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Abstract
Geodetic time series are usually modeled with a deterministic approach that includes trend, annual, and semiannual periodic
components having constant amplitude and phase-lag. Although simple, this approach neglects the time-variability or stochas-
ticity of trend and seasonal components, and can potentially lead to inadequate interpretations, such as an overestimation of
global navigation satellite system (GNSS) station velocity uncertainties, up to masking important geophysical phenomena. In
this contribution, we generalize previous methods for determining trends and seasonal components and address the challenge
of their time-variability by proposing a novel linear additive model, according to which (i) the trend is allowed to evolve
over time, (ii) the seasonality is represented by a fractional sinusoidal waveform process (fSWp), accounting for possible
non-stationary cyclical long-memory, and (iii) an additional serially correlated noise captures the short term variability. The
model has a state space representation, opening the way for the evaluation of the likelihood and signal extraction with the
support of the Kalman filter (KF) and the associated smoothing algorithm. Suitable enhancements of the basic methodology
enable handling data gaps, outliers, and offsets. We demonstrate the advantage of our method with respect to the benchmark
deterministic approach using both observed and simulated time series and provide a fair comparison with the Hector software.
To that end, various geodetic time series are considered which illustrate the ability to capture the time-varying stochastic
seasonal signals with the fSWp.
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1 Introduction

Trends and periodic signals are present in many domains and
can be related to climate change (Mudelsee 2019), temper-
atures, ethane or carbon dioxide concentrations (Maddanu
and Proietti 2023), stratospheric ozone (Bloomfield et al.
1994), global water storage (Schmidt et al. 2008), or total
solar irradiance (Montillet et al. 2022). The analysis of the
time-evolution of trend, aswell as the time-varying phase and
amplitude of seasonality, is also valuable within the context
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of structural health monitoring, such as bridge oscillations
(Omidalizarandi et al. 2020), wind turbines (Zivanovic et al.
2023), or stock exchange dynamics (Stratimirović et al.
2018).

In the context of geodetic time series, trends and seasonal
signals can be readily identified. We cite, for instance, the
altimetry and tide-gauge sea-level records (Benveniste et al.
2020), the displacements recorded by permanent stations
of Global Navigation Satellite System (GNSS) or Doppler
Orbitography and Radiopositioning Integrated by Satellite
(DORIS) (Altamimi et al. 2023; Chanard et al. 2020), GNSS
time series used for frame realization (Freymueller 2009), or
terrestrial water storage time series derived from the Gravity
Recovery and Climate Experiment (GRACE) satellite mis-
sion. The ability to extract the amplitudes and phase-lags of
seasonal signals is crucial for revealing geophysical anoma-
lies or interesting variability at low frequencies. Not only
the periodicity is worthy of study but also linear or stochas-
tic trends, involving change-points, accelerated increases,
or nonlinear behavior, which are linked to climate changes
(Mudelsee 2019). In these contexts, significant trends and
seasonal variations are attributed to factors such as changes
in global sea level, plate motion, extended droughts due to
climate or human activities, gravitational excitation, vari-
ations in soil moisture, and fluctuations in atmospheric or
oceanic loading. These factors are explored in studies such
as (Altamimi et al. 2023; Rodell et al. 2018; Cheng et al.
2021). Unfortunately, inconsistent conclusions may arise if
the model for the periodic and linear components is mis-
specified. A notable example is the divergence found in the
surface air temperature of the Northern Hemisphere between
(Thompson and Wallace 1998) and (Barbosa and Andersen
2009), employing different estimation methods for the same
dataset (complex demodulation versus dynamic linear model
representation of autoregressive (AR) process).

For simplicity, it is commonly assumed in geodesy that
the trend and the amplitudes and phase-lags of periodic com-
ponents are deterministic, estimated using the least-squares
method (Tiao et al. 1990). However, Davis et al. (2012) and
Wernicke andDavis (2010) (and the references therein) high-
lighted that the seasonal signals in various geodetic time
series should be treated as stochastic. They used the displace-
ment time series (DTS) observed by GNSS stations and DTS
derived from GRACE records for GNSS locations to support
their view. Since then, various methods have been proposed
to account for time variations of trend and seasonal com-
ponents and have been constantly improved. These methods
include moving average least-squares (Klos et al. 2018a),
trigonometric functions, sample-splitting to detect changes,
or local averaging (Artemov et al. 2015; Nadaraya 1964),
among others. Alternative proposals are based on wavelet
analysis (Ji et al. 2020), singular spectrum analysis (Chen
et al. 2013), principal component analysis (Shen et al. 2013),

the adaptive Wiener filter (Klos et al. 2020), and empirical
mode decomposition and its extensions (Huang et al. 1998;
Li and Guo 2023). For a comparison of some of these meth-
ods and further references, we refer to Deng and Fu (2019)
or Klos et al. (2017).

Models of the unobserved stochastic components of trends
and seasonal components provide the flexibility needed to
capture interesting variability in geodetic time series. The
statistical analysis of these data sets can be conducted using
state space methods, which are fundamental tools for esti-
mating underlying parameters, aswell as for signal extraction
and prediction. The approach ofDavis et al. (2012) or Didova
et al. (2016) marked a first step toward a more data-coherent
approach to modeling seasonal components in geodetic time
series using the Kalman Filter (KF). Applications include
estimating the realistic velocity of tectonic plates together
with its uncertainty and gaining a better understanding of
seasonal variations, such as those due to droughts (Van Loon
et al. 2014). Previous attempts to use the KF for extract-
ing time-varying seasonal signals in geodesy were restricted
to a random walk (RW), as in Davis et al. (2012), or an
AR model of first order (AR(1), also called red noise or
first-order Markov process (Didova et al. 2016)). A similar
approach was proposed inMing et al. (2019), who developed
a network-based KF using a generalized simulated anneal-
ing algorithm, where each component, except for the trend,
was allowed to variate over time, and their amplitudes were
estimated by maximization of likelihood function. In this
contribution, we propose to generalize those representations
of the trend and periodic components and further extend the
basic statistical treatment to account for data gaps, outliers,
or offsets.

This paper makes a twofold contribution. Firstly, we
introduce a new process to geodesy, the fractional Sinu-
soidal Waveform process for periodic components, referred
to as fSWp (Proietti and Maddanu 2022). This process is
defined by the modulation of trigonometric functions by
two independent fractional noise (FracN) processes, discrete-
time counterparts of changes in fractional Brownian motion.
These processes share the samememory andvariance and can
potentially be non-stationary, with RW as a limiting case.
In the FracN models, the persistence or long-range depen-
dence of the underlying stochastic processes is regulated by
a memory parameter; defined by d ∈ (0, 1). Mandelbrot and
Van Ness in Mandelbrot and Ness (1968) proposed the name
FracN (sometimes called fractal noise) to emphasize that the
exponent of the spectrum could take non-integer values. The
Hurst exponent introduced byMandelbrot andNess (1968) is
related to thememory parameter via the relation d = H−0.5
(cf. (Hosking 1981)). The (discrete) flicker noise used in
geodesy can be approximated using a FracN and refers to
a process with a power spectral density proportional to 1/ f ,
with f the frequency (Rekhviashvili 2006).
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The fSWp is more general than previous proposals,
encompassing traditional models of stochastic and deter-
ministic seasonality. The stochastic component is inherently
’rough’,1 i.e., having potentially a RW-like behavior for a
memory parameter less than unity, as the time-varying ampli-
tude andphase are drivenbyFracN.This allows for a different
interpretation than the usual short-memory assumption, as
proposed in Klos et al. (2020). From a statistical standpoint
or goodness of fit, the fSWp appears particularly suitable for
studying stochastic seasonal signals of climatic origin (Proi-
etti and Pedregal 2023).We extend this method to time series
with an additional trend (stochastic or deterministic), when-
ever the decay of the autocovariance function with time is
power-like and slower than exponential, such that the process
exhibits long-range dependence or long-memory (Hassler
2019).

Our second contribution is empirical and focuses on illus-
trating the potential of unobserved stochastic components in
trend and seasonal periods for modeling a variety of geodetic
time series. We specifically use geodetic time series known
to have strong trends and seasonal components for illustra-
tion, including vertical DTS recorded by GNSS permanent
stations (both preprocessed and not preprocessed), vertical
DTS predicted by environmental loading models (non-tidal
hydrospheric and atmospheric loading models), and GNSS-
derived precipitable water vapor (PWV) time series. We use
the IGS station called DRAO located in Penticton (British
Columbia, Canada) for that purpose, without lack of gen-
erality. Our modeling significantly influences the statistical
significance of the parameters, providing a basis for a trust-
worthy climatological interpretation (Alshawaf et al. 2018).
We will compare some of our results with the one given by
theMaximumLikelihood-based software called Hector (Bos
et al. 2013) using the noise model "VaryingAnnual", which
relies on the work of Langbein (2004). Information criteria
and autocorrelation analysis of residuals will be utilized to
assess the goodness of fit of the various models under con-
sideration. We will discuss further filtering strategies such
as the Savitzky-Golay filter for extracting stochastic trends
(Langbein 2004; Savitzky and Golay 1964). Throughout the
manuscript, wewill ensure that a readerwith a geodetic back-
ground can understand the statistical developments that we
propose to present rigorously. This article should be consid-
ered a well-founded introduction to the fSWp and will be
followed by a second one, where a systematic analysis of the
differences with, e.g., the Hector software will be conducted.

The remainder of this paper is structured as follows: The
first section introduces the fSWp and the KF methodology.
In the second section, we describe the various datasets and
discuss their optimal fitting, comparing themwith the widely

1 Roughness refers to a feature of the fractional Brownian Motion with
Hurst exponent H < 1/2.

used fully deterministic approach. Monte-Carlo simulations,
presented in an appendix, will complement this contribution,
highlighting the high potential of the fSWpwithin a geodetic
context.

2 Methodology

The theory described below is based on the recent con-
tributions provided by Proietti and Maddanu (2022) and
Maddanu and Proietti (2023) in climate time series analy-
sis. Section2.1 presents a process for long-range dependent
cyclical/seasonal time series, embedding both stochastic and
deterministic cycles. Section2.4 introduces a general para-
metric model to describe periodical geodetic signals, based
on the theory of the previous section. Finally, Sect. 2.6 pro-
vides statistical inference according to the augmented KF
methodology (see de Jong (1989) and Proietti and Luati
(2013)). Outliers, offsets, data gaps, and model restrictions
are discussed in the remaining sections.

2.1 The fractional sinusoidal waveform process

2.1.1 Introduction

A deterministic periodic component is generated by the fol-
lowing harmonic model:

st = a cos(λt) + a∗ sin(λt), (1)

for t = 1, . . . , n. Equation (1) defines a sinusoidal wave
with period 2π/λ, constant amplitude, A = √

a2 + a∗2, and
phase displacement equal to Ph = arctan(− a∗

a ). The prop-
erties of st depend on a, a∗ and λ. By assuming that a and
a∗ are drawn from independent normal distributions with
mean zero and variance σ 2

a and defining γ (k) = E(st st−k)

as the autocovariance function of the process, it holds that
γ (k) = σ 2

a cos(λk). A deterministic cycle is "smooth" and
perfectly predictable (i.e., with zero forecast error) using a
finite realization.

A stochastic periodic component arises by letting the
parameters that regulate the amplitude and phase-lag to
evolve stochastically over time, i.e.,

st = at cos(λt) + a∗
t sin(λt), (2)

where we let at and a∗
t evolve over time according to two

orthogonal colored noise processes (Williams 2003a). A gen-
eral specification, encompassing the most popular model
of stochastic components posits (1 − φL)dat = ηt , and
(1 − φL)da∗

t = η∗
t , where ηt and η∗

t are orthogonal white
noise sequences with variance σ 2

η , and L is the lag operator.
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2.1.2 Special cases

• For 0 < φ < 1 and d = 1, at and a∗
t are generated by a

red noise process, also called first-order Markov process
or autoregressive process of order 1 abbreviated asAR(1).
As a result, st is a stationary cycle with ARMA(2,1) rep-
resentation exhibiting short memory2 (Hannan 1964).

• For φ = d = 1, at and a∗
t are generated by a brown

noise process (integrated white noise or RW) and st is a
non-stationary (unit root) cycle at the frequency λ. We
recall that brown noise has a frequency density propor-
tional to 1/ f 2. Pink noise (sometimes called flicker noise
or 1/ f noise) falls between brown and white noise. Both
can be generated by sequencing a zero-mean white noise
through an AR filter of order N following Kasdin (1995).
The more general FracN has a frequency density propor-
tional to 1/ f 2d with d ∈ (0, 1).

• The fSWp proposed by Proietti and Maddanu (2022)
arises in the case φ = 1 and d > 0, such that at and
a∗
t are FracN processes (Hosking 1981; Andvel 1986),

at = (1 − L)−dηt , ηt ∼ WN(0, σ 2
η ),

a∗
t = (1 − L)−dη∗

t , η
∗
t ∼ WN(0, σ 2

η ). (3)

with infinite moving average (MA) representation at =∑∞
i=0 ψi (d)ηt−i and a∗

t = ∑∞
i=0 ψi (d)η∗

t−i , where the

coefficients ψi (d) = 	(i+d)
	(i+1)	(d)

come from the binomial

expansion of (1 − L)−d .

2.1.3 Properties

The properties of the FracN process depend on the memory
parameter d. The process is stationary if d < 1

2 , and non-
stationary for d > 1

2 . More explicitly, if 0 < d < 1
2 :

1. The spectral density and autocovariance functions of both
at and a∗

t are, respectively,

fa(ω) = σ 2
η

2π

(

2 sin(
ω

2
)

)−2d

, (4)

and

γa(k) = σ 2
η

	(1 − 2d)	(d + k)

	(k + 1 − d)	(d)	(1 − d)
, (5)

2 We refer to the concept of long and shortmemory as in (Hassler 2019),
such that a stationary process displays long-memory if its autocovari-
ance function is not summable or, equivalently, if its spectral density
is unbounded at one or more frequencies. Otherwise, it displays short
memory.

where 	(u) = ∫ ∞
0 zu−1e−zdz is the Euler Gamma func-

tion (see Hosking (1981) and Andvel (1986) for the proof
of Eqs. 4 and 5).

2. The fSWp st has spectral density

f (ω) = σ 2
η

4π

[ (

2 sin

(
ω − λ

2

))−2d

+
(

2 sin

(
ω + λ

2

))−2d]

(6)

and autocovariance function

γ (k) = γa(k) cos(λk), (7)

as showed by Proietti and Maddanu (2022). Hence, the
process displays cyclical long-memory in the sense speci-
fied byOppenheim andViano (2004), since as k → ∞ the
autocovariance function is a cosine wave modulated by a

hyperbolically decaying sequence, γ (k) ∼ k2d−1

	(d)
cos(λk),

and the spectral density is unbounded at the frequency λ,
i.e., f (ω) ∼ σ 2

4π |ω − λ|−2d , as ω → λ.

A nice feature of the fSWp model is that it encompasses
non-stationary persistent cycles ( 12 < d ≤ 1) as well as
deterministic cycles which are a limiting case when d → 1

2
from the left and σ 2

η → 0. In that case, γ (k) → σ 2
a cos(λk).

2.2 Simplification

The model of Eq. (2) with at = (1 − φL)−dηt , a∗
t =

(1−φL)−dη∗
t , is the most general one. However, joint infer-

ences on (φ, d) are problematic when φ is close to 1 and d is
the non-stationary region3 (the information matrix is almost
singular as with an RW, i.e., φ = 1 and d = 1). To address
this challenge, we suggest setting φ = 1 and focusing on
the fSW model as the primary case of interest for geode-
tic time series. To accommodate the non-stationary scenario,
we assume that the FracNprocesses, governing the amplitude
and phase of the cycle, initiate at time t = 0. Consequently,
we can express their MA representation in a finite form as
follows:

at = a0 +
t−1∑

i=0

ψi (d)ηt−i , at∗ = a∗
0 +

t−1∑

i=0

ψi (d)η∗
t−i , (8)

where a0 is a constant term embedding the past information:
a0 = ∑∞

i=t ψi (d)ηt−i . A similar representation holds for
a∗
0 . The time series model for at and a∗

t in Eq. (8) is referred

3 The process at = (1 − φL)−dηt with φ < 1 and d > 0 is a
discrete-time version of a Mátern process, see Lilly et al. (2017) and
the supplementary materials in Maddanu (2023).
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Fig. 1 Top: FracN processes with d = 0.1, 0.4 and 0.7, a simulated time series; b periodogram. Bottom: fractional sinusoidal waveform process
with d = 0.1, 0.4 and 0.7, c simulated time series, d periodogram

to as a type II fractionally integrated noise (Marinucci and
Robinson 1999).

The fSWp as in Eqs. (2) and (8) defines a stochastic peri-
odic model, characterized by time-varying amplitude, At =√

(at − a0)2 + (a∗
t − a∗

0)
2, and phase Pht = arctan((a∗

t −
a∗
0)/(at − a0)). The processes driving their evolution are
independent FracNs with the same variance and memory
parameter. The parameters d and σ 2

η regulate the persistence
and the smoothness of the cycle.

To illustrate the FracNprocess, Fig. 1a displays time series
of length 5,000 simulated from Eq. (3), with σ 2

η = 1 and d
ranging from 0.1 (blue line) to 0.7 (yellow line). In the latter
case, the FracN process is non-stationary. Panel (b) exhibits
the corresponding periodogram, which, as anticipated from
Eq. (3), displays a power-law dependence with respect to

frequency. Panel (c) presents realizations of fSWp (Eq. 2)
with λ = 2. The corresponding periodograms are plotted in
panel (d), along with their theoretical spectrum. They show
the typical power-law dependence with frequency within a
given bandwidth. The broad peak at the yearly frequency
(ω = 0.017 rad) is the distinctive indicator of the fSWp, inter-
preting the stylized characteristics of periodicity in geodetic
time series, see Davis et al. (2012) and Klos et al. (2020).

2.3 A parallel with the bandpass noise model

Langbein (2004) accounted for the aforementionedwidening
of the power spectrum due to the amplitude modulation of
a periodic signal using the concept of an additive bandpass
noise. The autocovariance of this process as implemented
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in the software Hector (Bos et al. 2013) under "Varyingsea-
sonal" for a maximum likelihood estimation, is inspired by
the development of Klos et al. (2020) and reads:

γa(k) = σ 2
η

φk
d=1

2(1 − φ2
d=1)

cos(λk). (9)

where φd=1 corresponds to the modulation of the periodic
signal with an AR(1) process. The parallel with Eq. (7) is
strong, but the underlying philosophy differs. While both
processes can be non-stationary, the fSWp can model long-
range dependencies through the memory parameter d of the
FracN process. However, this modelization seems to be the
closest to our proposal in the Hector software. The Wiener
filter as proposed by Klos et al. (2020) necessitates approxi-
mated values for the noise and has the same aforementioned
limitation. We will show further in Sect. 3 that the fitted time
series using the fSWp are more realistic than with theWiener
filter approach.Wewill, thus, restrict ourselves to a compari-
son of the fSWpwith theBand-pass noisemodel, abbreviated
as BP in the following.

2.4 A general parametric model for periodic
geodetic signals

In the analysis of geodetic time series, linear additive mod-
els are fundamental. The primary objective is to provide a
coherent representation of the data, distinguishing between
the trend component that characterizes the long-term behav-
ior and the seasonal component responsible for the majority
of the series’ variability. Linear trends, coupled with col-
ored noise (such as RW or flicker noise, Williams 2003a;
Klos et al. 2018b; Montillet and Bos 2020), are commonly
employed tomodel the nonseasonal aspects. Simultaneously,
deterministic trigonometric cycles, specifically at annual and
semiannual frequencies, are used to capture the seasonality.
As pointed out byMaddanu and Proietti (2023) and Friedrich
et al. (2020), a deterministic model may mask important
features in the data. Considering the trend and seasonal com-
ponents as stochastic, with deterministic features included as
limiting cases, is a more general and preferable assumption.
In the following, we let yt for t = 1, 2, . . . , n be a daily
geodetic time series. We propose a linear additive specifica-
tion:

yt = μt + st + ut , (10)

where μt is the trend component, modeled as the local linear
trend process (Harvey 1990):

μt = μt−1 + τt−1 + εt , εt ∼ WN(0, σ 2
ε ),

τt = τt−1 + ζt , ζt ∼ WN(0, σ 2
ζ ),

(11)

and E(εtζs) = 0,∀(t, s); σ 2
ε > 0 allows the level of the trend

to evolve stochastically over time, while σ 2
ζ > 0 accounts for

the trend variation. The same trend specification has been
considered by (Didova et al. 2016). Note that a standard RW
with drift is obtained if σ 2

ζ = 0, while the deterministic trend

arises as a special case if both σ 2
ε and σ 2

ζ are restricted to

zero. Indeed, σ 2
ζ = 0 implies τt = τt−1 = τ0, where τ0 is

a constant, such that μt = τ0 + μt−1 + εt . Then, restricting
also σ 2

ε = 0, we obtain by recursion μt = μ0 + τ0t , where
μ0 is a constant.

The periodic, or seasonal, component, st , is modeled as
the sum of q fSW processes defined at the annual frequency,
λ1 = 2π/P , P = 365.25 and at the harmonic frequencies
λ j = 2π j/P , j = 2, . . . ,m:

st =
m∑

j=1
s jt ,

s jt = a jt cos(λ j t) + a∗
j t sin(λ j t),

a jt = a j0 + ∑t−1
i=0 ψ j i (d j )η j,t−i , η j t ∼ WN(0, σ 2

η j ),

a∗
j t = a∗

j0 + ∑t−1
i=0 ψ j i (d j )η

∗
j,t−i , η∗

j t ∼ WN(0, σ 2
η j ).

(12)

The parameters σ 2
η j are specific to each cycle, but they may

also be restricted to be invariant with j . Typically, only the
annual and semiannual cycles are needed to characterize the
seasonal pattern (m = 2).

Finally, ut is assumed as a (possibly power-law) noise
term following a standard ARMA(r , q) process as developed
in Bhootna et al. (2023):

ut =
r∑

i=1

ϕi ut−i +
q∑

i=1

υiξt−i + ξt (13)

where ξt ∼ N (0, σ 2
ξ ).4

The specification of the model is completed by the
assumption that the disturbances εt , ζt , ξt , η j t and η∗

j t for
j = 1, 2, are mutually uncorrelated. We refer to Kasdin
(1995) for a description of how to generate colored noise
models using ARMA representation. We further point out
that the approach consisting of approximating the FracN by
a truncated ARMA model was developed in Hartl and Juck-
newitz (2022a). Focusing on the state space approximations,
they find that the ARMA(3,3) and ARMA(4,4) approxima-
tions exert a very similar performance, which did not seem
to depend on the specification of d. In this contribution, we
used a ARMA(3,3) modeling since a higher order does not
provide significant advantages in terms of goodness of fit-
ting. This problem has been also investigated by Dmitrieva

4 In our empirical applications we did not find evidence for values of r
and q greater than 1.
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et al. (2015) within a geodetic content using a sum of AR(1)
models as an alternative.

2.5 State space representation

The state space representation of a linear Markovian time
series model paves the way for the statistical estimation of
parameters and unobserved components, facilitated by com-
putationally efficient algorithms such as the KF and the
associated smoothing algorithms. A time series model is
Markovian if yt can be expressed as a linear combination
of a finite number of functions of the past, or states.

Long-memorymodels are notMarkov, but a finite approx-
imation is obtained by truncating the infinite MA or AR
representation of the process (see for instance Chan and
Palma 1998; Dissanayake et al. 2016). An alternative strat-
egy, leading to greater parsimony, deals with approximating
the FracN processes a jt and a∗

j t by an ARMA(p, p) model,

e.g., (1 − ∑p
i=1 φi (d)Li )ãt = (1 + ∑p

i=1 βi (d)Li )η̃t . This

approach is proposed by Hartl and Jucknewitz (2022b). Usu-
ally, setting p = 3 suffices.

The coefficients of the ARMA approximating model are
obtained by minimizing a least-squares criterion. For that
purpose, we let ãt = ã0 + ∑t−1

i=1 ψ̃iηt−i be the process
approximating at in (8), where the coefficients ψ̃i satisfy

(

1 −
p∑

i=1

φi (d)Li
)

⎛

⎝
∞∑

j=0

ψ̃i L
j

⎞

⎠ = 1 +
p∑

i=1

βi (d)Li ;

The coefficients (φi (d), βi (d)), i = 1, . . . , p, are obtained
by minimizing the mean square approximation error

1

n

n∑

i=1

(n − i + 1)
(
ψi (d) − ψ̃i

)2
.

where ψi (d) = 	(i+d)
	(i+1)	(d)

. The linear Markovian approx-
imating model is then cast in state space form with the
following measurement and transition equations (cf. Durbin
and Koopman (2012)):

yt = z′
tαt + w′

tδ,

αt+1 = Tαt + hεt ,
(14)

where the notation 0′
p means a vector of length p with all

elements equal to zero. We further assume that q = 2, so
that

wt = (1, cos(λ1t), sin(λ1t), cos(λ2t), sin(λ2t))
′,

δ = (a00, a10, a
∗
10, a20, a

∗
20)

′,
z′
t = (1, 1, cos(λ1t), 0′

p, sin(λ1t), 0
′
p, cos(λ2t),

0′
p, sin(λ2t)0

′
p, 1, 0

′
max(r ,q+1)). (15)

The state vector has dimension (2 + 4p + max(r , q + 1)),

αt = (μt , τt ,α
′
Cy,1t ,α

∗′
Cy,1t ,α

′
Cy,2t ,α

∗′
Cy,2t ,α

′
No,t )

′.

The trend component is represented by the first two ele-
ments in αt . The ARMA(p, p) processes approximating the
FracN processes regulating the amplitude and phase of the
j-th cyclical component s jt in Eq. (12) are represented, for
j = 1, 2, by

αCy, j t =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ã j t − ã j0

φ2(d j )(ã j,t−1 − ã j0) + · · · + φp(d j )(ã j,t−p+1 − ã j0) + β1(d j )η j,t−1 + · · · + βp(d j )η j,t−p

φ3(d j )(ã j,t−2 − ã j0) + · · · + φp(d j )(ã j,t−p+1 − ã j0) + β2(d j )η j,t−1 + · · · + βp(d j )η j,t−p+1
...

βp(d j )η j,t−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

and α∗
Cy, j t has identical structure. Finally, the noise term ut

is represented in state space form by

αNo,t =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ut
ϕ2ut−1 + · · · + ϕr ut−r+1 + υ1ξt−1 + · · · + υqξt−q

ϕ3ut−2 + · · · + ϕr ut−r+1 + υ2ξt−1 + · · · + υqηt−q+1
.
.
.

υqξt−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

The parameter a00 in the coefficient vector δ, represents the
initial level. The transition matrix is block diagonal,

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

TTr 0 0 0 0 0
0 TCy,1 0 0 0 0
0 0 T∗

Cy,1 0 0 0
0 0 0 TCy,2 0 0
0 0 0 0 T∗

Cy,2 0
0 0 0 0 0 TNo

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

h =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

hTr 0 0 0 0 0
0 hCy,1 0 0 0 0
0 0 h∗

Cy,1 0 0 0
0 0 0 hCy,2 0 0
0 0 0 0 h∗

Cy,2 0
0 0 0 0 0 hNo

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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where

TTr =
[
1 1
0 1

]

, hTr =
[
1 0
0 1

]

(16)

for j = 1, 2

TCy,j =

⎡

⎢
⎢
⎢
⎢
⎣

φ1(d j ) 1 0 0
... 0

. . . 0

φp(d j ) 0
. . . 1

0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

, hCy,j =

⎡

⎢
⎢
⎢
⎣

1
β1(d j )

...

βp(d j )

⎤

⎥
⎥
⎥
⎦

,

(17)

(similar expressions hold for T∗
Cy,j and h∗

Cy,j) and

TNo =

⎡

⎢
⎢
⎢
⎢
⎣

ϕ1 1 0 0
... 0

. . . 0

ϕr 0
. . . 1

0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

, hNo =

⎡

⎢
⎢
⎢
⎣

1
υ1
...

υq

⎤

⎥
⎥
⎥
⎦

. (18)

All the disturbances (εt , ζt , η1,t , η
∗
1,t , η2,t , η

∗
2,t , ξt ) are

collected in the vector εt , according to the above repre-
sentation. The initial state vector α1 has a Gaussian distri-
bution centered around 0 with variance-covariance matrix
hVar(εt )h′, where Var(εt ) = diag(σ 2

ε , σ 2
ζ , σ 2

1,η, σ
2
1,η, σ

2
2,η,

σ 2
2,η, σ

2
ξ ).

2.6 Statistical inference and signal extraction

Under the normality assumption, the likelihood of the
observed time series can be evaluated with the support of the
KF (Durbin and Koopman 2012; Proietti and Luati 2013).
Maximum likelihood estimation of the hyperparameters θ =
(σ 2

ε , σ 2
ζ , σ 2

1,η, σ
2
1,η, σ

2
2,η, σ

2
2,η, σ

2
ξ )′ and the initial conditions

in the vector δ can be conducted through a numerical opti-
mization routine, employing a quasi-Newton algorithm. A
reparameterization is applied to guarantee that the estimates
of hyperparameters fall within their admissible range.

Point and interval estimates of the various unobserved
components in the model described by Eqs. (10)–(12),
conditional on the observed time series and the parame-
ter estimates, are obtained via the smoothing algorithm by
de Jong (1989), according to Appendix A. If the assump-
tion of Gaussianity is relaxed, the smoothing algorithm still
provides optimal linear estimates of the unobserved compo-
nents.

Dealing with data gaps and outliers
Geodetic signals often exhibit data gaps, outliers, and

shifts in the mean value, referred to as offsets. To address
these challenges, we enhanced our fSWp to accommodate
non-preprocessed time series. Missing values are managed

by excluding the updating operations in the KF recursions
(refer to Appendix A for mathematical details). When the
location of an outlier or offset is identified, the state space
model can incorporate the impact of suitable intervention
variables. In the case of an additive outlier, this takes the
form of a pulse dummy, i.e., a variable that equals one at
the time of the intervention and zero otherwise. Offsets are
addressed by including a step dummy among the regression
effects, i.e., a variable that equals 1 after the break and 0
before the break (Montillet and Bos 2020).

Situations, when outlier contamination occurs randomly
across the available sample, are more suitably handled by a
robustification of the filter, as in Proietti and Pedregal (2023)
and the references therein. In the presence of an outlying
observation, as indicated by a notably large one-step-ahead
prediction error, the robust KF employs a strategy of shrink-
ing the real-time estimate of the state components toward the
one-step-ahead prediction. This prediction doesn’t incorpo-
rate the current contaminated observation. Instead, the robust
KF replaces the observation after extracting the contaminated
part, mitigating the influence of the outlier on the estimation
process. This approach enhances the robustness of the state
estimation against the impact of outliers.

2.7 Model evaluation and selection

Themodel introduced in Sect. 2.4 provides a broad specifica-
tion encompassing several particular cases that are useful in
practice. Model selection based on information criteria (IC),
goodness of fit assessment, and a thorough assessment of the
test error will suggest the specification that is most suitable
for the series under consideration. We envisage five relevant
restricted versions of the general model in Eqs. (10)–(12):

1. Model 1: The trend component is deterministic (σ 2
ε =

σ 2
ζ = 0) and ut is an AR(1) (red noise) process (r = 1

and q = 0 in Eq. (13)).
2. Model 2: The trend component is deterministic (σ 2

ε =
σ 2

ζ = 0) and ut is an ARMA(1,1) process (r = 1 and
q = 1 in Eq. (13)).

3. Model 3: The noise component ut is an AR(1) process
(r = 1 and q = 0 in Eq. 13).

4. Model 4: The trend component is a RWwith constant drift
(σ 2

ζ = 0). The noise component is absent (ut = 0).
5. Model 5: Both trend and seasonal component are deter-

ministic and ut is an AR(1) (red noise) process.

Comparison with usual methods

• Model 5 is a standard approach in fitting geodetic time
series and it will be used in the empirical section as a
benchmark. Specialized software has been developed for
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its estimation, with the most prominent example being
theHector software (Bos et al. 2013). In this contribution,
we restrict ourselves to the modeling of ut as an AR(1)
process. In the future, ut will be considered as a FracN,
i.e., a power-law noise for which d can be estimated as
described in Sect. 2.5, encompassing both flicker noise
and power-law noise in a unifying approach.

• Model 1 has been implemented by Proietti and Maddanu
(2022) in analyzing inter-annual and intra-annual vari-
ability of carbon dioxide (CO2) concentrations at Mauna
Loa, even though the cyclical component was assumed to
be stationary. A further restriction of the general model
in Eqs. (10)–(12) can be found in the contribution by
Davis et al. (2012) on the analysis of geodetic signals
with stochastic seasonal components. Here, the memory
parameters in the fSWp specification have been con-
strained to be 1, implying that the amplitude and phase
governing the stochastic cycle are influenced by RWs.

• Models 3 and 4 consider the trend as a non-stationary
stochastic process.

Visual inspections of the time series, as well as criteria
to judge the goodness of fit can provide indications toward
one or another model. This approach can be compared with
high-pass filteringwhichwould extract the component with a
frequency over one year through tuning the cutoff frequency.
The fine-tuned weighted Savitzky-Golay filter (Savitzky and
Golay 1964) is a robust filter that has the main advantage of
preserving the shape (peaks and features) of the filtered time
series. We refer to, e.g., Liu et al. (2015) for filtering seismic
signals. From a principled standpoint, this filter would be
close to the stochastic trend modeling.

Table 1 provides an overview of the main specifica-
tions of the models under consideration. Please note that
variousmethods exist formodeling a given process. The soft-
ware Hector is widely utilized in geodetic contexts, known
for its flexibility and diverse functionalities. For instance,
time-varying periodic components can be modeled using a
Chebyshev polynomial (Bennett 2008). With this assump-
tion, neither the amplitude nor the phase are stochastic,
representing a distinct approach from the one employed in the
fSWp, and providing smoothed periodic components. With
such a simple polynomial fitting, the long-range dependent
noise is entirely captured in the residuals, typically through a
random walk (RW). We acknowledge that this perspective is
visually more common, although it is likely suboptimal from
a modeling standpoint.

In this contribution, we have opted to model the resid-
uals with an AR(1), a short-memory noise. Our algorithm
can be readily adapted to other types of noise, as long as
the optimization process aligns with the KF framework, as
described in Sect. 2.6. For consistency, AR of higher order Ta
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or ARMA processes should be considered, given their ease
of implementation. Additionally, we recommend employing
stochastic trend modeling when in doubt about the presence
of an RW, which can be visually identified at first glance
through the wandering of the time series.

We do not intend to replace the well-established soft-
ware Hector but rather to offer an alternative approach to
consider the modeling of the same data, providing different
insights through the stochastic amplitude and phase FracN
assumption. That is the reason why the nearest and fairest
comparison of our approach is, in our opinion, the BP noise
model described in Sect. 2.3.

Goodness of fit
We judge the goodness of fit of the models using the fol-

lowing indicators:

• The log-likelihood of the model, evaluated at the max-
imum likelihood estimates of the parameters, LL(θ̂),
where θ̂ = argmaxθ LL(θ). The preferred model should
usually have the highest logLikelihood, or equivalently,
the smallest deviance, defined as −2LL(θ̂). Models
with different complexity are compared by introducing a
penalty for the number of estimated parameters, k. The
Akaike IC is defined as AIC = 2k − 2LL(θ̂) (Burnham
et al. 2010).

• Residual autocorrelation. For a correctly specifiedmodel,
the standardized KF innovations are serially uncorre-
lated.Departure from the stated assumption is revealedby
a large Ljung-Box or Box-Pierce statistic (Box and Jenk-
ins 1976), which is based on the sum of the squares of
the firstm sample autocorrelations, scaled by the number
of observations. In this contribution, we use the descrip-
tive statistic called hereafter Sum2Corr and defined as
�ρ̂2

ε
= ∑n−1

t=2 ρ̂2
t,ε , where ρ̂t,ε is the sample correla-

tion function of the studentized residuals (Hassani and
Yeganegi 2019). When multiplied by n, the Box-Pierce
autocorrelation test is obtained. Since our goal in this
contribution is not to test the statistical significance of the
results but rather to make comparisons between models
for the same time series, Sum2Corr is sufficiently descrip-
tive to achieve this objective.

• We estimate the uncertainty of the deterministic trend by
considering the uncertainty as σbK F = √

Var(δ)(2,2), see
Appendix A. This value increases whenmore parameters
are estimated (the total variance of the model increases)
and will be higher for the fSWp compared to a fully
deterministic approach. For Hector, we used the stan-
dard deviation of the driving noise for comparison. A
more usual definition of uncertainty in geodesy follows,
e.g., Alshawaf et al. (2018); Tiao et al. (1990). In that case

we have
√

Var(b̂) = σN∑
n(t−t̄)

√
(
1+φ
1−φ

), which we roughly

call "σb" in the following.
∑

n(t − t̄) is the deviance of

Fig. 2 Flowchart describing the estimation of the hyperparameters with
a KF

time, and σN is the standard deviation of the residuals
after reducing the deterministic components. This value
can be computed using the BP approach in Hector and
an additional AR (or ARMA as in model 2) noise.

The methodology for the hyperparameters estimation and
relative extraction of the unobserved components within the
KF framework is summarized in a flowchart form in Fig. 2.

3 Case study

In this section, we intend to thoroughly examine the model-
ing of diverse geodetic time series through the methodology
outlined in Sect. 2.6. The diversity of data and processing
methods demonstrates that the fSWp can be successfully
applied to geodetic time series with a periodical component,
requiring only proper adaptation. The reader should be aware
that the chosen modeling can be customized, similar to what
can be done with, e.g., the software Hector. This aspect, as
well as a deeper comparison with other methods, will be
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addressed in a subsequent contribution. In this present study,
we will focus on:

• Geodetic time series from the DRAO GNSS perma-
nent station (British Columbia, Canada). To illustrate the
variety of models, we have chosen the (i) GNSS verti-
cal DTS processed by the International GNSS Service
(IGS), (ii) precipitable water vapor (PWV) time series
derived within GNSS processing, (iii) vertical DTS pre-
dicted by non-tidal atmospheric loading (NTAL) model
for the location of DRAO station and (iv) vertical DTS
predicted by hydrological loading (HYDL)model for the
location of DRAO station. This station is considered to
represent, nominally, the stable North American conti-
nent (Khazaradze et al. 1999). It was chosen randomly
for illustration.

• IGS-processed vertical DTS from the two additional
stations recognized as affected by strong periodical com-
ponents followingKlos et al. (2020), calledNEAH (Neah
Bay, USA) and LPAL (LaPalma, Canary Islands). These
stations demonstrate the necessary adjustments required
in the stochastic model compared to the DRAO case
study to achieve optimal results.We deliberately selected
these stations because the visual representation of fitting
the time-varying periodical component using the Wiener
filter approach is available in Klos et al. (2020) for com-
parative analysis.

• non-preprocessed GNSS vertical DTS processed by the
Nevada Geodetic Laboratory (NGL) from six neighbor-
ing GNSS stations, situated in Wettzell, Germany. We
will show how the adapted KF algorithm can deal with
offsets, data gaps of various sizes and outliers present in
the non-preprocessedDTS. Additionally, wewill explore
how the modeling with the fSWp can provide novel
insights into studying the trend and periodic components
from geodetic time series.

All these types of time series contain a trend (potentially
small as for NTAL) and seasonal components and play an
important role in studying climatological effects as well as
geophysical hazards. They are the topic of various publi-
cations in which a simple deterministic model (trend and
seasonal components) is used, most of the time.Many contri-
butions focus on analyzing the noise structure of the residuals
and finding potential (spatial) dependencies. Unfortunately
and as highlighted in, e.g., Davis et al. (2012), this highly
restrictive deterministic assumption can obscure the time
variability of seasonal components, leading to a cascading
effect that biases the interpretation of noise. The fSWp, with
its high flexibility, is an answer to such challenges. A com-
parison with the BP noise model of the Hector software is
provided for orientation as described in Sect. 2.3.We strongly
insist that other modelizations could have been chosen but

that we restricted ourselves to comparable implementations
for fairness. The optimal fitting of geodetic time series is
a controversial and non-solved topic with various (nearly
philosophical) interpretations. This discussion is not the topic
of this contribution. Our intention is not to engage in broad
geophysical interpretations at this point; Such analyses will
be addressed in specific and dedicated studies. Our focus
centers on the variety of models, their goodness of fit, and
a comparison with a conventional deterministic case and the
BP modelization.

3.1 Data description

Before analyzing the results, we provide a short description
of the chosen data set in the next sections.

3.1.1 IGS-processed vertical DTS

We use the vertical DTS which results from the third
IGS reprocessing campaign “repro3” (http://acc.igs.org/
repro3/repro3.html), performed to provide reliable input
into the newest International Terrestrial Reference Frame
(ITRF2020).

Three different GNSS stations are selected. The DRAO
station is located in a region considered as stable with a radial
velocity of 0.7± 0.01mm/yr based on 27 years of continuous
measurements (Mazzotti et al. 2007). Moreover, we employ
twoGNSSstations known for their pronounced seasonal vari-
ations to compare outcomes with those achieved using the
Wiener Filter, as outlined in Klos et al. (2020): NEAH (Neah
Bay, USA) and LPAL (La Palma, Canary Islands).

The IGSGNSSverticalDTSwere preprocessedby remov-
ing outliers using three times the interquartile range rule
and offsets using available databases of offsets, supported
by manual inspection.

3.1.2 HYDL- and NTAL-predicted vertical DTS

We use the predictions of vertical displacements arising from
the non-tidal atmospheric mass loading and hydrospheric
mass loading, computedby theEarthSystemModelinggroup
of the German Research Center for Geosciences at Potsdam
(Dill et al. 2013).

Hydrospheric mass loading modeled by the ESM GFZ
group (Dill and Dobslaw 2013) considers the surface load-
ing ofwater contained in different layers (soil moisture, snow
cover, shallowgroundwater, and surfacewater stored in rivers
and lakes). The DTS predicted by HYDL are sampled daily
and interpolated from their original grid into the location
of DRAO station. The DTS predicted by NTAL is sampled
3-hour and computed using the 3-hourly atmospheric sur-
face pressure from the European Center for Medium-Range
Weather Forecast using surface-pressure fields provided by
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the latest operational model of the European Centre for
Medium-range Weather Forecasts (ECMWF) (Memin et al.
2020). We re-sample the 3-hour time series into epochs con-
sistent with GNSS and interpolate NTAL-predicted DTS into
the location of the DRAO station.

3.1.3 PWV time series

We use the tropospheric time series obtained within the
GNSS processing as provided by Wang et al. (2016) and
described in Wang et al. (2016). In a nutshell, zenith wet
delays are estimated as part of the GNSS processing and
converted to the PWV time series by using the relation-
ship suggested by Bevis et al. (1992). In the data set from
Wang et al. (2016), ERA-Interim was used to interpolate the
pressure values for the GNSS stations for the same period
(2000–2012).

PWV time series are of great interest for meteorological
and climatological studies (Poli et al. 2007). They serve to
improve the prediction of local heavy rainfall but also for a
better understanding of the hydrological cycle and green-
house gas effects (Guerova et al. 2016). The linear trend
in GNSS-derived PWV time series has been regarded as
a very important resource for investigating climate change
(Alshawaf et al. 2018). We anticipate that a stochastic mod-
eling approach holds even greater promise in this context.

3.1.4 NGL-processed vertical DTS

We further use NGL-processed vertical DTS from the
Wettzell site. The GNSS observations were processed using
the GIPSY-OASIS II Release 6.1 from JPL with IERS2010/
IGS08 standards/models (Precise Point Positioning with
ambiguity resolution using the WLPB method). We aim to
underscore the capability of the Kalman Filter (KF) and the
developed methodology in overcoming the challenges out-
lined in Sect. 2.6. Consequently, we intentionally did not
remove outliers and offsets in a pre-processing step for the
sake of illustration.

We have considered six Wettzell stations in total located
nearby, as illustrated in Fig. 3 with WTZA, WTZJ, WTZR
and WTZS. The two stations WTZZ and WTZL were
considered additionally. The WTZR is called a "gold" sta-
tion and records observations continuously for more than
20 years. Interestingly, the vertical DTS of the different
antennas as depicted in Fig. 7a–g, top, differ although all
stations should record the same geophysical phenomena. An
improved model for fitting the DTS with a stochastic trend
and time-varying periodical components should allow for
deeper investigations of the DTS compared to a full deter-
ministic model.

Fig. 3 Location of four GNSS stations in Wettzell, Germany, courtesy
from the EPN website

3.2 Results

In the first part, we discuss the modeling of time series from
the DRAO station with the fSWp. Following that, we present
the outcomes for two stations, NEAH (USA) and LPAL
(Canary Islands), known for their prominent periodical com-
ponents. A third section is dedicated to the analysis of the six
Wettzell stations in Germany.

We mention that all computations were done on a com-
puter with a processor 11th Gen Intel(R) Core(TM) i7-
1185G7 @ 3.00GHz, 3.00 GH, and 32GB of RAM. The
MATLAB toolboxes are freely available on the GitHub
repository and can be downloaded for testing purposes, see
Sect. 4. For further testing purposes, we addedModel 5 (fully
deterministic) with ut described as a FracN. Please note that
through the empirical case studies, we did not consider the
draconitic frequencywhich is very close to the annual compo-
nent and difficult to reliably separate from it Amiri-Simkooei
(2013).

3.2.1 Case study: DRAO station

Comments on the trend
Table 2 presents a comparison between different mod-

elization as described in Table 1.

• For all cases under consideration (GNSS DTS, NTAL-
predicted DTS and PWV time series), the superiority of
modelingwith the fSWp (model 1 or 2) compared to a full
deterministic model (model 5) is highlighted. The log-
Likelihoods are nearly similar for NTAL-predicted DTS
and GNSS DTS but the Sum2Corr is 3 times (for GNSS
DTS) and 2 times (for NTAL-predicted DTS) lower com-
pared to the deterministic model. In all cases, the AIC is
lower with the fSWp modeling, although the number of
model parameters is larger. The studentized residuals are
less correlated when an fSWp is used, which is reflected
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by the lower σb in all cases. Thus, the trends are estimated
with a higher confidence with model 1 than with model
5. We note that the trends do not strongly differ from the
deterministic model and are even the same for the PWV
time series. This result is expected as the improved mod-
eling should affect the uncertainty of the trend rather than
its conditional mean.

• For the stable station DRAO IGS, the fitting results with
the fSWpare similar to the one obtainedwith the software
Hector using the BP modelization. This finding lends
credibility to the fairness of the comparison. The like-
lihoods given by both software are nearly identical.

Correlation of the residuals

• The lower correlation of the studentized residuals from
model 1 is further highlighted in Fig. 5. We used the
Lomb-Scargle periodogram (Lomb 1976) to detect peri-
odicities in irregular space and incompletely observed
time series as demonstrated in, e.g., Gobron et al. (2021),
within a geodetic context. The periodograms are flat and
do not show spurious frequencies neither at the yearly
angular frequency (ω = 0.0172 rad) nor at the sub-
yearly frequency. For DRAO PWV time series, a slight
decrease in frequency around 0.03 rad may be attributed
to the unnecessary modeling of the yearly frequency as
stochastic. This is further emphasized by the logLike-
lihood of model 5 (full deterministic) which is higher
(−1.8323 versus −1.8397), and the AIC smaller, indica-
tive of amore optimal fitwithin the context of information
criterion analysis. Our results highlight the closeness of
the models in that case: the choice for one model or
another is left to individual visual inspection depending
on the application. The trend from the PWV time series
is estimated with a lower uncertainty in model 1 (0.0317
compared to 0.0326 for model 5), favoring its suitability
for climatic trend analysis (Alshawaf et al. 2018).

• We further show the sample autocorrelations, obtained
by considering the discrete Fourier inverse transform of
the Lomb-Scargle periodogram and displayed at the bot-
tom of each subfigure. These latter do not present any
serial correlations for model 1. This supports the small
value of Sum2Corr when using the improved model.
We note, however, that the fitting is less satisfactory for
NTAL-predicted DTS, although an ARMA(1,1) ranges
dependencies of the residuals instead of a short-memory
AR(1) process. We attribute this lower goodness of fit to
the strong heteroscedasticity of the time series. Here, a
boxcox transformation may be favorable (Box and Cox
1964).

• The uncertainty σb with Hector for the DRAO IGS time
series was found to be slightly higher than with the

fSWp, a phenomenon we attribute to the higher corre-
lation of the residuals and the capturing of long-range
dependency in the stochastic amplitude of the periodi-
cal component with the fSWp. As aforementioned, this
is almost a philosophical question, the two AIC being
close. Due to the station’s stability and quality, we pre-
fer residuals with low correlation. For the DRAO NTAL
time series, the modeling with Hector was slightly more
favorable from an information criterion standpoint, but
the Sum2Corr was higher, despite modeling the residu-
als with an ARMA model. This has a significant impact
on trend estimation, leading to a high uncertainty with
Hector (BP noise model). Due to its heteroscedasticity,
the NTAL time series is challenging to model, and in
this case, the fSWp seems to outperform the modeling
with Hector from a parameter perspective. The HYDL
time series is similarly badly fitted with Hector using
the BP noise model, although the trends are comparable.
The residuals stay strongly correlated as Hector failed at
estimating an RW in addition to the BP noise. We recall
that the goal of this contribution is not to find the best
model with Hector, which could be the topic of the next
contribution. It clearly shows, however, that the fSWp is
flexible and easy to tune due to the KF.

Deterministic versus stochastic trend

• The HYDL-predicted DTS was fitted using a determin-
istic trend, an additional correlated noise and an RW as
the amplitude of the periodical components, as in Davis
et al. (2012). The results are shown in Fig. 4a, bottom.
The difference between a deterministic and stochastic
trend manifests itself by the linear temporal evolution
of the trend for NTAL-predicted DTS, GNSS DTS, and
PWV time series compared to its random behavior for
HYDL-predicted DTS. This example illustrates how the
trend can be represented by a stochastic process (i.e.,
an RW) modeling a long-range dependency nicely. The
higher logLikelihood of model 4 compared to model 5
supports that finding. Alternative approaches would have
necessitated a filtering of the time series within a given
bandwidth, i.e., a two-steps method. Unfortunately, we
were not able to find an appropriate modelization with
the Hector software. The simple polynomial fitting of the
trend is not comparable with the modeling as a RW, and
the noise model RW + estimation of a trend was unfavor-
able in that case. We do not investigate further that point,
which is not the focus of this contribution and potentially
due to the small sample length.

• The sample autocorrelationmay be slightly worthier than
for GNSS DTS and PWV time series (more lags are vis-
ible). This behavior is due to the cycle estimation as
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an fSWp with FracN components very close to a RW.
This assumption fits the long-range dependency of the
trend but challenges the MATLAB optimization algo-
rithm. It is noteworthy that fitting a full deterministic
model (model 5) led to strongly correlated studentized
residuals with numerous significant lags (not displayed
for brevity). This is corroborated by the 50 times higher
Sum2Corr compared to model 4. We recognize that fit-
ting the HYDL-predicted DTS using a stochastic trend
and time-varying amplitude as a RW is less conventional
than employing a full deterministic model. However, this
approach is expected to yield novel insights into hydro-
logical mass loading and its periodic variations.

Comments on the yearly component
The amplitudes of the yearly components for the four time

series under consideration are shown in Fig. 4b, together
with the yearly components themselves in panel (c). The
amplitudes from GNSS DTS, PWV time series and NTAL-
predicted DTS are modeled as Amp1t
=

√
(a1t − a10)2 + (a∗

2t − a∗
20)

2 according to Eq. (12) and
are "noisy" as shown in Fig. 1. We note that:

• The amplitude of the fSWp component for HYDL-
predicted DTS is close to an RW and nearly non-
stationary, leading to a smooth trend.

• The aforementioned heteroscedasticity of the NTAL-
predicted DTS is still visible in the amplitude. The
strong high frequencies contained in NTAL-predicted
DTS (Klos et al. 2021) are divided into the additional
ARMA(1) from the linear component and the stochastic
amplitude of the seasonal components. The logLikeli-
hood of model 2, together with Sum2Corr as presented
in Table 2 makes us confident that the modeling of the
NTAL-predicted DTS as an fSWp is still more realistic
than for model 5.

First geophysical interpretation
It is challenging to identify a clear similarity in amplitudes

betweenNTAL-predicted DTS andGNSSDTS from Fig. 4b.
However, NTAL-predicted DTS and PWV time series fol-
low each other from 1996 to 2002 and are comparable with
the stochastic trend of HYDL-predicted DTS. These quanti-
ties depend on the same physical processes (redistribution of
water), making this finding plausible.

Interestingly, we observe that the stochastic trend of the
HYDL-predicted DTS closely mirrors the amplitude of the
yearly component from the PWV time series. This observed
similarity is plausible given the physical relationship between
PWV and hydrological mass loading. Such a clear relation-
ship is neither visible from the original time series nor if a

deterministic model would have been fitted (constant ampli-
tude of the periodical components).

The HYDL-predicted DTS are often considered as 0-
mean, masking the smooth random character of the trend
to the price of a valuable geophysical interpretation. The
fSWp modeling is very promising for further investigations
on the response betweenhydrologicalmass loading andPWV
during heavy rain events (Kim et al. 2023). To enhance the
comparison between the amplitudes of the yearly compo-
nents or the yearly components themselves, specific distances
could be used for features analysis fromFig. 5c rather than the
correlation coefficient.Wecite the dynamic timewarpingdis-
tance as an example,which is particularlyworth investigating
in the case of noisy time series with periodic components
(Świtoński et al. 2019). This is beyond the scope of this con-
tribution.

Note on the memory parameter d
To guide the Monte-Carlo simulations outlined in

Appendix B, it is worthmentioning that the fractional param-
eter d of the fSWp was found to be 0.59 for NTAL-predicted
DTS, 0.37 for PWV time series and 0.9 for HYDL-predicted
DTS,which is close to anAR(1).Thevarianceση was4.42 for
GNSS DTS, 1.59 for NTAL-predicted DTS, 1.14 for PWV
time series and 0.005 for HYDL-predicted DTS. These val-
ues provide insights into the long-range dependencies and
the strength of the FracN from the yearly component.

We emphasize that when using the Hector BP noise model
or the Wiener filter, the noise of the periodical component is
constrained to an AR(1) model with d = 1.

3.3 DTS with strong annual component

In this subsection, we will not conduct additional compar-
isons with the Hector software, as the chosen time series
were processed in (Klos et al. 2020) with the Wiener filter,
to which we refer.

Station NEAH
The most optimal model for fitting the GNSS DTS from

station NEAH was found to be model 1, as in Sect. 3.2.1.
The value for Sum2Corr was 0.0027 versus 0.0054 for the
deterministic model 5. The uncertainty on the trend σb was
1.25 times smaller with model 1 than for model 5.

The vertical DTS together with the fitted trend, the yearly
component aswell as theLomb-Scargle periodogramare pre-
sented in Fig. 6a. We note an increase of the fSWp variance
on the yearly component from 2015 (middle panel). This
behavior was not discernible with the Wiener filter (see Fig.
9 in their paper Klos et al. (2020)), where only an increase
in the amplitude of the yearly component could be detected
from 2010.

With a KF approach combined with the fSWp, the ampli-
tude of the yearly component exhibits an increase around the
year 2000, a modest decrease between 2006 and 2008, and
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Fig. 4 Station DRAO, a time series (GNSS DTS, PWV time series,
NTAL-predicted DTS and HYDL-predicted DTS) and their trends, b
Amplitudes of the yearly component for the four time series. Please note

the shorter time period for DRAOPWV time series, c yearly component
(shifted) GNSS DTS (blue), PWV time series (red), NTAL-predicted
DTS (yellow), HYDL-predicted DTS (magenta)

remains relatively constant thereafter. Thus, temporal varia-
tions in amplitude are identified with a higher level of detail
than when a deterministic model or a simplified stochastic
modeling, as the short-memory AR(1) in Klos et al. (2020).
The FracN nicely models the underlying long-range depen-
dency of the seasonal process (Proietti and Maddanu 2022).
We note that the fractional parameter d of the fSWp was
found to be 0.35 with a variance σ 2

η of 6.6 mm2. These val-
ues closely align with those found for the GNSS DTS of the
DRAO station, as discussed in Sect. 3.2.1. Additionally, we
highlight that the KF framework effectively addresses data
gaps in 2003, as described in Sect. 2.5.

Station LPAL

The vertical DTS from the LPAL station cannot be accu-
rately modeled with a deterministic trend, as shown in
Fig. 6b, top. This is apparent from the smooth and slow varia-
tions of the DTS, specifically a slight increase between 2008
and 2010 followed by a decrease observed in the time series.
With a linear trend as in Fig. 6a, top, for the station NEAH,
this shape would be lost to the benefit of simplicity (and
a simple yet meaningless trend value). A stochastic trend
modeled as an RW (model 4) is more appropriate from a
statistical point of view and leads to a higher logLikelihood
compared to model 1 and 5. The smaller value of Sum2Corr
(more than 9 times than for model 1 and 5) supports that
viewpoint. The optimal fitting is further highlighted in the
periodogram: its flatness and lack of additional frequency
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Fig. 5 Station DRAO, a GNSS DTS diagnostic: studentized residuals (top), periodogram in loglog plot (middle) and sample autocorrelation
(bottom), b same as (a) but for PWV time series, c same as (a) but for NTAL-predicted DTS, d same as (a) but for HYDL-predicted DTS

at the yearly or sub-yearly frequency strongly support the
fSWp as an optimal model. Interestingly, the amplitude of
the yearly component varies with time and decreases sig-
nificantly from 2014. This behavior was not evident from
visual inspection of the time series and is not found in Klos
et al. (2020) (their Fig.9) with a simplified AR(1) model for
the stochastic amplitude of the periodical component and
a deterministic trend with additional power law noise. Our
modeling seems more plausible from a statistical point of
view, although a geophysical interpretation (e.g., a potential
link with hydrological or atmospheric effects) is beyond the
scope of this contribution.

The fractional parameter d of the fSWp reaches 0.42 with
a variance σ 2

η of 1.31 mm2.
This time series highlights the importance of a visual

inspection for a better understanding of the most optimal

underlying model before the fitting and an optimal setup of
the initial condition.

3.3.1 Neighboring GNSS stations in Wettzell, Germany

Weused the vertical DTS from sixGNSS stations inWettzell,
Germany as described in Sect. 3.1.4.

The most optimal model identified corresponds to model
3, as indicated in Table 1. It is important to note that our
primary objective was not to explicitly detect offsets (shifts
of mean value), outliers, or data gaps in the DTS. Instead, our
focuswas on demonstrating how theKF can robustly perform
modeling, where a traditional least-squares adjustment with
a full deterministic model would likely fail.
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Fig. 6 GNSS DTS diagnostic, a Station NEAH (Neah Bay, USA) studentized residuals (top), periodogram in loglog plot (middle) and sample
autocorrelation (bottom), b same as (a) for station LPAL (LaPalma, Canary islands)

The following comments can be made:

• The similarity between WTZA and WTZZ DTS is evi-
dent from Fig. 7a and b: in both cases, the amplitudes of
the yearly component depicted in Fig. 7h have a higher
standard deviation as the DTS themselves compared to,
e.g., WTZR or WTZS. The stochastic trends are consis-
tent and exhibit a gradual decrease over time. It is worth
noting that a mean trend could be computed for compari-
son purposes, as demonstrated in, for instance, Maddanu
and Proietti (2023) and Didova et al. (2016). The peri-
odogram of WTZA reveals a subtle loss of power at low
frequency, possibly attributed to the declining DTS from
the year 2020.

• The stationWTZR is considered as being a "gold" station
as highlighted in Fig. 7d, top, by the low standard devia-
tion of the DTS. The introduction of an RW trend allows
for the modeling of an offset in the year 2009. Notably,
the amplitude of the stochastic seasonal signal exhibits a
gradual increase starting from the year 2008, as illustrated
in Fig. 7g. We found a similar pattern for station WTZS
(the black box corresponds to the same time range) in the
yearly component although the magnitude increases for
WTZS from the year 2015more strongly than forWTZR.
The parameter d was 0.41 and 0.45, respectively, as for
the DRAO or NEAH stations. We point out that a mod-
eling of the yearly component as purely deterministic
would mask the time-variability of the amplitude, and,
thus, associated geophysical phenomenon (most prob-
ably hydrological). The observed slight differences in
shape and magnitude between WTZS and WTZR mod-
elization should be considered in light of the potential

loss of information and non-optimality associated with a
deterministic approach.

• The data gap in the WTZS raw time series (Fig. 7e) in
year 2008 neither affects the estimation of the stochastic
trend nor the one of the stochastic periodical component.
The similarities betweenWTZS andWTZR in the yearly
component and trend from year 2010may be attributed to
their equipment, as depicted in Fig. 3. Our analysis using
the fSWp shows that the noise induced by the antennas
and potentially receivers affects the standard deviation of
the FracN on the yearly component when the time series
are fitted with a stochastic trend. The parameters d were
close (0.28 and 0.36 for the station WTZA and WTZZ,
respectively). From the Lomb-Scargle periodograms, the
studentized residuals can be considered nearly uncorre-
lated for all time series.

• The stations WTZJ andWTZL are of poor quality. How-
ever, the fitting of the DTS with long data gaps and
strong heteroscedasticity is made possible with an fSWp
within a KF framework (WTZL). Although the stochas-
tic trend is smooth and has a similar shape compared to
the other stations (Fig. 7c), outliers present in WTZJ are
hardly detected and affect the amplitude of the yearly
component, leading to a loss of power at low frequency
visible in the Long-Scargle periodogram. Here we found
a high value of 0.64 for the parameter d, (non-stationarity
region).

Our investigations highlight that the fSWp effectively
models raw time series with a high degree of reliability,
even when confronted with offsets, outliers, and data gaps,
with the implementation proposed in Sect. 2.5. The results
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Fig. 7 The NGL-processed GNSS DTS diagnostic: a WTZA, b WTZZ, c WTZJ, d WTZR, e WTZS, f WTZL, g and h amplitude of the yearly
components
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from the Monte-Carlo simulations conducted in Appendix B
corroborate this finding. We refer to Proietti and Maddanu
(2021) for further simulations to assess the goodness of fit
of the approach for varying parameter combinations (ampli-
tude, memory parameters).

4 Conclusion: the fSWp for modeling
geodetic time series

Our analysis of various geodetic time series have highlighted
the high potential of the fSWp to model time-varying sea-
sonal signals and trends with a high trustworthiness. Our
model improvement should avoid masking important geo-
physical phenomena and relationships between time series,
as illustrated with the GNSS DTS from the DRAO sta-
tion and the corresponding environmental loadings. The full
deterministic model usually used within a geodetic context
showed its weaknesses both in terms of goodness of fit and
by visual inspection of the residuals. We found a parallel
between the modeling with a fSWp, a BP filter, and the
Wiener filter approach despite the inability of these last two
methods to capture the long-rangedependencyof the stochas-
tic periodical component. Further, stochastic trend modeling
is a promising approach for specific time series. This feature
is not implemented in usual software such asHector. The esti-
mation of an additional RW to the deterministic trend could
be an alternative but was not satisfactory from a parameter
estimation perspective in our case study.

The specific improvements detailed in this contribution
enable the KF to estimate the time-varying seasonal compo-
nent and trend, even in the presence of data gaps, outliers,
and offsets of various sizes. Monte-Carlo simulations have
validated and confirmed this capability.

We found that in most cases, GNSS DTS can be mod-
eled with model 1, the PWV time series with either a full
deterministic model or model 1, NTAL-predicted DTS with
model 1, extended to an ARMA model for the stochastic
amplitude on the seasonal component to account for het-
eroscedasticity. We refer to Table 1 for a description of the
various possibilities. Non-preprocessed DTS were well fit-
ted with a stochastic trend, as some particular GNSS DTS
with large seasonal variations. Here, no rule of thumb can
be given. We intended to think that each type of time series
should be handled separately, depending, e.g., on the sam-
pling (daily, monthly). Further investigations will focus on
the possibility of grouping stations with some criteria for
determining an optimal fitting and a focus on geophysical
analysis (atmospheric loading or zenith wet delay for cli-
matological analysis, hydrological loading for geophysical
investigations, or GNSS DTS to study deformations of the
Earth’s crust and its periodical componentsmore accurately).

Our methodology is flexible and can be adapted to vari-
ous time series, as highlighted in this contribution. It is easy
to implement and computationally low, i.e., less than one
minute processing time for the 25-year-long DRAO GNSS
daily vertical DTS. We further provide freely all Matlab
functions for the sake of dissemination. An extension to
the fully deterministic model using a FracN for the resid-
uals is available. A comparison with the power-law noise
from the software Hector is targeted in the next contribution.
Our intention is not to replace installed software like Hector
but rather to provide an alternative solution when a different
insight into the geophysical process is needed or the usual
solution may be doubtful and unrealistic.
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Appendix A: Augmented KF and smoothing
algorithm

The (augmented) Kalman filter is the basic recursive algo-
rithm for prediction and likelihood evaluation for the state
space model in Eq. (14). The presentation of the algorithm
follows de Jong (1989), Jong (1991) and Proietti and Luati
(2013), which provide a proof of the filter. The augmentation
deals with initial and regression effects.
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The augmented KF, initialized by A0 = 0, q0 = 0 and
St = 0, and adapted for the presence ofmissing observations,
is given by the following equations, which are computed
recursively for t = 1, · · · , n:

• if yt is observed:

νt = yt − z′
t α̂t |t−1, V′

t = w′
t − z′

tAt−1,

ft = z′
tPt |t−1zt , Kt = (TPt |t−1z′

t )/ ft ,
α̂t+1|t = Tα̂t |t−1 + Ktνt , At = TAt−1 + KtV′

t ,

Pt+1|t = TPt |t−1T′
+HH′ − ftKtK′

t , qt = qt−1 + νtV′
t/ ft ,St = St−1 + V′

tVt/ ft ;

(A1)

• else, if yt is missing:

α̂t+1|t = Tα̂t |t−1, At = TAt−1,

Pt+1|t = TPt |t−1T′ + HH′,
qt = qt−1, St = St−1,

(A2)

where α̂t |t−1 = E(αt |Ft−1, δ = 0) and Pt |t−1 =
Var(αt |Ft−1, δ = 0) are the one-step-ahead prediction of
the expectation and variance of the state, with Ft defined as
the information set available at time t ,Ft = {y1, y2, · · · , yt },
ft = Var(yt |Ft−1, δ = 0) is the one-step-ahead prediction
error variance andKt is known as theKalman gain. All these
quantities are conditional on δ = 0 (i.e., are obtained by
the standard Kalman filter for the model without initial and
regression effects).

The log-likelihood of {y1, y2, . . . , yt , . . . , yT } is

LL(θ) = −1

2

(

(ñ − k) log(2π) +
ñ∑

i∈Ñ
log( ft ) + log(|Sñ|)

+
ñ∑

i∈Ñ

ν2t

ft
− q′

ñδ

)

, (A3)

where k is the number of elements in the vector δ, ñ is the
number of observations that are not missing and Ñ is the
subset of natural numbers for which t ∈ Ñ if and only if yt
is observed. The parameter δ can be concentrated outside the
likelihood and its estimator is δ̂ = S−1

ñ qñ, with Var(δ̂) =
S−1
ñ .

Finally, the smoothed estimates of the state vector,
defined as α̂t |n = E(αt |Fn), and their covariance matrix
Var(αt |Fn) = Pt |n are obtained via the smoothing algorithm.
Starting at t = n, with initial values rn = 0 and Nn = 0,
it computes backwards the following recursive formulae for
t = n − 1, · · · , 1:

• if yt is observed, defining Lt = T − Ktz′
t ,

rt−1 = L′
t rt + f −1

t ztνt , Rt−1 = L′
tRt + f −1

t ztVt ,

Nt−1 = L′
tNtLt + f −1

t zt z′
t ,

α̂t |n = α̂t |t−1 + Pt |t−1(rt−1 − Rt δ̂), A∗
t = At + Pt |t−1Rt ,

Pt |n = Pt |t−1 − Pt |t−1Nt−1Pt |t−1 + A∗
t Var(δ̂)A

∗′
t ,

(A4)

• else, if yt is missing:

rt−1 = L′
t rt Rt−1 = L′

tRt
Nt−1 = L′

tNtLt
α̂t |n = α̂t |t−1 + Pt |t−1(rt−1 − Rt δ̂) A∗

t = At + Pt |t−1Rt

Pt |n = Pt |t−1 − Pt |t−1Nt−1Pt |t−1 + A∗
t Var(δ̂)A

∗′
t .

(A5)

For more details and proofs of the above formulae see
de Jong (1989), Jong (1991) and Proietti and Luati (2013).

Hyperparameter estimation To restrict the parameter
space, we do not directly estimate themodel’s parameters but
the so-called hyperparameters, that are a function of them.

For instance, suppose we want to estimate the parameters
d and σ 2 via the hyperparameters θ1 and θ2, with θ1, θ2 ∈ R.
The parameters space is defined by d ∈ (0, 1) and σ 2 > 0.
It results that the restrictions

d = eθ1/(1 + eθ1) and σ 2 = e2θ2

imply that d, σ 2 → 0 as θ1, θ2 → −∞ and d → 1, σ 2 →
+∞ as θ1, θ2 → +∞.

A last remark concerns the dimension of the hyperparam-
eters vector. A model identification problem may arise as
the dimension increases, affecting in particular the cyclical
components. If we simulate for instance a process with two
cyclical components, we could obtain bias in the respective
d j and σ j parameters, since the components may go into
conflict with each other. Anyway, from our experience, the
fit remains good, in the sense that both the true values and
the estimated ones provide good results in terms of residuals
diagnostic.

Appendix B: Monte-Carlo simulations

This appendix reports the result of a Monte-Carlo simulation
experiment carried out to illustrate and evaluate the method-
ology proposed in this paper.

B.1 Data generation

Following Klos et al. (2018a), we generate 500 synthetic
time series of length 3,000, which is a typical sample size
for geodetic time series, according to the model presented
in Sect. 10. The components were calibrated to mimic the
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Table 3 Linear trend: results of
the Monte-Carlo simulation for
the deterministic trend case with
fixed slope btrue = 0.03 mm
and periodic fSWp with dtrue
equal to 0.2, 0.4, and 0.7, and
σ 2

η =2.5; the expected outlier
contamination was fixed at 1%
of the sample, and 5% of the
observations are missing. The
total sample size is 3,000

dtrue 0.2 0.4 0.7

Mean d̂ 0.22 0.38 0.73

Var(d̂) 0.01 0.02 0.03

Mean σ̂ 2
η 2.56 2.57 2.81

Var(σ̂ 2
η ) 0.25 0.26 0.28

Mean b̂ − btrue −0.17 (×10−4) −0.27 (×10−4) 0.16 (×10−4)

Var(b̂) 0.003 (×10−5) 0.0131 (×10−5) 0.1291 (×10−4)

MSE 0.03 0.13 1.36

properties of the empirical time series considered in the real
life illustrations presented in Sect. 3.

As for the trend component, we considered the following
cases: (i) μt is a deterministic trend with slope b = 0.03 mm
(as, for instance, for theDRAOorNEAHGNSSDTS); (ii)μt

is a stochastic trend with a RW specification. The variance of
the stochastic trend was set equal to σ 2

ε = 0.05 mm2, while
σ 2

ζ = 0. This corresponds to the HYDL-predicted DTS, the
GNSS DTS from the LPAL station, see Sect. 3.3 or from
Wettzell in Sect. 3.3.1.

For the seasonal component, we assumed that it was
generated by a fSWp with different fractional parameter,
d = 0.2, 0.4, 0.7 and variance σ 2

η = 2 mm2 defined at the
fundamental frequency (q = 1) in Eq. (2).We did not include
the component ut .

The simulated series were contaminated by outliers, by
sampling independently the outlier indicator fromaBernoulli
distribution with success probability 0.01 and adding to the
raw series a random draw from a normal distribution with
mean zero and variance 1.2 textmm2 to all observations with
the outlier indicator equal to 1. A single level shift was also
added at a random location with twice the size of the stan-
dard deviation of �μt . We further modeled one level shift or
offset for the stochastic trend as for theWettzell stations. The
variance of the normal distributed variable determining the
time at which the shift occur is determined by multiplying
the sample mean of the simulated process by 2.

Results

Table 3 presents the average values of the parameter estimates
for the data generating process featuring a deterministic
trend, computed across the 500 replications. The bottom row
presents is the mean square estimation error of the parame-
ters.

From Table 3, we see that the memory parameter d is
accurately estimated in all cases with a low estimation error
variance, although the performance slightly deteriorates for
d = 0.7. Similar considerations hold for σ 2

η and the MSE.
The MSE of the model increases with the values of d. The
presence of outliers does not seem to affect the good perfor-

Table 4 Stochastic trend: results of the Monte-Carlo simulation for the
RW trendwith size σ 2

ε = 0.05 mm2 and periodic fSWpwith dtrue equal
to 0.2, 0.4, and 0.7, and σ 2

η =2.5; the expected outlier contamination was
fixed at 1% of the sample, 5% of the observations are missing, and one
level shift is simulated. The total sample size is 3,000

dtrue 0.18 0.4 0.7

Mean d̂ 0.18 0.32 0.71

Var(d̂) 0.02 0.03 0.03

Mean σ̂ 2
η 2.51 2.49 2.80

Var(σ̂ 2
η ) 0.28 0.38 0.78

Mean σ̂ 2
ε 0.04 0.06 0.09

Var(σ̂ 2
ε ) 0.37 0.46 1.14

MSE 1.65 (×10−3) 2.22 (×10−3) 15.39 (×10−3)

mance of the estimationmethod. No substantial bias emerges
for the estimation of the slope of the trend, the mean value of
the estimation error b̂−btrue, being close to zero with a very
small variance. Regarding the values found in real cases, this
Monte-Carlo simulations make us confident in the physical
interpretation of the amplitude of the periodical component,
as well as of the trend parameter.

The results obtained for theMonte-Carlo simulations with
a stochastic trend, presented in Table 4, confirm the excellent
performance of our estimation strategy. Again, as d increases
the accuracy declines, but it remains solid for d = 0.2, and
0.4. The mean square estimation error is satisfactorily con-
tained for the remaining hyperparameters, σε and ση. As the
simulated data encompass a deviation, randomly distributed
anomalies, and gaps in the data, the outcomes instill con-
fidence in the results achieved for the Wettzel stations in
Sect. 3.3.1.

As a final comment, we report that the mean of Sum2Corr,
the diagnostic of the residual autocorrelations defined in
Sect. 2.7, was lower than 0.003 for all cases with determin-
istic trend and d < 0.7. For d >= 0.7, we found a mean of
Sum2Corr of 0.005, as for the stochastic trend. This result
highlights that, even in the case of a challenging near non-
stationarity, the level of residual correlations is very low.
Correspondingly, any additional correlated noise found in
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the residuals should not be due to the estimation process,
providing that the observations correspond to an fSWp, i.e.,
an additional correlated noise is due either to a misfitting
(particularly for a full deterministic model), or to a physi-
cally related noise (as an atmospheric noise Kermarrec et al.
(2022)).
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