
Journal of Geodesy           (2024) 98:35 
https://doi.org/10.1007/s00190-024-01846-1

ORIG INAL ART ICLE

Improved estimates for the linear Molodensky problem

Fernando Sansò1 · Barbara Betti1

Received: 24 October 2023 / Accepted: 1 April 2024
© The Author(s) 2024

Abstract
The paper deals with the linearized Molodensky problem, when data are supposed to be square integrable on the telluroid S,
proving that a solution exists, is unique and is stable in a space of harmonic functions with square integrable gradient on S.
A similar theorem has already been proved by Sansò and Venuti (J Geod 82:909–916, 2008). Yet the result basically requires
that S should have an inclination of less than 60◦ with respect to the vertical, or better to the radial direction. This constraint
could result in a severe regularization for the telluroid specially in mountainous areas. The paper revises the result in an effort
to improve the above estimates, essentially showing that the inclination of S could go up to 75◦. At the same time, the proof
is made precise mathematically and hopefully more readable in the geodetic community.

Keywords Geodetic boundary value problem · Regularity of the telluroid · Spaces of harmonic functions

1 Introduction

The geodetic boundary value problem (GBVP), or Molo-
densky problem (MP) Eremeev et al. (1962), is one of the
theoretical pillars of physical geodesy in that it studies under
what conditions we can provide on the Earth surface gravity
field data such that it can be determined, in a stable way, in
the space outside the masses.

Since the GBVP is basically a mathematical continuous
model to which we can arrive only after a long process of
approximations as well as taking ideally a limit on the frame
of real data (Sansò 1995), which is always discrete and finite,
it has been only natural that it received different formula-
tions in different epochs of evolution of the available data and
geodetic theory, depending on progress both in mathematical
analysis and in its numerical implementation. Here we men-
tion only the spherical formulation of Stokes (Stokes 1849),
with its corollary of Pizzetti and Somigliana for the normal
field (Pizzetti 1894; Somigliana 1929), the Helmert solution
for accounting of the effects of topographic masses (Helmert
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1884), the work of Molodensky and others, representing the
first step into a modern linearized analysis (Eremeev et al.
1962), followed by the advances of Heiskanen and Moritz
(1967), Moritz (1980) and Krarup (2006), who first gave a
completely rigorous formulation of the GBVP in linear form.
Then the basic turning point of the analysis by Hörmander
(1976) who first has attacked the GBVP in its natural form
of a free boundary, oblique derivative BVP for the Laplace
operator and, as such, a nonlinear problemof potential theory,
immediately followed by the analysis exploiting the so-called
gravity space approach (Sansò 1977) that provides more
favorable results, requiring a lower degree of regularity of
the data. For a more general analysis of the oblique deriva-
tive problem, one can consult (Yanushauskas 1989).

One important point to underline here is that it is due to L.
Hörmander the intuition that introducing as data lower degree
harmonic coefficients of the potential would have simplified
the analysis of the linear and hence of the nonlinear problem.
On the other hand, the introduction of these harmonic coeffi-
cients as data is quite justified today that a number of global
models derived from satellite only observations is available
up to degree 300 at least. This modification of Molodensky’s
problem has transformed it in something different than a pure
BVP, where data are given only on the boundary. In spite of
this remark, we will continue to call the modified Moloden-
sky problem the GBVP as traditional.

One important achievement has been the recognition that,
due to a very close alignment of the normal gravity to the
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normal of the ellipsoid in the topographic layer, up to the
Earth surface, there has been some confusion in geodetic
literature between two different formulations of the GBVP:
the original one in vector form Eremeev et al. (1962) and
the other in scalar form Sansò and Sacerdote (1986). Yet,
the authors think there is a general consensus with the scalar
formulation of the GBVP which in linear form becomes (see
Sansò and Sideris 2013, §15.2)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�T = 0 in � ≡ {h ≥ H∗
σ }

− ∂T
∂h + ∂γ /∂h

γ
T = �g on S ≡ {h = H∗

σ }
T = 0

(
1
r3

)
(1.1)

where T is the anomalous potential of the gravity field, h
the ellipsoidal height, σ = (λ, ϕ) the ellipsoidal angular
coordinates, �g = g(σ ) − γ (H∗

σ , σ ) the free air gravity
anomaly and {h = H∗

σ } the equation of theMarussi telluroid.
Let us remind here that the classical condition on the third

Eq. (1.1) means that the zeroth- and first-order degrees of the
asymptotic development of T are annihilated. This happens
because in the definition of the normal potentialU is included
the “exact” knowledge of the total mass of the Earth and in
fixing the coordinate system to which the normal potential
refers, the geometric center of the ellipsoid, equipotential of
the normal potential U , is directly placed at the barycen-
ter of the actual gravity field (cf. Sansò and Sideris 2013,
§1.3).Contrary to the nonlinear problem, the linearized scalar
Molodensky problem can be analyzed in Hilbert spaces of
Sobolev type, arriving at a theorem of existence uniqueness
and stability of the solution, when the datum �g(σ ) is in
L2

σ (see Sansò and Venuti 2008 and Sansò and Sideris 2013,
§15.3). The proof of the theorem will be reviewed in this
paper, yet here we want to underline that the validity of the
mentioned theorem relies critically on the satisfaction of the
following inequality

4J 2+
(

δR

R+
+ 2

L + 2

)

< 1 (1.2)

where

ϑ+ = maximum inclination of the telluroid with respect
to the radial unit vector eeer
J+ = 1

cosϑ+
r = Rσ spherical equation of the telluroid
R+ = max Rσ , R− = min Rσ

δR = R+ − R−
L = max degree of the harmonic coefficients {Tn,m} that
we assume to be known.

As it is apparent also from the symbols used, the inequality
(1.2) has been derived starting from a spherical approxima-

tion approach. In particular, in the above list the angular
coordinates σ = (ϕ, λ) have to be understood as spheri-
cal angles rather than ellipsoidal. The transition from (1.2)
to the corresponding inequality for the true linear Moloden-
sky problem produces a small difference with results coming
from (1.2), Sansò and Sideris (2013), §15.3.

As we see from (1.2), if we want to treat the GBVP for
a telluroid with a strong maximum inclination we need to
introduce a larger number of knownpotential harmonics up to
the maximum degree L . Since the corresponding coefficients
are imperfectly known, so that the model

TL = μ

R

L∑

�=2

T
�m S�m (σ ) (μ = GM, M = Earth mass,

S
�m = solid spherical harmonics) (1.3)

has an increasing cumulative error,wewould like to keep L as
low as possible, compatibly with the value of the geometrical
parameter J+. It is in the purpose of this paper to show that
(1.2) can be substituted by the more favorable condition

3J 2+
(

δR

R+
+ 1

L + 2

)

< 1, (1.4)

implying the knowledge of a global model TL of much lower
maximum degree L , for the same J+. Therefore, although
the paper is certainly a review ofmany known results, though
maybe presenting them with more details and mathematical
rigor, it also presents new results discussing their geodetic
relevance in the last section.

Remark 1 (Notation and conventions) We will use for any
function defined in �

f ′(r , σ ) ≡ ∂

∂r
f (r , σ ) (1.5)

for the sake of brevity.
For the same reason, we adopt the convention that, if not

differently stated, any summation on harmonic degrees and
orders (�,m) has to be understood as summation on � in
the indicated intervals, while the summation on m is always
on its full range, namely −� ≤ m ≤ �, even if not explic-
itly written; so, for instance, we have to understand, for any
quantity depending on degree and orders

L∑

�=2

A
�m ≡

L∑

�=2

�∑

m=−�

A
�m . (1.6)

Moreover, we will use the notation

� = 0, 1 . . . ,−� ≤ m ≤ �, S
�m (r , σ ) =

(
R+
r

)�+1

Y
�m (σ )

(1.7)
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for the solid spherical harmonics, observing that with this
choice the sequence {S

�m } coincides with that of ordinary
spherical harmonics on the Brillouin sphere S+ ≡ {r = R+},

S
�m (R+, σ ) ≡ Y

�m (σ ). (1.8)

Furthermore, we will adopt as measure of the area element
of the unit sphere

dσ = 1

4π
cosϕdϕdλ, (1.9)

so that the surface of the whole sphere is normalized

∫

dσ = 1. (1.10)

Yet we have to warn the reader that in this case the volume
element and the surface element in spherical coordinates have
to be written as

d� = 4πr2drdσ, dS = 4π J R2
σdσ,

(

J = 1

cosϑ

)

(1.11)

Finally, we will slightly modify the classical Lipschitz
condition for a function F(σ ) of the point σ on the unit
sphere, by using as definition of the Lipschitz ratio (see Eq.
(A21) in Appendix)

(cosψσσ ′ = eeeγ · eeeγ ′); |F(σ ) − F(σ ′)|
ψσσ ′

(1.12)

instead of

|F(σ ) − F(σ ′)|
2 sin ψσσ ′

2

, (1.13)

where 2 sin ψσσ ′
2 is the Cartesian distance between the two

points σ, σ ′ on the unit sphere. The two definitions are, as a
matter of fact, equivalent because the ratio (sinψ/2)/ψ/2 is
positive and bounded above and below in a finite neighbor-
hood of ψ = 0.

As for any further doubt about notation, beyond the list
Eq. (1.2) and what is presented from Eq. (1.5) to Eq. (1.13),
one could consult that of the book (Sansò and Sideris 2013).

The plan of the paper is as follows: After recalling in Sect.
2 many equivalent formulation of the linearizedMolodensky
problem and proving some technical results in Sect. 3, the
main result for the geodetic boundary value problem is fully
achieved inSects. 4 and5. InSect. 6, the geodetic significance
of the result is discussed in length.

Finally, in Appendix some basic mathematical theory of
spaces of harmonic functions are recalled to provide the
reader with proper tools necessary to understand the paper.

We warn the reader that maybe, before attacking the rest
of the paper, it could be useful to read Appendix where a
number of facts, well known but important, are recalled.

2 Many (almost) equivalent formulations of
Molodensky’s problem

Here we follow the path of the proof in Sansò and Sideris
(2013), §15.3 but for two crucial steps contained in lem-
mas, in the next section. In particular, the data space will
be H0, which is essentially L2(S) with an equivalent norm
as explained in Appendix, while the solution space H1 is
essentially the Sobolev Space H1,2(S) with a variant closely
examined, again inAppendix.We recall only here that having
to work with spaces of harmonic functions, we can always
identify each function with its trace on S; specifically, we
have

‖ u ‖20≡‖ u ‖2H0
=

∫

u(Rσ , σ )2Rσdσ (2.1)

and

‖ u ‖21≡‖ u ‖2H1
=

∫

|∇u(Rσ , σ )|2R3
σdσ. (2.2)

Moreover, we have

H1 ⊂ H0, (‖ u ‖1≤ c ‖ u ‖0) (2.3)

as shown in (A41).
Finally, from Proposition 3, for every u harmonic in �,

we have equivalently

u = O

(
1

r L+2

)

⇔ u+�m = 0, 0 ≤ � ≤ L, (2.4)

where

u+�m =
∫

u(R+, σ )Y
�m (σ )dσ ; (2.5)

moreover, there are functions {Z
�m } ∈ H0 that with solid

spherical harmonics {S
�m } form a bi-orthogonal system,

namely

< Z
�m , S jk >0= δ� jδmk . (2.6)

The span {Z
�m }, starting from degree 2, is dense in H0 and

we call

WL = {Z
�m , 2 ≤ � ≤ L}. (2.7)
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We notice that Z
�m are useful to represent the harmonic coef-

ficients of any function u harmonic in �, referred to S+ as
in (2.5), namely

u+�m =< Z
�m , u >0 . (2.8)

Now we rewrite (1.1) adding to the third of (1.1) also the
knowledge of some harmonic coefficients up to maximum
degree L , all orders. We arrive then to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�T = 0 in �

− ∂T
∂h + ∂γ /∂h

γ
T = �g on S

T = O
(

1
r3

)
,

< Z
�m , T >0= T+�m , 2 ≤ � ≤ L.

(2.9)

We can observe that using {T+�m , 2 ≤ � ≤ L} as datum is
equivalent to considering as known a satellite only model

TL ≡ μ

R

L∑

�=2

T+�m S�m (2.10)

which can be subtracted to T to arrive at a new reduced
problem for the residual potential

u = T − TL , (2.11)

as it is a common practice in geodesy.
It is clear that the new problem for u is

⎧
⎪⎨

⎪⎩

�u = 0 in �

− ∂u
∂h + ∂γ /∂h

γ
u = �g − �gL on S

< Z
�m , u >0= 0 0 ≤ � ≤ L,

(2.12)

where

�gL = μ

R

L∑

�=2

T+�m

(

−∂S
�m

∂h
+ ∂γ /∂h

γ
S

�m

)

. (2.13)

For reasons that will become soon clear, we rewrite the
boundary relation in the form

r
∂u

∂h
− r

∂γ /∂h

γ
u|S = −r(�g − �gL)|S ≡ f (σ ) (2.14)

where f (σ ) is clearly a known term. It is convenient to intro-
duce a notation for what we call the Molodensky operator,
also splitting it into a spherical and a perturbative part, in the

following way

Mu = rννν · ∇u − r
∂γ /∂h

γ
u =

≡ reeer · ∇u+2u−r(eeer−ννν) · ∇u−
(

r
∂γ /∂h

γ
+2

)

u ≡
= MSu − δMu (2.15)

where ννν is the ellipsoidal normal, eeer is the unit radial vector,

MS = reeer · ∇ + 2 = r
∂

∂r
+ 2 (2.16)

is the spherical (or simple) Molodensky operator, and

{
δM = rεεε · ∇ + η

εεε = (eeer − ννν), η = r ∂γ /∂h
γ

+ 2
(2.17)

is the perturbative part of M .
The reason why we call δM a perturbative operator is that

at the level of S, as shown in Sansò and Sideris (2013),

ε+ = max |εεε| ∼= 1

2
e2 (2.18)

η+ = max |η| ∼= 2e2 (2.19)

with e2 ∼= 0.0067 the squared eccentricity of the ellipsoid,
so that δM is a “small” operator. Summarizing, we can refor-
mulate (2.12) as

⎧
⎨

⎩

�u = 0 in �

MSu − δMu = f on S
u ∈ W⊥

L (or < Z
�m , u >0= 0, 2 ≤ � ≤ L)

(2.20)

Remark 2 One has to be aware that the third of (2.20) as a
matter of fact imposes (L+1)2−4 conditions on the solution;
so, we may guess that the same number of conditions has to
be imposed on the known term f (σ ) in order to guarantee the
existence of a solution. As an alternative, one could introduce
an ad hoc function, belonging to some finite-dimensional
subspace of H0, with unknown (L+1)2−4 coefficients to be
determined from the conditions implied by the third of (2.20).
As such, the basis of the subspace used in this way is not fixed
on condition that such basis be transversal to W⊥

L ; for such
a reason, it makes a lot of sense to use as such the subspace
WL itself to reach the right number of dimensions. This has
been the suggestion of Hörmander (1976) and we will follow
it here, although a choice like span {S

�m ; 0 ≤ � ≤ L} would
also be possible.

Let us observe as well that here WL and W⊥
L are both

considered as spaces for the data and the unknowns: This is
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possible because the harmonic function u is identified with
its trace, as a function of σ , and u ∈ H1 ⊂ H0, to which the
datum f is assumed to belong.

So we arrive at the final formulation of the linearized
Molodensky problem in the form

⎧
⎨

⎩

�u = 0 in �

MSu − δMu = f − ∑L
�=2 a�m Z�m on S

< Z
�m , u >0= 0, 2 ≤ � ≤ L

; (2.21)

of course, the unknowns of this problem become now u ∈
W⊥

L ∩ H1, {a
�m } ∈ R(L+1)2−4.

3 Two technical lemmas

In this section, we prove two technical lemmas. We have
not placed them into Appendix because the first leads to a
substantial change with respect to the proof in Sansò and
Sideris (2013), the second because it is a fundamental tool
in the theory of geodetic BVPs.

Lemma 1 Assume

u ∈ W⊥
L ∩ H1; (3.1)

then,

‖ u ‖0≤ cL J+ ‖ u ‖1 (3.2)

with

cL = δR

R+
+ 1

L + 2
. (3.3)

Proof Let us call

u+(σ ) = u(R+, σ ). (3.4)

We can write

‖ u ‖0≤‖ u+ − u ‖0 + ‖ u+ ‖0 . (3.5)

On the other hand, in �+ ≡ {r ≥ R+}, including S+, we
know that we can use the convergent series

u(r , σ ) ≡
+∞∑

�=L+1

u+�m S�m (r , σ ). (3.6)

So we can write

‖ u+ ‖20 =
∫

dσ Rσu
2(R+, σ )

≤ R+
+∞∑

�=L+1

u2+�m
≤ R+

L + 2

+∞∑

�=L+1

(� + 1)u2+�m
.

(3.7)

But we know that

∫

S+
−u′udS+ ≡ 4πR2+

∫

−u′(R+, σ )u(R+, σ )dσ

= 4πR+
+∞∑

�=L+1

(� + 1)u2+�m
. (3.8)

So we can write, by applying the Gauss theorem through
the surface S+ bounding �+,

‖ u+ ‖20 ≤ 1

4π

1

L + 2

∫

S+
−u′udS+

≡ 1

4π

1

L + 2

∫

�+
∇u2d�. (3.9)

Coming to the difference u+ − u, we have

|u+(σ ) − u(Rσ , σ )|2 =
∣
∣
∣
∣

∫ R+

Rσ

u′ds
∣
∣
∣
∣

2

≤
∫ R+

Rσ

u′2s2ds
∫ R+

Rσ

ds

s2

≡ δR

R+Rσ

∫ R+

Rσ

u′2s2ds. (3.10)

We multiply (3.10) by Rσ and integrate in dσ , to get, also
recalling (1.11),

‖ u+ − u ‖20 =
∫

Rσ |u+ − u|2dσ

≤ δR

R+

∫

dσ
∫ R+

Rσ

u′2s2ds

≤ δR

R+
1

4π

∫

�\�+
d�|∇u|2. (3.11)
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Now we use (3.8) and (3.4) in (3.5) to obtain

‖ u ‖0 ≤
[

δR

R+
1

4π

∫

�\�+
|∇u|2d�

]1/2

+
[

1

L + 2

1

4π

∫

�+
|∇u|2d�

]1/2

≤ c1/2L
1√
4π

[∫

�

|∇u|2d�
]1/2

= c1/2L√
4π

[∫

S
−uundS

]1/2

≤ c1/2L√
4π

[∫

|u||∇u|4π J R2
σdσ

]1/2

≤ c1/2L [J+ ‖ u ‖0‖ u ‖1]1/2 (3.12)

In the last step of (3.12), we have used Schwartz’ inequal-
ity and the fact that R2

σ ≡ R3/2
σ · R1/2

σ and denoted by un the
external normal derivative of u on S.

Squaring (3.12) and simplifying by ‖ u ‖0 we get (3.2). ��

Remark 3 We remind that in Appendix we have already
found a majorization of the type (3.2), yet there, since we
wanted to prove only that H1 ⊂ H0, we have arrived at the
inequality (A41) which is valid ∀u ∈ H0. In Lemma (1),
however, we have restricted this evaluation to functions that
are in W⊥

L ; whence, we got the much tighter inequality (3.2)
where cL is expected to be significantly smaller than 1.

It is clear that a good step forward has been done in the
use of inequality (3.7) which causes a gain by almost a factor
2 with respect to previous work. Still this inequality seems
very rough and maybe one could do better in future.

Lemma 2 (Energy integral identity)Assume that u ∈ H1 and
put

MSu = ru′ + 2u = v ∈ H0; (3.13)

then, the following identity holds

4π ‖ u ‖21≡
∫

S
(−3u + 2v)undS. (3.14)

Proof We start from the differential identity, valid for ∀u ∈
H1,

∇ · (ru′ + 2u)∇u = 1

2
r

∂

∂r
|∇u|2 + 3|∇u|2, (3.15)

which is easily verified expressing all operators in Cartesian
coordinates and recalling that u has to be harmonic.

Integrating (3.15) on �, recalling (1.11), applying Gauss
theorem and using the identity

1

2

∫ +∞

Rσ

r
∂

∂r
|∇u|2r2dr = −1

2
R3

σ |∇u(Rσ , σ )|2

−3

2

∫ +∞

Rσ

|∇u|2r2dr (3.16)

we find

−
∫

S
vundS ≡ 3

2

∫

�

|∇u|2d� − 1

2
· 4π

∫

S
|∇u|2R3

σdσ.

(3.17)

Multiplying by 2, reordering and using Gauss theorem
again, we find (3.14), which is an identity using only u, or
some of its functionals, at the level of S. ��

Remark 4 Weunderline that there are families of energy inte-
gral identities (see Sansò and Sideris 2013), §15.3. In this
case, (3.14) is tailored to the GBVP, involving the harmonic
function v given by (3.13).

4 The simple Molodensky problem (SMP)
and the Praguemethod

By definition, the simple Molodensky problem is just (2.21)
without the perturbative term δMu, namely

⎧
⎨

⎩

�u = 0 in �

Msu = f − ∑L
�=0 a�m Z�m on S

< Z
�m , u >0= 0, 0 ≤ � ≤ L.

(4.1)

This is a relatively easy problem and its solution is clas-
sical, dating back to the times of Moritz (1965) and Krarup
(2006). What is not classical is the proof that the solution
satisfies the regularity and stability relations

‖ u ‖1≤ DL ‖ f ‖0 (4.2)

‖
L∑

�=0

a
�m Z�m ‖0≤‖ f ‖0, (4.3)

for a certain specific constant DL .
We observe already at this point that the parametric func-

tion
∑L

�=2 a�m Z�m being finite-dimensional, since {Z
�m , 2 ≤

� ≤ L} are linearly independent, has a squared norm

‖
L∑

�= j

a
�m Z�m ‖20≡

L∑

�, j=2

a
�m < Z

�m , Z jk > j a jk (4.4)
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that is equivalent to the squared Cartesian norm

|{a
�m }|2 ≡

L∑

�=2

a2
�m

. (4.5)

The method of analysis adopted is what Krarup has called
the Prague method, which is essentially the spherical ver-
sion of the Cartesian approach to the oblique BVP by Giraud
(1934), Miranda (1970). It is based on properties of the oper-
ator

Ms = r
∂

∂r
+ 2 =

3∑

i=1

xi
∂

∂xi
+ 2 (4.6)

that is summarized by the following proposition.

Proposition 1 Properties of MS

(a) MS : H1 → H0, implying that v = MSu is harmonic
(b)

v+�m = −(� − 1)u+�m (4.7)

(c) MS is invertible W⊥
L ∩ H1 → W⊥

L ⊂ H0, L > 1, with
continuous inverse.

Proof a) that MS is continuous H1 → H0 is obvious, once
we have proved that

v = O

(
1

r3

)

(4.8)

and

�v = 0 in �. (4.9)

As for (4.8), we simply have (recall that u is very smooth
in �)

u = O

(
1

r3

)

⇒ v = rO

(
1

r4

)

+ O

(
1

r3

)

= O

(
1

r3

)

.

(4.10)

Now from the identity

�v = �MSu = (MS + 2)�u, (4.11)

we see that �u = 0 ⇒ �v = 0;
b) since u, v are harmonic in �, they both have the con-

verging representation in �+

u =
+∞∑

�=2

u+�m S�m , v =
+∞∑

�=2

v+�m S�m , (4.12)

so that (4.7) is just the classical Stokes relation;
c) from (4.7), we see that

� ≥ 2, u+�m = − v+�m

� − 1
(4.13)

so that given v in �+ we find one and only one u harmonic
in this set. However, by the unique continuation property
u, which is harmonic in the whole �, is also univocally
determined there. Following an alternative more classical
reasoning, we can even determine the explicit form of M−1

S ,
in fact it is well known that v = MSu implies, (seeHeiskanen
and Moritz 1967),

u(r , σ ) = − 1

r2

∫ +∞

r
v(s, σ )sds. (4.14)

From (4.14),we see that given any v ∈ H0, (v = O
(

1
r3

)
),

u can be computed because the integral is converging. This
means that MS is injective and surjective on H0, and then,
the inverse M−1

S is a bounded operator by the open mapping
theorem Yosida (1980), i.e., (4.2) holds for L = 2 and some
constant DL . The same reasoning can be applied to W⊥

L for
any L > 2. ��

Let us underline that in this way we have not determined
the constant DL ; this will be done in Theorem 2.

Proposition 2 The problem (4.1) is equivalent to a Dirichlet
problem for

v = MSu, (4.15)

namely

⎧
⎨

⎩

�v = 0 in �

v|S = f − ∑L
�=0 a�m Z�m on S

< Z
�m , v >= 0 2 ≤ � ≤ L.

(4.16)

Proof Let u, {a
�m , 0 ≤ � ≤ L} be a solution of (4.1), then v

is harmonic in � by Proposition 1,a) and

v|S = MSu|S = f −
L∑

�=2

a
�m Z�m . (4.17)

Moreover, v ∈ W⊥
L by Proposition 1,c), so that the third

of (4.16) is satisfied too. Vice versa, let v, {a
�m , 2 ≤ � ≤ L}

be a solution of (4.16); then, u given by (4.14) is harmonic
and

MSu = v (4.18)
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so that

MSu|S ≡ f −
L∑

�=0

a
�m Z�m . (4.19)

Moreover, always by Proposition 1,c),

u = O

(
1

r L+2

)

⇒ u ∈ W⊥
L ,

so that the third of (4.1) is satisfied too. ��
Thanks to Proposition 1,c) and Proposition 2, we know

that if we can find a solution v, {a
�m }, of (4.16) in H0 then

there is a solution u, {a
�m } of (4.1) with u belonging to H1,

though the constant DL in (4.2) is not yet known.The solution
of (4.16) is provided by the next theorem.

Theorem 1 Given any f ∈ H0, there is one and only one
solution v, {a

�m , 2 ≤ � ≤ L} of (4.16), with v ∈ H0 too, and
such that

‖ v ‖0≤‖ f ‖0 (4.20)

‖
L∑

�=0

a
�m Z�m ‖0≤‖ f ‖0 . (4.21)

Proof Let us first consider the simple Dirichlet problem

{
�w = 0 in �

w = f on S; (4.22)

we know that this problem has one and only one solution and
if f ∈ L2

σ , also w ∈ L2
σ . Moreover, if f ∈ H0 by hypothesis

then

w+ jk = 0 j = 0, 1 (4.23)

namely w ∈ H0 and it is isometrically related to f .
Now we put

L∑

�=2

a
�m Z�m = PWLw, (4.24)

where we have introduced PWL , the symbol of he H0-
orthogonal projector on WL . Such equation is clearly equiv-
alent to the system

2 ≤ j ≤ L;
L∑

�=2

a
�m < Z

�m , Z jk >0

=< w, Z jk >0≡< f , Z jk >0, (4.25)

which univocally determines {a
�m } because {Z

�m } are linearly
independent.

We can therefore define a v by

v = w −
L∑

�=2

a
�m Z�m = (I − PWL )w ≡ PW⊥

L
w. (4.26)

Of course, v is harmonic in � and

2 ≤ j ≤ L; v+ jk =< w, Z jk >0

−
L∑

�=2

a
�m < Z

�m , Z jk >0= 0; (4.27)

furthermore,

v|S = f −
L∑

�=2

a
�m Z�m , (4.28)

in other words v is a solution of (4.16).
The uniqueness of w implies that of v.
Finally, the two definition (4.24) and (4.26) show that

‖ v ‖0≤‖ w ‖0=‖ f ‖0 (4.29)

‖
L∑

�=2

a
�m Z�m ‖0≤‖ w ‖0≡‖ f ‖0 . (4.30)

��
The final step of the section is the determination of DL .

Theorem 2 Assume that

3J 2+cL < 1, (4.31)

then the solution u, {a
�m } of (4.1) satisfies

‖ u ‖1≤ DL ‖ f ‖0 (4.32)

with

DL = 2J+
1 − 3J 2+cL

. (4.33)

Proof We already know that u exists and is in H1 by Propo-
sition 1,c); so, we can apply the Lemma 2 and Eq. (3.14).
Recalling that dS = 4π J R2

σdσ , we find

4π ‖ u ‖21
≤ 4π

∫

S
|2v − 3u||un|J R2

σdσ ≤

≤ 4π J+
[∫

|2v − 3u|2Rσdσ

]1/2 [∫

|un|2R3
σdσ

]1/2

≤ 4π J+ ‖ 2v − 3u ‖0‖ u ‖1
≤ 4π J+(2 ‖ v ‖0 +3 ‖ u ‖0)· ‖ u ‖1 . (4.34)
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Simplifying by 4π ‖ u ‖1, we get

‖ u ‖1≤ 2J+ ‖ v ‖0 +3J+ ‖ u ‖0 . (4.35)

But by Lemma 1 (see Eq. (3.2))

‖ u ‖0≤ J+cL ‖ u ‖1 (4.36)

that, inserted into (4.35), observing that ‖ v ‖0≤‖ f ‖0,
gives

(I − 3J 2+cL) ‖ u ‖1≤ 2J+ ‖ f ‖0, (4.37)

so proving (4.31), (4.32), (4.33). ��

5 Solution of the linearized GBVP

Let us write the linearized GBVP, modified as in (2.21) in
the form

⎧
⎨

⎩

�u = 0 in �

MSu = ( f + δMu) − ∑L
�=2 a�m Z�m on S

< Z
�m , u >0= 0 2 ≤ � ≤ L.

(5.1)

On the basis of the analysis of the SMP, we know that if a
solution of (5.1) exists, and if

3J 2+cL < 1, (5.2)

u has to satisfy, recalling (4.32) and (3.2)

‖ u ‖1 ≤ DL ‖ f + δMu ‖0
≤ DL ‖ f ‖0 +DL(‖ Rσεεε · ∇u ‖0 + ‖ ηu ‖0)
≤ DL ‖ f ‖0 +DL(ε+ ‖ u ‖1 +η+ ‖ u ‖0)
≤ DL ‖ f ‖0 +DL(ε+ + η+ J+cL) ‖ u ‖1 . (5.3)

As we see, we obtain once more a majorization of the type

‖ u ‖1≤ KL ‖ f ‖0 (5.4)

with

KL = DL

1 − DL(ε+ + η+ J+cL)
, (5.5)

if the condition

DL(ε+ + η+ J+cL) < 1 (5.6)

is satisfied. These inequalities clearly call for the application
of a simple iterative scheme to prove the existence of the
solution. This is done in the next theorem.

Theorem 3 Let us assume that the condition (5.6) is satisfied;
then the iterative scheme

⎧
⎨

⎩

�un+1 = 0
MSun+1 = f + δMun − ∑L

�=2 a
(n+1)
�m

Z
�m

un+1 ∈ W⊥
L

(5.7)

is convergent in H1 ⊗ R(L+1)2−4 to the solution u, {a
�m , 2 ≤

� ≤ L}, of the linearized GBVP (2.21).

Proof Let us recall that, according to the analysis of the SMP,
we can split (5.7) into two problem, namely:

{
�un+1 = 0
MSun+1 = PW⊥

L
( f + δMun)

(5.8)

and

L∑

�=2

a(n+1)
�m

Z
�m = PWL ( f + δMun). (5.9)

We can note that indeed (5.8) has a solution automatically
belonging to W⊥

L ; subtracting two steps in the iteration, we
get

{
�(un+1 − un) = 0
MS(un+1 − un) = PW⊥

L
δM(un − un−1),

(5.10)

implying, repeating the reasoning in (5.3),

‖ un+1 − un ‖1≤ DL(ε+ + η+ J+cL) ‖ un − un−1 ‖1 .

(5.11)

Therefore, it is clear that, if (5.6) is satisfied, the sequence
{un} converges to some u in H1 ∩ W⊥

L . So we have as well

MSun →
H0

MSu, δMun →
H0

δMu, (5.12)

and u is part of the solution of the linearized GBVP, i.e.,

{
�u = 0
MSu = PW⊥

L
( f − δMu).

(5.13)

Coming to the sequence {a(n)
�m

}, we write (5.9) in the equiva-
lent form

2 ≤ j ≤ L;
L∑

�=2

a(n+1)
�m

< Z
�m , Z jk >0=< f , Z jk >0

+ < δMun, Z jk >0 . (5.14)
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Taking the limit of the relation (5.14), since everything
is finite-dimensional and δMun →

H0
δMu, we see that also

{a(n)
�m

} is convergent to some {a
�m } such that

2 ≤ k ≤ L;
L∑

�=2

a
�m < Z

�m , Z jk >0

=< f , Z jk >0 + < δMu, Z jk >0 (5.15)

or

L∑

�=2

a
�m Z�m = PWL ( f + δMu) (5.16)

Putting (5.13) and (5.16) together, we see that u, {a
�m }

give the complete solution of the linearized GBVP. ��

6 Discussion and questions

Two points related to the choice of the data space H0 and
solution space H1 are worth discussing. The first is qualita-
tive; as for irregularity of their functions, H0 is essentially
L2(S) and H1 is essentially the Sobolev space H1,2(S). The
fact that the solution is in H1,2 then means that its gradient
at the boundary is in L2. In geodetic terms, this means that if
�g(σ ) is an L2 function on the boundary, then the deflection
of the vertical δδδ = nnn − ννν is also in L2 and we are justified
to compute it on S. In other words, Vening Meinesz formu-
las are valid, even without a particular regularization of the
datum �g, which is discrete in nature, other than a simple
least-squares interpolation.

The second point is more technical and refers to the fact
that H0 and hence H1 too are defined in such a way as to
contain only functions T for which T+�m = 0, (� = 0, 1),
namely orthogonal to Z

�m (� = 0, 1). In this way, the
non-uniqueness of the inversion of the simple Molodensky
operator, which has a zero space spanned by first degree har-
monics, is hidden. For this matter, we could have used larger
spaces and discuss this non-uniqueness, yet we have pre-
ferred to follow the geodetic tradition according to which
the non-uniqueness is eliminated a priori in the definition
of the anomalous potential, by a suitable choice of the ref-
erence system. As for the geodetic relevance of the results
obtained in this theoretical review, we can compare the max-
imum degree L of the harmonic coefficients, assumed to be
known, determined according to the requirement (5.6), ver-
sus the same L determined by the previous proof Sansò and
Sideris (2013), §15.3, at least for some significant values of
the maximum inclination ϑ+.

Table 1 L coming from old formula (6.5) and from new formula (6.3),
in function of ϑ+
ϑ+ 60◦ 65◦ 70◦ 75◦ 80◦

L old (6.5) 37 57 103 292 n.a

L new (6.3) 12 17 29 58 203

To this aim, recalling also (3.3), we can solve the inequal-
ity (5.6) obtaining

L >
3 + 2η+

cos2 ϑ+ − 2ε+ cosϑ+ − δT
R+ (3 + 2η+)

− 2, (6.1)

that with the numerical values

3 + 2η+ = 3.0268 , 2ε+ = 0.0067 ,
δR

R+
= 0.0047

(6.2)

becomes

L >
3.0268

cos2 ϑ+ − 0.0067 cosϑ+ − 0.0142
− 2. (6.3)

The same variable L for the old solution can be determined
by the inequality (see Sansò and Sideris 2013)

2R

R+
+ 2

L + 1
>

1 − e2 J+
4J 2+(1 + e2)

≡cosϑ+ − 0.0067 cosϑ+
4.0268

.

(6.4)

Solving with respect to L , we find

L >
8.0536

cos2 ϑ+ − 0.0067 cosϑ+ − 0.0378
− 2. (6.5)

Computing (6.3), (6.5) for a few large values of ϑ+ we get
Table 1.

As we can see the value ϑ+ = 80◦ has to be excluded for
obvious reasons. In fact, we have to realize that incorporat-
ing into the GBVP data coming from harmonic coefficients
{T+�m, 2 ≤ � ≤ L} as derived from satellite observations
only, which are directly connected to the development of T
outside a Brillouin sphere, implies the introduction of a so-
called cumulative error into the final solution. The higher L ,
the larger is the cumulative error Ec(L), in terms of geoid
(see, for instance, Sansò and Sideris 2013, §3.8). Computing
Ec(L) from the model GOCO 06 for some values of L , we
get Table 2.

One could decide that an admissible mean square error
could be of the order of 0.1 mm, given the foundational role
of the actual result for geodesy and considering that, due
to the distribution of errors certainly far from normal on the
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Table 2 Commission error in
geoid from the model GOCO 06,
for some values of L (in mm)

L 20 40 60 80 100 120 140 160 180 200

Ec(L) 3 · 10−2 4 · 10−2 6 · 10−2 0.12 0.27 0.64 1.61 3.75 7.55 14.60

Table 3 Percentage of points of with pointwise inclination larger than
tgϑ+ for the test area (11 · 106) points
ϑ+ 60◦ 65◦ 70◦ 75◦

%(tgϑ > tgϑ+) 0.13 0.03 0.01 (10−5)

tails, pointwise errors can be dozens of times larger than their
r.m.s.

In this case, as we see, we should have limited the maxi-
mum inclination of geoid to ϑ+ = 60◦ with the old formula,
but ϑ+ = 75◦ with the new one. To understand what is
the significance of such constraints in a realistic scenario,
for instance, in areas of rough topography like the Alps, the
Andes or the Himalaya, we have analyzed a digital terrain
model, with a 90m resolution and only altitudes larger than
500m, in the alpine area 45◦ ≤ ϕ ≤ 48◦; 6◦ ≤ λ ≤ 100.
Of course, the telluroid is not identical to the digital terrain
model, but we know it follows it closely. So we have counted
the percentage of points where the terrain inclination, mea-
sured by tgϑ , was exceeding tgϑ+ for some values of ϑ+,
getting the result displayed in Table 3.

This gives an idea of the degree of smoothing of the tel-
luroid, that one has to introduce in order to be compliant with
the constraints imposed by the analysis of the GBVP.

All in all, we believe that a model with numbers

L = 58 Ec = 0.06 mm ϑ+ = 75◦

can provide an acceptable framework in which the real situ-
ation of the Earth can be comprised, although the choice

L = 29 Ec = 0.035 mm ϑ+ = 70◦

could also be a reasonable compromise.
A last comment is on the question whether the present

estimates could be further improved by passing to an ellip-
soidal approximation instead of the spherical one. Thiswould
decrease by a factor of 5 the constant δR

R+ . The matter is stim-
ulating from the methodological point of view, yet a first
analysis of the problem shows that in front of a more difficult
analytical apparatus, the improvement in terms of lowering
L and raising ϑ+ seems to be tiny and maybe not worth the
effort at least from a practical point of view.

Appendix A Some spaces of harmonic
function, spherical harmonics
and the trace operator

We are given a bounded domain B, with boundary S, a star-
shaped Lipschitz surface.� is the open set exterior to S. S+ is
a Brillouin sphere, with radius close to the lower bound, e.g.,
for the Earth R+ ∼= 6, 385 m, basically the equatorial radius
of the Earth plus the height of the Chimborazo mountain. We
denote withH(�) the linear space of functions harmonic in
�

H(�) = {u; �u = 0 in �}. (A1)

H(�) is a Frechet space, i.e., a linear topological vector
space, complete with respect to the topology induced by the
semi norms

pK (u) = sup
x∈K

|u(x)|; K compact ⊂ � (A2)

(see Yosida 1980,I,9, Krarup 2006; Sansò and Venuti 2005).
Let us recall that

H(�) ⊂ C∞(�) (A3)

namely every u ∈ H(�) has continuous derivatives of any
order in every compact domain K ∈ �, and in particular, it
is bounded on K , the imbedding (A3) being continuous. We
now consider a subspace of H(�) namely that of harmonic
functions regular at infinity defined as follows

H(�) ≡ {u ∈ H(�); sup
�

r |u(x)| < +∞} (A4)

Since any function harmonic in � is also harmonic in the
spherical domain �+ ≡ {r ≥ R+}, we know that ∀u ∈
H(�), and in {r ≥ R+}, we can write

u =
+∞∑

�,m=0

u+�m S�m (r , σ )

(

S
�m =

(
R+
r

)�+1

Y
�m (σ )

)

(A5)

and that

u+�m =
∫

S+
uY

�m (σ )dσ =
∫

u(R+, σ )Y
�m (σ )dσ. (A6)
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Since S+{r = R+} is a compact set contained in �, if
u(N ) → u in H(�) we have that u(N )(R+, σ ) → u(R+, σ )

uniformly in σ , so we have

lim
N→∞ u+�m (u(N )) = u+�m (u); (A7)

in other words, u+�m (u) given by (A6) is a continuous linear
functional onH(�). It follows that the space

H(L)(�) = {u ∈ H(�); u+�m (u) = 0, 0 ≤ � ≤ L}
(A8)

is a proper closed subspace of H(�).

Proposition 3 H(L)(�) is characterized by the condition

u ∈ H(�), u = O

(
1

r L+2

)

. (A9)

Proof

u ∈ H(L)(�)

⇒ u =
+∞∑

�=L+1

a+�m

(
R+
r

)�+1

Y
�m (σ ) in �+

⇒ sup
r

r L+2|u| =
∣
∣
∣
∣
∣
∣

L+1∑

m=−(L+1)

u+(L+1,m)R
L+2+ Y

�m (σ )

∣
∣
∣
∣
∣
∣
≤ c

(A10)

because it is a finite sum of finite numbers. So

u ∈ H(L)(�) ⇒ u = O

(
1

r L+2

)

. (A11)

Vice versa, if u = O
(

1
r L+2

)
we have

j ≤ L, lim
r→∞ r j |u| =

∣
∣
∣
∣
∣
∣

j∑

m=− j

u+ jm R j+1
+ Y

�m (σ )

∣
∣
∣
∣
∣
∣
= 0

(A12)

which implies that

u+ jm = 0 j ≤ L, (A13)

because {Y jm(σ )} are linearly independent. ��

Remark 5 Thanks to the work (Sansò and Sacerdote 2008),
we know that ∀u ∈ H(�) and we can define a trace operator,
γS , according to the following procedure:

• first we define a sequence Sm of C∞ surfaces

Sm = {r = Rmσ } (A14)

such that

Rmσ > Rσ , lim
m→∞ Rmσ = Rσ (A15)

uniformly in σ . This is obtained by the usual mollifier
technique (see the discussion on radial basis functions
in Freeden et al. (2009)); even more, since Rσ is Lips-
chitz, Rmσ can be taken to satisfy uniformly the Lipschitz
condition with the same constant,

• then we take the sequence

um(σ ) = u(Rmσ , σ ); (A16)

indeed, um(σ ) uniformly identifies the function u(r , σ )

in the whole �, and when u(r , σ ) ∈ Hs
loc(�), 3/2 >

s > 1/2, case in which one can define the ordinary trace
operator, one has (see McLean 2000)

um(σ ) → u(σ ) in Hs−1/2(S). (A17)

• In reality, as proved in Sansò and Sacerdote (2008), the
−1/2 rule holds ∀s ∈ R, namely even for s ≤ 1/2, when
we work with spaces of harmonic functions, even for the
whole H(�) one can define the γS(u) operator proving
the one-to-one correspondence between

u ↔ γS(u). (A18)

Yet the characterization of this space of traces (that is
larger than the space of distributionsD(S)∗) goes beyond
the scope of this paper where only traces in L2(S) or
H1,2(S) are needed. Similar, but not identical, results are
known in mathematical literature (see Shlapunov 2002).

Fundamental is to understand what happens when un(σ )

is a bounded sequence in L2
σ or in L2(S). First of all, the two

norms are equivalent because

‖ u|S ‖2L2
σ

=
∫

u2(Rσ , σ )dσ ;

‖ u|S ‖2L2(S)
=

∫

u2(Rσ , σ )dS (A19)

and the area element dS can be written

dS = 4π J R2
σdσ (A20)

with J = (cosϑ)−1, cosϑ = nnn · eeer and nnn the normal unit
vector at dS. Let us recall that requiring that S is star-shaped
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and Lipschitz in the variable σ , which means that

S ≡ {r = Rσ }; |Rσ − Rσ ′ | ≤ Kψσσ ′

(cosψσσ ′ = eeeσ · eeeσ ′), (A21)

for some constant K .
Whence,

|∇σ Rσ | ≤ K (A22)

for almost all σ . Since

cosϑ = 1
√
1 + tg2ϑ

= 1
√

1 + |∇σ Rσ |2
R2

σ

(A23)

recalling (A22), one has

R2
σ ≤ J R2

σ ≤ Rσ

√

R2
σ + K 2 (A24)

that further used with (A20) gives

4πR2−dσ ≤ dS ≤ 4πR+
√

R2+ + k2dσ. (A25)

This proves the equivalence of the two norms in (A19) or
better the equivalence with any other norm

‖ u|S ‖2W=
∫

u2(Rσ , σ )w(σ)dσ (A26)

with the weight functionw(σ) positively bounded above and
below.

As a matter of fact, one can prove that if {um(σ )}, given
by (A16), is bounded in L2

σ it is also convergent in this space
and one can put

γS(u) = u(Rσ , σ ) = lim
m→∞ um(σ ). (A27)

(see Theorem 8, Corollary 3 in Sansò and Sideris (2013)
§13.5, or Cimmino (1955)).

Sowe can consider the subspace ofH(�) of all u endowed
with an L2

σ trace on S. One can show that this is a Hilbert
space under the scalar product

< u, v >L2
σ
=

∫

γS(u)γS(v)dσ. (A28)

In mathematical literature, this is called a Hardy Space,
h2, (see Axler et al. 1992) and it is indeed isometric with
L2

σ . To be useful to the development of this paper, we will
slightly change the norm definition in h2 with the equivalent
norm (see (A26))

‖ u ‖2h2≡
∫

γS(u)2Rσdσ. (A29)

Finally, since as discussed in the paper the data function f (σ )

needs to be the trace of a function v ∈ H(1)(�), namely
missing zero and first degree harmonics, we can introduce
the data space H0 as a subspace of h2, namely

H0 ≡ {v ∈ H(1)(�); u+ jm(v) = 0 j ≤ 1;
∫

γS(v)2Rσdσ < +∞}. (A30)

Clearly H0 is a proper subspace of h2 and therefore a Hilbert
space itself, with norm given by (A30). It is easy to see,
by using a Green’s function representation as in Sansò and
Sideris (2013), §13.5, that in h2 and then in H0 too, for every
compact K ⊂ � one has

sup
K

|u(x)| ≤ c′ ‖ u ‖h2≤ c ‖ u ‖0 (A31)

for suitable constants c′, c. It follows, by taking K = S+,
that all the harmonic coefficients

∀n > 1, |m| ≤ n, u+nm(u) =
∫

u(R+, σ )Ynm(σ )dσ

(A32)

are continuous linear functionals of u in H0. So by the Riesz
theorem, there is a sequence {Znm} ⊂ H0 such that

u+nm(u) =< Znm, u >0 . (A33)

Let us observe that, by our definition, the functions Snm(r , σ )

= (R+/r)n+1Ynm(σ ) have traces on S, Snm(Rσ , σ ) =
(R+/Rσ )n+1Ynm(σ ). It is then obvious that, since Rσ is pos-
itively bounded below and above, Snm ∈ H0, for n > 1. It
is well known that {Snm} is not orthonormal in H0, unless S
is itself a sphere. However, it is proved in Sansò and Sideris
(2013) that {Snm} are always linearly independent and com-
plete, or total, in H0.

It is enough to take u = Snm(r , σ ) in (A33) to realize that

< Znm, S jk >0= δu jδmk, (A34)

namely {Znm, S jk} is a bi-orthogonal system. Hence, {Znm}
is a system of linearly independent functions, complete too
in H0. Relevant to the matter of this paper is the following
decomposition: Let us call

VL = span{S
�m ; 2 ≤ � ≤ L} (A35)

WL = span{Z
�m ; 2 ≤ � ≤ L}; (A36)

then, we can write, ∀v ∈ H0,

⎧
⎨

⎩

v = vL + vL

vL = ∑L
�=2 < v, Z

�m > S
�m ∈ VL

vL = v − vL ∈ W⊥
L ;

(A37)
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the last of (A37) comes from the bi-orthogonality relation
(A34), namely

2 ≤ j ≤ L, < Z jk, v
L >=< Z jk, v >

− < Z jk, vL >= 0 . (A38)

Therefore, we have

vL ∈ W⊥
L ⇒ vL = O

(
1

r L+2

)

, (A39)

according to Proposition 3.
Now we have to define still another Hilbert space of har-

monic functions, where we want to look for a solution of our
boundary value problem. Namely we define a space H1 as

H1 ≡ {u, u ∈ H0; ‖ u ‖21= L =‖ Rσ |∇u| ‖20
=

∫

|∇u|2R3
σdσ < +∞}. (A40)

We have to prove that:

a) the ‖ u ‖1 in (A40) is a true norm, i.e strictly positive
when u �= 0,

b) that H1 has a stronger topology than that in H0, namely
that

‖ u ‖0≤ c ‖ u ‖1 (A41)

for a suitable constant c.

The point a) is trivial because

u ∈ H0, ‖ u ‖1= 0 ⇒ Rσ |∇u||S = 0 ⇒ un|S = 0, (A42)

with un|S the normal derivative at the boundary, and the
homogeneous exterior Neumann problem has only the triv-
ial solution u = 0 in spaces of harmonic functions regular at

infinity. In our case, as a matter of fact u = O
(

1
r3

)
.

As for point b) a standard reasoning runs as follows: From

u(R, σ ) = −
∫ +∞

Rσ

u′(s, σ )ds ≡ −
∫ +∞

Rσ

su′ 1
s
ds, (A43)

noticing that su′ ∼= O
(

1
s3

)
and is therefore square integrable

in ds, we get by Schwartz inequality

|u(r , σ )|2 ≤ 1

Rσ

∫ +∞

Rσ

u′2s2ds. (A44)

We multiply (A44) by Rσ , integrate in dσ , apply Gauss
theorem and recall (A20), to find

‖ u ‖20 ≤
∫

�

u′2d� ≤
∫

�

|∇u|2d�

≡ −
∫

S
uundS ≤ 4π J+

∫

|u||un|R2
σdσ

≤ 4πR+ J+ ‖ u ‖0‖ Rσ |un| ‖0
≤ 4πR+ J+ ‖ u ‖0‖ u ‖1 . (A45)

Simplifying (A45) by ‖ u ‖0, we get (A41) with c =
4π J+. A much better inequality is discussed in Sect. 3,
Lemma 2 if we assume that u ∈ W⊥

L .

Remark 6 One might wonder whether H1 so defined is the
same as the Sobolev space H1,2(S) with norm

‖ u ‖2H1,2(S)
=

∫

S
[u2(Rσ , σ ) + |∇σu(Rσ , σ )|2]dS; (A46)

note that this is one of the possible many equivalent norms
in H1,2(S). The answer is that in reality

H1 ⊂ H1,2(S); (A47)

in fact one can prove that the norm

‖ ũ ‖21=‖ u ‖2H1,2(S)
+ ‖ Rσu

′ ‖20 (A48)

is equivalent to ‖ u ‖1; whence, (A47) immediately follows.
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