 8 Five year long rolling-window regression results for wind power and photovoltaics
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Fig. 9 Eleven year long rolling-window regression results for wind power and photovoltaics
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Bruns E, Ohlhorst D, Wenzel B, Köppel J (2009) Erneuerbare energien in deutschland - eine biographie
des innovationsgeschehens. Technical report, Endbericht zum Forschungsvorhaben ”Innovationsbi-
ographie der erneuerbaren Energien” des Bundesumweltministeriums, FKZ 0327607

Bruns E, Ohlhorst D (2011) Wind power generation in Germany – a transdisciplinary view on the
innovation biography. J Transdiscipl Environ Stud 11(1):45–67

Cameron AC, Trivedi PK (1986) Econometric models based on count data. comparisons and applications
of some estimators and tests. J Appl Econom 1(1):29–53

Knowledge recombination along the technology life cycle 699



Cantner U, Meder A, ter Wal ALJ (2010) Innovator networks and regional knowledge base. Technovation
30(9-10):496–507

Cantner U, Graf H, Herrmann J, Kalthaus M (2016) Inventor networks in renewable energies: The
influence of the policy mix in germany. Res Policy 45(6):1165–1184

Carnabuci G, Operti E (2013) Where do firms’ recombinant capabilities come from? intraorganiza-
tional networks, knowledge, and firms’ ability to innovate through technological recombination. Strat
Manag J 34(13):1591–1613

Carpenter MP, Narin F, Woolf P (1981) Citation rates to technologically important patents. World Patent
Inf 3(4):160–163

Cetindamar D, Phaal R, Probert D (2016) Technology Management: Activities and Tools, 2nd edn.
Palgrave Macmillan

Chang S-H, Fan C-Y (2016) Identification of the technology life cycle of telematics a patent-based
analytical perspective. Technol Forecast Soc Chang 105:1–10

Chapin DM, Fuller CS, Pearson GL (1954) A New Silicon p-n Junction Photocell for Con-
verting Solar Radiation into Electrical Power. Journal of Applied Physics 25(5):676–677.
https://doi.org/10.1063/1.1721711

Cohen WM, Nelson RR, Walsh JP (2000) Protecting their intellectual assets: Appropriability condi-
tions and why u.s. manufacturing firms patent (or not). Working Paper W7552, National Bureau of
Economic Research

Colombelli A, Krafft J, Quatraro F (2013) Properties of knowledge base and firm survival: Evidence from
a sample of french manufacturing firms. Technol Forecast Soc Chang 80(8):1469–1483

Conti R, Gambardella A, Mariani M (2014) Learning to be edison: inventors, organizations, and
breakthrough inventions. Organ Sci 25(3):833–849

Cowan R, Jonard N, Zimmermann J-B (2007) Bilateral collaboration and the emergence of innovation
networks. Manag Sci 53(7):1051–1067

Czarnitzki D, Hussinger K, Schneider C (2011) ”wacky” patents meet economic indicators. Econ Lett
113(2):131–134

Davies A (1997) The life cycle of a complex product system. Int J Innov Manag 1(3):229–256
Dernis H, Khan M (2004) Triadic patent families methodology. Technical report, OECD Science.

Technology and Industry Working Papers 2004/02
Dibiaggio L, Nasiriyar M, Nesta L (2014) Substitutability and complementarity of technological knowl-

edge and the inventive performance of semiconductor companies. Res Policy 43(9):1582–1593
Dokko G, Nigam A, Rosenkopf L (2012) Keeping steady as she goes: a negotiated order perspective on

technological evolution. Organ Stud 33(5-6):681–703
Dosi G (1982) Technological paradigms and technological trajectories: a suggested interpretation of the

determinants and directions of technical change. Res Policy 11(3):147–162
Dosi G, Nelson RR (2010) Technical change and industrial dynamics as evolutionary processes. In: Hall

BH, Rosenberg N (eds) volume 1 of Handbook of the Economics of Innovation, chapter 3, vol 1,
North-Holland, pp 51–127

Dosi G, Nelson RR (2013) The evolution of technologies: an assessment of the state-of-the-art. Eurasian
Bus Rev 3(1):3–46

EPO (2014) Worldwide patent statistical database (patstat), april 2014 edition. Technical report, European
Patent Office

Fama EF, MacBeth JD (1973) Risk, return, and equilibrium: Empirical tests. J Polit Econ 81(3):607–636
Fleming L (2001) Recombinant uncertainty in technological search. Manag Sci 47(1):117–132
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Jacobsson S, Sandén BA, Bȧngens L (2004) Transforming the energy system–the evolution of the german
technological system for solar cells. Technol Anal Strat Manag 16(1):3–30

Jaffe AB, de Rassenfosse G (2017) Patent citation data in social science research: Overview and best
practices. J Assoc Inf Sci Technol 68(6):1360–1374
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