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Abstract
Radio signals transmitted by Global Navigation Satellite System (GNSS) satellites experience tropospheric delays. While
the hydrostatic part, referred to as zenith hydrostatic delay (ZHD) when mapped to the zenith direction, can be analytically
modelled with sufficient accuracy, the wet part, referred to as zenith wet delay (ZWD), is much more difficult to determine
and needs to be estimated. Thus, there exist several ZWD models which are used for various applications such as positioning
and climate research. In this study, we present a data-driven, global model of the spatial ZWD field, based on the Extreme
Gradient Boosting (XGBoost). The model takes the geographical location, the time, and a number of meteorological variables
(in particular, specific humidity at several pressure levels) as input, and can predict ZWD anywhere on Earth as long as the
input features are available. It was trained on ZWDs at 10718 GNSS stations and tested on ZWDs at 2684 GNSS stations
for the year 2019. Across all test stations and all observations, the trained model achieved a mean absolute error of 6.1 mm,
respectively, a root mean squared error of 8.1 mm. Comparisons of the XGBoost-based ZWD predictions with independently
computed ZWDs and baselinemodels underline the good performance of the proposedmodel.Moreover, we analysed regional
and monthly models, as well as the seasonal behaviour of the ZWD predictions in different climate zones, and found that the
global model exhibits a high predictive skill in all regions and across all months of the year.
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1 Introduction

Radio signals emitted by Global Navigation Satellite System
(GNSS) satellites propagate through the atmosphere before
being received on Earth. The signals are delayed and bent
when travelling through the neutral atmosphere and this delay
can be estimated (Nilsson et al. 2013). Typically, the tropo-
spheric delays in zenith direction, i.e. the delays in the lowest
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part of the atmosphere, are split into a zenith hydrostatic delay
(ZHD) and a non-hydrostatic or zenithwet delay (ZWD). The
sum of ZHD and ZWD is the zenith total delay (ZTD), which
amounts to roughly 2.4 m for an observer at mean sea level.
The hydrostatic part makes up the majority of the ZTD and
can be modelled to high accuracy with analytical methods,
e.g. by using the equation of Saastamoinen (Saastamoinen
1972b). Although the wet part only contributes up to 0.40 m,
it is more variable in space and time. At present there is no
analyticalmodel ofZWDwith sufficient accuracy, and hence,
it is typically estimated empirically.

Estimating ZWD with high accuracy is important for
GNSS positioning (Ibrahim and El-Rabbany 2011; Wilgan
2015; Hadas et al. 2013), as it represents a major source of
error. Furthermore, ZWD is proportional to the water vapour
content along the signal path, and therefore plays an impor-
tant role in GNSS meteorology (Bevis et al. 1992), with
applications in weather monitoring, forecasting, and climate
research (Bevis et al. 1994; Karabatić et al. 2011; Benevides
et al. 2013; Seco et al. 2012; Zhao et al. 2018).

Therefore, many studies have investigated new meth-
ods to improve state-of-the-art ZWD models, such as the
Hopfield model (Hopfield 1971), the Saastamoinen model
(Saastamoinen 1972a), the global pressure and tempera-
ture (GPT)2w model and the GPT3 model (Böhm et al.
2015; Landskron and Böhm 2018), to name a few. Recently,
machine learning (ML) approaches have also been used
to construct models of tropospheric delays. Zhang et al.
(2022) proposed a transformer-based global ZTD forecast-
ing model while Yang et al. (2021) established a regional
ZTD model based on the GPT3 model and artificial neural
networks (ANNs). ANNs have also been used in studies by
Mohammed (2021) and Selbesoglu (2020) to predict ZWDs.
More recently, Ding (2022) developed a global ZWD model
using neural networks that led to a better accuracy compared
to state-of-the-art ZWDmodels (Yang et al. 2021;Böhmet al.
2015).

In this study, anML-basedmodel is trained based onZWD
observations of 10,718 GNSS stations during the year 2019.
The reference ZWD is taken from the Nevada Geodetic Lab-
oratory (NGL) (Blewitt et al. 2018) and the input features
are the geographical location of the GNSS station, as well
as the reference time epoch and meteorological variables, in
particular, specific humidity on six pressure levels obtained
from the ERA5 data set (Hersbach et al. 2020). The proposed
model reaches centimetre-level accuracy in spatio-temporal
interpolationmode, i.e.when predicting theZWDat arbitrary
spatial locations within the reference period. The temporal
prediction accuracy is≈ 2× lower, but still reasonable, when
extrapolating to potentially unknown atmospheric conditions
outside the reference period.

Compared to the existing, relatively small-scale studies,
our model is much broader. First of all, many more GNSS

stations have been used to create and evaluate the established
ML-basedmodel.While Zhang et al. (2022) andMohammed
(2021) only used 505 stations, the ML-based ZWD model
proposed in this study is based on 13,402 globally distributed
stations (10,718 training stations and 2684 test stations). The
higher number of stations leads to better performance and
better generalisation of the model, especially in regions with
a sparseGNSS station network. Second, in contrast to all pre-
viously mentioned ML models, our proposed ZWD model
does not rely on prior ZWDs or ZWD properties to make its
predictions. It is based entirely on meteorological variables,
position, and time information. Therefore, the model can be
applied anywhere on Earth, not only at the locations of exist-
ing GNSS stations, opening up a wide variety of applications
ranging from climate research to more accurate navigation
with low-cost GNSS devices, including smartphones. For the
present study, the model utilised post-processed meteorolog-
ical data that is available with a temporal lag of five days.
Forecasts of the meteorological values are also available and
could replace the reprocessed values if the model is to be
used for ZWD forecasting. Here, we focus on global spatial
modelling of ZWDs within a given year.

In Sect. 2, the reference ZWD as well as the meteo-
rological variables are presented. Section3 introduces the
methodology by giving an overview of the algorithms used
(Sect. 3.1), the setup (Sect. 3.2), and the validation strategy
(Sect. 3.3). In Sect. 4, the ZWD predictions of the final model
are shown, discussed, and thoroughly evaluated (Sects. 4.1,
4.2, 4.3, 4.4). Furthermore, several comparisons with inde-
pendently computed ZWDs (Sect. 4.5) and baseline models
(Sect. 4.6) have been carried out. Section5 contains a dis-
cussion of the global model by comparing it to regional
(Sect. 5.1.1) and monthly models (Sect. 5.1.2). Furthermore,
the global model is applied for a different year, thus, mak-
ing temporal predictions (Sect. 5.2), and the applicability of
the model is explained (Sect. 5.3). In Sect.A.1 and A.2 in the
appendix, the comparison of differentML algorithms and the
feature selection process is further explained in more detail.
Finally, Sect. 6 summarises the findings of the study and gives
an outlook on future plans and further improvements.

2 Data

2.1 Zenith wet delay

Zenith wet delay (ZWD) estimates have been provided by
the Nevada Geodetic Laboratory (NGL) since 1994 for a
global network of GNSS stations with a temporal resolu-
tion of five minutes (Blewitt et al. 2018). NGL processes the
GNSS measurements by using Jet Propulsion Laboratory’s
(JPL) GipsyX 1.0 software (Bertiger et al. 2020) and JPL’s
Repro 3.0 orbits and clocks. The tropospheric delay is calcu-

123



Global, spatially explicit modelling of zenith wet delay with XGBoost Page 3 of 19    23 

lated using the Vienna mapping function 1 (VMF1) (Boehm
et al. 2006), having separate mapping functions for the ZHD
and ZWD, and its gridded map products of a-priori ZHD and
ZWD. Additionally, north–south and east–west gradients are
estimated together with ZWD as piece-wise constants. The
processing assumes a correct ZHD, with the residual delay
in the ZWD. Thus, small errors in a-priori ZHD do not affect
the final ZTD but might affect ZWD. The details on the data
processing strategy can be found in http://geodesy.unr.edu/
gps/ngl.acn.txt (last access: 25 January 2024).

For the present study, we use the ZWDs of 13,440 GNSS
stations from the year 2019. To match the temporal res-
olution of the meteorological variables (see Sect. 2.2), the
ZWD data set is down-sampled to an hourly resolution by
taking the ZWD values at every full hour. This leads to a
total of 117,734,400 potential samples (8760 hourly time
steps × 13,440 stations). Since not all GNSS stations are
recording continuously, 21,462,376 are missing, resulting in
a total of 96,272,024 available samples. Although the ML
algorithm is resilient against a moderate number of out-
liers (see Sect. 4.2), a rigorous outlier detection procedure
for the ZWD data has been established. It employs four dif-
ferent filters: (1) The 1 % ZWD estimates with the highest
uncertainties (> 3.5mm), i.e. the standard deviations accord-
ing to the product, were removed (968,173 samples). (2)
Negative ZWD estimates were removed because they are
physically meaningless (396,619 samples). Those estimates
are likely due to ZHD modelling errors. (3) All ZWD esti-
mates were removed that differ from the 5-hour floating
median by more than 3× their standard deviation (2,494,624
samples). (4) There are 573 sites that have at least two co-
located stations within a distance of 1km, covering a total
of 1300 stations (roughly 10% of all stations). For each of
those sites, the median ZWD estimate per hour was calcu-
lated, and co-located stations with an offset above 5mm from
that median were removed (27 stations, 140,123 samples).

Cumulatively, the procedure flagged 3,922,694 unique
outlier samples, or 4.1% of the ZWD data set. After dis-
carding them, we are left with 13,402 GNSS stations that
still have observations (92,349,330 samples).

The distribution of the GNSS stations is illustrated in
Fig. 1. It can be seen that the spatial distribution is far from
homogeneous.Most stations are located in the northern hemi-
sphere, especially inNorthAmerica andEurope. However, in
Asia (except for Japan, South Korea, and Nepal) the density
of GNSS stations is very limited. In the southern hemisphere,
the distribution of the stations is much sparser. In particular,
inAfrica and SouthAmerica, only very few stations are avail-
able.

Figure 2 shows the completeness of the 13,402 utilised
GNSS stations and the number of ZWD estimates per hour
for the year 2019. The completeness is calculated by dividing
the number of samples of each time series by the full number

of hourly epochs in 2019 (i.e. 8760). The results show that the
median is 93 %, 58 % of all stations have a completeness of
over 90 % and only 17 % of all stations have a completeness
of less than 50 %.

The variation of the number of ZWD estimates per hour is
small throughout the year. The average number is 10,542 (out
of a possible maximum of 13402) with a standard deviation
of 372, which means that ZWD estimates of 79 % of all
stations are available on average every hour.

Several papers have examined the quality of NGL’s tro-
posphere product by comparing it to other products. A study
by Ding and Chen (2020) used the NGL troposphere data to
evaluate the performance of the empirical troposphere model
GPT3 and thus, assessed the accuracy of the NGL tropo-
sphere products. They compared 26 representative common
stations of the International GNSS Service (IGS) and NGL
and concluded that NGL’s ZTD has the same accuracy as
IGS’s ZTD. Thus, they state that NGL’s troposphere product
can be used as a reference to evaluate troposphere models.
In another study by Ding et al. (2022), a very high level of
agreement between precipitable water vapour (PWV) data
derived from radiosonde measurements and GNSS-derived
PWV from NGL has been found. Since PWV can be derived
directly from ZWD, it is also an indicator of the good quality
of the NGL’s ZWD. The characteristic differences in tropo-
spheric delays betweenNGLproducts andnumericalweather
model ray-tracing are discussed in Ding et al. (2023). They
found that in most regions the products correspond well,
although in some high-altitude regions such as the Andes,
the differences reach the cm-level.A recently published study
(Yuan et al. 2023) carried out data screening of NGL’s ZTD
values and flagged fewer than 0.5 % of observations as out-
liers, which again demonstrated the good quality of NGL’s
troposphere product. These studies support the use of the
product as a basis for a global ZWD model. Furthermore,
there exists no comparable GNSS tropospheric data set in
terms of dense global coverage, which is essential for our
study. However, when using our ZWD predictions, the short-
comings of the NGL data must be taken into account as our
model uses it as reference data.

2.2 Meteorological variables

The meteorological variables are provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF)
Reanalysis v5 (ERA5) data set (Hersbach et al. 2020). ERA5
is the fifth-generation ECMWFatmospheric reanalysis of the
global climate covering the period from1940 to the present. It
provides hourly estimates for a large number of atmospheric,
land, and oceanic climate variables on a regular latitude, lon-
gitude grid of 0.25 degrees. The data can be accessed through

123

http://geodesy.unr.edu/gps/ngl.acn.txt
http://geodesy.unr.edu/gps/ngl.acn.txt


   23 Page 4 of 19 L. Crocetti et al.

Fig. 1 Distribution of the 13,402 utilised GNSS stations

Fig. 2 Completeness of the 13,402 utilised GNSS stations (left) and the number of ZWD estimates per hour at the 13,402 utilised GNSS stations
for the year 2019 (right)

theClimateDataStore1 and are available either as single level
data (roughly at surface level) or on 37 pressure levels rang-
ing from 1000 hPa to 1 hPa. Based on expert knowledge,
for our study, we selected the variables at a pressure level of
1000 hPa, except for specific humidity, where six pressure
levels (1000, 900, 800, 650, 450, 300 [hPa]) are used, as fur-
ther discussed in Sect.A.2 in the appendix. Table 1 lists the
variables that are used within this study.

3 Methodology

In order to utilise machine learning (ML) for the determina-
tion of ZWD, three important questions have to be clarified.
First, a predictive set of input features must be chosen. Sec-
ond, a suitable ML algorithm has to be identified. Third, the
best-performing hyper-parameters for that algorithm have to
be found.

1 https://cds.climate.copernicus.eu/ (last access: 25 January 2024).

Each of these aspects depends on the others, but the huge
number of possible combinations precludes an exhaustive
search. We follow standard practice and take an iterative
approach to determine the best-performing setup. As a start,
the 13,402 stations are randomly split into 80% training
(10,718) and 20% test stations (2684). The test stations are
only utilised in the final evaluation, presented in Sect. 4, to
have an independent data set. For the experiments carried
out to find the best model setup, we rely only on the training
stations. To that end, they are further split into five folds of
equal size, four for training and one for model validation.

In the first investigation, several different ML algorithms
were tested that are introduced in Sect. 3.1. In these runs, an
initial set of features was selected based on expert knowl-
edge. In total, the 12 meteorological variables at a pressure
level of 1000 hPa listed in Table 1 were selected, as well as
nine position and time variables describing the geographi-
cal location of the GNSS station and sample time epoch, as
further discussed in Sect. 3.2.
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Table 1 Meteorological
variables from the ERA5 data
sets that are used in this study

Single level data Pressure level data

Geopotential (z) Geopotential (z1000)

Surface pressure (sp) Relative humidity (r1000)

Total precipitation (tp) Specific humidity (q1000, q900, q800, q650, q450, q300)

2m temperature (t2m) Temperature (t1000)

10m u-component of wind (u) U-component of wind (u1000)

10m v-component of wind (v) V-component of wind (v1000)

For every ML algorithm, a hyper-parameter tuning based
on grid search was carried out to optimise the predictive
performance of the validation set. The results of this ini-
tial comparison are presented in detail in Sect.A.1 in the
appendix. Based on that investigation, the XGBoost method
was found to be the most promising candidate, in line with
many other ML tasks based on relatively low-dimensional
feature sets (Yan et al. 2020; Lundberg et al. 2018; Hengl
et al. 2017; Xia et al. 2017; Ziȩba et al. 2016).

In the second step, we performed a detailed feature selec-
tion for XGBoost. Several combinations of meteorological
variables were studied, as further discussed in Sect.A.2 in
the appendix. We found that specific humidity values at six
different pressure levels, in combination with the previously
mentioned representations of the position and time variables,
provide good prediction performance. A full list of the fea-
tures used in our final ZWD model is given in Sect. 4 in
Table 2.

The hyper-parameters are then tuned again to find the best
setting for the adapted feature set. It turned out that neither
the hyper-parameters themselves nor the overall performance
changed significantly,whichdemonstrates the robustness and
generality of the model. The hyper-parameters that lead to
the most accurate predictions are listed in Sect. 4 in Table 3.

3.1 Algorithms

To cover a broad range of ML schemes, we tested four
representative methods from the vast pool of possible ML
algorithms: a linear method, an exemplar-based method, a
neural network, and a tree-based ensemble approach:

• Least Absolute Shrinkage and Selection Operator
(LASSO) regression (Tibshirani 1996)

• K-Nearest Neighbours (KNN) (Fix and Hodges 1989;
Cover and Hart 1967)

• Multilayer Perceptron (MLP) (Rosenblatt 1957; Rumel-
hart et al. 1986; LeCun et al. 2012)

• Extreme Gradient Boosting (XGBoost) (Chen and
Guestrin 2016)

XGBoost is a tree-based ensemble learning scheme. Shal-
low regression trees as weak learners are combined into
a strong learner with gradient boosting, i.e. the trees are
sequentially learned such that they correct prediction errors
of the previous stage. XGBoost is also known for its abil-
ity to capture highly nonlinear dependencies, as well as for
its computational efficiency and scalability. It has achieved
state-of-the-art results across a wide range of prediction
tasks (Chen and Guestrin 2016).

A short description, as well as a comparison of the results
of the other ML methods, can be found in Sect.A.1 in the
appendix.

Additionally, two widely used methods for spatial inter-
polation are selected to serve as baseline models:

• Ordinary Kriging (Krige 1951)
• 3D Delaunay triangulation (Delaunay 1934)

Kriging is a spatial interpolation technique. It estimates
the best linear unbiased prediction (BLUP) at an unobserved
location as a weighted average of the nearby observations
(Krige 1951). The weights are derived via a kernel function
("variogram") that specifies the spatial covariance structure
of the target variable.

Another well-known approach to spatial interpolation in
3D is to explicitly link the 3D locations into a tetrahedral
mesh with the 3D Delaunay method (Delaunay 1934), then
linearly interpolate within each tetrahedron.

These baseline models were only applied to the geograph-
ical information (latitude, longitude, height) for each time
step to provide a comparison with the ML models operating
on the geographical as well as meteorological parameters.

3.2 Setup

As already described at the beginning of Sect. 3, all available
GNSS stations are randomly split into training, validation,
and test stations. For each portion, a target vector y (ytrain ,
yval , ytest ) and a feature matrix X (Xtrain , Xval , Xtest ) are
created.

Regardless of the ML method used, the learning setup
in our study is always the same. The vector y, of length
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Table 2 List of features utilised
in the final XGBoost model Position and time features Meteorological features

φ Latitude q1000 Specific humidity at 1000 hPa

sin (λ) Sine of longitude q900 Specific humidity at 900 hPa

cos (λ) Cosine of longitude q800 Specific humidity at 800 hPa

h Ellipsoidal height q650 Specific humidity at 650 hPa

t Reference epoch q450 Specific humidity at 450 hPa

sin (doy) Sine of day of year q300 Specific humidity at 300 hPa

cos (doy) Cosine of day of year

sin (hod) Sine of hour of day

cos (hod) Cosine of hour of day

[#samples], is created by concatenating the station ZWD
time series and represents the regression targets—in our case
ZWD estimates from NGL. Missing data are not filled in but
simply discarded.

The feature matrix X has dimension [#samples ×
# f eatures] and is composed of position and time variables
(i.e. the geographical location φ, λ, h of the GNSS station
and the sampling timestamp) and the corresponding mete-
orological variables, found by nearest-neighbour lookup in
the ERA5 grids.

Three variables are extracted from the timestamps of each
observation,which are inUTC: absolute timeas a continuous,
real-valued number (t); the day of the year (doy); and the
hour of the day (hod). The rationale is that periodic daily
and yearly signals are to be expected in ZWD time series,
which are represented more directly in terms of hod and
doy. To account for the cyclic nature of doy, hod, and λ,
the former two are normalised to the range [0, 2π) and all
three are then transformed to pairs of sin(·) and cos(·) values,
resulting in two features per variable.

Following best practice, the feature matrix X is standard-
ised by subtracting the mean feature vector and scaling each
feature dimension to unit variance, before feeding it to the
ML algorithms.

3.3 Validationmetrics

All quantitative results are computed on the validation fold(s)
of the training set duringmodel comparison, hyper-parameter
tuning (Sect.A.1), and feature selection (Sect.A.2). Only the
evaluation of the final model (Sect. 4) uses the test stations,
to have an independent data set. For each test station i , we
calculate the root mean squared error (RMSE; eq. (1)) and
themean absolute error (MAE; eq. (2)) between the predicted
ZWD ŷ and the (NGL-based) reference value y. As global
summary statistics, the station-wise RMSEs and MAEs are
combined by calculating their weighted means (WRMSE;
eq. (3) and WMAE; eq. (4)), with weights proportional to
the number of samples per station (#samplesi ). WRMSE

Table 3 Hyper-parameters of the final XGBoost model

Parameter Value Description

max_depth 20 Maximum tree depth for base learners

learning_rate 0.25 Boosting learning rate (shrinks the feature
weights after each boosting step to make
the boosting process more conservative
and prevent over-fitting)

n_estimators 100 Number of gradient boosted trees

and WMAE serve as overall performance metrics.

RMSEi =

√
√
√
√

∑#samplesi
j (yi, j − ŷi, j )2

#samplesi
(1)

MAEi =
∑#samplesi

j | yi, j − ŷi, j |
#samplesi

(2)

WRMSE =
∑#stations

i (#samplesi · RMSEi )
∑#stations

i (#samplesi )
(3)

WMAE =
∑#stations

i (#samplesi · MAEi )
∑#stations

i (#samplesi )
(4)

4 Results

In this section, results for our final, best-performing global
model, based on XGBoost, are presented. The features used
in that model are listed in Table 2 and the hyper-parameters
are given in Table 3. In the appendix, in Sects.A.1 and A.2
detailed insights are given into why XGBoost was selected
and discuss how the hyper-parameters have been chosen and
how the features have been selected.

4.1 Internal validation

To evaluate how well our model is able to reproduce the
behaviour of the reference solution used as training target,
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Fig. 3 Comparison of predicted ZWD values to reference values at the
test stations

Fig. 4 Distribution of station-wise RMSE andMAE at test stations, rel-
ative to NGL reference values. Vertical lines denote WRMSE (8.1 mm)
and WMAE (6.1 mm). Stations with errors larger than 20mm are
grouped in the last bin

its predictions at the test stations (ŷtest ) are compared to
the corresponding reference values from NGL (ytest ). In
Fig. 3,XGBoost predictions of ZWDare plotted againstNGL
reference values. The values cluster tightly along the iden-
tity line (white, dashed) across the entire range from 0 to
400mm ZWD, with barely any outliers. Moreover, positive
and negative deviations from the ideal diagonal are symmet-
ric, meaning that the model does not systematically over- or
underpredict anywhere in the relevant range.

Figure 4 displays a histogram of the station-wise RMSE
andMAEvalues. Thedistribution is skewed towards 0,mean-
ing that most stations have small errors, while there are few
stations with significantly larger errors. The weighted means
of the error distributions, corresponding to WRMSE and
WMAE, are 8.1 mm and 6.1 mm, respectively. Upon inspec-
tion, most of the stations with large errors (> 20mm) are
located near the coast or on islands, predominantly in trop-
ical or subtropical regions. We speculate that in those areas
the meteorological parameters may be less accurate.

The spatial distribution of the test stations’ RMSE values
is depicted in Fig. 5. The MAE distribution exhibits a very
similar pattern and is not separately shown. A number of
interesting trends can be seen. Test stations in areas with a
dense GNSS station network (conterminous USA, Europe,
Japan, and south-eastern Australia) tend to have lower errors.
As a uniform random train/test split is used, the distribution
of training stations is comparable to the one in the figure.
In other words, predictive skill is better in areas with a high
density of GNSS stations (and thus many training examples),
as expected. This behaviour is further studied in Sect. 5.1.1,
by constructing regional models. We also note that, at com-
parable (low) station density, the errors tend to be higher in
tropical regions than in the Arctic and Antarctic, which can
be explained by the much larger absolute ZWD values and
their variability, another expected behaviour that we revisit
in Sect. 5.1.2.

To better understand the behaviour of the ML model, the
station-wise RMSE and MAE values of the test stations are
related to the geographical similarity with the nearest train-
ing stations. For each test station, the Euclidean distance
and the height difference to the nearest training location are
determined. Then, the correlation between these values and
the ZWD errors (both RMSE and MAE) are computed, see
Fig. 6. The intuition behind this investigation is to see how
strongly the predictive skill of the model depends on having
a training station close by. All four correlation coefficients
lie around 0.30−0.33. In other words, having a nearby sta-
tion does play a certain role, but the model does not just
memorise the training station values (in which case the cor-
relation with distance would have to be higher). We point
out that the observed correlations are likely skewed, due to
the imbalanced distribution of the distances with many more
stations from areas with dense GNSS networks, and conse-
quently also small station-to-station distances. In addition,
we also computed the correlation with the absolute station
height, which is very low (≤ 0.06). We speculate that sev-
eral effects related to the absolute station height might cancel
each other out. Overall, there are fewer stations at higher alti-
tudes, thus fewer samples to train the model. Furthermore,
maintenance of stations at higher altitudes is in general more
difficult, which might affect the quality of their observations.
However, at higher altitudes, the ZWDs are typically smaller
and consequently have smaller errors.

4.2 Robustness against outliers

Despite the thorough outlier detection scheme described ear-
lier (Sect. 2.1), some outliers may remain in the data set. In
ML applications based on large data sets, it is not feasible to
perform a manual outlier detection by individually inspect-
ing every time series. Instead, the models are designed to be
robust and/or to include automatic quality control.
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Fig. 5 Spatial distribution of the test stations’ RMSEs w.r.t. NGL reference values

Fig. 6 RMSE and MAE at test stations, plotted against the distance to the nearest training station (left), the height difference to the nearest training
station (middle), and the absolute height (right). Correlation coefficients are given in the upper right corner of each plot

To evaluate the robustness of the model against noisy
data and outliers empirically, the following investigations
have been conducted. First, the ZWDs of some training sta-
tions were modified to produce erroneous data. Next, a new
XGBoost model was trained based on the altered ZWDs.
Finally, the model was evaluated and compared to the unal-
tered test stations. This test was conducted for outlier rates
of 1 % (107 stations) and 5 % (538 stations), significantly
higher than the actual outlier ratio of NGL, which lies below
0.5 % according to previous studies (Yuan et al. 2023). The

ZWDs were perturbed by various levels of white noise, and
systematically biased by values between 1 and 20mm. The
artificial degradations thus reflect the entire range from small
deviations that would be expected due to coordinate estima-
tion errors up to untypically large values. Table 4 lists the
WRMSE changes for all tested perturbation levels of the
training data, as a way to quantify the robustness of the pro-
posed ML approach.

For all tested white noise levels and biases, the resulting
WRMSE changes are within 0.1 mm in the case of 1 % of
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Table 4 Change in WRMSE
based on modified ZWD
training data. Positive values
indicate a degradation in
WRMSE. The reference
WRMSE based on the unaltered
ZWD is 8.1 mm

1mm 2mm 5mm 10mm 15mm 20mm

White noise

1 % 0.01 mm 0.03 mm 0.01 mm −0.01 mm 0.04 mm 0.05 mm

5 % −0.01 mm 0.02 mm 0.01 mm 0.05mm 0.13 mm 0.18 mm

Bias

1 % −0.04 mm 0.02 mm 0.00 mm 0.02 mm 0.07 mm 0.11 mm

5 % 0.02 mm 0.01 mm 0.08 mm 0.16 mm 0.32 mm 0.55 mm

artificial outliers. Evenwith the exaggerated 5%outlier tests,
the changes in terms of WRMSE are within 0.2 mm for all
tested white noises and biases up to 10mm before growing
to [0.3, 0.6] mm for [15, 20] mm biases, respectively. In con-
clusion, the ML model based on XGBoost is robust enough
for the application and can deal with a reasonable amount of
outliers and poor-quality data. That robustness is due to the
large sample size combinedwith the inherent tolerance of the
model to label noise in theZWDs aswell as hyper-parameters
tuned on unseen data with cross-validation.

4.3 Global spatial ZWD predictions

The proposed ML model can be applied at any location on
Earth and at any desired time, as long as the meteorological
input variables are available. This ability is visualised by pre-
dicting global maps of ZWD with a 0.25◦ spatial resolution
and 1-hour temporal resolution. Figure7 shows the resulting
ZWD maps for 00:00 UTC on the first day of each month in
2019.

The maps reveal the expected large-scale patterns, with
overall higher values in the tropics and lower values in the
polar regions. Additionally, regional weather phenomena can
be distinguished, such as the South Asian monsoon that
affects the Indian subcontinent from August to November.
A further ZWD pattern over Central and Western Africa can
probably be attributed to the seasonal displacements of the
Inter-tropical Convergence Zone (ITCZ), which drives rain-
fall. When comparing the ZWD maps to the rainfall maps
shown in the study by Dezfuli (2017), we find many similar
patterns, which qualitatively corroborate the (relative) ZWD
distribution predicted by our model.

4.4 Feature importance

Figure 8 illustrates the feature importance in the XGBoost
model, representing the relative number of times a particu-
lar feature appears in a tree. It reveals that the three most
important features are the specific humidities at pressure
levels 900 hPa, 650 hPa, and 1000 hPa, highlighting that
the humidity at the lower part of the atmosphere is the pri-

mary influence factor for ZWD. Themost predictive pressure
level of 900 hPa corresponds rather well to the 433m aver-
age station height of the data set, suggesting that the specific
humidity in the immediate environment of the station is of
particular importance. Among the position and time features,
ellipsoidal height (h) plays the biggest role, while latitude (φ)
and longitude (λ) have less impact. In a dedicated experiment,
the nine position and time features were omitted altogether.
This roughly doubled both the RMSE and the MAE, show-
ing that they do play a significant role, despite their relatively
low feature importance (see Table 12 in Sect.A.2).

4.5 External validation

To further assess the learnedmodel, an inter-comparisonwith
three independent ways to estimate ZWD was performed:
vertical integration of (1) ERA5 data, (2) radiosonde obser-
vations, and (3) estimation of ZWDs from the Very Long
Baseline Interferometry (VLBI) analysis.

For ERA5, we obtain hourly temperature, humidity, and
geopotential fields at 37 pressure levels and apply the
approach of Zus et al. (2012) to the test stations. The devia-
tions between the resulting ZWDestimates and ourXGBoost
model have a WRMSE of 9.1 mm and a WMAE of 6.9 mm,
only 10 % higher than the values obtained in the internal
validation against NGL, the reference for our study. To also
quantify how well ZWDs from ERA5 and NGL agree, we
compute the statistics for the difference between them and
obtain aWRMSEof 10.8mmand aWMAEof 8.3mm for the
test stations (see Table 5). Our XGBoost model thus repro-
duces NGL results better than a direct integration of ERA5.

In a similar fashion, ZWDs from radiosonde observations
were obtained by integrating the wet refractivity vertical pro-
files which can be computed using pressure, temperature,
and relative humidity data from radiosonde measurements
(Zhang et al. 2021). The radiosonde-based ZWDs were
then inter-compared to the other data sets. The radiosonde
data are provided by the Integrated Global Radiosonde
Archive (IGRA) (Durre et al. 2006, 2018). For the year
2019, 790 radiosonde stations are available. However, their
geographical locations do not coincide with the GNSS sta-
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Fig. 7 Global ZWD maps for
00:00 UTC on the first day of
every month in 2019

tions. To minimise the influence of spatial ZWD variability,
radiosonde locations were only paired with GNSS stations
if they lie within a radius of 20km, which leaves us with
116 station pairs. At those locations, the differences between
ZWDs from radiosondes and from NGL have a WRMSE of
14.5 mm and aWMAE of 11.5 mm. This result further high-
lights that ZWD estimates from existing retrieval methods

exhibit noticeable discrepancies. The (average) deviations
between the radiosonde results and our XGBoost model are
very similar, with a WRMSE of 15.0 mm, respectively, a
WMAE of 11.7 mm for the 116 station pairs. Finally, the
deviations between radiosondes and ERA5 integration (cal-
culated over the 116 radiosonde stations) amount to 11.0 mm
WRMSE, respectively, 8.2 mm WMAE. A better agree-
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Fig. 8 Feature importance in the final ZWD model

ment of radiosonde measurements with ERA5 (than NGL
or XGBoost) was expected as the radiosonde measurements
are assimilated in ERA5 (Virman et al. 2021).

Additionally, ZWDs estimated during VLBI analysis are
compared to ZWDs ofNGL,XGBoost, and ERA5. All VLBI
R1/R4 sessions of the year 2019 have been analysed based
on the bkg2023a solution. In total, 104 sessions contain-
ing 24 stations (excluding the station NOTO) with 25,100
samples were included. The agreement between ZWDs of
NGL and VLBI is the best with a WRMSE of 5.4 mm and
a WMAE of 4.1 mm. Comparing the ZWDs of VLBI to
our XGBoost model and the ZWDs of ERA5, respectively,
reveals that our XGBoost model performs better (WRMSE
of 10.6 mm,WMAE of 7.9 mm) than a vertical integration of
ERA5 (WRMSE of 12.3 mm,WMAE of 9.0 mm). The inter-
comparison is summarised in Table 5. In summary, the higher
compatibility of the proposed model with NGL and ERA5
was expected, given that the former served as its training tar-
get and the latter is based on the samemeteorological data set.
Why the discrepancies between NGL and ERA5 are lower
than between either of them and the radiosonde data is less
clear. This may be due to the distribution of the radiosonde
locations, or it might hint at systematic observation biases.

We point out that our ML approach can, in principle, be
trained with any desired ZWD data set as the regression
target. Given the significant differences between retrieval
methods, further research may be needed to determine to
what extent training data fromdifferent sources can bemixed.

4.6 Baselinemodel comparisons

To compare ourmeteorologically informedZWDpredictions
to conventional spatial interpolation techniques, we also fit
ZWD fields to the set of GNSS training stations with two
baseline models, Ordinary Kriging and Delaunay triangu-
lation (see Sect. 3.1 for brief descriptions of those standard
techniques).

For Ordinary Kriging, we employ the implementation
available in SciKit-GStat (v.1.0.1) (Mälicke et al. 2021;
Mälicke 2022). As for the previous learning algorithms, the

regression targets are the ZWD values from NGL, but the
input in this case is only the geographical location of the
stations (latitude, longitude, height). The Delaunay interpo-
lation is based on implementation in scipy (v.1.8.0) (Virtanen
et al. 2020). Again, the training stations serve as coordinates
that define the tetrahedral regions, from which the ZWD
values at the test locations are read out by barycentric inter-
polation within the relevant tetrahedron.

The ZWD values predicted by Ordinary Kriging, respec-
tively, Delaunay are then compared to the NGL values at
the test stations, see Table 6. For the former, we obtain a
WRMSE of 19.6 mm and a WMAE of 14.7 mm; for the lat-
ter, we get similar values of 18.3 mmWRMSE and 13.7 mm
WMAE. These values are significantly higher than those of
the XGBoost model (8.1 mm WRMSE, 6.1 mm WMAE).
This was expected and confirms that the meteorological
observations contribute important information about ZWD
that is missing when simply interpolating the ZWD values
observed at the sparse locations of the GNSS station net-
work. The importance of meteorological data is in line with
the finding of the variable importance study of Sect.A.2.

5 Discussion

The following subsections discuss the global model by
comparing its performance to specialised models, namely,
regional (Sect. 5.1.1) andmonthlymodels (Sect. 5.1.2).Addi-
tionally, the global model was tested for a different year and
its performance was evaluated (Sect. 5.2). Sections A.1 and
A.2 in the appendix contain further details about the perfor-
mance of different ML algorithms and give more insights
about the feature selection.

5.1 Global versus specialisedmodels

The final model presented in Sect. 4 is a global model that
is based on 10,718 GNSS stations worldwide processed by
NGL for the year 2019. In addition to creating a global model
for the whole year, regional and monthly models were also
generated. With these more specialised, (spatially or tempo-
rally) local models we investigate the prediction quality in
more detail. Moreover, by comparing such specialised mod-
els to the monolithic, global one we are able to study the
associated trade-offs. For instance, a single, global model
has a larger training set and may be beneficial in regions
with few stations, while on the other hand, it faces a more
difficult task, as it must cover a broader range of geographical
and meteorological conditions.

In the following sections, it is investigated how well the
regional and monthly models performed w.r.t. the global
model.
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Table 5 WRMSEs [mm] (upper
triangle, black) and WMAEs
[mm] (lower triangle, grey) for
the inter-comparison
experiment. The numbers in the
brackets refer to the number of
stations that have been
compared

NGL XGBoost ERA5 VLBI Radiosonde

NGL 8.1 (2684) 10.8 (2684) 5.4 (24) 14.5 (116)

XGBoost 6.1 (2684) 9.1 (2684) 10.6 (24) 15.0 (116)

ERA5 8.3 (2684) 6.9 (2684) 12.3 (24) 11.0 (116)

VLBI 4.1 (24) 7.9 (24) 9.0 (24) –

Radiosonde 11.5 (116) 11.7 (116) 8.2 (116) –

Table 6 Comparison between ZWDs from meteorologically informed
XGBoost, Delaunay interpolation, and Kriging

NGL-based ZWD

WRMSE [mm] WMAE [mm]

XGBoost-based ZWD 8.1 6.1

Delaunay-based ZWD 18.3 13.7

Kriging-based ZWD 19.6 14.7

In all cases NGL serves as the reference

5.1.1 Regional models

In total, six continental models were created that cover North
America, South America, Europe, Africa, Asia, and Aus-
tralia. These models were trained and evaluated with the
respective subsets of the training and test sets defined for the
global model. For a meaningful comparison, also the global
model was evaluated separately for each continental subset
of the test data. Results are shown in Table 7.

It can be seen that the best performance was achieved in
Europe (WRMSE of 6.9 mm) and North America (WRMSE
of 7.2 mm), the two regions with the highest number and the
highest density of GNSS stations. The lowest performance
was obtained for South America (WRMSE of 14.5 mm) and
Africa (WRMSEof 13.4mm),which have the lowest number
of stations. We note that the results for Asia may not be
representative, since both the training and the test sets are
dominated by a small region comprising Japan, South Korea,
and Nepal.

Overall, the performance gaps between the global model
and its local counterparts are very small, indicating that gen-
eralising across the entire globe with a single model is indeed
justified. In more detail, the results confirm our expecta-
tions: the local models perform slightly better in regions
with enough stations, as they can fit the specific, narrower set
of local conditions; but that small edge vanishes in regions
with very few stations, as the global model benefits from
the information contributed by the much larger set of more
distant training stations. Further research is needed to com-
prehensively assess whether, for geographically restricted,
high-accuracy applications in regions with many GNSS sta-
tions, localised models may bring a significant advantage.

5.1.2 Monthly models

Following previous studies (Sun et al. 2019; Ding 2022) that
investigated variations of themodel accuracy across different
seasons and latitudes, we also split the training and test sets in
time. As the seasonal cycles vary across the globe, we prefer
not to split into somewhat arbitrary seasons, but instead, train
and test a separate model for each calendar month of the
year 2019. Again, the same train/test split is used as for the
global model, just further subdivided into monthly subsets.
The results of this experiment are summarised in Table 8.

It can be seen that a more local view tends to simplify
the modelling problem: in all months the monthly mod-
els achieve slightly better performance than the global one,
which is evaluated separately for each month of the test data.
Moreover, the errors of themonthlymodels remain below the
(spatially and temporally) global average error for all months
except June, July, August, and September (when the largest
ZWDs occur in the densely observed northern hemisphere).

Again, the differences are very small and confirm that a
single, global model can capture the seasonal variations of
ZWD. As before, it may be interesting to investigate in a
further study how much of an advantage can be gained when
the training period is extended by including the same month
from multiple years.

To analyse the seasonal behaviour of ZWD predictions
in different parts of the world, the performance is evaluated
separately for the polar zones, the tropical zone, the northern
temperate zone, and the southern temperate zone. Table 9
lists the climate zones, their latitude limits, and the number
of (test) stations per zone. The results of the analysis are
depicted in Fig. 9.

The errors are highest in the tropical zone but of a similar
magnitude throughout the year. Thismakes sense since atmo-
spheric water content and ZWDs are highest in the tropics,
which on the one hand increases the magnitude of potential
ZWD variations, and on the other hand, means that similar
relative errors translate to higher absolute errors. Adding to
that, the number of stations in the tropical zone is particu-
larly low. It also makes sense that the errors in the tropical
zone show only very little variability throughout the year,
as a consequence of the stable climatic conditions without
marked seasonality.
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Table 7 Performance per
geographical region, for both
specialised regional XGBoost
models and the global model

WRMSE [mm] WMAE [mm] #stations #samples

Regional Global Regional Global

Europe 6.9 7.2 5.1 5.4 3155 21,047,736

North America 7.2 7.5 5.3 5.6 6685 45,444,795

Australia 8.8 9.2 6.6 6.9 889 6,328,393

Asia 8.7 9.1 6.7 7.1 1773 13,803,832

Africa 13.4 13.4 10.3 10.3 212 1,477,339

South America 14.5 14.7 11.4 11.6 539 3,332,638

Global average 8.1 6.1 13,402 92,349,330

Table 8 Performance per month of 2019, for both specialised monthly
XGBoost models and the global model

WRMSE [mm] WMAE [mm]

Monthly Global Monthly Global

January 5.9 6.3 4.7 5.0

February 6.1 6.5 4.8 5.1

March 6.3 6.7 4.9 5.2

April 6.8 7.2 5.3 5.7

May 7.6 8.0 5.9 6.3

June 8.7 9.2 6.8 7.2

July 9.4 9.9 7.3 7.7

August 9.5 10.0 7.4 7.8

September 8.6 9.1 6.7 7.1

October 7.3 7.8 5.7 6.0

November 6.4 6.8 5.0 5.4

December 6.3 6.7 4.9 5.2

All months 8.1 6.1

For the polar regions, the observed behaviour is plausible,
too, with much lower errors presumably due to the dry atmo-
sphere, and a relatively stronger seasonal signal. Due to the
very low number of stations in the Arctic and Antarctic, we
refrain from further interpretations.

The performance in the northern and southern temperate
zones follows the expected pattern. In both zones, the errors
exhibit a pronounced seasonal signal, dropping during the
winter months and increasing over the summer when tem-
perature and humidity (and thus also ZWD) are higher. The
slightly higher accuracy in the northern hemisphere is likely
not due to climatic influences, but explained by the much
higher number of training stations.

Figure 9 raises the question if it is correct to use a ran-
dom sample of test stations for the evaluation of the model.
For example, if stations are selected in the north temperate
zone that only observe during the summer months, signifi-
cant biases might be introduced in the evaluation. However,
due to the large sample size, it is unlikely that such biases
appear. Furthermore, in our case, almost all stations observe

year-round (see Fig. 2). Still, to ensure that no bias is present,
the evaluation was additionally calculated only based on test
stations with a completeness of at least 95 %. The resulting
accuracy agrees at the sub-millimetre level with the one over
all test stations.

5.2 Temporal predictions

As noted previously, the focus of our work lies on the global,
spatially explicit modelling of ZWDs. In this context, it is
important to emphasise that our current model is trained on
data from the year 2019 only, and is therefore unaware of
inter-annual variability. To quantify this limitation, we test its
capability to predict ZWD in a different year, namely 2020.
We obtain the meteorological variables for 2020 at the test
stations and apply themodel trained for 2019 to them. There-
fore, ZWD predictions using the meteorological variables of
the year 2020 are conducted.

The resulting WRMSE and WMAE values are 14.2 mm
and 10.6 mm, respectively. They still lie in a very reasonable
range (c.f. the inter-comparison of ZWDmodels in Sect. 4.5),
but are nonetheless almost a factor ×2 higher than those
for 2019. Thus, to obtain the highest accuracy for a certain
time period, it is necessary to retrain the model with the
corresponding NGL data.

Figure 10 depicts the daily average RMSE over all test sta-
tions from January 2019 until December 2020. The clearly
higher errors, as well as the higher variability and a sudden
jump on New Year of 2020, indicate significant temporal
over-fitting of the current model to the conditions of 2019.
In other words, although our approach is able to model the
spatial distribution of ZWD, the data from one particular
year is not enough to learn a general model that covers the
entire range of relevant meteorological conditions anywhere
on Earth for multiple years or even decades. This is not sur-
prising given the large inter-annual variability of the weather
in large parts of the globe and the existence of major atmo-
spheric phenomena that do not occur every year, such as
the El Niño Southern Oscillation (ENSO) or the Northern
Annular Mode (NAM) with their different phases and mag-
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Table 9 Latitude range and
number of (test) stations for the
utilised climatic zones

Climate zone Latitude #stations (#test stations)

Polar zones φ ≤ −66.5◦ or φ ≥ 66.5◦ 191 (44)

Northern temperate zone 23.5◦ ≤ φ < 66.5◦ 11,139 (2244)

Tropical zone −23.5◦ < φ < 23.5◦ 941 (162)

South temperate zone 66.5 < φ ≤ 23.5◦ 1131 (234)

Fig. 9 Performance of monthly
models evaluated in different
climate zones of the world

nitudes. We point out that this shortcoming can be mitigated
quite easily by extending the training data to cover multi-
ple years (if necessary even at the cost of fewer samples per
year). Additionally, the hyper-parameter tuning would have
to bemodified to utilise not only spatially, but also temporally
independent validation data. Together, these two measures
would almost certainly mitigate the problem—a promising,
if obvious direction for a future extension of our model.

5.3 Applicability of our ZWDmodel

There are several ways in which users will be able to utilise
the presented model, depending on their needs and applica-
tions.

First, a gridded data product is available that provides
hourly ZWDs on a regular grid of 0.25 degrees. This data
set may be useful for meteorological studies and other appli-
cations that require dense, global ZWD values. It could
potentially also be used in future weather forecasting.

Second, the trained XGBoost model is provided directly.
With it, users can estimate ZWD for specific locations and
times but must ensure that they supply the correct inputs.
Importantly, the specific humidity values at the various pres-
sure levels are to be taken from the ERA5 data set, so as
to match the data characteristics during model training. We
do not recommend the use of other, user-generated spe-
cific humidity values—these would require retraining of the
model. Furthermore, ZHDs have to be calculatedwith VMF1
to match the NGL processing of the training data to obtain
realistic ZTD values.

Finally, we provide a web interface through which users
can upload their location (latitude, longitude, height) and
time information, which then calculates the corresponding
ZWD based on the XGBoost model and ERA5 input. That

interface, as well as gridded data products at 0.25◦ resolu-
tion are available at the Geodetic Prediction Center of ETH
Zurich, https://gpc.ethz.ch/Troposphere/ (last access: 25 Jan-
uary 2024).

6 Conclusions and outlook

In this study, a global ML-based ZWD model is presented
that achieved a performance of 8.1 mm and 6.1 mm in terms
of WRMSE and WMAE, respectively, for the test stations
for the year 2019. The model utilised the XGBoost algo-
rithmwith the geographical location, time epoch, and specific
humidity at six pressure levels as its input features. It was
trained based on hourly ZWD measurements from 10,718
GNSS stations provided by NGL for the year 2019 and eval-
uated against ZWDmeasurements from 2684 GNSS stations
for the same year. The huge number of training stations
ensured that the model generalised well and led to a good
performance, even for regions with a sparse GNSS station
network.

We verified the performance based on a thorough inter-
comparison with three independent methods for determining
ZWD: computation of ZWDs via (1) vertical integration of
ERA5 data, (2) radiosonde measurements, and (3) ZWD
estimation in VLBI analyses. Our model has the best agree-
ment with NGL (WRMSE of 8.1 mm), which was expected
since NGL serves as the reference. However, the comparison
also shows good agreement between our model with ERA5
(WRMSE of 9.1 mm) and VLBI (WRMSE of 10.6 mm). The
WRMSE for the radiosonde measurements is 15.0 mm. Note
that the inter-comparison is based on a different number of
stations (see Table 5).
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Fig. 10 Time series of daily
average RMSE for 2019 (blue)
and 2020 (orange)

We assume the NGL ZWD estimates to represent the
ground truth. One critical question to be answered in future
studies is to what extent this assumption actually holds. In
particular, errors in ZHD modelling are bound to propagate
into the ZWD estimates and cause local biases, which could
in turn propagate into our model. A study by Ding et al.
(2023) indicates that such regional biases might exist, for
example, in the Andes region. Since our model has access to
the geographical location, such errorswould normally remain
localised and not propagate to other regions. Amore detailed
analysis of the ZWD quality in difficult terrain is required
to ascertain how the local accuracy in such regions differs
from the global one. That being said, our study nevertheless
demonstrates that the proposed model delivers ZWD values
globally and with high accuracy in most regions of the Earth.
We also note that updating the model is straightforward: if
different, better ZWD values for sufficiently many reference
stations become available, all one has to do is retrain the
model with those values.

To further demonstrate the quality of the global model,
regional (continental) and monthly models were also inves-
tigated, which showed that the differences between the
WRMSE and WMAE were very small, on average 0.3 mm
for the regional and 0.4 mm for the monthly models. This
indicates that the global model performs reasonably well
for all regions of the Earth and over the full year. Concern-
ing the regional models, it is shown that areas with a dense
GNSS station network and a high number of stations (e.g.
Europe,NorthAmerica) have a better performance than areas
with a sparse network and a low number of stations (e.g.
South America, Africa). Concerning the monthly models,
it is revealed that the ZWD accuracy of stations located in
the northern and southern temperate zones is worse during
the corresponding summer months, likely explained by the
higher water vapour content and thus higher variations in
ZWDs.

One major advantage of the proposed model is that, in
contrast to other ZWD models, it does not depend on prior
ZWDs. Thus, it can be applied anywhere on Earth, opening
up the possibility to use it for a wide range of applications
in the field of positioning and possibly also for weather
monitoring and forecasting. Furthermore, once trained, cal-

culatingZWDsbasedon the input features is computationally
inexpensive making it attractive for low-cost or low-power
devices. These properties, together with the better perfor-
mance compared to ZWD computed from ERA5, make the
ML model superior to alternative options.

While ourmodelwas designed for spatialmodelling, addi-
tional experiments were conducted regarding its potential
for temporal predictions. We found that the performance
noticeably drops when applying the model to data outside
the training period. This can be explained by the fact that it is
only trained on data from one year, and therefore unaware of
inter-annual variability. To overcome this limitation, it will
be necessary to train the model on multiple years in a future
extension of our model, including the choice of a temporally
independent validation set. We are confident that in this way
temporal generalisation can be achieved, leading to improved
predictions at previously unobserved points in time. In addi-
tion, this study used specific humidity from ERA5 reanalysis
data that only becomeavailablewithinfive days of the present
day, which allows to present the concept of our model but is
a limitation for real-time applications. Preliminary investiga-
tions towards a temporal forecasting model of ZWD suitable
for real-time applications have alreadybeenpresented inCro-
cetti et al. (2023) at the European Geoscience Union (EGU)
2023. It appears that feeding an adapted ML model with
meteorological forecast data from the ECMWF Integrated
Forecasting System (IFS), in combination with training data
from multiple years improves ZWD estimation across time
and does not lead to a significant performance loss. However,
this real-time setting is still under investigation and will be
reported in future works.
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Appendix A

A.1 Comparison of different algorithms

In order to identify the most suitableML algorithm, different
ML algorithms (LASSO regression, KNN, and MLP), listed
in Sect. 3.1, were tested based on the validation stations.

LASSO regression is a linear regressor with L1 regulari-
sation of the coefficients. The L1 norm encourages sparsity,
i.e. coefficients with low influence on the prediction shrink
to zero, thus offering automatic feature selection. A benefit
of LASSO is that, due to the simplicity of the method, the
resulting model is interpretable. Its most serious limitation
is that only linear relationships can be modelled.

The KNN algorithm is a nonparametric method, which
finds a predefined number of neighbours in feature space

Table 10 Performance of different ML algorithms on the validation
stations

WRMSE [mm] WMAE [mm]

LASSO 31.2 24.1

KNN 14.7 10.5

MLP 20.2 15.4

XGBoost 12.2 9.1

and computes the prediction by local interpolation of the tar-
gets. KNN belongs to the family of "lazy learners": instead
of abstracting the training data into a discriminative func-
tion, it stores them directly and scans the entire training
set at inference time. A downside of KNN is that, while
no training is necessary at all, it needs a lot of memory,
especially when processing big data sets. Additionally, KNN
tends to degrade as more predictors are used because dis-
tances between points become increasingly similar and are
no longer discriminative in high-dimensional spaces (Beyer
et al. 1999). Dimensionality reduction techniques such as
principal component analysis (Pearson 1901) can mitigate
this problem, but only if the data form a low-dimensional
manifold in feature space. One benefit of KNN compared to
other algorithms such as LASSO is that KNN is able to solve
nonlinear problems.

The MLP is a feed-forward neural network with one or
more hidden layers between the input features and the output
(target) value. The possibility to employ different (element-
wise) activation functions between layers, and to vary the
number and width of hidden layers, makes the MLP a very
flexible and powerful tool, which however requires careful
tuning, as well as some experience to ensure the gradient-
based, highly stochastic optimisation converges properly.
They are a popular choice to learn highly nonlinear rela-
tionships from large data sets.

The performance of the individual algorithms in terms of
WRMSE and WMAE is depicted in Table 10.

The features used to model ZWD are selected based on
expert knowledge (12 meteorological variables at a pressure
level of 1000 hPa and nine position and time variables listed
in Table 1) (see Sect.A.2) and the set of hyper-parameters for
the individual algorithms are shown in Table 11. The python
packages Scikit-learn (v1.0.2) (Pedregosa et al. 2011) and
XGBoost (v1.5.2 and v1.6.2) (Chen andGuestrin 2016) were
used for the computations. Themodels were trained based on
80 % of the training stations (four folds) and evaluated based
on the remaining 20 % of the training stations (one fold), i.e.
the validation set.

It can be clearly seen that a linear model, like LASSO,
performed the worst with a WRMSE of 31.7 mm. The
KNN algorithm achieved a significantly better result with a
WRMSE of 14.7 mm. Amore complex model, like theMLP,
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Table 11 Tuned
hyper-parameters for the
LASSO, KNN, and MLP
algorithm

ML algorithm Parameter Value Description

LASSO fit_intercept True Whether to calculate the intercept
for this model

max_iter 1000 The maximum number of iterations

cv None The default fivefold
cross-validation is used

KNN n_neighbours 5 Number of neighbours to use

weights ’distance’ Weight function used in prediction

algorithm ’kd_tree’ Algorithm used to compute the
nearest neighbours

MLP hidden_layer_sizes (256,128,64,32,16,8,4) The ith element represents the
number of neurons in the ith
hidden layer

early_stopping True Whether to use early stopping to
terminate training when
validation score is not improving

validation_fraction 0.2 The proportion of training data to
set aside as validation set for
early stopping

n_iter_no_change 30 Maximum number of epochs to not
meet tolerance improvement

Table 12 XGBoost results of
the validation stations of the
different feature constellations

WRMSE [mm] WMAE [mm]

baseline features 22.3 15.7

baseline features + meteorological variables 12.2 9.1

baseline features + q1000 12.5 9.3

baseline features + qsix 8.5 6.4

baseline features + qsix + meteorological variables 8.3 6.3

qsix 16.1 12.4

achieved a WRMSE of 20.2 mm. It is important to note that
although a sophisticated hyper-parameter tuning for MLP
was performed, it is likely that some more fine-tuning of
the MLP model could result in a slightly better performance.
However, the best-performingmodel foundwithin this inves-
tigation was XGBoost with aWRMSE of 12.6mm. Based on
these results, XGBoost was selected and further investigated.

A.2 Feature selection

For the first analyses, position and time features (i.e. φ, λ,
h of the GNSS station and time information t , doy, hod),
further denoted as baseline features, and 12 meteorological
variables (all at a pressure level of 1000 hPa), further denoted
as meteorological variables, were selected as features based
on expert knowledge. This feature set led to a WRMSE of
12.2 mm for XGBoost, as presented in Sect.A.1. In the sec-
ond step, after theML algorithmwas fixed, a detailed feature
selection was carried out with XGBoost. The results of the
validation stations are presented in Table 12.

When using only the baseline features, the model perfor-
mance decreased significantly to 22.3 mm of WRMSE. This
indicates that themeteorological variables are important and
need to be included.

Tofind outwhich features are themost important, a feature
importance plot was created for the model that uses the base-
line features and the meteorological variables and is shown
in Fig. 11. This plot reveals that specific humidity (q1000) is
by far the most important feature, followed by total precipi-
tation (tp) and the position and time features.

Based on these findings, another model run was carried
out, to investigate whether using only the baseline features
and specific humidity (q1000) can achieve the same perfor-
mance as using all meteorological variables. This would
reduce the amount of data and speed up the model training.
It turned out that this feature set reaches almost the accu-
racy of the model that included all meteorological variables
(WRMSE of 12.5 mm).

An additional experiment was then run in which differ-
ent pressure levels for specific humidity were included. Six
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Fig. 11 Feature importance in the XGBoost model trained with base-
line features and meteorological variables as inputs

Table 13 Results of the fivefold cross-validation using XGBoost and
the final feature constellation (baseline features + qsix )

validation WRMSE [mm] WMAE [mm]

fold 1 8.47 6.41

fold 2 8.48 6.38

fold 3 8.39 6.31

fold 4 8.51 6.41

fold 5 8.49 6.41

pressure levels reaching from 1000 hPa to 300 hPa (qsix )
were selected since the water vapour is mostly located in
this part of the atmosphere. The model run using this feature
constellation produced significantly better results achieving
a WRMSE of 8.5 mm.

Additionally, another model run was carried out, using the
baseline features, all six pressure levels for specific humid-
ity (qsix ), and the remaining meteorological variables. The
WRMSE of this run is 8.3 mm, which is the best result. How-
ever, the improvement is insignificant (only 2%) and 11more
features were used, resulting in a much larger feature matrix
that is slower to process.

As a last check, a model was created using only spe-
cific humidity on six pressure levels (qsix ) as features and
discarding the baseline features. TheWRMSE increased sig-
nificantly to 16.1 mm. Therefore, the final features are the
nine baseline features, as well as specific humidity on six
pressure levels (qsix ).

To assess the stability of the XGBoost model with the final
feature set, we ran a fivefold cross-validation. The training
data was randomly split into five equally sized folds and each
fold in turn was used as a validation set while training on
the four remaining ones. Table 13 lists the individual perfor-
mance per fold. TheWRMSE andWMAE are practically the
same in all five runs, showing that the method is unaffected
by the exact choice of training stations and that its prediction
performance is stable across varying validation sets.
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