
Journal of Geodesy           (2024) 98:40 
https://doi.org/10.1007/s00190-024-01851-4

ORIG INAL ART ICLE

Bias-constrained integer least squares estimation: distributional
properties and applications in GNSS ambiguity resolution

A. Khodabandeh1 · P. J. G. Teunissen1,2,3

Received: 20 February 2024 / Accepted: 19 April 2024
© The Author(s) 2024

Abstract
To accommodate the presence of bounded biases in mixed-integer models, Khodabandeh (2022) extended integer estimation
theory by introducing a new admissible integer estimator. The estimator follows the principle of integer least squares estimation
and is computed via the integer search method of BEAT. In this contribution, we present the probability distributions of a class
of estimators to which the proposed bias-constrained integer least squares estimation belongs. Some important interferometric
measuring systems, whose estimation problems can be covered by BEAT, are identified. To show the proposed estimator at
work, we applyBEAT to the problem ofGLONASS single-differenced (SD) ambiguity resolution. Numerical results of several
short-baseline datasets are presented to illustrate why one can achieve more accurate positioning solutions when considering
between-receiver SD ambiguity resolution for the cases where carrier phase data are captured on frequency-varying signals
with bounded SD receiver phase delays.

Keywords Global navigation satellite systems (GNSS) · Integer ambiguity resolution (IAR) · Integer least squares (ILS) ·
Bias-bounded estimation of ambiguity (BEAT)

1 Introduction

Integer ambiguity resolution (IAR) is the process of find-
ing the ambiguous cycles of carrier phase measurements as
integers. It has found a widespread usage in GNSS (Teunis-
sen 1993; de Jonge and Tiberius 1996; Han 1997; Hassibi
and Boyd 1998) and has been applied to several other high-
precision interferometric measurement systems (Hanssen
2001; Maróti et al. 2005; Viegas and Cunha 2007; Hobiger
et al. 2009; Wang et al. 2015; Zaminpardaz 2016). Provided
that IAR is successfully conducted, the ambiguity-resolved
phasemeasurements can deliver ultra precise parameter solu-
tions and, in the case of GNSS, offer instantaneous precise
positioning, navigation, and Earth atmospheric-sensing ser-
vices, see (Gunther andHenkel 2012; Li et al. 2014; Banville
2016; Khodabandeh and Teunissen 2016; Brack et al. 2021).
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Successful IAR often relies on the provision of ‘auxil-
iary’ data such as GNSS code measurements and/or external
pseudo-observations so as to ensure ‘unbiased’ estimation of
the integer ambiguities, bypassing their linear dependency
with the remaining parameters that are involved in the phase
observation equations.When such extra sources are absent or
when the quality description of the data is not properly spec-
ified, the phase ambiguities experience non-integer biases,
seriously deteriorating the underlying parameter estimation
process (Teunissen 2001). To accommodate the presence of
such unaccounted ambiguity biases, Khodabandeh (2022)
developed a new integer estimator that incorporates the prior
knowledge of a bounded set, in which the bias resides, into
the estimation process. The estimator follows the principle
of integer least squares estimation and its search method is
coined as the method of ‘Bias-bounded Estimation of Ambi-
guiTy’ (BEAT). The goal of this contribution is to present
the probability distributions of a class of estimators to which
the proposed bias-constrained integer least squares estima-
tion belongs, and illustrate its BEAT at work. We present a
formal proof stating that the estimator delivers a bias solu-
tion that has, on average, the smallest inconsistency with its
underlying model as compared to other members of the class
of admissible integer estimators.
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This contribution is organized as follows. In Sect. 2 we
first, by means of examples, provide an overview of some
important interferometric measuring systems whose estima-
tion problems canbe addressed by theBEATmethod.Despite
being employed for different applications, the observation
equations of these systems are thereby shown to be cast in
the form of a bias-bounded mixed-integer model. In Sect. 3,
we therefore address how the unknown parameters, involved
in suchmodel, can be estimated via integer estimation theory,
characterizing their associated class of estimators. The distri-
butional behaviour of these estimators is studied through their
respective probability density functions (PDFs), where the
input observables are assumed to be normally distributed. To
show the underlying search method, i.e. BEAT, at work, the
analytical results are supported by the problemofGLONASS
single-differenced (SD) ambiguity resolution in Sect. 4. Pro-
vided that the bound on the corresponding SD receiver phase
delays is correctly specified, SD IAR of several globally dis-
tributed short-baselines is shown to deliver more accurate
fixed positioning solutions than its existing partial IAR coun-
terpart. Finally, a summary with conclusions is provided in
Sect. 5.

We make use of the following notation: The expectation
operator is symbolized by E(·), while the symbol P(·) stands
for the probability of a random event. The notation ‘|’ is
used to indicate the ‘conditional’ nature of a random event.
Thus X |Y refers to random event X , given that event Y
has occurred. The m-dimensional spaces of real and inte-
ger numbers are denoted by R

m and Z
m , respectively. The

transpose of a matrix is indicated by the superscript T , i.e.
(·)T. The identity matrix of order n is denoted as In . The cap-
ital Q is reserved for variance (covariance) matrices. Thus
Qxy denotes the m × n covariance matrix of random vectors
y ∈ R

m and x ∈ R
n , while them×m variance matrix of y is

given by Qyy . The PDF of random vector y ∈ R
m is denoted

by fy(α), with α ∈ R
m being its argument. The notation

y ∼ Nm(μ, Qyy) means that the random vector y ∈ R
m fol-

lows an m-dimensional normal (Gaussian) distribution, with
mean μ and variance matrix Qyy . The notation || · ||Q is a
weighted norm whose weight matrix is given by the inverse
of the positive definite matrix Q. Thus ||x ||2Q = xTQ−1x ,
where x ∈ R

n . When Q = In , the weighted norm reduces
to the standard Euclidean norm || · ||. The notation det(·)
indicates the determinant of a square matrix.

2 Bias-boundedmixed-integer models

As our point of departure, consider the following mixed-
integer model

E(y) = A a + C c (1)

where the observable random vector y ∈ R
m is linked to

the unknown parameter vectors a ∈ Z
n and c ∈ R

k via
the known full-column rank design matrix [A,C]. Thus,
m ≥ n + k. A leading example of model (1) is the sys-
tem of GNSS network observation equations where the role
of y is taken by pseudo-range (code) and carrier phase mea-
surements. The integer-estimable phase ambiguities form the
integer vector a, while vector c is formed by the remain-
ing estimable parameters like network position coordinates,
satellite and receiver clock offsets, instrumental biases, and
atmospheric delays (Teunissen and Montenbruck 2017).

The mixed-integer model (1) is versatile and has been
employed, next to GNSS, in several other interferomet-
ric techniques such as Very Long Baseline Interferometry
(VLBI) (Hobiger et al. 2009), Interferometric Synthetic
Aperture Radar (InSAR) (Kampes and Hanssen 2004), and
underwater acoustic carrier phase positioning (Viegas and
Cunha 2007). As the examples below will show, however,
there are cases for which the model (1) becomes restric-
tive in the sense that it fails to account for the presence of
biases in the ambiguity vector a. In such cases, the ambi-
guity vector a may contain non-integer entries, i.e. a /∈ Z

n .
The deviation of a from an integer target vector z ∈ Z

n is
thus characterized by an unknown non-integer term. Let such
term be parameterized as B b, where b ∈ R

q denotes the bias
vector accompanied by the known full-column rank matrix
B ∈ R

n×q (n ≥ q). Accordingly, the revised version of (1)
reads

E(y) = A (z + B b
︸ ︷︷ ︸

a

) + C c (2)

The above model follows from (1) by replacing the vector a
with its bias-affected version a = z+Bb. Due to the inherent
rank-deficiency between z and b in a = z + Bb, one cannot
obtain a unique integer solution for the target vector z ∈
Z
n without imposing an extra constraint on the bias vector

b. Thanks to the robustness of integer ambiguity resolution
(IAR) against ‘not-too-large’ biases (Teunissen 2001;Li et al.
2014), one may augment the mixed-integer model (2) with
a known bounded subset B ⊂ R

q in which the bias vector
b resides. The nonempty set B is said to be ‘bounded’ if for
all ν ∈ B, there exist νo ∈ B and scalar h ≥ 0 such that
||ν − νo|| ≤ h. The augmentation of model (2) with the bias
constraint b ∈ B is referred to as the ‘bias-bounded mixed-
integer model’ (Khodabandeh 2022).

Before addressing how the three parameter vectors z ∈
Z
n , b ∈ B ⊂ R

q and c ∈ R
k are estimated, let us first briefly

review, by means of examples, some interferometric measur-
ing systems whose estimation problems can be covered by
the bias-bounded mixed-integer model (2).

Example 1 (Stacked radar interferometry) InSAR has found
awidespread usage inEarth deformationmonitoring and sub-
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sidence analysis, see e.g., (Hanssen 2001;Wu et al. 2023). As
electromagnetic phase sensory data form the basis of InSAR
measuring techniques, their parameter estimation relies on
the successful execution of ambiguity resolution. Let the
observation vector y contain yil j as the observed phase differ-
ences (expressed in cycles) between twopixels l and j that are
captured by m interferograms over epochs i (i = 1, . . . ,m)
relative to a reference epoch i = 0. The corresponding obser-
vation equation reads (Hanssen et al. 2001)

E(y) = z − 2τ

λ
[1, 2, . . . ,m]T b (3)

where τ is the time-interval between two successive inter-
ferograms, with the effective radar wavelength λ. Here, the
unknown deformation rate plays the role of the bias vector
b ∈ R

q , i.e. q = 1. The system of observation equations (3)
follows as a special case of (2) by recognizing that A = Im
(identity matrix), and B = − 2τ

λ
[1, 2, . . . ,m]T, while matrix

C is absent. The goal is to estimate the deformation rate b.
This would, however, not be realized with the sole use of (3).
This is because the model is not solvable for both z ∈ Z

m

and b. As a consequence, an extra pseudo-observation of the
deformation rate b is often considered to remove the rank-
deficiency between z and b. In the event that a proper quality
description of such pseudo-observation is not specified, the
information content in the phase observations y cannot be
fully exploited. Instead of introducing a pseudo-observation,
one may incorporate lower and upper bounds of the values,
that the deformation rate b can take on, into the model (Teu-
nissen 2006). For this case, the subset B is characterized as

B = {

ν ∈ R| νL ≤ ν ≤ νU

}

(4)

with νL and νU being the stated lower and upper bounds,
respectively. This subset is bounded because |ν − νo| ≤ h
with h = max(|νL − νo|, |νU − νo|) for all ν ∈ B. �

Example 2 (Ionospheric gradientmonitoring)TheEarth iono-
spheric disturbance is regarded as one of the main poten-
tial threats to aerospace navigation (Giorgi and Henkel
2015; Zaminpardaz et al. 2015; Yoshihara et al. 2019).
Ground-Based Augmentation Systems (GBAS) are there-
fore established within the premises of airports to detect
and monitor ionospheric spatial gradients, thereby support-
ing GNSS guidance during the landing phases of an aircraft.
To avoid code multipath and phase cycle-slips, single-epoch
carrier phase data of the GBAS antennas may be utilized.
The observation equations of such phase-only setup are given
as (Khanafseh et al. 2012)

E(y) = λ z + B b, with B =
[

e1 e2 . . . em
n1 n2 . . . nm

]T

(5)

where er and nr are, respectively, the local east and north
coordinates of the GBAS antenna r (r = 1, . . . ,m) relative
to the coordinates of a reference antenna r = 0. Here, the
GNSS double-differenced (DD) carrier phase data y ∈ R

m

are expressed in units of range, with the L-band wavelength
λ. The goal is to estimate the ionospheric spatial gradient
b ∈ R

2 (q = 2) on a local east-north horizontal plane, and
raise alarms in case themagnitudeofb exceeds certain thresh-
olds. As with (3), model (5) is rank-defect and follows as a
special case of (2) with A = λ Im , while matrix C is absent.
To deliver unique solutions for both z and b, bounds on the
magnitude of b need to be imposed. Although the magni-
tude of ionospheric spatial gradients occasionally exceeds
300mm/km, one may consider an ellipsoidal region of con-
servative size in which the vector b lies (Giorgi and Henkel
2015). Accordingly, the subset B is characterized as

B =
{

ν ∈ R
2| ||ν||2Q ≤ χ2

}

(6)

in which Q is a given positive definite matrix, with a known
positive scalarχ governing the size of the ellipse. The bound-
edness of subsetB follows from ||ν|| ≤ h with h = √

γmax χ

for all ν ∈ B, where γmax denotes the largest eigenvalue of
matrix Q. �

Example 3 (Interferometric wireless networks)While GNSS
users enjoy the support of code data with time-constant phase
ambiguities, the users of wireless sensor localization tech-
niques, like Radio Interferometric Positioning Systems, are
often left with phase data whose ambiguities are not constant
over time, see e.g., Maróti et al. (2005) and Khodabandeh
(2022). Broadcasting radio phase signals on several ‘dis-
tinct’ frequencies, a network of wireless sensors are aimed
to deliver high-precision positioning solutions. Their system
of observation equations reads (Maróti et al. 2005)

E(y) = z + B b, with B =
[

Iq ,
λ1

λ2
Iq , . . . ,

λ1

λ f
Iq

]T

(7)

where λ j is the wavelength on frequency j ( j = 1, . . . , f ).
The observation vector y ∈ R

m contains DD phase data
(expressed in cycles) that are collected by a pair of pivot and
rover receivers tracking q + 1 transmitters. Thus m = f q
( f : number of frequencies). The role of bias vector b ∈ R

q

is taken by the unknown DD ranges of the receivers and
transmitters. Thepositionof the rover receiver xr ∈ R

3 canbe
determined once the DD ranges are estimated. It is assumed
that the position vectors of the pivot receiver xp ∈ R

3 and
the transmitters xs ∈ R

3 (s = 1, . . . , q + 1) are known. If
the distance between the rover receiver and a certain location
xo ∈ R

3 is known to be not longer than a positive scalar
χ , i.e. ||xr − xo|| ≤ χ , the subset B can then be identified
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as (Khodabandeh 2022)

B=
{

ν ∈ R
q | ν= 1

λ1
DT
q+1 ρ(xr ), ||xr−xo|| ≤ χ, xr ∈ R

3
}

(8)

where the (q+1)×q between-transmitter differencingmatrix
is indicated by Dq+1. The entries of the (q+1)-vector ρ(xr )
are ||xr − xs ||− ||xp − xs || (s = 1, . . . , q + 1). The set
B is bounded because ||ν − νo|| < h for all ν ∈ B with
h = (q+1)(χ/λ1), where νo=(1/λ1)DT

q+1 ρ(xo). �

Example 4 (Bounded SD receiver phase delays) In the pre-
vious examples, the focus was confined to phase-only mea-
surement setups in which the parameter vector c of model
(2) is absent. We now consider the case where not only do
the unknowns c exist, but also code data support their phase
counterparts.Consider a short baseline of two receivers track-
ing n satellites where each satellite ‘s’ may broadcast signals
on a different frequency fs (s = 1, . . . , n). The term ‘short’
indicates that both the receivers experience almost the same
atmospheric delays in their measurements. The system of
between-receiver single-differenced (SD) observation equa-
tions, in its linearized form, is given as (Khodabandeh and
Teunissen 2023)

E(
[

φ

p

]

︸︷︷︸

y

) =
[

λo R−1

0

]

︸ ︷︷ ︸

A

(z + B b
︸ ︷︷ ︸

a

) +
[

G, en
G, en

]

︸ ︷︷ ︸

C

[

x1r
dt1r

]

︸ ︷︷ ︸

c

(9)

where φ ∈ R
n and p ∈ R

n denote the observed-minus-
computed SD phase and code measurements (m = 2n). It
is assumed that the n frequencies fs are multiples of a com-
mon base frequency fo, that is fs = rs fo, with known integer
ratios rs (s = 1, . . . , n) forming the n × n diagonal matrix
R = diag(r1, . . . , rn). Thus, matrix R reduces to the identity
matrix In for the CDMA case having identical frequencies
fs = fo (s = 1, . . . , n). The n × 3 matrix G contains the
n receiver-to-satellite line-of-sight unit vectors on its rows,
with en being the n-vector of ones. Here, the parameter vec-
tor c ∈ R

k contains the 3 × 1 baseline vector x1r , and the
estimable SD receiver clock offset dt1r that has absorbed
code biases. Thus k = 4. The SD receiver phase delay δ1r ,
that is scaled by the base wavelength λo, plays the role of
the bias vector b ∈ R

q , i.e. b = δ1r/λo (q = 1). The corre-
sponding B-matrix is given by B = R en . Note, in (9), that
only the integer ambiguity vector z ∈ Z

n and the bias b are
expressed in cycles. The remaining quantities are expressed
in units of range.

As with the previous examples, there is a rank-deficiency
between z and b. In contrast to the previous examples where
the bias vector b is the parameter of interest, here the bias
b is deemed to be a nuisance parameter. One can therefore

remove the stated rank-deficiency at the expense of lumping
a combination of the SD ambiguity vector z into the bias b. To
see this, we apply the integer-sweeping algorithm (Teunis-
sen 2019; Teunissen and Khodabandeh 2022) to the integer
matrix (n-vector) B = Ren . It is assumed that the great-
est common divisor of the integer ratios rs (s = 1, . . . , n)
is one. Otherwise, these ratios are down-scaled by being
divided by their greatest common divisor. Under this con-
dition, the integer-sweeping algorithm returns an integer
matrix, say Z1 ∈ Z

n×(n−1), which together with B, forms
an ‘admissible integer transformation’ [Z1, B]. An admissi-
ble integer transformation is a square integer matrix whose
inverse is also integer. Let [Z̃1, Z̃2] be the inverse-transpose
of [Z1, B]. Pre-multiplying the ambiguity vector z by the
both sides of thematrix identity In = [Z1, B][Z̃1, Z̃2]T gives
z = Z1 z̃1 + B z̃2, where z̃1 = Z̃T

1 z and z̃2 = Z̃T
2 z. Since the

integer combination z̃2 ∈ Z have the same coefficient matrix
B as that of b, it is absorbed by bias b, forming the estimable
bias b̃ = b + z̃2. What is left from z is the integer-estimable
vector z̃1 ∈ Z

n−1. Substitution of z+ Bb = Z1 z̃1 + B b̃ into
(9) gives the full-rank model

E(y) = AZ1 z̃1 + AB b̃ + C c (10)

The above full-rank model enables one to unbiasedly esti-
mate all the three parameter vectors z̃1, b̃ and c. The price to
pay is, of course, to sacrifice the integer ambiguity z̃2 ∈ Z.
In the CDMA case, this corresponds to letting the ambigu-
ity of the pivot satellite be absorbed by the SD phase bias b
so that the DD ambiguities z̃1 show up as integer-estimable.
Instead of using the full-rank model (10), in Sect. 4 we will
address whether the positioning user is better off consider-
ing integer-resolution of the whole SD ambiguities z via the
rank-deficient model (9) in which the bias constraint b ∈ B
with subset B = {ν ∈ R

q | ||ν|| ≤ h} is leveraged. �

3 Estimators and their distributional
properties

In this section, we discuss how the three parameter vectors
z ∈ Z

n , b ∈ B and c ∈ R
k can be estimated via integer

estimation theory.We will then study the distributional prop-
erties of their estimators through their restrictive PDFs.

3.1 A class of estimators

The estimators of the parameter vectors a = z+Bb and c can
be obtained by an application of least squares adjustment. Let
the positive definite matrix Qyy denote the variance matrix
of the observations y in (2). In the standard least squares
estimation, the squared-norm ||y − Aa − Cc||2Qyy

is mini-
mized over the ‘unconstrained’ Euclidean spaces a ∈ R

n and
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c ∈ R
k . This would result in the so-called float estimators â

and ĉ, together with their joint variance matrix

[

â
ĉ

]

,

[

Qââ Qâĉ

Qĉâ Qĉĉ

]

(11)

However, both the integer constraint z ∈ Z
n and the bias

constraint b ∈ B imply that the ambiguity vector a has to lie
in a ‘proper’ subset ofRn , say� = {x ∈ R

n|x = u+Bν, u ∈
Z
n, ν ∈ B}. Such restriction placed on a leads to least squares

estimators that are different from their float versions (11).
To see this, consider the corresponding mixed-integer least
squares problem (Teunissen 1993)

min
a∈�,c∈Rk

||y − Aa − Cc||2Qyy
=

||ê||2Qyy
+ min

a∈�

{

||â − a||2Qââ
+ min

c∈Rk
||ĉ(a) − c||2Qĉ(a)ĉ(a)

}

(12)

with the least squares residual vector ê = y − Aâ −Cĉ, and

ĉ(a) = ĉ − Qĉâ Q
−1
ââ (â − a)

Qĉ(a)ĉ(a) = Qĉĉ − Qĉâ Q
−1
ââ Qĉâ

(13)

As no restriction is placed on c ∈ R
k , the last term in (12)

can bemade zero for any a ∈ �. Therefore, theminimization
problem (12) boils down to finding the minimizer ǎ ∈ � as

ǎ = argmin
a∈�

||â − a||2Qââ
, with č = ĉ(ǎ) (14)

Thus, ǎ is the closest member of �, with metric Q−1
ââ , to the

float ambiguity vector â. The extent to which the estimator
ǎ is different from its float counterpart â is dictated by the
subset �. For instance, when B = In and the bias vector b is
unbounded, i.e.B = R

n , the set� spans thewhole Euclidean
space R

n . For this case, the minimizer ǎ coincides with â.
When the bias vector b is known to be zero, i.e. B = {0},
the set � reduces to the integer space Zn . For this case, the
minimizer ǎ is the well-known Integer Least Squares (ILS)
estimator of z (Teunissen 1999). For the general case, the
minimizer ǎ can be viewed as a trade-off between the float
estimator â and the ILS estimator.

Instead of using the least squares principle (14), one may
take recourse to a different estimation strategy and prefer
another member of� as estimate of a = z+ Bb. Such mem-
ber should take the form of ǎ = ž + Bb̌, where ž ∈ Z

n and
b̌ ∈ B. To obtain the integer vector ž, there exists a class of
admissible integer estimatorsI : Rn �→ Z

n thatmap the float
ambiguity vector â to an integer vector ž, i.e. ž = I(â). These
estimators possess the following three properties (Teunissen

1998)

(I) for every x ∈ R
n, there exits u ∈ Z

n : I(x) = u
(II) I(x) ∈ Z

n is unique for every x ∈ R
n

(III) I(x + u) = I(x) + u for every x ∈ R
n, u ∈ Z

n

(15)

The bias estimator b̌ ∈ B may be taken as a function of the
float ambiguity â, say J̃ (â). The last property of (15) implies,
if â is shifted by an integer amount u, the integer estimator
ž = I(â) is shifted by the same amount. Therefore, it is
plausible to ask of the functions J̃ to remain invariant for
any integer shift in their argument, i.e. J̃ (x + u) = J̃ (x)
for all u ∈ Z

n . Otherwise, the estimator ǎ = ž + Bb̌ would
not possess the integer equivariant property (III) in (15) as
the integer estimator ž does. Such function can be equiva-
lently expressed as J̃ (x) = J (x−I(x)), withJ : Rn �→ B
being an arbitrary function. This can be understood as fol-
lows. Clearly, this expression ensures J̃ (x + u) = J̃ (x) for
all u ∈ Z

n as I(x + u) = I(x) + u. Conversely, the identity
J̃ (x + u) = J̃ (x) (u ∈ Z

n) shall also hold for u = −I(x).
Thus J̃ (x) = J̃ (x − I(x)) which is a function of x − I(x).
We therefore arrive at the following class of estimators for
the ‘bias-affected’ ambiguity vector a = z + Bb,

ǎ = ž + Bb̌, with

{

ž = I(â)

b̌ = J (â − ž)
(16)

The integer mapping I : Rn �→ Z
n satisfies the three admis-

sibility conditions (15), while J : Rn �→ B is an arbitrary
function of the ambiguity residual ε̌ := â − ž. By definition,
the term ‘function’ for J implies that every x ∈ R

n cannot
have multiple images J (x). Only one unique image J (x)
must therefore be assigned to x . The results of the following
sections rely on such assumption.

3.2 PDFs of the estimators

The arbitrariness of the two functions I(â) andJ (ε̌), in (16),
allows one to devise many estimators for the bias-affected
ambiguity vector a = z + Bb. The distributional properties
of such estimators are captured by the corresponding PDFs.

Theorem 1 (Joint PDF of the estimators) Let â ∼ Nn(a =
z+Bb, Qââ), ĉ ∼ Nk(c, Qĉĉ), and ĉ(a) = ĉ−Qĉâ Q

−1
ââ (â−

a). Then the joint PDF of the three estimators ž = I(â),
b̌ = J (â − ž) and č = ĉ(ž + Bb̌) can be expressed as

fž,b̌,č(u, ν, w) = P(â ∈ Su) fĉ(u)(w − Lν) fb̌u (ν) (17)

where L = Qĉâ Q
−1
ââ B, u ∈ Z

n, w ∈ R
k , ν ∈ B, and pull-in

region Su = {x ∈ R
n| I(x) = u}. It is assumed that B is

such that the PDF of b̌u = b̌|â∈Su exists. 
�

123



   40 Page 6 of 18 A. Khodabandeh, P. J. G. Teunissen

Proof From conditioning č = ĉ − Qĉâ Q
−1
ââ (â − ž − Bb̌) on

â ∈ Su , we obtain, since ž = I(â), ĉ(u) = ĉ−Qĉâ Q
−1
ââ (â−

u), and ĉ(u) is independent of â,

č|â∈Su = ĉ(u) + L b̌|â∈Su

Recognizing that ĉ(u) and b̌|â∈Su are independent, an appli-
cation of the PDF-transformation rule to

[

č|â∈Su
b̌|â∈Su

]

=
[

Ik L
0 Iq

] [

ĉ(u)

b̌|â∈Su

]

gives

f
(č,b̌)|â∈Su

(w, ν) = fĉ(u)(w − Lν) fb̌|â∈Su
(ν)

Therefore

fž,č,b̌(u, ν, w) = P(â ∈ Su) f(č,b̌)|â∈Su
(w, ν)

= P(â ∈ Su) fĉ(u)(w − Lν) fb̌|â∈Su
(ν)

= P(â ∈ Su |b̌ = ν) fĉ(u)(w − Lν) fb̌(ν)


�

From the joint PDF (17), one can infer the complete proba-
bilistic properties of the estimators ž, b̌ and č. The marginal
PDFof each estimator follows by summing or integrating this
joint PDF over the arguments of the other two estimators. For
instance, the PDF of the estimator č follows as

fč(w) =
∑

u∈Zn

P(â ∈ Su)
∫

B
fĉ(u)(w − Lν) fb̌u (ν)dν (18)

To better appreciate the above PDF, consider two extreme
cases. In the first case, the bias b is assumed to be zero, i.e.
B = {0}. For this case, the functionJ (x)maps every x ∈ R

n

to 0. Thus b̌u = 0with probability one, having theDirac delta
(impulse) function δ(ν) as its PDF, i.e. fb̌u (ν) = δ(ν), where
∫

B δ(ν)dν = 1 and δ(ν) = 0 for ν �= 0. Therefore, the PDF
(18) reduces to

fč(w) =
∑

u∈Zn

P(â ∈ Su) fĉ(u)(w) (19)

This is the PDF of the fixed estimator č corresponding to the
‘bias-free’ model (1), see (Teunissen 2002).

The second extreme case is when B = In and the bounded
set B is large enough to encompass the pull-in region S0.
Then b̌|â∈Su = J (â − I(â))|â∈Su = J (â − u)|(â−u)∈S0 =
(â− u)|â∈Su , and the PDF of b̌u = b̌|â∈Su becomes fb̌u (ν) =

Fig. 1 Examples of the marginal PDF fč(w) in (18) when b = 0
(top) and when b �= 0 (bottom). The green curves correspond to the
special case B = {0} given in (19). The grey curves indicate a class of
such PDFs for different subsets B. The cyan curves highlight a member
of such class. When the subset B is large enough to contain S0, the
PDF reduces to the normal distribution (20), i.e. the white curves, cf.
model (21)

fâ(ν + u)/P(â ∈ Su) when ν ∈ S0, vanishing for ν /∈ S0.
Substitution into (18) gives

fč(w) = ∑

u∈Zn

∫

S0
fĉ(u)(w − Lν) fâ(ν + u)dν

= ∫

∪u∈Zn Su
fĉ(u)(w − L(x − u)) fâ(x)dx

= ∫

Rn
fĉ(x)(w) fâ(x)dx

= fĉ(w)
∫

Rn fâ|ĉ(x |w)dx = fĉ(w)

(20)

The second equality follows by applying the change of vari-
able x = ν + u with x ∈ Su ⇔ ν ∈ S0, the third equality by
using fĉ(x)(w) = fĉ(u)(w − L(x − u)) and ∪u∈Zn Su = R

n ,
while the last equality follows from fĉ(x)(w) = fĉ|â(w|x)
and the PDF identity fĉ|â(w|x) fâ(x) = fĉ(w) fâ|ĉ(x |w),
thereby recognizing that

∫

Rn fâ|ĉ(x |w)dx = 1. Therefore,
the PDF (18) reduces to that of the float estimator ĉ which is
a normal distribution.

Figure 1 visualizes examples of the PDF fč(w) (18) as
cyan curves when b = 0 (top) and when b �= 0 (bottom),
together with the two special cases (19) and (20) using the
green and white curves, respectively. The model considered
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is specified as

E
([

y1
y2

])

=
[

1
1

]

c +
[

0
λ

]

(z + b), |b| ≤ h (21)

in which the two normally distributed observables y1 and
y2 are assumed independent with standard deviations σy1 =
15.0 [cm] and σy2 = 2.3 [cm], respectively. The wavelength
is set to λ = 11 [cm], while the bias bound h may range
from zero to half a cycle, i.e. 0 ≤ h ≤ 0.5. When the bias
b is absent, the PDFs are symmetric around the expected
value c. However, except for the white curves, the nonzero
bias b skews all the other PDFs. The white curves indicate
the normal distribution of the float estimator ĉ that remains
unbiased irrespective of the size of the ambiguity-bias Bb.
The figure also shows a class of such PDFs for different
subsets B in grey. When the bound h is close to zero, these
PDFs resemble that of the fixed estimator (19). The larger the
bound h becomes, the more the curves are pushed towards
the normal distribution of the float estimator (20).

Let us now consider the PDF of the bias estimator b̌. The
PDF follows by summing and integrating the joint PDF (17)
over u ∈ Z

n and w ∈ R
k , respectively. This gives

fb̌(ν) =
∑

u∈Zn

P(â ∈ Su) fb̌u (ν) (22)

since
∫

Rn fĉ(u)(w)dw = 1. Next to the probability values
P(â ∈ Su) (u ∈ Z

n), the above PDF is driven by the distri-
butional behaviour of the random vector b̌u = b̌|â∈Su .

Example 5 (Hybrid structure of thePDF fb̌(ν)) Toget a better

understanding of the distributional behaviour of b̌, consider
a two-dimensional example (n = 2) in which the ambiguity
variance matrix Qââ is specified as

Qââ =
[+0.1056 −0.0808

−0.0808 +0.0648

]

cycle2 (23)

The bias-affected float ambiguity vector â has the expected
value E(â) = z + Bb, with z = [0, 0]T, B = [0, 1]T. The
corresponding bounded set is given byB = {ν ∈ R| |ν| ≤ h}
(h = 0.2), where b is set to 0.15 cycles. Function J (x) is
chosen as

J (x) = arg min|ν|≤h
||x − Bν||2Qââ

(24)

This choice of function J picks the member of subset B
whose ambiguity bias Bν is closest to the ambiguity residual
ε̌ with respect to metric Q−1

ââ . With this choice, the outcomes

of the conditional random variable b̌u = b̌|â∈Su are simply

Fig. 2 Marginal PDF fb̌(ν) in (22) when b = 0.15 cycles, where
function J (x) is set to be (24) with B = R (green) and B = {ν ∈
R| |ν| ≤ 0.2} (cyan), cf. Example 5. Two zoom-in windows are also
given to highlight the peaks around the values of −2.3 and 0.15 cycles

characterized by

b̌u =

⎧

⎪
⎨

⎪
⎩

−h if b̂u ≤ −h
b̂u if − h < b̂u < +h
+h if b̂u ≥ +h

(25)

where b̂u = B+(â − u)|â∈Su , with the least squares inverse
matrix B+ = (BTQ−1

ââ B)−1BTQ−1
ââ . Therefore, the PDF of

b̌u reads

fb̌u (ν) = fb̂u (ν)1|ν|<h(ν)+
δ(ν + h)P(b̂u ≤ −h) + δ(ν − h)P(b̂u ≥ +h)

(26)

where fb̂u (ν) denotes the PDF of b̂u , with the indicator
function 1|ν|<h(ν) being 1 if |ν| < h and zero otherwise.
According to (22), the PDF fb̌(ν) is a weighted average of
the PDFs fb̌u (ν) in (26), where the probabilities P(â ∈ Su)
(u ∈ Z

n) serve as weights. The expression (26) shows the
hybrid nature of fb̌u (ν), and therefore, of the PDF fb̌(ν).
While the first term on right-hand side of (26) represents a
probability ‘density’ function of a continuous random vari-
able b̂u , the second and third terms represents a probability
‘mass’ function of discrete random variables with outcomes
±h. Figure2 visualizes the PDF (22) for the model speci-
fied in (23). The green curve in the figure corresponds to
the unconstrained case B = R (i.e. h → ∞), whereas
the cyan curve corresponds to the bound h = 0.2. As a
result, the probability mass of the cyan curve only lies inside
the interval [−0.2,+0.2] cycles. On the contrary, the green
curve represents, next to the true value b = 0.15 cycles,
also a considerable probability mass around −2.3 cycles.
Such behaviour follows when the success-rate P(â ∈ Sz) is
not large enough compared to probability values P(â ∈ Su)
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(u �= z). Consequently, the corresponding variables b̌u also
contribute to the distributional behaviour of the bias estima-
tor b̌, leading to probability masses that can be around values
way farther from the true value b = 0.15 cycles. By imposing
the bias constraint |b| ≤ 0.2 cycles, such unwanted proba-
bility masses can be curbed. This may result in probability
masses that are condensed into the endpoints ±h cycles, see
the terms with the impulse functions δ(ν ± h) in (26). �

3.3 Bias-constrained ILS estimator

Up to now, the role of the bias constraint b ∈ B in ensuring
the quality of the bias estimator b̌ = J (ε̌), given in (16),
has been pointed out, i.e. avoiding probability masses that
can be around values outside the subset B, the values that
are deemed to be far from the target value b (cf. Fig. 2).
However, we have not yet addressed the stated role in the
integer estimator ž = I(â). When the bias b, in a = z+ Bb,
is absent, the ILS estimator

I(â) = arg min
z∈Zn

||â − z||2Qââ
(27)

is optimal as it delivers the largest success rate, i.e. the
maximumprobability P(â ∈ Sz), among all admissible ambi-
guity estimators (Teunissen 1999). However, the presence
of nonzero bias vectors b can significantly lower the ILS
success-rate.

To account for the bias b in the rank-defect model (2),
Teunissen (2006) showed the feasibility of finding a unique
ILS solution by imposing the bounds (4) on b. For non-
empty bounded sets B, Khodabandeh (2022) developed the
bias-constrained ILS estimator and its BEAT integer search
method, identifying the conditions under which the estimator
obeys the admissibility rules (15). The results are summa-
rized below.

Theorem 2 (Admissibility of BEAT) As a member of the
class of estimators (16), the joint integermappingIB : Rn �→
Z
n and bias estimator JB : Rn �→ B

⎧

⎨

⎩

IB(x) = arg min
u∈Zn

Fx (u)

JB(x) = argmin
ν∈B

||x − Bν||2Qââ

(28)

are referred to as the bias-constrained ILS estimator and
its integer search to the method of BEAT, where Fx (u) =
minν∈B ||x −u− Bν||2Qââ

. The integer mapping IB is admis-
sible if and only if

B(JB(x) −JB(x−u)) �= u, ∀u ∈ Z
n\{0}, ∀x ∈ S0,B (29)

where the BEAT pull-in region S0,B = {x ∈ R
n| IB(x) = 0}

is distinguished from S0 of an arbitrary estimator (16) via
the subscript ‘B’. 
�

Proof The proof is given in (Khodabandeh 2022). 
�
In (28) and the following, we use the discriminatory sub-
script ‘B’ for the BEAT functions IB and JB to distinguish
them from their counterparts I and J of an arbitrary estima-
tor (16). The comparison of the BEAT integer mapping (28)
with that of ILS (27) shows that BEAT needs an ‘additional’
input, i.e. the bounded set B, next to the float ambiguity vec-
tor â and its variance matrix Qââ so as to deliver the output
ž = IB(â). Also note that the proposed estimator becomes
ILS when the set B takes the special form of B = {0}, i.e.
when bias b is known to be zero. Similar to the ILS estimator,
the estimator ž has to be obtained through an integer search.
A fast search strategy for the computation of ž is developed
in (Khodabandeh 2022). As shown in (ibid), the condition
(29) restricts the choice of an arbitrary bounded set B. For
instance when B takes the form of the identity matrix In , the
sets whose members have Euclidean norms larger than half
a cycle do not ensure the admissibility of BEAT. When con-
dition (29) holds, BEAT produces a unique integer estimator
ž = IB(â) for the rank-defect model (2). Note, however, that
the bias estimator b̌ = JB(ε̌) may not be unique for some
non-convex setsB (Boyd andVandenberghe 2004). In the fol-
lowing, we therefore assume that the bounded set B ensures
that the mapping JB : Rn �→ B in (28) is a ‘function’, i.e.
the image JB(x) is uniquely assigned to every x ∈ R

n .

Example 6 (BEAT pull-in regions) To get some insight into
the performance of BEAT compared to ILS, again consider
the two-dimensional example in (23), with z = [0, 0]T,
B = [0, 1]T. Two sets of 100,000 normally-distributed sam-
ples of â are simulated, one with b = 0 and the other with
b = 0.15 cycles. To estimate ž, we consider two bounded
sets of B = {ν ∈ R| |ν| ≤ h}, one with h = 0 and
the other with h = 0.2 cycles. With the first set, the pres-
ence of bias b is ignored as B = {0}. With the second set,
the unknown bias b is constrained to lie inside the inter-
val [−0.2, 0.2] cycles. The corresponding results are shown
in Fig. 3. On the left-panel of the figure, the BEAT pull-in
regions (in black and grey) are depicted as ‘hexagons’ for
the choice B = {0}. This is because the integer mapping
IB in (28) reduces to the ILS estimator (27) for the special
case B = {0}. Apart from this case however, the BEAT pull-
in regions, and thus its performance, are different from those
of ILS as indicated for the case B = {ν ∈ R| |ν| ≤ 0.2} on
the right-panel of the figure. As shown, not all the samples
lie inside the pull-in region S0 due to the randomness of â
(red dots). As expected, for the bias-free case, ILS pull-in
region S0 captures the largest possible number of samples
with successful mapping I(â) = 0, i.e. 99.2% of the sam-
ples (green dots). However, the stated success-rate drops to
66.3% for bias b = 0.15 cycles present in the second entry
of â. Upon imposing the constraint |b| ≤ 0.2 cycles, BEAT
ensures success-rates above 90% for both the bias-free case
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Fig. 3 Two-dimensional examples of BEAT pull-in regions for two
bounded sets of B = {ν ∈ R| |ν| ≤ h}, one with h = 0 (left) and the
other with h = 0.2 cycles (right), cf. Example 6. Two sets of 100,000
normally distributed samples of â are simulated (coloured dots), one

with the expectation E(â) = [0, 0]T (top) and the other with the expec-
tation E(â) = [0, 0.15]T cycles (bottom). The samples residing in the
pull-in regions S0 are depicted in green and cyan, while the remaining
samples in red are mapped to incorrect integers

(90.6%) and bias-affected case (93.3%), see the cyan dots.
Figure4 shows the stated ambiguity success-rate as a function
of bias b for both the ILS and bias-constrained ILS esti-
mators. As shown, ILS exhibits higher success-rates for the
biases whose magnitude is smaller than 0.08 cycles. The ILS
success-rate does, however, rapidly decrease the larger the
bias magnitude |b| becomes, reaching the minimum value of
40% for b = ±0.2 cycles. On the contrary, BEAT does not
deliver largest success-rates. Instead, its associated success-

rates remain relatively unchanged over the interval |b| ≤ 0.2
cycles. �

Note, as the bias-constrained ILS estimator (cf. 28) min-
imizes the inconsistency measure i(x) = ||x − I(x) −
BJ (x − I(x))||2Qââ

within the estimator class (16), that we
have iB(x) ≤ i(x), ∀x ∈ R

n , and therefore
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Fig. 4 Evaluation of the success-rate P(ž = z) as function of bias
b. The green curves correspond to the ILS estimator, while the cyan
curves correspond to the bias-constrained ILS estimator with B = {ν ∈
R| |ν| ≤ 0.2}, cf. Example 6

∫

S0,B
iB(x)dx ≤

∫

S0,B
i(x)dx =

∫

S0
i(x)dx (30)

where the last equality follows from the property i(x + u) =
i(x), ∀u ∈ Z

n (Teunissen 1999). Since IB(x) = 0 for x ∈
S0,B and I(x) = 0 for x ∈ S0, inequality (30) can be written
as
∫

S0,B
||x − BJB(x)||2Qââ

dx ≤
∫

S0
||x − BJ (x)||2Qââ

dx (31)

thus showing, since the pull-in regions S0,B and S0 have vol-
ume 1, that the average inconsistency of the bias-constrained
ILS estimator b̌ over its ownpull-in region is never larger than
that of any other bias solution from the estimator class (16).
Hence, application of the bias-constrained ILS principle also
implies that its bias solution has, on average, the smallest
inconsistency with its underlying model.

4 Application in SD ambiguity resolution

In this section we apply the BEATmethod to the GLONASS
short-baseline models (9) and (10). In the ambiguity domain
a = z + B b, the stated models can be, respectively, charac-
terized as (Example 4)

Bias-bounded: E(â) =
z

︷ ︸︸ ︷

Z1 z̃1 + B z̃2 +B b, ||b|| ≤ √
2h

Bias-estimable: E(â) = Z1 z̃1 + B b̃, b̃ ∈ R
2

(32)

where m is the number of tracked satellites. The role of
â ∈ R

2m is taken by the baseline SDfloat ambiguity vector on
the two GLONASS frequency bands L1 and L2. In the ‘bias-
bounded’ model above, there are 2 times m equations versus

2m+2unknowns, i.e. 2 times (m−1) integer-estimable ambi-
guities z̃1 ∈ Z

2(m−1), two frequency band-specific biases b1
and b2 in b = [b1, b2]T, and the two extra integer ambi-
guities z̃2 ∈ Z

2. Therefore, this model is underdetermined
and cannot be solved for all the unknowns without using the
bias constraint ||b|| ≤ √

2h. The term
√
2 is given to high-

light the dimension of the bias vector b ∈ R
2. The fixed bias

bound
√
2h should not exceed half a cycle so as to ensure

the BEAT admissibility condition (29), see (Khodabandeh
2022). On the other hand, the ‘bias-estimable’ model con-
tains two unknowns less than the ‘bias-bounded’ model, that
is, the extra unknown vector z̃2 ∈ Z

2 has been absorbed
by the estimable bias vector b̃ = b + z̃2. Therefore, the
‘bias-estimable’ model is full-rank and can deliver unbiased
solutions for z̃1 and b̃.

4.1 Motivation: FDMA vs CDMA

While the full-rank ‘bias-estimable’ model in (32) forms the
basis of FDMA ambiguity resolution (Teunissen 2019), sev-
eral studies have reported that GLONASS ‘full’ ambiguity
resolution cannot be successfully performed even for the case
where the positions of the receivers are perfectly known,
restricting one to choose the option of partial ambiguity res-
olution, see e.g., (Teunissen and Khodabandeh 2019; Brack
et al. 2021; Zaminpardaz et al. 2021; Zhang et al. 2021).
To see why such restriction holds for the FDMA case and
not for the CDMA case, consider the following ‘determinant
identity’ (Odijk and Teunissen 2008)

det(Q ˆ̃z1 ˆ̃z1) = det(Qââ)

det(Q ˆ̃b ˆ̃b|z̃1)
(33)

The above equation states that the precision of the integer-
estimable float ambiguities ˆ̃z1, i.e. det(Q ˆ̃z1 ˆ̃z1), is proportional
to that of the SD float â, i.e. det(Qââ). Thus, the more pre-
cise SD float ambiguities, the more precise ˆ̃z1 becomes. As
the GLONASS L1 and L2 frequency bands are, respectively,
close to their GPS L1 and L2 counterparts, the determinant
det(Qââ) remains almost unchanged by switching from the
GLONASS FDMAcase to the GPSCDMAcase for a similar
satellite configuration with observables of the same preci-
sion. Therefore, it is the denominator in (33) that plays a
decisive role in making the precision of the FDMA float
ambiguities ˆ̃z1 different from their GPS versions. The deter-
minant det(Q ˆ̃z1 ˆ̃z1) is inversely proportional to det(Q ˆ̃b ˆ̃b|z̃1),
where

Q ˆ̃b ˆ̃b|z̃1 = (BTQ−1
ââ B)−1 (34)

denotes the variance matrix of the float bias solution ˆ̃b|z̃1
when z̃1 is perfectly known. Thus, the more precise the bias
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Fig. 5 Examples of the conditional standard deviations of the aug-

mented vector [ˆ̃zT1 ,
ˆ̃bT]T (black dots) compared to those of the SD float

ambiguities â (white dots) after decorrelation applied to ˆ̃z1 and ˆ̃b by the
LAMBDAmethod. The light blue areas correspond to those of the bias

solution ˆ̃b. The CDMA case corresponds to a GPS L1/L2 constellation,
while the FDMA case corresponds to a GLONASS L1/L2 constellation
of 7 satellites. Zoom-in windows are given to highlight the variation in
the standard deviations

solution ˆ̃b|z̃1, the larger the determinant det(Q ˆ̃z1 ˆ̃z1), thereby
the lower the ambiguity success-rate becomes. As shown in

(34), the precision of ˆ̃b|z̃1 is governed by the coefficient vec-
tor B = R en . For the CDMA case, this vector reduces to the
vector of ones en as R = In . For the GLONASS FDMA case
however, this vector is formed by the large frequency ratios
rs = 2848+κs in which the integer channel number κs varies
within the interval [−7, 6]. The much larger coefficients of
the FDMA vector B = R en than its CDMA version B = en
imply that the bias solution ˆ̃b|z̃1 is three orders of magnitude
more precise for the GLONASS FDMA case, making the
corresponding determinant det(Q ˆ̃z1 ˆ̃z1) three orders of mag-
nitude larger than its GPS CDMA version.
To show how the presence of such high-precision bias solu-
tion reflects in the GLONASS IAR performance, Fig. 5
compares the conditional standard deviations of the SD
float ambiguities â with those of the augmented vector

[ˆ̃zT1 ,
ˆ̃bT]T after decorrelation performed by the LAMBDA

method (Teunissen et al. 1997). The conditional stan-
dard deviation of the j th entry of a random vector y =
[y1, y2, . . . , ym]T is defined as the square root of the con-
ditional variance σ 2

j = σ 2
y j − Qyj yJ Q

−1
yJ yJ QyJ y j ( j =

2, . . . ,m), where yJ = [y1, y2, . . . , y j−1]T with σ 2
1 = σ 2

y1 .
For the CDMA case, the conditional standard deviations cor-
responding to the DD ambiguities ˆ̃z1 are around 0.08 cycles,

while those of the bias solution ˆ̃b reach 0.12 cycles. Such
flat spectra are, however, not observed for their FDMA ver-
sions. Twoof the standard deviations of ˆ̃z1 (one per frequency
band) exceed 8 cycles. On the other hand, the conditional
standard deviations corresponding to the FDMA bias solu-

tion ˆ̃b are shown to be 3 orders of magnitude smaller than
their CDMA versions (light blue areas). The large discrep-

ancy between the standard deviations of ˆ̃b and the last two
standard deviations of the GLONASS ambiguities ˆ̃z1 would
have disappeared if the estimable bias b̃ = b + z̃2 were
integer-estimable, i.e. if b = 0. In the absence of bias b,
the SD ambiguities a are integer-estimable. To get an indica-
tion of the corresponding ambiguity resolution performance,
one may evaluate the geometric average of these conditional
standard deviations, known as the Ambiguity Dilution Of
Precision (ADOP) (Teunissen 1997). As shown in the fig-
ure, the corresponding spectra are flat and around 0.1 cycles,
leading to small ADOP of ADOPSD = 0.12 cycles (Teunis-
sen 1997). However, the ADOP of ˆ̃z1 is shown to be large
ADOPDD = 0.45 cycles, hindering successful full ambi-
guity resolution. As stated previously, the bias constraint
||b|| ≤ √

2h can provide a trade-off between the ideal case
a ∈ Z

2m (when h = 0) and the case [z̃1 ∈ Z
2(m−1), b̃ ∈ R

2]
(when

√
2h = 0.5 cycles). But this can only be realized if

the magnitude of the bias vector bwould be a bounded value.

4.2 GLONASS SD bounded phase biases

To verify whether GLONASS SD phase biases b = δ1r/λo
are bounded, we process theGLONASSL1/L2 daily datasets
of seven globally distributed IGS zero-/short-baselines. The
receiver and antenna types of the baselines are listed in
Table 1. Use is made of the ‘bias-estimable’ model in (32)
where the coordinates of the antennas, and therefore the base-
line vector x1r (cf. 9), are known. Such strong model can
deliver precise solutions for the estimable bias b̃ = b + z̃2.
Nevertheless, we only consider the ‘single-epoch’ bias solu-

tions ˆ̃b whose formal standard deviations are smaller than
0.003 cycles so that their rounded values to the nearest inte-

ger represent z̃2 with a high probability. Thus � ˆ̃b� = z̃2,
where �·� denotes the entry-wise integer rounding operator.

In this way, the fractional parts ˆ̃b − � ˆ̃b� should represent
solutions of the unknown bias b = δ1r/λo

Figure 6 presents time-series of the stated fractional parts
ˆ̃b − � ˆ̃b� for each of the seven baselines. To check whether
the biases are repeatable and if they be can be calibrated,
we have computed their solutions on two different days
with one month apart, i.e. 31st of March 2023 (left) and
30th of April 2023 (right). As shown, the biases are indeed
bounded.Despite being of similarmagnitudes, the biases cor-
responding to each baseline exhibit different patterns over
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Table 1 Receiver and antenna types of the IGS (zero∗) short-baselines used in the GLONASS FDMA experiment

Baseline Receiver-type Antenna-type Length [m]

ZIM2–ZIM3∗ Trimble NetR9–Trimble NetR9 TRM59800 0

UNBD–UNB3 Septentrio PolaRx5S–Trimble Alloy TRM57971–TRM57971 ≈ 19

YARR–YAR2 Septentrio PolaRx5–Trimble Alloy LEIAT504–AOAD/M_T ≈ 4

YARR–YAR3 Septentrio PolaRx5–Septentrio PolaRx5 LEIAT504–LEIAR25 ≈ 20

YEL2–YEL3 Septentrio PolaRx5TR–TPS NET-G5 LEIAR25.R4–TWIVP6050_CONE ≈ 95

YEL2–YELL Septentrio PolaRx5TR–JAVAD TRE_3N LEIAR25.R4–AOAD/M_T ≈ 48

WTZR–WTZS LEICA GR50–Septentrio PolaRx5TR LEIAR25.R3–LEIAR25.R3 ≈ 69

The RINEX carrier phase signals ‘L1C’ and ‘L2C’ are employed in all baselines

time for the two days. Also note that the bias magnitude
is baseline-specific. For the zero-baseline ZIM2–ZIM3 hav-
ing the receivers of the same type, the stated magnitude is
smaller than 0.001 cycles. For the short-baseline YARR–
YAR3which also has the receivers of the same type, but with
different antennas, the bias magnitude is below 0.01 cycles.
Apart from the baseline WTZR–WTZS whose bias magni-
tude exceeds 0.1 cycles, the remaining baselines represent
bias magnitude bounded by 0.05 cycles.

4.3 GLONASS-only positioning solutions

The GLONASS bounded SD phase biases, shown in Fig. 6,
suggest that one can indeed incorporate the bias constraint
||b|| ≤ √

2h into the rank-defect baseline model (9), apply-
ing the BEAT method to the bias-affected float ambiguities
â, thus computing ambiguity-resolved baseline solutions
for x1r . Considering that small (in magnitude) biases are
observed for most of the baselines, one may also consider the
case in which the presence of bias b is completely ignored,
i.e. h = 0. To obtain the baseline solutions, we therefore
consider the following five scenarios:

(i) The presence of bias b is ignored, fixing the whole SD
float ambiguities â as integers.

(ii) The bias-estimablemodel (10) is employed, partially fix-
ing the integer-estimable part ˆ̃z1 via ILS. By ‘partially’,
we mean that the least precise ambiguity solution (per
frequency band) remains float and is not mapped to its
integer, see Fig. 5, the FDMA case.

(iii) The bias-bounded model (9) is employed, with the bias
bound h = 0.15 cycles.

(iv) Estimated mean values of the bias of the previous month
are applied to the phase data as corrections, ignoring the
presence of any leftover biases.

(v) Estimated mean values of the bias of the previous month
are applied to the phase data as corrections, with the bias
bound h = 0.02 cycles applied to (9).

Therefore, no external solutions of the unknown bias vector
b are applied to the phase data for the first three scenarios.
For the last two scenarios however, the estimated bias solu-
tions, that are obtained on 31st of March 2023, are applied
to the phase data of 30th of April 2023. The corresponding
positioning results of the baseline WTZR–WTZS are shown
in Fig. 7. To highlight if ambiguity-fixing is beneficial to the
solutions’ accuracy improvement, we distinguish fixed posi-
tioning solutions with error-magnitude smaller than 10cm in
cyan colour from the remaining fixed solutions (red dots).
For the first scenario (i), none of the fixed solutions have
error-magnitude smaller than 10cm. This is attributed to the
corresponding rather large SD phase biases b in Fig. 6 which
have been ignored. For Scenario (ii), 68.1% of the fixed solu-
tions have error-magnitudes smaller than 10cm. The increase
in the positioning accuracy is because Scenario (ii) accounts
for the unknown bias b by computing its estimable version
b̃ = b + z̃2. However, this comes at the cost of lumping the
integer ambiguity z̃2 with b. This can be avoided if the con-
straint ||b|| ≤ √

2×0.15 cycles is imposed on the rank-defect
model (9). Accordingly, the percentage of such accurate fixed
solutions increases to 77.8% for Scenario (iii). Although, the
external bias solutions are applied up to 3 decimal places,
the percentage of such accurate fixed solutions decreases to
23.9% for Scenario (iv). This is because leftover ambiguity
biases, although small, are magnified by the large entries of
thematrix B inE(â) = z+B b. Scenario (v) accounts for such
leftover biases by imposing the constraint ||b|| ≤ √

2× 0.02
cycles, increasing the stated percentage to 94.8%.

A closer look at the time-series of the up component
in Fig. 7 reveals that stated error-magnitude is largely driven
by the number of tracked satellites. To make this relation
more explicit, we compute the positioning results of all the
seven baselines and summarize the percentages of their accu-
rate fixed solutions in Table 2. As shown in the table, all
the solutions have error-magnitudes smaller than 10cm for
the zero-baseline ZIM2–ZIM3 when at least 7 satellites are
tracked. This holds for all the five scenarios (i) to (v). This
can be understood from the statistically insignificant bias
solutions shown in Fig. 6 for the zero-baseline ZIM2–ZIM3.
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Fig. 6 Time-series of the fractional parts ˆ̃b−� ˆ̃b� (cycles) of GLONASS
L1 (black) and L2 (grey) SD phase biases corresponding to the seven
baselines listed in Table 1. Their 10-sample moving averages are shown

in white colour. Single-epoch bias solutions ˆ̃b whose formal standard

deviations are smaller than 0.003 cycles are considered to have � ˆ̃b� = z̃2
with a high probability
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Fig. 7 Single-epoch east-north positioning scatters of the baseline
WTZR–WTZS, together with time-series of the up component and the
number of tracked GLONASS satellites corresponding to the five sce-

narios (i) to (v) in Sect. 4.3. The float solutions are shown in grey,
whereas the fixed solutions with error-magnitude larger (smaller) than
10cm are shown in red (cyan)

Table 2 Percentages of the GLONASS-only L1/L2 fixed positioning solutions having error-magnitude smaller than 10cm of the baselines listed
in Table 1, corresponding to the five scenarios (i) to (v) in Sect. 4.3

Baseline Percentages [%]

No. of sats. ≥ 5 No. of sats. ≥ 6 No. of sats. ≥ 7

(i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

ZIM2–ZIM3 99.9 93.3 98.1 99.9 100 100 99.7 99.9 100 100 100 100 100 100 100

UNBD–UNB3 12.6 54.8 69.9 91.6 88.9 15.2 71.7 88.4 98.1 98.1 19.3 93.9 98.4 99.8 99.8

YARR–YAR2 14.9 56.4 76.4 78.6 96.9 10.1 77.3 93.4 86.1 99.7 14.6 90.4 100 98.7 100

YARR–YAR3 91.4 54.6 70.0 98.9 91.9 99.8 82.2 94.8 100 99.8 100 91.6 99.7 100 100

YEL2–YEL3 91.0 84.9 92.7 99.6 98.0 96.4 91.0 96.8 99.7 99.0 99.6 99.0 99.3 99.8 99.8

YEL2–YELL 94.0 48.5 66.8 94.3 91.9 98.7 55.4 75.6 98.7 97.8 99.7 79.8 93.8 99.5 99.5

WTZR–WTZS 0 68.1 77.8 23.9 94.8 0 85.8 95.5 30.9 99.9 0 98.4 99.9 45.3 100

Average 57.7 65.8 78.8 83.8 94.6 60.0 80.4 92.1 87.6 99.2 61.9 93.3 98.7 91.9 99.9

Largest values in each row are indicated in bold
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Fig. 8 Single-epoch east-north positioning scatters of the baseline
TLSG–TLSE (∼1.2 km), together with time-series of the up component
and the number of tracked GLONASS satellites, corresponding to the
bias constraint ||b|| ≤ √

2 h, h = 0.01 (left), h = 0.05 (middle) and

h = 0.25 (right) cycles. The float solutions are shown in grey, whereas
the fixed solutions with error-magnitude larger (smaller) than 10cm are
shown in red (cyan)

Fig. 9 Two-dimensional histograms (percentages) of the estimated biases of b = [b1, b2]T corresponding to baseline TLSG–TLSE. The bias vector
b is constrained to lie inside or on the blue circles B = {ν ∈ R

2| ||ν|| ≤ √
2 h}, h = 0.01 (left) cycles, h = 0.05 (middle) and h = 0.25 (right)

cycles

Table 2 also shows that Scenario (iv) outperforms Scenario
(v) for some of the baselines when the number of tracked
satellites is less than seven. This indicates that ignoring
leftover (but small) ambiguity biases may lead to accurate
fixed solutions, instead of weakening the model by consid-
ering an unknown ambiguity bias varying within the interval
[−0.02,+0.02] cycles. However, Scenario (v) ‘on average’
outperforms all the other scenarios in terms of delivering
more accurate fixed positioning results.

What we can also learn from Table 2 is that Scenario (iii)
‘on average’ delivers a relatively high percentage of accu-
rate fixed solutions (i.e. 98.7%) when at least 7 satellites are
tracked. This important result implies that one can switch
from the ‘bias-estimable’ model (10) to the ‘bias-bounded’

model (9) to improve the baseline positioning performance
even when no external solutions of the SD phase biases are
provided as corrections. Observing bounded GLONASS SD
biases (Fig. 6), one may therefore only incorporate the bias
constraint ||b|| ≤ √

2h into (9) to obtain SD ambiguity-fixed
positioningwithout relying on an external source. The results
presented so far have been confined to baselines shorter than
100ms. To verify the applicability of Scenario (iii) to longer
baselines, we also process a GLONASS L1/L2 dataset of the
short baseline TLSG–TLSE whose length is around 1.2 km.
Its receiver-types are ‘Septentrio PolaRx5–Trimble Alloy’.
In contrast to the earlier baselines whose SD phase biases
are a-priori evaluated, we directly apply Scenario (iii) to this
baseline using the bias constraint ||b|| ≤ √

2h with different
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Fig. 10 Percentage of the GLONASS-only L1/L2 fixed positioning
solutions having error-magnitude smaller than 10cm as function of the
bias bound

√
2 h. The results correspond to the short baseline TLSG–

TLSE

bias bounds 0 ≤ √
2h ≤ 0.5. The corresponding positioning

results are shown in Fig. 8.When looking from left to right, it
can be observed that the percentages of accurate fixed solu-
tions are around 35.9% for the tight bound h = 0.01 cycles,
97.0% for the bound h = 0.05 cycles, and 86.3% for the
bound h = 0.25 cycles. The low percentage corresponding
to h = 0.01 cycles indicates that ||b|| ≤ √

2 × 0.01 does
not hold and, therefore, the bias constraint is misspecified.
This can be also understood from the distribution of the cor-
responding bias estimates b̌. Recall from (22) that the PDF
fb̌(ν) is a weighted average of the PDFs fb̌u (ν) (u ∈ Z

n).
Due to the hybrid structure of fb̌u (ν), probability masses can
be condensed on the boundary of set B (see Example 5). Fig-
ure9 presents histograms of the estimated biases. As shown,
the tight constraint h = 0.01 cycles pushes themajority of the
estimates to lie on the boundary of B (the blue circle on the
left-panel), discarding any possibility of having bias-vector
solutionswhose norms are larger than

√
2 h. By loosening the

constraint, the probability masses are mainly concentrated
around the unknown bias b that lies inside the circles. On
the other hand, an unnecessary increase in the bounds from
h = 0.05 to h = 0.25 cycles weakens the model, delivering
few percentages of accurate positioning solutions.

This notion has been made precise in Fig. 10, showing the
percentage of accurate fixed positioning solutions as function
of the bias bound

√
2 h. For small h, only less than 20% of

the solutions have error-magnitude smaller than 10cm. The
percentage gets larger as the bound increases, reaching its
maximum value of 97.1% for

√
2h = 0.04 cycles. However,

the percentage starts decreasing as the bound exceeds 0.04
cycles, tending to its asymptote of 80% at

√
2h = 0.5 cycles.

This is the percentage that one would obtain using the ‘bias-
estimable’ model (10).

We conclude this section by making a remark about the
choice of bias bound

√
2h. According to Fig. 10, the bias

constraint ||b|| ≤ √
2h does not really pay off when h

exceeds a certain threshold. To find a sharp bound, one may
be inclined to first estimate the bias solutions via the bias-
estimable model (10) where the c-parameters are unknown.
The maximum magnitude of such solutions may then be
chosen as

√
2h. Such choice does, however, not lead to the

accuracy-improvement of ĉ, see the right-panel of Fig. 9. The
reason which enables us to find sharp bounds for the above
GLONASS positioning examples is the use of a stronger
model in which part of the c-parameters (i.e. the baseline
vector x1r ) is known. Therefore, a strategy to find a sharp
bound for the problem of SD GLONASS IAR is to employ
the geometry-known model of zero- to very short-baseline
setups, thereby a-priori quantifying bias magnitudes for dif-
ferent pairs of receiver-types, see Fig. 6.

5 Summary and conclusions

The joint integer and bias estimators, ž = IB(â) and b̌ =
JB(â− ž), are the minimizers of the followingmixed-integer
least squares problem

min
z∈Zn

min
b∈B

||â − z − Bb||2Qââ
. (35)

They are meant to estimate the integer- and bias-parts of
the bias-affected float ambiguity vector E(â) = z + Bb,
i.e. z ∈ Z

n and b ∈ B, respectively. The model to which
these joint estimators are applicable is referred to as the bias-
boundedmixed-integermodel (2). Despite being rank-defect,
the model leverages the bias constraint b ∈ B so as to realize
the unique mappings IB : Rn �→ Z

n and JB : Rn �→ B.
In this contribution, we proved that BEAT offers ‘best’

estimation of z ∈ Z
n and b ∈ B in the sense of delivering a

bias solution that has, on average, the smallest inconsistency
with its underlying model (cf. 31). We first reviewed some
important interferometric measuring systems whose estima-
tion problems can be covered by BEAT (cf. Examples 1
to 4). A class of admissible estimators were then charac-
terized, serving to determine the integer- and bias-parts of
the carrier phase ambiguities (cf. 16). We studied the PDFs
of the involved estimators, highlighting that the presence of
the nonempty bounded subset B ⊂ R

q ‘curbs’ probability
masses around values that are deemed to be far from the
target value b (cf. Fig. 2).

To show the BEAT at work, we studied the problem of
GLONASS SD ambiguity resolution. It was highlighted,
for current GLONASS frequency channel numbers, that
the FDMA bias solutions—when the corresponding integer-
estimable ambiguities are constrained to be known—are
three orders of magnitude more precise than their CDMA
versions. While the bias constraint ||b|| ≤ √

2h significantly
benefits FDMA SD ambiguity resolution, it does not con-
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siderably improve the performance of the CDMA case. By
evaluating the ambiguity-fixed positioning solutions of sev-
eral short-baselines, it was demonstrated that GLONASS
bias-bounded SD ambiguity resolution can produce con-
siderably more accurate fixed positioning solutions than its
existing bias-estimable counterpart in which an extra inte-
ger ambiguity (per frequency band) is sacrificed (cf. 32 and
Fig. 5). However, such superiority in performance holds if the
involved SD receiver phase delays are bounded (cf. Fig. 6)
and the constraint b ∈ B is correctly specified (cf. Fig. 10).

Although in this contribution we restricted our attention
to single baseline models, the proposed methodology can
of course be also employed for GNSS network models. As
with between-receiver SD ambiguity resolution, the applica-
bility of the bias-constrained ILS estimation can potentially
be extended to between-satellite SD ambiguity resolution.
While such extension can be attractive for single-receiver
GNSS applications like precise point positioning (PPP), one
should bear in mind that constraining phase biases improves
the accuracy of model parameter solutions only when (1)
the constraints are not misspecified and (2) the constraints
are considerably tight in such a way that they can penalize
wrong ambiguity-fixing.
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