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Abstract
The Surface Water and Ocean Topography (SWOT) mission generates dense altimetry data that, when used in geoid gradient
component estimations through least-squares collocation (LSC), lead to an ill-conditioned problem. Such problems also
arise in geodetic network designs. This study introduces the Tikhonov-L-curve regularization to effectively address this
challenge. By pinpointing the maximum curvatures of the L-curve, we discern optimal regularization parameters, countering
issues stemming from the dense data of SWOT and the resulting ill-conditioned covariance matrices. Our approach not
only stabilizes LSC solutions but also achieves gradient accuracies at 1-microrad levels compared to theoretical values.
Additionally, we experimented with a strategic removal process that selectively eliminates adjacent geoid gradients. This
technique considerably improves geoid gradient component determinations, especially evident at a threshold distance of
0.755 km within an 8′× 8′ data selection window. While our findings are rooted in simulated SWOT data, they are pivotal
for future research intending to employ real SWOT data, anticipated by late 2023. This work serves as a precursor for marine
gravity field determinations, emphasizing the importance of stabilized LSC solutions to avoid misleading seafloor signatures
due to data compactness.
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1 Introduction

The SurfaceWater andOceanTopography (SWOT) altimeter
mission was launched on December 16, 2022, and operated
in a 1-day repeat orbit in its initial phase, transitioning to a
21-day repeat orbit in the science phase in July 2023. SWOT
is positioned at an altitude of 890.5 km with a 77.6° inclina-
tion (Esteban-Fernandez 2017). SWOTmeasures sea surface
heights (SSHs) over two 50-km swaths with a 20-km nadir
gap using aKa-bandRadar Interferometer (KaRIN) altimeter
that employs synthetic aperture radar (SAR)-interferometry
techniques. SWOT is anticipated to have significant applica-
tions in both hydrology and oceanography. Its hydrological
objectives include measuring the elevations of lakes, rivers,
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and wetlands and estimating global discharge for rivers and
water storage for lakes (Morrow et al. 2019). In oceanog-
raphy, SWOT is primarily used to detect mesoscale and
submesoscale ocean circulation and eddies (Fu and Ubel-
mann 2014; Morrow et al. 2019).

Anadir-looking radar altimetermeasures only SSHs along
satellite ground tracks, yielding one-dimensional SSH obser-
vations. However, systematic and random errors in SSH
observations from various tracks result in spatially non-
uniform SSH observations. In contrast, SWOT measures
wide-swath SSHs at a nominal 2-km spatial resolution with
unprecedented accuracy. Consequently, SWOT’s swath SSH
observations surpass radar altimeter data in both spatial res-
olution and accuracy, leading to greatly improved marine
gravity fields (Morrow et al. 2019; Yu et al. 2021).

Marine geoid gradients derived from altimeters play cru-
cial roles in geodesy and geophysics. They can be utilized to
derive gravity anomalies, vertical gravity gradients, marine
geoid heights, and short wavelength depths (Sandwell and
Smith 1997; Hwang 1998). Many researchers have deter-
mined the marine geoid gradients from nadir-looking radar
altimeters (Haxby et al. 1983; Sandwell 1984; Hwang and
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Parsons 1995, 1996; Olgiati et al. 1995; Hwang 1998). How-
ever, little research has been directed toward determining
marine geoid gradients from the ongoing SWOT mission.
Jin et al. (2022) calculated the north and east components
of the deflection of the vertical (i.e., geoid gradient) from
the simulated SWOT observations by weighted least-squares
estimation and analyzed their accuracies using the Earth
Gravitational Field Model 2008 (EGM2008) by Pavlis et al.
(2012). Yu et al. (2021) studied the potential of SWOT in
deriving high-accuracymarine gravity field fromgeoid gradi-
ents and geoid heights. However, an ill-conditioned problem
occurs when inverting the covariance matrices in the LSC
estimation of north and east components of geoid gradients.
A tentative solution by Yu et al. (2021) is using error covari-
ancematrices of the observed geoid gradients to avoidmatrix
singularities.

Ill-conditioned problems often emerge in physical
geodesy. In an ill-conditioned problem, minor fluctuations
in input data and their corresponding errors can result in
substantial changes in the parameters estimated from the
data (Rummel et al. 1979). Geodetic literature suggests that
ill-conditioning in normal matrices during network adjust-
ment can lead to sizable errors in estimated parameters
(Grafarend and Sansò 2012). Ill-conditioned problems are
typically addressed using regularization methods, which rely
on a specific regularization parameter. A standard regular-
ization method is Tikhonov regularization (Tikhonov and
Arsenin 1977). Rummel et al. (1979) showed that Tikhonov
regularization is equivalent to LSC when the regularization
parameter is equal to one. The application of Tikhonov regu-
larization in LSC uses a regularization parameter to balance
the weight of the 2-norm of the estimated parameters and
the weight of the 2-norm of residuals of the observations
(Moritz 1980). For example, Abrikosov (1999) determined
the regularization parameter in the LSC regularization based
on three different principles. Marchenko and Tartachynska
(2003) derived gravity anomalies from altimeter data in the
Black sea area using LSC and the regularization method of
Abrikosov (1999). In addition, the regularization method can
be combined with variance component estimation to com-
bine different types of data. For example, Koch and Kusche
(2002) determined the regularization parameter by the ratio
of two variance components. Xu et al. (2006) developed an
iterative mean squared error (MSE)-based method to simul-
taneously determine variance components and regularization
parameter. Xu (2009) proposed the iterative generalized
cross-validation method extended from the iterative MSE-
based method developed by Xu et al. (2006) to optimize
regularization parameter and the variance components.

The purpose of this paper is to mitigate the ill-conditioned
problem identified in the study by Yu et al. (2021), which

determined the north and east geoid gradient components
using LSC from simulated SWOT SSHs. In this paper,
Tikhonov regularization is applied to LSC to attain stable
solutions for the two geoid gradient components on a grid,
with the regularization parameter ideally determined via the
L-curve method. First, we generate the high-frequency SSH
signals expected to be observed by SWOT using multi-beam
depths and then generate error-free SWOT SSH observa-
tions. Second, we use LSC method to determine the north
and east components of geoid gradients. Given that the cal-
culated geoid gradient components without regularization
are unstable, the Tikhonov-L-curve regularization is then
implemented to resolve this issue to best recover the geoid
gradient components. The theoretical values of the geoid gra-
dient components using numerical differentiations are used
to assess the accuracies of the recovered gradients.

2 SWOT SSH observations and “true values”
of geoid gradient components

2.1 High-wavenumber SSH components
frommulti-beam depths

SWOT has been launched on December 16, 2022, and is
currently in its science phase. However, the observations are
undergoing calibration and validation, and may not be opti-
mal for gravity recovery. Thus, this paper uses simulated
SWOT SSH observations to test the method for overcom-
ing the ill-conditioned problem. SWOT scans SSHs with
unprecedented 1.4-cm accuracy and 2 × 2 km spatial reso-
lution by SAR-interferometry (Peral and Esteban-Fernandez
2018; Morrow et al. 2019). Therefore, it can be difficult to
simulate realistic SWOT observations from the present MSS
models, which do not contain highwavenumber features over
the seafloor. Following the approach of Yu et al. (2021), we
simulate the high-wavenumber SSH components from the
bathymetric data to pick up the signals not seen in theDTU18
mean sea surface (DTU18MSS) by Andersen et al. (2018).
Note that DTU18MSS uses only data from the nadir-looking
altimeter measurements. The SSHs from DTU18MSS may
have been smoothed by filtering that reduced seafloor signa-
tures.

Figure 1 (a) shows depths over our study area, which are
from the multi-beam measurements of the Ministry of the
Interior (MOI), Taiwan (Hsiao et al. 2016; Yu et al. 2021).
The MOI multi-beam depth dataset has a mean accuracy of
a few meters and a spatial resolution of 500 m along the
ship cruise lines. Therefore, we use the 2020 version of the
GeneralBathymetricChart of theOceans (theGEBCO_2020

123



The Tikhonov-L-curve regularization method for determining … Page 3 of 13 93

Fig. 1 a Depths from the MOI multi-beam depth dataset, the areas
without depth measurements (void zone) are gray-shaded, b high-
wavenumber SSH components, and c simulated error-free SWOT SSH
observations

Grid; GEBCO Bathymetric Compilation Group 2020) to fill
the gap in the MOI depth data (void zone shaded by gray).
The GEBCO_2020 Grid is on a 15′′ × 15′′ grid with a lower
accuracy than MOI data. From the combined bathymetric
data, the high-wavenumber SSH components are generated
as follows (Yu et al. 2021)

(1)

HRDM
(
xp, yp

) � G

γ

y2∫
y1

x2∫
x1

ρ (h (x , y) − href (x , y))√
(x − xp)2 + (y − yp)2

dxdy

� G

γ
[ρhres] ∗ 1

r

where HRDM is the effect of residual depth model (RDM) on
SSH,G is the gravitational constant, γ is normal gravity, (x1,

x2) and (y1, y2) define the integration range for the RDM in
the local x–y plane centered at P, ρ � 1.64 g · cm−3 is the
density contrast between the average density of the ocean
bedrock

(
2.9 g · cm−3

)
and that of seawater

(
1.03 g · cm−3

)
,

hres � h−href is the residual depth, h is the true depth, href is
the reference depth, r � √

x2 + y2, and * is the convolution
operator.

The true depths are the combination of the MOI multi-
beam depths and the GEBCO_2020 Grid, and the reference
depths are obtained by low-pass filtering of the true depths
with a wavelength of 20 km. Then the residual depths are the
differences between the true depths and the reference depths.
The high-wavenumber SSH components derived from the
residual depths are shown in Fig. 1 (b). They have the same
spatial frequency as that of the residual depths and aim at
compensating for the missing high-wavenumber SSHs in
DTU18MSS (Yu et al. 2021). We generate a SWOT_model
on a 1′ × 1′ grid via superimposing the high-wavenumber
SSH components on the DTU18MSS model. Then this
SWOT_model is input into the SWOT simulator (version
3.1) developed byGaultier et al. (2016) to generate one-cycle
error-free SWOT SSH observations (Fig. 1 (c)). The simu-
lated SWOT observations over the SWOT swaths are on a 2
km× 2 km grid and those along the nadir tracks have a 2-km
interval. Because our focus is to identify the best approach
for regularization in the LSC estimation of north and east
gradient components, we do not consider the SWOT obser-
vation errors. Subjects such as the effects of SSH errors on
SWOT-estimated geoid gradients and marine gravity anoma-
lies and the error suppression techniques have been studied
by Yu et al. (2021). Note that the simulated SWOT obser-
vation errors from our previous study (Yu et al. 2021) align
with the SWOT error budget. Corrections for most of these
errors will be incorporated in the SWOT Level 2 ocean prod-
ucts (Stiles 2020). These corrections should be applied prior
to extracting the geoid gradients from the SWOT SSH data.
Consequently, only the residual errors persist in the SWOT
SSHs, influencing the geoid gradients. Until the real SWOT
data are available, estimating these residual errors remains
unfeasible.

2.2 “True values” of geoid gradient components
using numerical differentiations

In this section, we compute the residual north and east com-
ponents of geoid gradients from the SWOT_model generated
in Sect. 2.1 using numerical differentiations. The resid-
ual geoid gradient components calculated in this way are
regarded as the “true (theoretical) values” and can be used to
assess the accuracies of the geoid gradient components com-
puted by themethod presented in Sect. 3.2. First, we removed
the Levitus dynamic ocean topography (Levitus et al. 1997)
andEGM2008 geoid heights to degree and order 2160 (Pavlis
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et al. 2012), which is used as a reference field, from the SSHs
in the SWOT_model to determine the residual geoid heights
on a 1′ × 1′ grid. Then we applied numerical differentiations
to obtain the residual geoid gradient components from the
regularly gridded residual geoid heights as

ξ̃ � ∂Nres

∂y

η̃ � ∂Nres

∂x

(2)

where Nres is the residual geoid heights on a 1′ × 1′ grid, x
and y are the local rectangular coordinates pointing east and
north, respectively, ξ̃ is the north derivative of Nres and is
actually the residual geoid gradient in the north–south direc-
tion, and η̃ is the residual geoid gradient in the east–west
direction. The horizontal derivatives of the gridded geoid
heights are computed by the routine “QD2DR” in the Inter-
national Mathematical and Statistical Library (URL: https://
www.imsl.com/).

3 III-conditioning posed by the dense SWOT
geoid gradients and Tikhonov-L-curve
regularization

3.1 SWOT along- and cross-track geoid gradients

The geoid heights were obtained from the simulated SWOT
SSH observations by removing the dynamic ocean topog-
raphy from Levitus et al. (1997). Besides, we removed the
reference geoid heights of the EGM2008 to degree and order
2160 (Pavlis et al. 2012) to generate the residual geoid
heights. Because the SWOT observations over the swaths
are two-dimensional grid data, we obtained the SWOT resid-
ual geoid heights in both the along-track and cross-track
directions as described by (Yu et al. 2021). To improve the
accuracies of the north and east components of geoid gra-
dients and gravity anomalies from SWOT, the use of the
cross-track SSHs (hence residual geoid heights) is critical
(Yu et al. 2021). The residual along- and cross-track geoid
gradients are calculated by

εα, res � Nres2 − Nres1

d
(3)

where εα, res is the residual geoid gradient with azimuth α,
Nres1 and Nres2 are two successive residual geoid heights in
the along- or cross-track direction, and d is their distance.
This paper only focuses the residual geoid gradients because
they are the contributions of the SWOT mission relative to
the EGM2008 reference field.

3.2 Ill-conditioned LSC estimation of north and east
geoid gradient components and the L-curve
solution

The residual geoid gradients from Eq. (3) are used to deter-
mine the north and east components on a regular grid by LSC
as (Hwang and Parsons 1995)

s �
[

ξ

η

]

� CsL(CLL + DL)−1L (4)

where L contains the residual geoid gradients in an 8′ × 8′
data selection window, s contains the expected residual north
(ξ) and east (η) components of geoid gradients at the grid
point, which is the center of this data selection window, CsL

is the cross-covariance matrix for the output s and input L,
CLL is the auto-covariance matrix for the input L, and DL is
the error variance matrix of L.

In estimating the residual north and east geoid gradient
components from the residual geoid gradients, the data selec-
tion window should not be excessively large. To ensure the
quality of the estimations of the geoid gradient components,
the window should contain enough contributing points. We
tested different window sizes and determined that the 8′ × 8′
window is optimal. Using this size, we estimate the geoid
gradient components for each grid point, with the point cen-
tered inside the window. The elements in CsL and CLL

are constructed from the global covariance function of the
earth’s anomalous potential in relation to theEGM2008 grav-
itational model by covariance propagation (Tscherning and
Rapp 1974; Hwang and Parsons 1995). Based on the global
covariance function,we determined the isotropic covariances
of the longitudinal and transversal components of geoid gra-
dient (Tscherning and Rapp 1974), which are then used to
construct the covariances between any two geoid gradients
(Hwang and Parsons 1995).

When real SWOT observations are used for gradient com-
ponent estimation,DL should be constructed using a priori or
a posteriori variances and covariances of the observed geoid
gradients (Yu and Hwang 2022). Note that, the errors used to
construct DL are the residual errors remaining in the SWOT
SSHs after applying the range and geophysical corrections.
In this study, DL is set as a zero matrix given our inability to
accurately simulate these residual errors (see Sect. 2.1). Our
experiment indicated that in the study area shown in Fig. 1,
almost all of the covariance matrices ofL (CLL) in the 8′×8′
windows are ill-conditioned because their condition numbers
are large. For example, the condition numbers of CLL range
from 103 to 106 (see Sect. 4.1). ACLL with a large condition
number indicates that at least one column vector in CLL is
nearly or fully dependent on other column vectors, making
CLL rank defect. An ill-conditionedCLL leads to an unstable
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solution of C−1
LLL. That is, the result is noisy and physically

meaningless since the solution is sensitive to changes in the
observations in L.

Many techniques can be used to stabilize the ill-
conditioned problem. In this paper, we use a well-known
regularization algorithm, Tikhonov regularization (Tikhonov
andArsenin 1977), to accept only reasonable and stable solu-
tions. The process is formulated as follows. Let

x � (CLL + DL)−1L (5)

and

A � CLL + DL (6)

we have the following observation equations

Ax � L (7)

When A is ill-conditioned, Eq. (7) is an ill-conditioned
problem with an unstable solution using x � A−1L. Here
we reformulate the solution for x in Eq. (7). First, we allow
residuals for the observations in vector L in Eq. (7) as.

V � Ax − L, weight matrix of L � I (8)

where V is the vector containing residuals, and the weight
matrix I is the identity matrix. Indeed, it is impossible to
obtain error-free observations; the observations inL from the
real SWOT data can be contaminated by observation errors
contained inV. Second, we wish to obtain a smooth solution
for x by allowing x to vary by Vx, so that.

Vx � x − x0, weight matrix � λI (9)

where x0 is the vector of a priori values for x, and λ is a posi-
tive number. In practice, we set x0 � 0 (zero vector) because
of the use of a high-degree reference field (see Sect. 3.1). The
two sets of equations in Eqs. (8) and (9) contain redundant
pseudo observations with respect to x. The problem formu-
lated in Eqs. (8) and (9) is equivalent to the random effects
model in the least-squares adjustment literature (Schaffrin
2013). A least-squares solution for x can be achieved by
minimizing the target function (using x0 � 0):

ϕ(x) � ‖V‖22 + λ‖Vx‖22 � ‖Ax − L‖22 + λ‖x‖22 (10)

where ‖·‖2 is the 2-norm, and λ is a regularization parameter
already defined in Eq. (9), which balances the square of the
norm of the regularized solution for x versus that of the norm
of the corresponding residual (Hansen and O’Leary 1993).
Minimizing ϕ(x) in Eq. (10) leads to the regularized solution

of x in Eq. (7) as

x̂ �
(
ATA + λI

)−1
ATL (11)

Therefore, the residual north and east components of geoid
gradients in Eq. (4) can be calculated by

s � CsLx̂ (12)

In this paper, we use the L-curve method (Hansen and
O’Leary 1993) to choose an appropriate regularization
parameter λ in Eq. (11). In Eq. (10), the 2-norm of the solu-
tion ‖x‖2 and that of the residual ‖Ax−L‖2 are balanced by
the regularization parameter λ to obtain an optimal solution
for x̂. A best balance can be achieved by the L-curve method
as follows. Let the two 2-norms be defined as functions of

λ as α(λ) � ‖Ax − L‖2

β(λ) � ‖x‖2 (13)

In an 8′ × 8′ data selection window, we can plot α(λ)

against β(λ) to show the relationship between α(λ), β(λ),
and λ. In this way, one can directly see the trade-off between
the best possible minimal values of α(λ) and β(λ) and also
immediately see whether one or both quantities are unrea-
sonably large or small. The name, L-curve, expresses the
fact that the curve formed by the pairs (α(λ), β(λ)) follows
the shape of L. There is a distinct L-shape corner in the L-
curve. This corner separates the horizontal and vertical parts
of the L-curve and balances α(λ) and β(λ). Therefore, the
regularization parameter λ at the L-curve corner achieves a
best balance between the sizes of the two 2-norms in Eq. (13).
This corner has the maximum curvature on the L-curve.

Because the plot of (α(λ), β(λ)) in a log–log scale can
emphasize the corner of the L-curve (Hansen and O’Leary
1993), we define two new functions of λ as

α̂ � logα

β̂ � logβ (14)

The curvature of the L-curve (α̂, β̂) is given by (Hansen
and O’Leary 1993)

κ(λ) � α̂′β̂ ′′ − α̂
′′
β̂ ′

((
α̂′)2 +

(
β̂ ′

)2)3/2 (15)

where κ is a function of the regularization parameter λ, α̂′,
α̂

′′
, β̂ ′, and β̂

′′
denote the first and second derivatives of α̂

and β̂ with respect to λ, respectively. The best regularization
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Fig. 2 A plot of the L-curve ( log‖Ax−L‖2, log‖x‖2) at a grid point
(113.88°E, 17.80°N) as a function of the regularization parameter λ

parameter λ corresponds to the maximum curvature κ(λ).
The λ value in Eq. (11) is a scaling factor for the weight
matrix of the a priori vector x0. In addition, the covariance
matrix of x̂ from Eq. (11) is

�x̂ �
(
ATA + λI

)−1
(16)

Thus, the variances of the two geoid gradients compo-
nents (after considering CsL) will decrease with increasing
λ. However,λ cannot be arbitrarily large because itmay result
in over-smoothed gradient components.

4 Results and discussion

4.1 Effectiveness of the L-curvemethod

To give an example of the L-curve method, in Fig. 2, we
show the variations of the 2-norms with respect to λ in the
log–log scale at a grid point located at 113.88°E, 17.80°N.
The variations follow an L-shaped curve. The curve starts
(from the left) with stable log‖Ax − L‖2 values and rapidly
decreasing log‖x‖2 values. After reaching the corner of the
curve, the changes in log‖x‖2 are gentle as the log‖Ax−L‖2
values increase toward the right. The λ values in Fig. 2 range
from 3.24 × 10−5 to 31.35 (see the crosses for selected λ

values). The corner occurs when λ ≈ 0.008, which ismarked
by the red dot. This corner corresponds to the maximum
curvature κ in Eq. (15) and is the vertex of the alphabet “L”.
The regularization parameter at the corner is optimal because
it simultaneously achieves a smallest possible residual norm
log‖Ax−L‖2 and solution norm log‖x‖2, as shown in Fig. 2.

In some cases, only a finite set of points on the L-curve
(α̂, β̂) are known; theL-curve becomes non-differentiable. To
address this, one viable solution is to fit a cubic spline curve to
these discrete points of theL-curve. This approach is advanta-
geous because such a cubic spline is twice differentiable and
preserves the local shape of the curve (Hansen and O’Leary
1993). However, challenges arise when the L-curve is erratic,
exhibiting multiple corners identified by the maximum cur-
vature (as per Eq. (15)). This can lead to uncertainties in
selecting the appropriate regularization parameter (Kusche
and Klees 2002). When faced with the challenge of identify-
ing the appropriate regularization parameters for the L-curve,
one could turn to the minimum distance function proposed
by Belge et al. (2002) for an approximation. Moreover, there
are alternative methods to consider: the discrepancy prin-
ciple (Morozov 1966) and the generalized cross-validation
(Golub et al. 1979; Koch and Kusche 2002) serve as other
potential approaches for selecting suitable regularization
parameters.

In order to investigate the effectiveness of the Tikhonov-
L-curve regularization described in Sect. 3.2,we use the “true
(theoretical) values” of the two geoid gradient components
(ξ̃ , η̃) derived from the SWOT_model using Eq. (2) to eval-
uate the quality of the two components estimated by this
regularization method (Eqs. (11) and (12)). For comparison,
we also compute the residual geoid gradient components
using the LSC formula (Eq. (4)), and the inversion in this
formula is implemented by the function “inv” available in
MATLAB. Figure 3 shows the results from 113°E to 122°E
with a fixed latitude of 20°N. Both the residual north (ξ) and
east (η) components of geoid gradients from the case of inver-
sion (red lines) range from −100 microrad to 300 microrad,
which are quite different from their “true values” (cyan lines).
As shown in Fig. 3 (a) and (b), the use of “inv” for the ill-
conditioned CLL +DL matrices in Eq. (4) results in unstable
solutions of ξ and η (red lines). For instance, compared to the
“true values”, there are several anomalously large residual ξ
and η values (absolute values) from “inv”. In contrast, the
residual ξ and η values estimated by the Tikhonov-L-curve
regularization (blue lines) are in good agreement with their
“true values”. The result is achieved by the regularization
parameter that well stabilizes the inverse of CLL + DL.

Figure 4 shows the differences between the estimated
residual north (ξ) and east (η) geoid gradient components
and their “true values” at 20°N. The differences of ξ and η

from the case of inversion (“inv”) range from −100 micro-
rad to 300 microrad, which are much larger than those from
the L-curve method (range from −5 microrad to 5 micro-
rad). The root-mean-squared differences (RMSDs) between
the determined residual north (ξ) and east (η) geoid gradient
components and their “true values” at 20°N are presented in
Table 1. The RMSDs of ξ and η determined by the case of
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Fig. 3 The residual a north (ξ)

and b east (η) geoid gradient
components from 113°E to
122°E with a fixed latitude of
20°N

Fig. 4 The differences between
the determined residual a north
(ξ) and b east (η) geoid gradient
components and their “true
values” at 20°N

Table 1 RMSDs between the determined residual north (ξ) and east
(η) geoid gradient components and their “true values” at the latitude of
20°N (unit: microrad)

Inversion L-curve L-curve and removing adjacent data

ξ 14.56 0.60 0.58

η 17.66 0.71 0.68

inversion are larger than 14 microrad, while those in the case
of L-curve are smaller than 1 microrad.

In the study area, the “true values” of the residual north
(ξ) and east (η) geoid gradient components determined from
the SWOT_model using Eq. (2) are shown in Fig. 5 (a) and
(b), respectively. The differences between the north and east
geoid gradient components computed by inversion and their
“true values” are shown in Fig. 5 (c) and (d), respectively.
Evident stripe structures are present in these two figures.
The stripe pattern is consistent with the pattern of the condi-
tion numbers of CLL +DL in Eq. (4), as shown in Fig. 6 (a).
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Fig. 5 The “true values” of the
residual a north (ξ) and b east
(η) geoid gradient components,
the differences between Fig.
a and Fig. b and the residual
north (left column) and east
(right column) geoid gradient
components determined by c,
d inversion, e, f L-curve, and g,
h considering error variance of
geoid gradients

Moreover, the condition numbers are correlated with the dis-
tribution of SWOT observations (Fig. 1 (c)). The condition
numbers are relatively small in the area with sparse SWOT
observations, where the estimated geoid gradient compo-
nents are relatively stable. Therefore, in Fig. 5 (c) and (d),
the differences with sparse SWOT data are relatively small.
While in the area with large condition numbers, some dif-
ferences are very large. In the study area, the RMSDs of the
residual ξ and η values determined by inversion are larger
than 100 microrad, as shown in Table 2.

The Tikhonov-L-curve regularization significantly
improves the accuracies of the residual north and east geoid
gradient components. The differences between the two
components estimated by the L-curve method and their “true
values” are shown in Fig. 5 (e) and (f). These differences
are much smaller than those in Fig. 5 (c) and (d). Table 2
shows that the RMSDs for the north (ξ) and east (η) com-
ponents estimated by L-curve are 0.68 and 1.03 microrad,

respectively. Compared with the accuracies from the case
of inversion, the L-curve method can effectively improve
the accuracies of the geoid gradient components. Because
there are no SWOT observations in the diamond-like gaps
(Fig. 1 (c)), the differences between the geoid gradient
components determined by L-curve and their corresponding
“true values” (Fig. 5 (e) and (f)) in these gaps are notably
pronounced. Particularly, the quality of the east geoid
gradient components (Fig. 5 (f)) is much lower in these gaps
compared to other areas. Therefore, in Table 2, we present
the RMSDs by ignoring the values in the diamond-like gaps.
The accuracy of the east (η) geoid gradient components is
improved from 1.03 microrad to 0.75 microrad, while the
improvement of the accuracy of the north (ξ) geoid gradient
components is in 0.01-microrad magnitude. The RMSDs
of north (ξ) components are smaller than those of east
(η) components in both Tables 1 and 2. One reason is that
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Fig. 6 The distributions of a the condition numbers ofA in Eq. (6), and
b the regularization parameters

the high orbit inclination of SWOT (77.6°) results in more
sensitive north geoid gradient components (Yu et al. 2021).

In this study area, the condition numbers ofA in Eq. (6) are
shown in Fig. 6 (a). This result shows thatA is ill-conditioned
almost in thewhole study area. In Fig. 6 (a), there are obvious
stripes with low condition numbers, where the SWOT data
are sparse (Fig. 1 (c)). It is the sparse data that leads to the
low condition numbers because the linear dependence of the
columns ofA is weak. In other words, the condition numbers
are positively correlated with the density of SWOT data. The
distribution of the determined regularization parameters is
shown in Fig. 6 (b). The stripes in Fig. 6 (b) correspond
to those in Fig. 6 (a). The regularization parameters tend to
increase with the roughness of the fields of the geoid gradient
components (Fig. 5 (a) and (b)).

The above results show that the Tikhonov-L-curve reg-
ularization can stabilize the solutions of LSC when ill-
conditioned matrices appear. Note that A in Eq. (6) is
ill-conditioned because of the use of zero matrix for DL.
In the study area, the dense SWOT data lead to nearly
ill-conditioned auto-covariance matrix of geoid gradients
(CLL). To address this ill-conditioning, Yu et al. (2021)
obtained DL by error propagation from the SWOT observa-
tion errors.While their estimated geoid gradient components
result in gravity anomalies consistent with shipborne obser-
vations at mgal levels (Yu et al. 2021), the accuracy of the
estimated geoid gradient components has not been assessed.

In this study, we assign the precision of the SWOT SSH
observations to 1.4 cm (Peral and Esteban-Fernandez 2018)
and then compute the error variance matrix DL based on the
error propagation theory. In this case, A in Eq. (6) is not
ill-conditioned because the error variance DL in LSC works
as a regularization parameter (Sadiq et al. 2010). The differ-
ences between the north and east geoid gradient components
estimated in this way and their “true values” are shown in
Fig. 5 (g) and (h). These differences are much larger than
those of L-curve (Fig. 5 (e) and (f)). Moreover, the patterns
presented in Fig. 5 (g) and (h) are consistent with the signal
distributions of the “true values” of the two geoid gradient
components (Fig. 5 (a) and (b)). The RMSDs for the north
(ξ) and east (η) components estimated using error variance
are 0.82 and 1.02 microrad, respectively, when ignoring the
values in the diamond-like gaps (Table 2). The accuracy of
the two components estimated using error variance is inferior
to that of L-curve (0.67 and 0.75 microrad). The error vari-
ance DL can mitigate the ill-conditioning of A, but cannot
obtain the optimal estimation of the geoid gradient compo-
nents. One explanation could be that error variance in LSC
normally balances the signal and noise variance and works
as noise suppresser, and the DL computed from 1.4-cm pre-
cision of SWOT SSHs may be too large, resulting in overly
smooth estimations of geoid gradient components.

Indeed, the previous experiment, where we assigned 1.4-
cm errors to SWOT SSHs, lacks rigor. First, the simulated
SWOT SSH data are error-free, which means the error vari-
ance DL, as computed by the error propagation theory, will

Table 2 RMSDs between the
determined residual north (ξ)

and east (η) geoid gradient
components and their “true
values” in the study area (unit:
microrad)

Inversion L-curve Error variance L-curve &
removing adjacent
data

Whole study
area

Whole
study area

Except
SWOT
gaps

Whole
study area

Except
SWOT
gaps

Whole
study area

Except
SWOT
gaps

ξ 103.24 0.68 0.67 0.84 0.82 0.56 0.54

η 132.08 1.03 0.75 1.35 1.02 0.95 0.64
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compromise the accuracy of the geoid gradient components
estimated using LSC. Second, SWOT observation errors
are not consistent. For instance, the errors in coastal areas
are typically larger than those in deep ocean regions. Each
SWOT SSH observation error should be individually com-
puted based on its specific context, leading to varying errors
for different observations.

When the real SWOT data are available, A in Eq. (6) may
still be ill-conditioned for three reasons. First, the expected
precision of the SWOT SSH observations is exceptionally
high (1.4 cm; Peral and Esteban-Fernandez 2018). As a
result, errors in the SWOT SSHs can be significantly min-
imized after averaging multiple-cycle data. Therefore, the
diagonal elements in DL generated from the real SWOT
observation errors are likely to be too small, resulting in ill-
conditionedA. Second, this studyonlyusedone-cycleSWOT
SSH data to explore the ill-conditioning of A. When the real
multiple-cycle SWOTdata are available, the data’s density of
SWOTwill rise. This is because the SWOT satellite does not
maintain an exact repeat orbit, potentially exacerbating the
ill-conditioning ofA. Last, the chosen study region resides in
the lower latitudes; the SWOTdata density in higher latitudes
will increase, further intensifying the ill-conditioning of A.
In such scenarios, it becomes improbable to choose appro-
priate errors from the real SWOT SSH data or error variance
of geoid gradients (DL) to act as regularization parameters
and alleviate the ill-conditioning ofA and then subsequently
determine the optimal north and east components. Therefore,
theTikhonov-L-curve regularization is essential for choosing
appropriate regularization parameters and ensures the stabi-
lization of LSC solutions in the presence of ill-conditioned
matrices throughout the entire study area.

4.2 Optimizing geoid gradient components
by removing adjacent data

We found that the spatially closer the two residual geoid
gradients, the stronger the linear dependence of the corre-
sponding columns of A. Therefore, it is possible to mitigate
the ill-conditioning ofA by removing geoid gradients that are
too close to each other (called adjacent gradients below). As
shown below, this is a pre-processor that further improves the
accuracy of estimated geoid gradient components by the L-
curve method. The selection of the distance threshold should
improve the conditioning ofA, while ensuring that sufficient
residual geoid gradients remainwithin the data selectionwin-
dow. Based on testing, a threshold of 0.755 km yields the
optimal estimation of the north and east geoid gradient com-
ponents. That is, the acceptable minimum distance between
two residual geoid gradients is 0.755 km. This means that
when computing the residual geoid gradient components at
one grid point using the 8′ × 8′ data selection window (see
Sect. 3.2), a new residual geoid gradient is rejected when

its distance to the data already in the window is less than
0.755 km.

Figure 7 (a) shows the numbers of the geoid gradients
in the 8′ × 8′ data selection windows, and Fig. 7 (b) shows
the numbers of the remaining geoid gradients after removing
adjacent data. Although we only simulated one-cycle SWOT
data in this study, there are sufficient data in each data selec-
tion window after removing adjacent data to estimate the
north and east geoid gradient components. Figure 7 (b) shows
that the numbers in the diamond-like gaps of the SWOT data
(Fig. 1 (c)) are smaller than 40, and in other areas, the num-
bers are larger than 80. In the case of removing adjacent data,
the conditionnumbers are shown inFig. 7 (c),which aremuch
smaller than those in Fig. 6 (a). This result indicates that the
ill-conditioning ofA is mitigated by removing adjacent data.
The regularization parameters in this case are shown in Fig. 7
(d). The distribution pattern in Fig. 7 (d) is correlatedwith the
distribution of geoid gradient components in Fig. 5 (a) and
(b). In general, regularization parameters are large in areas
where the absolute values of geoid gradient components are
large.

We also use the profiles of the residual north (ξ) and
east (η) geoid gradient components at 20°N to investigate
the effectiveness of removing adjacent data. The differences
between the geoid gradient components in the case of remov-
ing adjacent data and their “true values” are shown in Fig. 8
(red lines), and in most areas, the amplitudes of these differ-
ences aremuch smaller than those in the case of not removing
adjacent data (blue lines) which are also the blue lines in
Fig. 4. Figure 8 shows that the differences in the estimated
geoid gradient components for the two cases (represented by
red and blue lines) are notably larger in the eastern part than
in other areas. One possible reason is the complex seafloor
topography in the eastern section of the study area, which
varies between −3000 m and −1000 m (Fig. 1 (a)). This
leads to high-frequency signals in the north and east geoid
gradient components, making them challenging to compute
accurately. This same phenomenon can also be observed in
Fig. 4 and Fig. 5 (c)-(h).

While removing adjacent geoid gradients decreases the
data quantity, it enhances the quality of the estimated geoid
gradient components. The RMSDs for the case where adja-
cent data are removed at 20°N are detailed in Table 1. They
are lower than the RMSDs observed using only the L-curve
method. Both across the entire study area and in regions
excluding SWOT gaps, the RMSDs from the data-removal
case are smaller than those derived solely from the L-curve,
as shown in Table 2. Thus, removing adjacent data serves as
a preprocessing step that further refines the effectiveness of
the L-curve method. A similar pre-processor is “blockmean”
of the Generic Mapping Tool (GMT; see https://docs.ge
neric-mapping-tools.org/dev/blockmean.html), which com-
putes the mean value of the raw data within a specified
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Fig. 7 a The numbers of the geoid gradients, and b the numbers of the remaining geoid gradients after removing adjacent data in the 8′ × 8′ data
selection windows, c the condition numbers of A in Eq. (6), and d the regularization parameters in the case of removing adjacent data

Fig. 8 The differences between the determined residual a north (ξ) and b east (η) geoid gradient components determined by L-curve and removing
adjacent data and their “true values” at the latitude of 20°N
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grid region to avoid aliasing caused by short wavelengths.
If “blockmean” is to be used as a pre-processor for SWOT-
derived gradients, onemust create four files. Twofiles contain
gradients in the along-swath and cross-swath directions from
ascending tracks of SWOT (Yu et al. 2021), and another two
files contain such gradients from descending tracks. Each of
these four files is fed to “blockmean” to create “thinned”
gradients to mitigate matrix ill-conditioning. This subject is
not pursued in this paper, but we believe it is worth studying
for users interested in gravity recovery fromSWOTaltimetry.
Table 2 shows that theL-curvemethodcombinedwith remov-
ing close data points can achieve a sub-microrad accuracy for
geoid gradient, which translates to a sub-mgal accuracy for
gravity anomaly.

5 Conclusion

The dense SWOT data lead to linearly dependent column
vectors in the covariance matrices of geoid gradients, which
result in the ill-conditioned problem in the LSC estimation of
geoid gradient components. The solutions of geoid gradient
components are unstable and unrealistic due to the ill-
conditioned problem. This study used the Tikhonov-L-curve
regularization to overcome the ill-conditioned problem. The
L-curve method was used to determine the best regulariza-
tion parameter. The plot of the 2-norms of the solution and
the residual in the log–log scale follows a L-shaped curve,
and the two 2-norms are simultaneously minimized at the
corner of the L-curve, which corresponds to the optimal reg-
ularization parameter. The L-curve corner was located by
the maximum curvature of the L-curve. The “true values”
of the north and east geoid gradient components from the
SWOT_model are used to assess the accuracies of L-curve
estimated geoid gradient components, suggesting that the L-
curve regularization stabilizes the solutions of geoid gradient
components which achieve better than 1-microrad accuracy.

Because the ill-conditioned covariance matrix is caused
by the dense geoid gradients, removing adjacent data can
further improve the accuracies of the geoid gradient com-
ponents. When using the real SWOT observations, we can
remove the adjacent geoid gradients according to their error
variances. That is, the geoid gradient with larger error vari-
ance should be removed. The 0.755-km threshold chosen in
this study may not be the best. The optimal threshold could
be chosen according to the real SWOT data. Also, we could
resize the data selection window when determining geoid
gradient components by LSC to make the best compromise
between the computing time and computational accuracy.
Although based on simulated SWOT data, our results are
crucial for upcoming studies planning to utilize real SWOT
data, expected by the end of 2023, this research highlights

the need to avoid false seafloor signatures resulting from the
data compactness of SWOT.
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