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Abstract
Two innovations are presented for coordinate time-series computation. First, an improved solution is given to a century-old
problem, that is the non-iterative computation of conventional geodetic (CG: latitude, longitude, height) coordinates from
geocentric Cartesian (GC: x, y, z) coordinates. The accuracy is 1 nm for heights < 500 km and < 10−15 rad for latitude at
any point, terrestrial or outer space. This can be 3 orders of magnitude more accurate than published non-iterative methods.
Secondly, CG time series are transformed into a practical system of “graticule distance” (GD: easting, northing, height)
curvilinear coordinates that, unlike the commonly used system of topocentric Cartesian (TC: east, north, up) coordinates, is
global in nature without arbitrary specification of GC reference coordinates for every geodetic station. Since 2011, Nevada
Geodetic Laboratory has publicly produced time series for 20,000 GPS stations in GD form that have been cited by hundreds
of studies. The GD system facilitates direct comparison of positions for co-located stations. Users of GD time series are able:
(1) to resolve different historical station names that have been assigned to the same physical benchmark and (2) to resolve
different physical benchmarks that have been assigned the same name. This benefits historical reconstruction of benchmark
occupation and local site tie analysis for reference frame integrity. GD coordinates have archival value, in that inversion back
to GC coordinates is practically exact. For geodetic stations, GD time series closely emulate TC time series with rates agreeing
to 0.01 mm/yr, and so can be used interchangeably.

Keywords Coordinate systems · Geodetic coordinates · Equation of latitude · Coordinate transformations · Time series ·
Global geodesy · Geodetic displacements

1 Introduction

Amajor objective ofmodern space geodesy is to provide geo-
physical userswith precise time series of station positions in a
global conventional reference frame that is sufficiently stable
to determine accurate displacements of the Earth’s surface on
time scales of seconds to multiple decades. Here we present
two innovations in the computation of station coordinate time
series that are of proven benefit to both producers and users
of geodetic time series:

(1) The first innovation involves a newnon-iterativemethod
to compute latitude, a problem with a century-old his-
tory. The method presented here has a computational
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accuracy of 1 nm for near Earth locations, which can be
3 orders of magnitude better than commonly adopted
non-iterated methods (Bowring 1976; Bowring 1985).

(2) The second innovation is the development of a new
global system of coordinates with displacements that
closely approximate that of the usual topocentric (east,
north, up) coordinate systems local to each geodetic
station. The global nature of this system enables new
practical capabilities for co-located stations; hence, the
practical aspects are important to describe here, as well
as the theoretical aspects.

The current general procedure in space geodesy (Seeber
1993) starts by estimating geodetic station positions as geo-
centricCartesian (GC) coordinates (x , y, z),with traceability
to the International Terrestrial Reference System (IERSCon-
ventions 2010). Station positions are then be transformed
into conventional geodetic (CG) reference coordinates, lati-
tude φ, longitude λ, and height, h. Next, the GC coordinate
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time series for each station are transformed into topocentric
Cartesian (TC) coordinates (e, n, u) with orthogonal coordi-
nate axes aligned with the local east, north, and up directions
(Seeber 1993). This procedure requires GC reference coor-
dinates (x0, y0, z0) and CG reference coordinates (φ0, λ0)

for each station, for example, at the first epoch of the time
series.

There are several reasons for this conversion from global
to local coordinates: (1) errors in (e, n, u) are generallymuch
less correlated than (x , y, z), thus facilitating interpretation
of time series for individual components; (2) formal errors
and observed scatter of time-series coordinates is generally
lower in east and north versus the up component; (3) geo-
physical modeling and interpretation is usually simpler in
the TC system as many geophysical processes naturally sep-
arate into horizontal and vertical displacements (e.g., tectonic
plate motions and surface loading), and sometimes into east
and north components (e.g., tropospheric and ionospheric
delay).

As an alternative to TC coordinates, presented here is a
global system of “graticule distance” (GD) coordinates. GD
coordinates (E , N , h) include easting E(m), northing N (m),
and conventional ellipsoidal height h(m). GD coordinates
(E , N , h) map uniquely to locations relating to the surface
of the conventional GRS80 ellipsoid (Moritz 2000) and can
be inverted back to GC coordinates (x , y, z) to within 2 nm,
which is practically exact.

Displacements of geodetic stations in GD (E , N , h) coor-
dinates are designed to closely track those of TC (e, n, u)
coordinates.Geophysical users switching fromTC toGDsta-
tion coordinates would not notice any significant difference
in displacement time series of geodetic stations. Their dif-
ferences grow with increasing displacement owing to Earth
curvature being incorporated in the GD curvilinear axes, but
not in the linear axes of the TC system. Coordinate displace-
ments in either system typically track each other to within
0.1 mm for stations subject to geophysical motion. These
differences can generally be ignored for investigations of
Earth processes, such as in tectonics, plate boundary defor-
mation, earthquakes, and surface mass loading. In general,
both TC and GD coordinates can be treated equivalently and
can be accurately interpreted as horizontal and vertical dis-
placements for local areas, though such interpretation tends
to break down for displacements much greater than 10 m.

Importantly, in contrast to the TC system, GD coordinates
(E , N , h) are computed directly fromeach station’sGCcoor-
dinates (x , y, z) without need for different station-specific
reference positions (x0, y0, z0). This gives a practical advan-
tage to the GD system, in that coordinates from locally
neighboring stations can be compared directly. This helps
detective work into metadata problems, such as (1) whether
historical stations of different names occupied the same
benchmark, perhaps centered but with a different height, and

(2) whether station data sets of the same name are actually
on different benchmarks that can be identified.

The structure of this paper starts by presenting a new non-
iterativemethod to compute CG coordinates (φ, λ, h), which
gives a practically exact closed-form solution for Earth-
bound positions. Development of this new method stands
on its own as an innovation in geodesy. It also allows us effi-
ciently to examine the true accuracy of GD computation and
its inversion back to GC coordinates without any impact of
error from the CG computation.

Next, the new GD system is presented in detail, where
all computations are specified. Inverse computations are also
specified. Then results are presented, which show (1) how
well inverse computations on GD time series reproduce the
original GC time series, (2) how well in practice GD time-
series displacements reproduce TC displacements. Focus is
given to extreme cases where either system may break down
for theoretical reasons, such as being close to the coordinate
singularities at the poles, or where total displacements are
relatively large for geophysical processes.

Finally, this leads to a discussion on the benefits of the GD
system. GD coordinates have been implemented and used by
Nevada Geodetic Laboratory (NGL) since 2011 to publish
publicly available geodetic time series, currently for 20,000
GPS stations, which have been cited by hundreds of refereed
journal articles (Blewitt et al. 2018). Practical examples of
GD benefits are given based on user experience documented
in the literature.

2 Methods

The computational methodology described in this section
aims to be self-contained to enable full reproducibility when
using double precision numbers. Included here are all the
equations required to reproduce the computation of CG (φ,
λ, h) and GD (E , N , h) starting with GC (x , y, z).

This paper uses the followingGRS80 ellipsoid parameters
(Moritz 2000):

equatorial radius � a � 6378137m
flattening � f � 0.003 352 810 681 183 637 418

(1)

Note that flattening is a “derived parameter” inGRS80 and
can be computed with arbitrary precision. For convenience,
the above flattening has number of digits exceeding the pub-
lished value (Moritz 2000) so that it well exceeds the double
precision limit.
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In addition, we use the following derived parameters:

polar radius � b � a(1 − f )

first eccentricity squared � e2 � a2−b2

a2
� f (2 − f )

second eccentricity squared � e′2 � a2−b2

b2
� 1

(1− f )2
− 1

(2)

We also use the following coordinate functions:

polar axis distance p �
√
x2 + y2

geocentric distance r �
√
p2 + z2

(3)

2.1 Computation of CG (�, �, h) from GC (x, y, z)

At every epoch, we need to convert GC coordinates (x , y,
z) to conventional geodetic (CG) coordinates, (φ, λ, h). The
computation therefore needs to be efficient, with sufficient
accuracy so as not to limit that of the GD coordinates.

Going the other direction, the forward transformation
from GC to CG is exact (Torge 1980):

x � [RN (φ) + h] cosφ cos λ

y � [RN (φ) + h] cosφ sin λ

z �
[(

1 − e2
)
RN (φ) + h

]
sin φ (4)

where radius of curvature of the prime vertical RN (φ) is
given by:

RN (φ) � a√
1 − e2sin2φ

(5)

We seek the inverse transformation from CG to GC. First,
from the above, the exact equation of longitude is clear:

Equation of longitude

λ � arctan
( y

x

) (6)

As advocated by Vincenty (1975), this should be imple-
mentedusingprogramming functionATAN2(y, x) so that (1)
the correct quadrant is determined using signs of the argu-
ments and (2) there is no singularity at x � 0. Note that the
order of arguments for the ATAN2 function depends on pro-
gramming language; for example, the convention ATAN2(x ,
y) typically holds for spreadsheets.

Next, we need to compute latitude and height. There is a
plethora of articles (e.g.,Hirvonen andMoritz 1963;Bowring
1976, 1985; Vermeille 2002) and textbooks (Bomford 1971;
Torge 1980; Seeber 1993) on methods to disentangle latitude
and height. An iterative method was suggested by Hirvonen

and Moritz (1963), who (like others) acknowledge the com-
putation is “rather complicated”. The method starts with two
equations for height as a function of latitude, which at this
point of the computation is not known:

h � h1 � p

cosφ
− RN (7)

h � h2 � z

sinφ
− RN + e2RN (8)

Hirvonen and Moritz (1963) difference the above equa-
tions, which achieves the goal of separating latitude from
height, but is not the most efficient method for purposes of
iteration. Instead, dividing the two equations gives the more
modern textbook equation for latitude as a function of height
(Torge 1980):

tanφ � z

p

[
1 − e2

RN

RN + h

]−1

(9)

This textbook method iterates by initializing latitude
assuming zero height, then radius of curvature and height
are computed using latitude, and so on. One problem with
this method is that the equations for height are either singular
at the poles or the equator, depending on the choice of h1 or
h2.

Instead, NGL implements the following equation
(Bowring 1985), which uses a trigonometrical identity to
combine Eqs. (7) and (8):

h � h1cos
2φ + h2 sin

2 φ

h � p cosφ − RN cos
2φ + z sin φ − RN sin2 φ + e2RN sin2 φ

h � p cosφ + z sin φ − a
√
1 − e2 sin2 φ (10)

This equation removes the singularities and proves to be
orders of magnitude more numerically accurate than either
of Eqs. (7) and (8) of Hirvonen and Moritz (1963). Bowring
(1985) notes that Eq. (10) is relatively insensitive to errors
in latitude, which is a critical property exploited here for the
equation of latitude.

Non-iterative methods have been proposed to separate lat-
itude from height (e.g., Borkowski 1989; Vermeille 2002).
Various studies have performed comparative tests of the
many iterative and non-iterative methods. For example, in
an extensive comparison, Claessens (2019) recommends
Eq. (10) for the equation of height, together with the com-
monly adopted equation of latitude by Bowring (1976):

tan φ � z + e′2bsin3U
p − e2acos3U

(11)
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where U is reduced latitude (or parametric latitude) defined
by

tanU � (1 − f )tanφ (12)

For heights h < e2a � 43 km, Bowring (1976) recom-
mends approximating U to reduced latitude on the surface
of the ellipsoid:

tanU ≈ z

(1 − f )p
(13)

Although technically this method might be iterative, in
practice it is often implemented without iteration, which is
why the method is widely adopted.

Alternatively, Bowring (1985) suggested a different set-
ting for U as follows, here given in the form by Soler and
Hothem (1989):

tanU ≈ z

p

(
1 − f +

e2a

r

)
(14)

Themotivation for thiswas to reduce dependence of errors
onheight and reduce errors in outer space; however,with such
a compromise, it tends to underperform Bowring (1976) for
Earth-bound heights.

Here, an improved setting for U is presented which gives
no detectable error for double precision computation of lati-
tude for any point, terrestrial or outer space, without iteration.
This proves to be 3 orders of magnitude more accurate than
either Bowring (1976) or Bowring (1985), without iteration.
The CPU time is increased by a modest 5%.

It can be shown that the tangent of reduced latitude can be
written exactly in the following form:

tanU � z

p

(1 − f )(
1 − e2a

Dexact

) (15)

where

Dexact � a + h
√
1 − e2sin2φ (16)

Given that h is unknown, we proceed using the approxi-
mation:

Dexact ≈ D � r + f
( z
r

)2
(2a − r) (17)

This approximation is now derived. The equation for
Dexact can be rewritten exactly by substituting h given by
Eq. (10) into Eq. (16):

Dexact � a +

(
p cosφ + z sin φ − a

√
1 − e2 sin2 φ

)√
1 − e2 sin2 φ

� (p cosφ + z sin φ)

√
1 − e2 sin2 φ + e2a sin2 φ (18)

This is Taylor-expanded to first order in flattening f ≈
e2/2

Dexact ≈ D �
(
p
p

r
+ z

z

r

)(
1 − f

( z
r

)2)
+ 2 f a

( z
r

)2

� r + f
( z
r

)2
(2a − r) (19)

Hence, by substitutingEq. (19) intoEq. (15), the following
approximation is obtained for tangent of reduced latitude:

tan U ≈ z

p

(1 − f )(
1 − e2a

r+ f ( z
r )

2
(2a−r)

) (20)

The reduced latitude from Eq. (20) is then inserted into
Eq. (11) to compute latitude. The following shows explicitly
the sequence of steps for computing the equation of latitude,
which avoids inefficient trigonometric functions except at the
very last step.

Equation of latitude

P � p

1 − f

(
1 − e2a

r + f
( z
r

)2
(2a − r)

)

R �
√
P2 + z2; C � P

R
; S � z

R
;

T � z + e′2bS3

p − e2aC3 ;φ � arctan(T )

(21)

The following shows explicitly the steps for computing the
equation of height, without need for trigonometric functions,
starting with the results for T from equation of latitude (21).

Equation of height

C � 1√
1 + T 2

; S � TC ;

h � pC + zS − a
√
1 − e2S2

(22)

2.2 Computation of TC (e, n, u) from GC (x, y, z)

In this paper, TC coordinates (e, n, u) are only used as a basis
of comparison with GD coordinates (E , N , h) that will be
described in Sect. 2.3. The standard equations are given here
for completeness and to ensure reproducibility. To compute
them, first, a reference triplet of geocentric Cartesian coor-
dinates (x0, y0, z0) is selected, which can be the first epoch
coordinates in a time series, or any other point within 30 m
of the triplets comprising the time series. This is required to
keep the effects of Earth curvature < 0.1 mm.
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The transformation into topocentric coordinates is given
by (e.g., Seeber 1993):

⎛
⎜⎝
e
n
u

⎞
⎟⎠ � R

⎛
⎜⎝
x − x0
y − y0
z − z0

⎞
⎟⎠ (23)

The rotation matrix is:

R �
⎛
⎜⎝

−sin λ0 cos λ0 0
−sin φ0 cos λ0 −sin φ0 sin λ0 cos φ0

cos φ0 cos λ0 cos φ0 sin λ0 sin φ0

⎞
⎟⎠ (24)

where CG reference coordinates (φ0, λ0) are computed from
the GD reference coordinates (x0, y0, z0), in our case, using
the method of Sect. 2.1, Eqs. (6) and (21).

The inverse transformation is given by:

⎛
⎜⎝
x − x0
y − y0
z − z0

⎞
⎟⎠ � RT

⎛
⎜⎝
e
n
u

⎞
⎟⎠ (25)

This inverse transformation is useful, for example, if the
assumed antenna height requires correction in GC coordi-
nates.

2.3 Graticule distance (GD) coordinate (E, N, h)
system definition

GD horizontal coordinates (E , N , h) are defined as graticule
arc distances on the surface of the ellipsoid from each coor-
dinate origin. The horizontal system (E , N ) is equivalent to
geodetic longitude and latitude (λ, φ) except that coordinate
units are of distance rather than angle.

(1) There are 3601 origins of easting, or “reference longi-
tudes” λ0(n), spaced apart by 0.1 degrees (~ 11 km on
the equator). The zone boundaries are halfway between
reference longitudes. Starting from longitude of –180
degrees and moving eastward, the first reference longi-
tude is at -180 degrees, the second at –179.9 degrees,
and so on, until we reach the last origin at + 180 degrees.
Zones are numbered from –1800 to + 1800. Theoreti-
cally, the first and last zones are identical, but in practice,
the sign of the zone is determined by the sign of lon-
gitude of the station. Easting E is negative west of the
reference longitude, and positive east of the reference
longitude. Easting is the distance from the reference lon-
gitude on the surface of the ellipsoid computed on an
arc of constant latitude. Note two systematic effects on
easting: (1) easting is ill-defined close to the coordinate
singularities at the poles, so one question is whether this

is significant in practice for real stations in polar regions;
(2) if a station has a northward displacement, the latitude
will change, and the easting will get slightly smaller in
this scheme as meridians come closer together in units
of distance. Such an effect controls the design as to the
maximum width of a reference longitude zone. These
systematic effects will be investigated in Sect. 3.5 and
3.6.

(2) The origin of northing is the equator φ0 � 0. Northing
N is positive in the northern hemisphere and negative
in the southern hemisphere. The magnitude of northing
is the meridional distance from the equator, for which
the method here uses the formulas by Vincenty (1975).
Numerical integration (Sect. 2.6) is used to check the
accuracy of the method (Sect. 3.4).

(3) Height is the usual conventional geodetic height; that is,
the origin is the surface of the ellipsoid, and height is the
normal signed distance from the ellipsoid to the station.
Height is positive above the ellipsoid and negative below
the ellipsoid.

2.4 Computation of easting E(�, �)

First identify the zone number n, where longitude λ is in
units of degrees ranging from −180 to +180, and “nint” is
the nearest integer function:

n � nint(10λ) (26)

Compute the reference longitude in degrees:

λ0(n) � 0.1n (27)

Compute the easting E , taking care to convert degrees into
radians:

E(φ, λ) � π

180
[λ − λ0(n)]RN (φ)cosφ (28)

Note that easting is a function of the zone number n. It
is desirable to retain the same zone number n for the rare
case of a station crossing into the next zone n ± 1 so that the
easting time series does not have an inconvenient (through
exactly known) discontinuity. In such a case, for example, the
same zone could be retained if the change in easting between
epochs is less than 10 m. Otherwise, if the change is greater
than 10 m or if the zone is not a nearest neighbor, the easting
changes its zone and reference longitude. To implement this
requires the time series computation to save the last values
of the zone number and easting.

Changing the zone number is typically necessary if, by
blunder, two stations happen to have the same name, and the
data get mixed up in the same time series. In practice, this
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can happen surprisingly often. Implementing the code in this
way enhances diagnosis of blunders.

2.5 Computation of northing N(�)

There is a long history of published equations for the compu-
tation ofmeridional distance from the equator,manyofwhich
would be equivalent to the method used in this paper. Our
method is given explicitly so that results can be reproduced.
Here, the equation for precise computation of northing N are
derived from those given for geodesics by Vincenty (1975),
for the simplified case of the meridian as a geodesic. Follow-
ing his notation, the simplification can be made assuming a
geodesic going from point P1 on the equator to point P2 at the
station. The first step is to compute the following constants:

A � 1 +
e′2

16384

{
4096 + e′2[−768 + e′2(320 − 175e′2)]}

(29)

B � e′2

1024

{
256 + e′2[−128 + e′2(74 − 47e′2)]}

(30)

Then compute the angular distance P1P2 on the sphere,
which in this special case is simply the reduced latitude of
the station:

U � arctan[(1 − f )tanφ] (31)

Now compute the following angular correction:

�U � B sinU cosU

{
1 +

1

4
B

[(
−1 + 2cos2U

)

− 1

6
B

(
−3 + 4sin2U

)(
−3 + 4cos2U

)]}
(32)

Finally, compute the geodesic distance s, which in this
case is the northing:

N (φ) � s � a(1 − f )A(U − �U ) (33)

To verify the computation, here are a couple of precise
values for meridian arc length:

N (π/2) � 10001965.72923 m

N (π/4) � 4984944.37786 m
(34)

2.6 Numerical integration to test computation
of northing N(�)

Whereas easting computation is an exact closed-form solu-
tion, the northing is fundamentally an ellipsoidal integral
with no exact solution. That is, the above algorithm is an

approximation. To test how good the approximation is, the
method was compared to numerical integration, for which
the step size can be adjusted until sufficient convergence is
achieved. An appropriate method with flexible number of
nodes is the alternative extended Simpson’s rule (Press et al.
1986) applied to the integral of the meridian radius of curva-
ture RM (φ):
φ∫

0

RM
(
φ′) dφ′ ≈ φ

48m

[
17RM (φ0) + 59RM (φ1) + 43RM (φ2)

+ 49RM (φ3) + 48
n−4∑
k�4

RM (φk ) + 49RM (φm−3)

+ 43RM (φm−2) + 59RM (φm−1) + 17RM (φm )

]

(35)

where RM (φk) � a(1 − e2)(
1 − e2sin2φk

)3/2 (36)

The meridian from the equator to station latitude φ is
divided into m equal subintervals of length �φ � φ/m with
nodes φk � k�φ, k � (0, 1, . . . , m). For testing purposes,
we start by specifying an approximate subinterval length �̃φ,
fromwhich the number of subintervals is computed by round-
ing m � int(φ/�̃φ). Then it is required that the minimum
value of m is 8. Since the numerator of RM (φk) is constant,
it is taken outside of the integral and multiplied at the end.

An appropriate subinterval length is one for which the
result does not change significantly when decreasing the
length. Numerical experimentation shows that setting �̃φ �
0.0005 radians (with up to m � 3141), gives no change to
within 10 nm. It will be assumed in Sect. 3.4 that this gives
us a ground truth for comparison of northing.

2.7 Inverse transformation from GD
(
E, N, h

)
to CG

(�, �, h)

For completeness, the inverse transformation is now pre-
sented, using GD (E , N , h) coordinates to reconstruct CG
(φ, λ, h) coordinates. As such an inversion would generally
be rarely needed (except for testing), it is not compelling to
seek an efficient non-iterative solution. Inversion from nor-
thing N to latitude φ begins by iterating the following two
formulas until there is negligible change in reduced latitude
U , that is |δU | < 10−15 rad, starting with �U � 0:

U � N

a(1 − f )A
+ �U (37)
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�U � B sin U cos U

{
1 +

1

4
B

[(
−1 + 2cos2U

)

− 1

6
B

(
−3 + 4sin2U

)(
−3 + 4cos2U

)]}
(38)

Typically, there are 6 iterations. Then geodetic latitude is
given by:

φ � arctan

[
1

(1 − f )
tan U

]
(39)

Now, knowing the latitude, we can invert easting E for
longitude λ in degrees:

λ � λ0 +
180

πRN (φ)cos φ
E (40)

where radius of curvature of the prime vertical RN (φ) was
given previously. Note that the inversion requires reference
longitude λ0(n) or equivalently, zone number n. Therefore,
reference longitude (or zone number) should always be listed
along with easting at every epoch in any specified file for-
mat. Inversion also requires that both easting and northing
be provided together. Height is independent of northing and
easting because they are defined on the ellipsoid at zero
height, though it is convenient to provide height to complete
the triplet of coordinates.

For completeness, a file format should specify station
name, epoch time, reference longitude, easting, northing, and
height, formal errors for easting, northing, height, and three
correlation coefficients (given in Sect. 2.8). It is also conve-
nient to include the assumed antenna height.

2.8 Computation of formal errors and correlation
coefficients for GD

(
E, N, h

)

The GD formal covariance matrix is computed in the same
manner as for TC coordinates, except it is computed at every
epoch with a GC solution. The GC covariance matrix is
rotated using latitude φ and longitude λ also computed at
every epoch:

⎛
⎜⎝

σ 2
E σEN σEH

σEN σ 2
N σNH

σEH σNH σ 2
H

⎞
⎟⎠ � R

⎛
⎜⎝

σ 2
x σxy σxz

σxy σ 2
y σyz

σxz σyz σ 2
z

⎞
⎟⎠RT (41)

The formal errors are σE , σN , and σ H . The correlation
coefficients are:

ρEN � σEN/σEσN

ρEH � σEH/σEσH

ρNH � σNH/σNσH

(42)

3 Results

3.1 Accuracy of GC (x, y, z) to CG
(
�, �, h

)

by closure tests

First, we test the accuracy of computation of CG (φ, λ, h)

fromGC (x , y, z)presented in Sect. 2.1.Accuracy is possible
to test absolutely, because the inverse transformation from
GC (x , y, z) from CG (φ, λ, h) is exact. Since longitude
is exact, it was set to zero for purposes of testing. The test
proceeds as follows:

(1) Specify CG (φ, λ, h) with known values for a variety
of latitudes and heights.

(2) Compute GC (x , y, z) from CG (φ, λ, h) using Eq. (4).
(3) Compute CG

(
φ′, λ′, h′) from GC (x , y, z) using the

method of Sect. 2.1.
(4) Latitude accuracy is defined as the maximum value of∣∣φ′ − φ

∣∣.
(5) Compute GC

(
x ′, y′, z′

)
from CG

(
φ′, λ′, h′) using

Eq. (4).
(6) 3-D accuracy is defined as the maximum value of√(

x ′ − x
)2 + (

y′ − y
)2 + (

z′ − z
)2.

There was no detectable latitude error. Maximum latitude
errors are 1 × 10−15 rad for any point on Earth or in outer
space, which is an upper limit, given that the results are at
the quantization limit of double-precision computations. For
heights of up to 500 km, the maximum 3-D error is 1 nm.
At low-Earth orbiter heights around 1000 km, the maximum
3-D error is 2 nm. At GPS orbit heights around 20,000 km,
the maximum 3-D error is 5 nm.

3.2 Comparison of GC (x, y, z) to CG
(
�, �, h

)
errors

with Bowring

We compare 3-D errors of our proposed method of Sect. 2.1
with Bowring (1976) and Bowring (1985). In all methods
including ours, Eq. (10) for height originally proposed by
Bowring (1985) is used. 3-D errors are computed using the
method of Sect. 3.1. Table 1 presents the comparison at var-
ious latitudes and heights. Approaching the equator and the
poles, all methods give errors that tend toward zero in those
limits, so these are not shown.

For Earth-bound heights, the method presented here can
be considered practically exact (1 nm) and up to 3 orders
of magnitude more accurate than the popular methods of
Bowring (1976) and Bowring (1985). Not surprisingly, the
same level of improvement is observed for latitude.
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Table 1 Maximum 3-D Error for
Methods of Bowring and of this
paper

CG coordinates 3-D error (nm)

Latitude Height (m) Bowring (1976) Bowring (1985) Blewitt

15◦ 1000 2 440 0

15◦ 4000 18 440 0

15◦ 10000 110 430 0

15◦ 40000 1800 420 0

30◦ 1000 6 1500 1

30◦ 4000 93 1500 1

30◦ 10000 580 1500 0

30◦ 40000 9100 1400 0

45◦ 1000 9 1000 0

45◦ 4000 140 1000 1

45◦ 10000 890 1000 0

45◦ 40000 14000 980 1

60◦ 1000 6 170 0

60◦ 4000 93 170 0

60◦ 10000 580 170 0

60◦ 40000 9200 160 0

75◦ 1000 1 3 1

75◦ 4000 18 3 1

75◦ 10000 110 3 1

75◦ 40000 1800 3 0

3.3 Test of inversion: GD
(
E, N, h

)
to GC (x, y, z)

Knowing that Earth-bound CG (φ, λ, h) are accurate to 1
nm for terrestrial positions, we can now test the precision of
GD (E , N , h) computations. Applying a similar method to
Sect. 3.1, a variety of latitudes were selected at 10,000 km
height and at zero longitude, and GC (x , y, z) coordinates
were computed exactly. GD (E , N , h) coordinates were then
computed and then inverted back to GC (x ′, y′, z′) coordi-
nates. The 3-D error was then computed the GC coordinate
differences.

Our results show that the magnitudes of differences were
all < 2 nm, at the limits of double-precision computation.
Note that this tests computational precision, and the ability to
reconstruct the original GC (x , y, z) time series. In contrast,
testing the accuracy requires comparison with a known stan-
dard, for whichwewill use numerical integration in Sect. 3.4.

3.4 Comparison of GD northing Nwith numerical
integration

The numerical accuracy of the GD northing N computation
of Sect. 2.5 is tested by comparison with the numerical inte-
gration method presented in Sect. 2.6. There it was verified
that numerical integration converges to within 10 nm when

decreasing the subinterval length to �̃φ � 0.0005 radians
(up to 3141 subintervals). After testing many latitudes, the
magnitude of the difference between computed GD northing
coordinates and numerical integration results never exceeds
0.002mm. This is consistent with (and smaller than) the level
of accuracy claimed byVincenty (1975),who noted that of all
geodesic distances, north–south lines have the largest error.
For all practical purposes, this level of error is insignificant,
keeping in mind that this is the arc distance all the way to the
equator (as much as 10 000 000 m).

3.5 Comparison of GD
(
E, N, h

)
and TC

(
e, n, u

)

for polar time series

We now test whether our easting coordinate system shows
systematic effects in practice for stations in arctic regions,
owing to the coordinate singularity at the poles. For this,
we choose the closest station to a pole that sits on bedrock
(that is, station motion is representative of the solid Earth
surface). That station is called HOWE in Antarctica, which
is at � −87.4◦, λ � −149.4◦, and height 2582 m, with a
span of 10.1 years of data, and 3471 daily epoch solutions in
the time series. Whereas longitudinal zones are 11 km wide
at the equator, at station HOWE they are only 0.5 km wide.
Note that both GD and TC suffer from the polar singularity
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Table 2 Differences between time series in GD and TC for station
HOWE

Easting (mm) Northing (mm) Height
(mm)

RMS difference 0.007 0.007 0.000

Minimum
difference

− 0.011 − 0.015 − 0.001

Maximum
difference

0.018 0.013 0.000

and TC cannot be considered a ground truth. The idea is
that this test can tell us something about the magnitude of
systematic effects.

The GD (E , N , h) and TC (e, n, u) time series were
differenced; then, the average differencewas subtracted from
each epoch. Table 2 shows the statistics of these differences
in millimeters.

The results show the root-mean-square (RMS) coordinate
difference is less than 0.01 mm, and the worst-case differ-
ences have magnitudes below 0.02 mm. As an additional
test, station velocity for each coordinate type was estimated
by the robust algorithmMIDAS (Blewitt et al. 2016). The dif-
ferences in estimated velocity were 0.002 mm/yr for easting,
0.002 mm/yr for northing, and 0.001 mm/yr for height.

3.6 Comparison of GD
(
E, N, h

)
and TC

(
e, n, u

)

for large northward displacements

Nowwe test for predicted systematic differences betweenGD
easting and TC east (E−e) time series that arises from north-
ward displacement. For this test, we go to Australia, which
has some of the largest tectonic velocities in the northward
direction. Stations with the longest history test the largest
total northward displacements. Station TIDB, which is at
� −35.4◦, λ � −211.0◦, and height 665 m, has a span
of 28.1 years of data, with 9197 daily epoch solutions in
the time series. Total northward displacement is 1.57 m. To
investigate how such large northward tectonic displacement
affects easting, GD (E , N , h) and TC (e, n, u) time series
were differenced and statistics are shown in Table 3.

Differences in northing are completely negligible. Differ-
ences in height are < 0.1 mm over 3 decades. As predicted,
differences in easting are largest, with RMS difference of
0.1 mm, and maximum difference of 0.3 mm (again, over 3
decades). As might be expected, the differences in the east-
ing have an obvious systematic trend, given that the station
is steadily moving with a northward velocity.

The MIDAS algorithm (Blewitt et al. 2016) was applied
to both types of time series, in order to quantify the trend
difference in easting. The difference is 0.013 mm/yr, which

Table 3 Statistics of differences between GD and TC time series for
station TIDB

Easting (mm) Northing (mm) Height
(mm)

RMS difference 0.099 0.000 0.044

Minimum
difference

− 0.169 − 0.001 − 0.075

Maximum
difference

0.319 0.001 0.090

can be considered negligiblewhen compared to other sources
of error.

4 Discussion

4.1 Significance of results

Section 2.1 presents an improved method of computing CG
(φ, λ, h) from GC (x , y, z) based on a proposed improve-
ment to the equation of reduced latitude for subsequent input
into the equation of latitude of Bowring (1976). Test results
show that the improved method is practically exact, with
maximum errors of 1 nm for Earth-bound positions, and
errors in latitude no greater than 10−15 rad for all points on
the Earth and in outer space. These numbers reflect accuracy,
since the forward transformation is exact and so the inverse
provides an absolute test.

The test of GD (E , N , h) inversion back to GC (x , y,
z) shows that the forward and inverse computations of coor-
dinates are self-consistent to within 2 nm. Our test of the
northing computation shows it is consistent with numerical
integration towithin 2 μm, which therefore is our upper-limit
estimate of the accuracy of GD computation.

All the test results show that differences (after subtrac-
tion of the mean) between time series of GD (E , N , h)

and TC (e, n, u) are insignificant, with trends less than
0.02 mm/yr. For the longest running time series spanning
3 decades with maximum northward tectonic displacement,
RMS epoch differences are less than 0.1 mm. Differences
between GD and TC can be expected because GD incorpo-
rates Earth curvature. Interpretation of coordinates starts to
breakdown for displacements exceeding 30 m, which almost
never falls within the limits of maximum displacement for
contemporary measurement of solid Earth deformation. We
can therefore treat relative coordinate time series from GD
and TC systems as equivalent for purpose of scientific inter-
pretation of station displacement for most types of geodetic
investigations of geophysical displacement.
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4.2 Examples using the global information content
in GD

(
E, N, h

)

GD (E , N , h) inherently retain information on the global
geodetic location of the station with respect to the ellipsoid.
This can be used to advantage in two important situations.

The first tangible benefit was realized by Argus et al.
(2011). In that publication, station time series from his-
torical stations were suspected to be on or near the same
reference point as modern station benchmarks. The GD (E ,
N , h) made it possible to directly compare different station
time series without special analysis, as it became obvious
whether both time series could be tied into one, thus effec-
tively extending time series for site velocity estimation. GD
(E , N , h) made it very simple to tie time series together. In
the case of TC (e, n, u), such functionality is not possible
with separate reference points for each station, and ad hoc
TC time series generation is required with single reference
points in a cluster of stations.

This benefit could also be applied when intentionally
decommissioning a station and running a replacement sta-
tion side-by-side for a period that allows for the two series
to be merged. Coordinates from GD (E , N , h) make this
extremely easy, in contrast to TC (e, n, u), which would
require a special analysis to determine both station time series
using an identical reference Cartesian coordinate.

Another tangible benefit came to light over the last
decade with the ever-expanding GPS network, which now
approaches 20,000 stations (Blewitt et al. 2018). It turns out
to be a frequent problem that two different stations can have
the same name. This can lead to accidental merging of differ-
ent time series, often with stations on different continents. In
this case the TC (e, n, u) system saturates, as the reference
point on a different continent is too far away for the rela-
tive coordinate to be interpreted (or worse, the format may
be numerically saturated). With GD (E , N , h) system that
never happens, because curvature of the Earth is accounted
for, and coordinates directly correspond to latitude and lon-
gitude. GD (E , N , h) coordinates are useful for debugging
when different time series are accidentally merged.

5 Conclusions

An improved non-iterative computation of latitude has been
presented based onBowring (1976) but with a different equa-
tion for reduced latitude. Themethod proves to be practically
exact for geodetic applications for any set of GD coordinates,
terrestrial or outer space. It is noted that double-precision
computations limit the testing of the true accuracy, so 10−15

rad should be considered an upper limit on latitude accuracy.
Without iteration, the method improves the commonly used

methods of Bowring (1976) and Bowring (1985) by typically
3 orders of magnitude.

A graticule distance (GD) coordinate (E , N , h) system
has been presented with sufficient detail for users to write
software to compute the coordinates, given geocentric Carte-
sian (GC) coordinates (x , y, z), and to reproduce the results
shown here. Demonstrated here is that GD (E , N , h) pre-
cisely reproduce time series of relative coordinates (e, n, u)

from the traditional topocentricCartesian (TC) system for the
case of stations that move with tectonic motions over decadal
time scales. The differences between GD and TC time series
are negligible, with maximum drifts of 0.01 mm/yr.

Unlike TC coordinates (e, n, u)which are inherently local
and relative,GDcoordinates (E , N , h) retain all global infor-
mation content, allowing for capabilities that do not exist for
TC. Capabilities include (1) the ability to relate position of
stations closer than a few km with GD coordinates, with
benefits such as merging of time series for geophysical inter-
pretation, or identifying which benchmark was used for a
historical station name, and (2) the ability to identify and
debug blunders when two time series of the same station
name are accidentally merged, when they refer to physically
different benchmarks.

The disadvantage of the traditional TC (e, n, u) system is
that, operationally, each GNSS station has a different refer-
encepoint forTCcoordinates, hindering the ability to directly
compare time series from different stations without applying
ad hoc methods. Given that there is no significant extra cost
to implement a GD (E , N , h) system, transition from TC to
GD should be seamless for most geodetic applications.

It is noted that since 2011, Nevada Geodetic Laboratory
has publicly produced time series for more than 20,000 GPS
stations in GD (E , N , h) form that have been cited by
hundreds of studies (Blewitt et al. 2018). That testifies to
widespread adoption of the GD system, which is for the first
time described in sufficient detail here to enable reproduction
of the results presented.
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