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Abstract

In this contribution, we comment on and thoroughly identify errors which occur in the research article titled “Ellipsoidal
spectral properties of the Earth’s gravitational potential and its first and second derivatives” by Bolling and Grafarend (2005)
published in J.Geod. 79(6-7):300-330. The major issues affecting the main theoretical results by Bolling and Grafarend (J
Geod 79(6-7):300-330, 2005) are as follows: (1) The tangential-tangential tensor spherical harmonics are not orthogonal
for different harmonic degrees and the same harmonic orders. Consequently, the corresponding solution of the spherical
gradiometric boundary value problem and the spherical integral formulas relating the tangential-tangential components of the
incremental gravity gradient tensor are invalid. (2) The tangential-tangential, tangential-shear, tangential-dilation, tangential-
normal, and normal-normal tensor ellipsoidal harmonics are not orthogonal for different harmonic degrees and the same
harmonic orders. As a result, the solutions of the ellipsoidal gradiometric boundary value problems and the ellipsoidal
integral formulas transforming the components of the incremental gravity gradient tensor among themselves are incorrect.

Keywords Ellipsoidal harmonics - Second-order gravitational tensor - Boundary value problems - Orthogonality - Integral
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1 Introduction

Gravity field is an important property of any planetary body
and represents one of the three main pillars of the modern
geodesy (Plag et al. 2009). Countless articles have dis-
cussed theoretical, numerical, or practical matters of this
phenomenon in the geodetic, geophysical, and planetary sci-
ence literature. One of the studies on the gravity field is titled
“Ellipsoidal spectral properties of the Earth’s gravitational
potential and its first and second derivatives” by Bolling
and Grafarend (2005) (herein referred to as BGO05). This
theoretical work introduces the incremental gravity poten-
tial (Sect. 2*), sets up the incremental gravity gradient and
the incremental gravity gradient tensor (Sect. 3%), solves
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the gradiometric boundary value problem (BVP, Sect. 4%),
and derives integral transforms of the incremental gravity
potential onto the incremental gravity gradients and those
transforming the incremental gravity gradients among them-
selves (Sect. 5%).

All these topics are presented in both the spherical approx-
imation and its ellipsoidal (oblate spheroidal) counterpart.
The spherical treatment employs the spherical coordinates,
quantities are related to the spherical local reference frame,
and the preferred mathematical parametrizations are the
external spherical harmonic expansions. The ellipsoidal
approximation makes use of the Jacobi ellipsoidal coordi-
nates, quantities refer to the ellipsoidal local reference frame,
and the external ellipsoidal harmonic series are the matching
mathematical representation.

We have thoroughly studied the topics presented in BG05
and highly value the authors’ systematic approach. Nev-
ertheless, we found fundamental mathematical issues that
significantly affect the main theoretical outputs. In our arti-
cle, we identify errors in BGOS. In particular, we discuss two
decompositions of the incremental gravity gradient tensor
(Sect. 2), investigate orthogonality properties of the tensor
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ellipsoidal harmonics (Sect. 3), and summarize consequences
for BGOS (Sect. 4). Appendices and the Electronic Supple-
mentary Material (ESM) contain related (mathematical and
formal) aspects.

All references from BGOS, e.g., to sections, tables, or
equations, are appended by an asterisk, while those with-
out any sign can be found within our study. The notation
and nomenclature are consistent with BG05 to the highest
extent. Mathematical formulas in BGOS5 use the notation with
metric coefficients. Here, we prefer explicit forms that are
completely equivalent with those in BGOS after inserting the
metric coefficients. A theoretical minimum for understanding
our explanations and arguments can be found in Appendix A.
Nevertheless, we strongly recommend the reader to scruti-
nize the paper by BG05 before reading our article.

2 Comments on the two decompositions of
the incremental gravity gradient tensor

The incremental gravity gradient tensor is a central quantity
in BGOS. Its representation in the local spherical reference
frame is introduced in Sect. 3.1%, see Eq. (Al). The ten-
sor components are the boundary conditions when solving
the spherical gradiometric BVP in Sect. 4.1*. Spherical inte-
gral formulas relating the incremental gravity potential to the
tensor components including those relating the tensor com-
ponents among themselves are derived in Sect. 5.1%*.

An important step for both, the solution of the spher-
ical gradiometric BVP in Sect. 4.1* and the derivation
of the integral formulas in Sect. 5.1*, is an appropriate
decomposition of the incremental gravity gradient tensor.
A four-part decomposition is presented in Table 6%, see
Eq. (A3), which divides the tensor into the Tangential-Shear
(TS), Tangential-Dilation (TD), Tangential-Normal (TN),
and Normal-Normal (NN) parts. Table 10*, on the other hand,
contains a three-part decomposition of the incremental grav-
ity gradient tensor into the Tangential-Tangential (TT), TN,
and NN parts, see Eq. (A2). While the four-part decomposi-
tion is not further employed upon its introduction in BGOS,
the three-part version is the starting point for the solution of
the gradiometric BVP in Sect. 4.1%*.

The three-part decomposition, however, leads to an incor-
rect result for this reason. When solving the spherical
gradiometric BVP, a crucial property of the tensor spherical
harmonics is their orthogonality, i.e., that the integral from a
multiplication of two tensor basis functions over the sphere
vanishes for different harmonic degrees and orders. For the
TT tensor spherical harmonics of the three-part decompo-
sition, the orthogonality is taken for granted when solving
the spherical TT gradiometric BVP in Egs. (67%)-(74%) in
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Tab. 11*, but not asserted anywhere in BG05. Importantly,
we prove in Appendix B that the TT tensor spherical har-
monics are not orthogonal for all different harmonic degrees
and orders.

Overall, the spherical gradiometric BVP should have been
solved for the TS, TN, and NN parts of the four-part decom-
position, as the corresponding tensor spherical harmonics are
orthogonal by Eq. (35%) in Tab. 6*. The solution of the gra-
diometric BVP for the TD part is omitted, as it is identical
to the one for the NN part by the Laplace equation, see (e.g.,
Martinec 2003).

The incremental gravity gradient tensor in the ellipsoidal
local reference frame is also decomposed into three (TT, TN,
NN) and four (TS, TD, TN, NN) parts, see Tabs. 12* and
9* and Eqgs. (AS5) and (A6). The three-part decomposition is
the initial point for the solution of the ellipsoidal gradiomet-
ric BVP in Sect. 4.2*, but the four-part decomposition is not
employed again. We could eventually expect similar disputes
as already discussed for the spherical approximation. How-
ever, the ellipsoidal approximation suffers from even more
serious errors, see below.

3 Orthogonality properties for the tensor
ellipsoidal harmonics

In this section, we investigate orthogonality properties for the
tensor ellipsoidal harmonics. To the best of our knowledge, a
proof of such properties has not been presented in the litera-
ture. Therefore, a detailed treatment of this topic is provided
here supplementing the general presentation in BGOS.

3.1 Basic relations

The tensor ellipsoidal harmonics of degree k, order /, and
type i are basis functions for the mathematical parametriza-
tion of the incremental gravity gradient tensor. These are
denoted Ti,, i € {TT, TS, TD, TN, NN}, and result from
the application of the corresponding differential operators
in Egs. (AS) and (A6) to e (¢, A), i.e., the 4w -normalized
ellipsoidal harmonics of degree k and order /. BGOS5 provide
explicit formulas for TS, TD, TN, and NN tensor ellipsoidal
harmonics in Egs. (C.22%)-(C.25%).

The orthogonality properties of the five tensor ellipsoidal
harmonics can be concluded from the values of the integrals:

<T;€111 ()‘" @, Lt), T;'le ()‘" 2 u))

1 . '
= gﬂw(¢7 W) Ty (Ao, u) Ty (A, @, u) dS,

i € {TT, TS, TD, TN, NN}. (1)
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The symbol : indicates the tensor product, and S is the
area of the ellipsoid:

S =S
2 /2 + &2 /u2 1+ &2
—dr /7u2+82 u—ln us+¢& +8+ us+e @
4 VPt el —¢ 2

and the infinitesimal surface area is as follows:

dS =dS@u, ¢) = Vu? + &2 /u? + e2sin® p cos ¢ dg di.
3)

The weight function w is defined by Eq. (39%) (for u = b)
and is generalized for u # b as:

1
wp, 1) = ————o—
Vu? +g2sin’ ¢
u21 VM2+82+8+Vu2+82
x| —In .
de Jul+4e2—¢ 2

Note that BGOS prefer employing the general bra-ket nota-
tion, i.e., the left-hand side of Eq. (1). The explicit integral
representation after the first equality sign can be deduced
from Eq. (86%) in Tab. 13*.

BGOS5 list orthogonality relationships for TS, TD, TN, and
NN tensor ellipsoidal harmonics in Egs. (61%) and (C.26%),
which state that the integral (1) equals 8k x, 8,1, for i €
{TS, TD, TN, NN}. An equivalent orthogonality relationship
is assumed for the TT tensor ellipsoidal harmonics, when
solving the TT ellipsoidal gradiometric BVP in Eqgs. (83%)-
(90%) in Tab. 13*, but is not declared anywhere in BGO05.

For convenience, explicit formulas of Eq. (1) for the TT,
TS, TD, TN, and NN tensor ellipsoidal harmonics are listed
in the ESM.

“

3.2 Numerical proof of orthogonality properties

The integrals (1.6)—(1.10) in the ESM have to vanish Vk| #
ko and be nonzero if k; = kj for the tensor ellipsoidal har-
monics being orthogonal, as assumed in BG05. An analytical
proof of non-orthogonality of the tensor ellipsoidal harmon-
ics for kj = 2, kp = 0, and [ = 0 is presented in the
ESM. However, for arbitrary non-negative integer harmonic
degrees k1 and k3, and order /, use of analytical tools may be
extremely challenging and cumbersome. Therefore, and for
efficiency and simplicity of implementation, we preferred a
numerical proof to its analytical counterpart.

A computer program for the numerical calculation of the
integrals (1.6)—(1.10) in the ESM was coded in the pro-
gramming language C (Kernighan and Ritchie 1988). We
implemented a Gauss-Legendre quadrature algorithm for the
numerical integration (Press et al. 2002). Numerical tests

showed that the quadrature order 10,000 was the most opti-
mal and thus adopted in our experiments. The associated
Legendre functions of the first kind Py were calculated by
the forward column recursion (e.g., Holmes and Featherstone
2002). For computation of the associated Legendre functions
of the second kind Qy; and their derivatives with respect to
u, we employed the representation in terms of the Gauss
hypergeometric function , F; (Hobson 1965, p. 108) and the
routine gsl_sf_hyperg_2F1 implemented in the GNU Scien-
tific Library (Galassi et al. 2013).

To reveal and eliminate any numerical issues or systematic
errors in the C program, particular attention was devoted to
independent checks by:

(1) The closed formulas (2.1)—(2.5) in the ESM for the case
ki =2,kp =0,and = 0.

(2) The closed formulas of integrals (1.7)—(1.10) in the ESM
being (n — Dn(n + D)1 + 2)8k1811,, (1 + 1)*(n +
2)2 84,k 81155 20 (1) (+2) 281, 158111, and (n+1)% (n+
2)28k,k,01,1,» Tespectively, when setting a = b = u =
1.0,ie.,62=0 (e.g., Rummel 1997; Martinec 2003).

(3) A routine evaluating the identical integrals written in the
mathematical software Mathcad 15 (Larsen 2010).

All three validation means confirmed correctness of the
numerical implementation in the C program for different
input parameters, see below.

We evaluated the integrals (1.6)—(1.10) in the ESM for the
major semi-axis ¢ = 1.0 m, minor semi-axis b = 0.5 m, and
the size of the minor semi-axis of the computational point
u = 0.6 m (i.e., above the ellipsoid). This oblate ellipsoid
was chosen for convenience. Table 1 lists the numerical val-
ues for harmonic degrees k1; ko = k1, k1 —2, k1 —4,...,0,
and orders [ up to 5. These reach approximately three orders
of magnitude from 10° up to 10° and are nonzero. These
integrals were also calculated for the harmonic degrees ky» =
ki—1,ki —3,k1 —5,...,1 (notlisted in Table 1) and their
magnitudes ranged from 10~'% up to 10713, As all computa-
tions were performed in the double precision, such values are
numerically negligible and indicate that the integrals vanish
in this case.

Integrals (1.6)—(1.10) in the ESM were further evaluated
for the realistic GRS80 reference ellipsoid (Moritz 2000).
The lengths of the major and minor semi-axes are a =
6378137.0 m and b = 6356752.3141 m. Numerical values
of the five integrals 250 km above the surface of the GRS80
reference ellipsoid, i.e., u = b + 250 km = 6606752.3141
m, are listed in Table 2. Magnitudes are of the order of 1/ a*
for harmonic degrees k1; ko = k1, k1 —2,k; —4,...,0and
at least 13 orders of magnitude smaller for ky = k1 — 1, k1 —
3,k1 —5, ..., 1, when they vanish (not listed in Table 2).
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Other numerical experiments were performed for both
ellipsoids by changing the size of the minor semi-axes u
and did not change our conclusions.

‘We have thus demonstrated that the tensor ellipsoidal har-
monics are orthogonal forky = k1 —1, k1 =3,k =5, ..., 1,
but non-orthogonal for k» = ki, k; — 2, k1 — 4, ...,0. This
is in contradiction with BG0S5, who stated that the tensor
ellipsoidal harmonics are orthogonal Yk # k.

4 Conclusions and consequences for (Bolling
and Grafarend 2005)

In this contribution, we identified errors in the paper by
Bolling and Grafarend (2005). Their main focus is to solve
the gradiometric boundary value problem and to derive inte-
gral formulas of the incremental gravity potential onto the
incremental gravity gradients and those mutually relating the
incremental gravity gradients. These mathematical problems
are treated in the spherical and ellipsoidal approximations.

The major issue for the spherical approximation stems
from the fact that Bolling and Grafarend (2005) employed
the three-part decomposition of the incremental gravity gra-
dient tensor when solving the spherical gradiometric BVP.
Nevertheless, two TT tensor spherical harmonics of the
three-part decomposition are non-orthogonal for degrees k1 ;
ko = ki, k1 —2,k1 —4,...,0, and the same orders greater
than 0, as we proved in Appendix B. Consequently, the solu-
tions of the TT spherical gradiometric BVP in the spectral
and spatial domains, see Egs. (70*) and (74*) in Tab. 11%,
are incorrect. The solution of the TT spherical gradiomet-
ric BVP is further used when finding the integral formula
between the TT part of the incremental gravity gradient ten-
sor in Egs. (101*)-(105%) in Table 15*. These expressions
are also invalid.

For the ellipsoidal approximation, the fundamental error
in (Bolling and Grafarend 2005) originates from the asser-
tion that two TT, TS, TD, TN, and NN tensor ellipsoidal
harmonics are orthogonal for different degrees and orders,
see Egs. (61*%) and (C.26*). However, we demonstrated
numerically in Sect. 3 that this is not true for degrees ki;
ky = ki, ki —2,k; —4,...,0, and the same orders. As
the orthogonality properties do not hold, the solutions of the
ellipsoidal gradiometric BVPs in Tab. 13* are incorrect start-
ing from Eq. (86*). In addition, the solutions of the ellipsoidal
gradiometric BVPs are considered when deriving the integral
formulas between the components of the incremental gravity
gradient tensor. The corresponding formulas (131%)-(140%)
in Tab. 19* are thus incorrect.

Correct solutions of the spherical gradiometric BVP were
found in (e.g., van Gelderen and Rummel 2001; Martinec
2003; Téth 2013). Similarly, spherical integral formulas
mutually relating the incremental gravity gradients were

@ Springer

derived in (e.g., T6th et al. 2005, 2006; gprlék et al. 2014).
On the other hand, the ellipsoidal gradiometric BVP and
ellipsoidal integral formulas transforming incremental grav-
ity gradients among themselves have not been presented in
the literature, except for the attempt by Bolling and Grafarend
(2005). As they were proved invalid, these still remain open
problems of the geodetic theory and the potential theory in
general.
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Appendix A Two decompositions of the incre-
mental gravity gradient tensor

As a theoretical minimum, we summarize basic equations
for the incremental gravity gradient tensor. We represent this
quantity in both the spherical and ellipsoidal local reference
frames by three- and four-part decompositions.

A.1 The incremental gravity gradient tensor in the
spherical local reference frame

The incremental gravity gradient tensor results from the
application of the gradient operator to the incremental gravity
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potential Sw twice:

grad ® grad Sw(k, @, r)

1 1
=le D), +e, ——D, + e —D)
(A\/g)d * r«/grr "
1
—— D, Jdw(r, @, r).
=D Jouleor)

(AD)

1
e
( * /8

The gradient operator is expressed in terms of the spherical
coordinates XA (spherical longitude), ¢ (spherical latitude),
and r (geocentric radius). The spherical local reference frame
is defined by the vector basis (ey, ey, €), g = r2 cos? o,
8oy = r?, and g, = 1 are the metric coefficients. The
symbol ® indicates the dyadic product. The dyadic products
of two basis vectors of the spherical local reference frame
€, ® €,,0, p € {A, @, r}, are termed spherical dyadics. The
incremental gravity gradient tensor in Egs. (A1), (A2), and
(A3) is a linear combination of the spherical dyadics.

By performing the differentiations according to the right-
hand side of Eq. (A1) and using the continuity of §w, we can
obtain:

grad @ grad Sw(A, ¢, r)

tan ¢ 1 1 2
=@ @ T a Dt D e b

1
+e¢,®e¢r—2|:rD,+Dii|

+(er®e, +e,®6) (tang +Dy) DA}(Sw(A,go,r)

r2 cos @

1 1
—i(ex®er+er®ex) (7_Dr>D)»
rcose \r
1/1
+e,®e +e ®ey) — |~ —Dr Dy Sw(r, @, r)

+ {er®erD3}8w(}»,<p,r). (A2)

The last equation decomposes the tensor into the three parts:

(1) Tangential-Tangential (TT), the first term on the right-
hand side,

(2) Tangential-Normal (TN), the second term on the right-
hand side,

(3) Normal-Normal (NN), the third term on the right-hand
side.

The three-part decomposition of the incremental gravity gra-
dient tensor summarized in Tab. 10* can be obtained by
applying Eq. (A2) to the spherical harmonic expansion of
Eq. (11%*) for the incremental gravity potential.
Alternatively, the tensor can be split as follows:

grad ® grad éw(A, o, r)

1
={E(ex®ex—e¢®ew)

X —

tan ¢ 1 , 1 D2i|

2 % rleos2g * 270

1
+ (e ®e, +e,®¢€) Toose (tan g + Dy) Dy, tw(, ¢, r)

1
+ E(ex®ek+e¢®e¢)
[ tang 2 1 S
|~ D¢+;D,.+mDA+r—2DW sw(r,@,r)

—1(@Qe +e Qe)

1 1
— —D, | Dy
rcosg \r

1/1
+(ey@e +e @e) (; —D,) D¢} sw(k,.r)

+ {er®e,D3} (Sw(k,(p,r). (A3)

This four-part decomposition divides the tensor into:

(1) Tangential-Shear (TS) part, the first term on the right-
hand side,

(2) Tangential-Dilation (TD) part, the second term on the
right-hand side,

(3) TN part, the third term on the right-hand side,

(4) NN part, the fourth term on the right-hand side.

The four-part decomposition of the incremental gravity gra-
dient tensor presented in Tab. 6* results from the application
of Eq. (A3) to the spherical harmonic expansion of the incre-
mental gravity potential in Eq. (11%).

A.2 The incremental gravity gradient tensor in the
ellipsoidal local reference frame

The ellipsoidal coordinates are A (ellipsoidal longitude),
¢ (reduced latitude), and u (minor semi-axis). The ellip-
soidal local reference frame is given by a moving origin
and the vector basis (e;, ey, €,). The dyadic products of
two basis vectors of the ellipsoidal local reference frame
e, ® e,,0, p € {A, @, u}, represent ellipsoidal dyadics. The
incremental gravity gradient tensor in Egs. (A4), (AS), and
(AO6) is a linear combination of the ellipsoidal dyadics.

The incremental gravity gradient tensor referred to this
frame is obtained from the twofold action of the gradient
operator to dw:

grad ® grad Sw(A, 0, u)

1 1 1
=|eg——Dy+e, ——D, +e —D)
( NGn Y e L B
®( L p + ! p + : D>6 (r, 0, u)
e, —— D, ey, — e, —— WA, Q, U,
NZIS v N2 ¢ “ / 8uu !

(A4)

with the metric coefficients g, = (u* + £2) cos? ¢, 8pp =
u? + &% sin? @, and g, = (u? + &% sin? (p)/(u2 +e2). e =
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~/a? — b? is the linear eccentricity given by the major semi-
axis a and minor semi-axis b of the reference ellipsoid.

Differentiation by Eq. (A4) leads to the three-part decom-
position in the form:

grad ® grad Bw(k, 0, u)

{ ® |: tan ¢ D
=jepQe | — —5—5—5—
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u 1 5
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+ (e, ®ey +ep Qey)
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X
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2 +¢2sin? @
The first term on the right-hand side is the TT part, the sec-
ond term is the TN part, and the third term is the NN part.
The corresponding representation of the incremental grav-
ity gradient tensor in Tab. 12* follows when the ellipsoidal
harmonic expansion of the incremental gravity potential of
Eq. (10%*) is inserted into Eq. (AS).

The four-part decomposition splits the tensor as follows:

grad ® grad Sw(A, @, u)

1
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Here, the first term on the right-hand side is the TS part, the
second term is TD part, the third term is TN part, and the
fourth term is the NN part. When the ellipsoidal harmonic
expansion of the incremental gravity potential in Eq. (10%) is
substituted into Eq. (A6) for Sw, we get the four-part decom-
position of the incremental gravity gradient tensor presented
in Tab. 9%*.

Appendix B Orthogonality properties of TT
tensor spherical harmonics

Orthogonality of the TT tensor spherical harmonic functions
can be deduced from the formula (1.1) in the ESM by set-
ting €2 = 0 and u = 1.0. Such integral vanishes Vl; # I»,
because the integrals from the products cos/jA cos/rA and
sin /i A sin /oA over the variable A are zero. Then, we have to
consider only the case /| = [ = [ and the single variable
integral over ¢:

/2
146 ? 7. .
TL() / {|:tang0D¢+(k1+1)+—2i|Pkll(sm(p)
cos” ¢
—/2

_ 2 ) .
x | tangDy + (ko + 1) + m} P, i (sin @)

+| =G+ + Di] Py, (sin @)

x| = (ke + 1+ Di]ﬁkzl(sin ¢)

/ =
+4 — (tamp + D(p) Pr i (sin @)
cos @

[ _
p (tan o+ D(/,) Py, (sin (p)} cos ¢ do. (B1D)

Numerical values of the integral (B1) for harmonic
degrees k1; kp = ki, ki — 2,k — 4,...,0, and orders [
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Table 3 Numerical values of

the integral (B1) ki ko 1 Value k1 ko l Value
0 0 0 2.0000000000E+00 4 4 1 7.1100000000E+02
1 1 0 1.8000000000E+01 4 2 2 —1.0392304845E+01
1 1 1 1.8000000000E+01 4 4 2 7.6500000000E+02
2 0 0 —1.0507688655E-14 4 4 3 7.6500000000E+02
2 2 0 8.4000000000E+01 4 4 4 6.8400000000E+02
2 2 1 9.4000000000E+01 5 1 0 1.3526044683E-13
2 2 2 8.9000000000E+01 5 3 0 —2.0368126988E-13
3 1 0 3.9719159632E-14 5 5 0 1.3020000000E+03
3 3 0 2.6000000000E+02 5 1 1 8.3680382105E-14
3 1 1 —3.6810201921E-14 5 3 1 2.7748873851E+01
3 3 1 2.9500000000E+02 5 5 1 1.4560000000E+03
3 3 2 3.0900000000E+02 5 3 2 —6.6332495807E+00
3 3 3 2.8100000000E+02 5 5 2 1.5770000000E+03
4 0 0 3.4958182672E-14 5 3 3 —3.9799497484E+01
4 2 0 4.8143475333E-14 5 5 3 1.6320000000E+03
4 4 0 6.3000000000E+02 5 5 4 1.5880000000E+03
4 2 1 7.3484692283E+00 5 5 5 1.4120000000E+03

up to 5 computed by the C program are listed in Table 3.
Values smaller than 410~ are numerically insignificant in
comparison to other numbers and may safely be considered
zero. When [ = 0, the integral (B1) vanishes for k; # kj
and is nonzero otherwise. For [ > 0, on the other hand, the
integral (B1) is nonzero not only for k1 = k», but also for
ko=k —2,kj —4,...,0.

We calculated the integral (B1) for harmonic degrees k> =
ki — 1,k —3,k; — 5,...,1 (not shown in Table 3). The
numerical values are of the order 10~!3 and Iess, thus proving
orthogonality only in this case.
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