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Abstract
A systematic analysis methodology for precise seafloor positioning using the GNSS-A has been constructed and implemented
in the open-source software GARPOS. It introduces a linearized perturbation field model for extraction of the 4-dimensional
sound speed variation, and solves the perturbation parameters simultaneously with the seafloor position based on the empirical
Bayes approach. Although it can provide the solutions stably and almost analytically, it has less expandability when imposing
additional nonlinear constraint parameters in the observation equation. Even though such parameters can be optimized by
applying some information criteria, information on the details of the joint posterior probability would be lost and only the
conditional posterior can be estimated. To overcome the above limitations, we implemented full-Bayes estimation using the
Markov-Chain Monte Carlo algorithm. This approach can not only help evaluate the dependency of the existing constraint
parameters on the seafloor position, but also let us discuss the effects of the additionally imposed constraints. We imposed
a constraint under the assumption that a temporally-variable gradient layer steadily lies at a certain depth in the observation
scale (typically < 10 km × 10 km, < 1 day). This models the cases with temperature gradients due to a large-scale structure
such as the Kuroshio current or internal waves with long-wavelength. The constraint narrows the posterior of the horizontal
position and provides a better solution for many datasets, especially in the Nankai Trough region. For the other datasets, the
constraint emphasized bias errors, which can also provide information on the possibility of instrumental and modelling errors.
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1 Introduction

In this century, space-basedgeodetic techniques have reached
the seafloor covered with thousands of meters of ocean, by
combining the Global Navigation Satellite System (GNSS)
and undersea acoustic ranging techniques, i.e., the GNSS-A
(Spiess 1985).RepeatedGNSS-Aobservations have detected
crustal deformation in the source regions ofmegathrust earth-
quakes, for example, for steady interseismic movements
(e.g., Gagnon et al. 2005; Fujita et al. 2006; Watanabe et al.
2015;Yokota et al. 2016), for instantaneous response to earth-
quakes (e.g., Kido et al. 2006, 2011; Tadokoro et al. 2006;
Sato et al. 2011), for postseismic transient deformation (e.g.,
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Watanabe et al. 2014, 2021; Tomita et al. 2017; Honsho et al.
2019), and for episodic velocity changes due to slow slip
events (Yokota and Ishikawa 2020). Suchfindings for seismic
cycles in subduction zones were realized by the improve-
ments of the GNSS-A observation and analysis techniques
to achieve centimeter-scale positioning on the seafloor.

The Japan Coast Guard (JCG) has been constructing and
operating the Seafloor Geodetic Observation Array (SGO-
A) for detecting crustal deformation in the seismogenic zone
along the Japan Trench and the Nankai Trough since 2000
(Fig. 1). In the SGO-Aproject, the JCG installed four seafloor
acoustic mirror transponders for each site, and periodically
collects thousands of round-trip travel time data along pre-
determined track lines using their survey vessels (Fig. 1a;
e.g., Ishikawa et al. 2020).

The GNSS-A observation system is an integrated system
consisting of a GNSS antenna/receiver, surface and seafloor
acoustic instruments, and a gyro sensor. Among the various
error sources in the system, it is essential to properly esti-
mate and correct the influence of underwater sound speed
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Fig. 1 a Schematics of GNSS-A
observation (after Watanabe et al.
2020) and b locations of SGO-A
sites (red and yellow circles).
Currents (wide lines) and a
mixed water region (encircled by
the purple oval) are
schematically shown based on
Yasuda et al. (1996)
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variation for precise GNSS-A positioning. In the first stage
of in-situ applications of GNSS-A observation, Spiess et al.
(1998) estimated the horizontal position of the array ofmulti-
ple seafloor acoustic transponders with a precision of several
centimeters. They collected the acoustic travel time data from
the sea surface directly above the center of the transponder
array, and cancelled the effects of the time-dependent sound
speed perturbation by neglecting the vertical displacement.
Osada et al. (2003) estimated the temporal variation of sound
speed by comparing the residuals of travel time data. Kido
(2007) suggested a method to estimate the horizontal gradi-
ent of sound speed using five transponders. Kido et al. (2008)
also introduced a variable of vertical delay to represent the
sound speed variation.

Obana et al. (2000) took a different approach to esti-
mate the 3-dimensional position of a single transponder, by
using the least squares method for the acoustic travel time
data with various slant ranges. They only used the measured
sound speed profiles, resulting in a precision of 10–20 cm.
Yamada et al. (2002) numerically investigated the effect of
the sound speed variation on the ranging. To cancel the bias
errors including the effects of the sound speed variation,
Xu et al. (2005) performed a theoretical work to develop
the method with single- and double-differencing techniques.
Fujita et al. (2006) developed the method to iteratively esti-
mate the seafloor position and temporal variation of sound
speed to achieve the detection of horizontal crustal deforma-
tion in a precision of 1 cm/year. On the other hand, Ikuta et al.
(2008) applied the simultaneous estimation of the seafloor
position and sound speed variation. They determined the
coefficients of B-spline function (e.g., de Boor 1978) for
the temporal variation of sound speed with the penalized
least squares method. However, they determined the degree
of smoothness not statistically, but just practically. For data
acquisition, Sato et al. (2013) showed the importance ofwell-
distributed acoustic ranging data from actual observation
datasets, which had been realized bymounting the transducer
on the hull of vessels.

In the latter half of 2010s, researchers improved the posi-
tioning accuracy by implementing models that express a
sound speed field with spatial inclinations (e.g., Yasuda et al.
2017; Honsho et al. 2019; Yokota et al. 2019), instead of
a horizontally stratified sound speed field. Based on those
existing formulations, Watanabe et al. (2020) constructed a
new GNSS-A observation model by introducing the idea of
a perturbation field. The perturbation field, expressed as a
function of time and acoustic instrument positions, gener-
ally covers all of the spatio-temporally varying terms, though
most of which are assumed as spatio-temporal variations of
the sound speed structure in the ocean. They implemented the
GNSS-A model with a linearized perturbation field, which
essentially includes the existing sound speed field models
(e.g., Yasuda et al. 2017; Honsho et al. 2019; Yokota et al.

2019), into an open-source software “GARPOS” (the lat-
est version is v1.0.1; Watanabe et al. 2022a). GARPOS
solves the seafloor positions alongwith the smoothened time-
dependent coefficients in the perturbation field model, by
taking an empirical Bayes approach.

Specifically, the perturbation field in GARPOS corre-
sponds to the perturbation in the sound speed structure.
Watanabe et al. (2020) imposed a constraint that the pertur-
bation field changes smoothly. In their scheme, the degrees
of roughness for the components of the perturbation field are
controlled by hyperparameters, which are deterministically
selected by minimizing the Akaike Bayesian information
criterion (ABIC; Akaike 1980). Simultaneously, they also
introduced the assumption of correlations among the data
errors, by referencing the case of the Synthetic Aperture
Radar interferometry (InSAR) data (e.g., Fukahata and
Wright 2008). The correlations reflect the characteristics of
GNSS-Aerror sourceswhich aremainly from the ocean envi-
ronment. Because the ocean environment largely changes
with each observation visit, GARPOS optimizes the shape
of variance–covariance matrix for each dataset, unlike many
other papers where only the scale factors for the variance–co-
variancematrixwere estimated (e.g., Koch andKusche 2002;
Fukuda and Johnson 2008). This assumption contributes to
the successful choice of appropriate smoothing hyperparam-
eters, leading to avoid overfits of the perturbation field’s
coefficients to the data. It is also noted that this resolved the
problemmentioned in Ikuta et al. (2008), where the statistical
criteria cannot work well.

GARPOS, which provides more stable positioning solu-
tions than the former solver, is now regularly used for the
routine GNSS-A analysis of the SGO-A. It contributed to
precisely tracing time-variable seafloor movements (e.g.,
Watanabe et al. 2021). It can also extract information on the
underwater sound speed structure from the perturbation term,
e.g., the horizontally inclined sea-water temperature caused
by the Kuroshio warm current, as discussed by Yokota et al.
(2022) andWatanabe et al. (2020). The systematic extraction
of oceanographic information by GNSS-A, i.e., the GNSS-A
oceanography, provides a new technique for measurement in
the ocean.

However, GARPOSprovides perturbation parameters that
cannot be interpreted as a realistic oceanographic structure
for some datasets. Such solutions can be improved by impos-
ing constraints on the perturbation field based on a proper
structure (Yokota et al. 2022). For example, when there is
a global-scale current, the sound speed structure is fully
described with a horizontally inclined layer in one direction.
Such a constraint requires nonlinear model parameters in the
observation equation. GARPOS, taking the semi-analytical
approach to solve the model parameters, has limitations in
expandability in imposing such nonlinear constraints. One
practical solution for this problem is to select the appropriate
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values for those parameters deterministically by maximizing
the marginal likelihood with the repeated forward calcula-
tions, based on the scheme of empirical Bayes. However, it
is difficult to search those parameters exhaustively.

In addition, for further discussions onGNSS-A such as the
evaluations of positioning errors, it is necessary to consider
how the uncertainty in the estimation of constraint param-
eters affects the positions. It is also important to obtain the
posterior distributions for parameters which reflect the effi-
ciency or appropriateness of the assumed models for each
dataset, because the underwater environment is highly vari-
atedwith observation visits andwe typically have insufficient
information on it. Furthermore, it is not obvious that the
posterior distribution can be approximatedwith a normal dis-
tribution, which leads to worse estimations when applying
the maximum likelihood estimation or maximum a poste-
riori estimation (Watanabe 2018). For these purposes, this
empirical Bayes method also has limitations in estimat-
ing the posterior distributions of relevant parameters or the
marginal probability of positions with respect to the other
parameters. For those reasons, a new scheme is required to
adequately impose the constraints and evaluate their effects
on the GNSS-A analysis.

For these purposes, i.e., (1) to adequately impose the con-
straints which makes the observation equation nonlinear, (2)
to evaluate the effects of all parameters in stochastic models,
and (3) to directly estimate the shape of posterior distri-
bution for seafloor position, we expanded the formulation
of GARPOS based on the full-Bayes approach, and imple-
mented it into a software using the Markov-Chain Monte
Carlo (MCMC) method to directly estimate the joint poste-
rior distribution for the positions and the other parameters.
This contributes to the evaluation of inter-parameter corre-
lations, of appropriateness or efficiency of assumed models,
and of positioning precision as a marginal distribution. We
then imposed additional nonlinear constraints on the per-
turbation field, i.e., the situation where the sound speed
is fully described with a horizontally inclined structure in
one direction, which approximately reflects the large-scale
oceanographic structure. We also prepared a hybrid model
where a small bias for the spatial gradient of a perturbation
field was allowed, to loosen the above constraint. Those new
models were tested with actual GNSS-A datasets collected
in different waters.

2 Formulation

2.1 Definitions for GNSS-A variables
and observation equation

This section introduces the definition of the GNSS-A obser-
vation equation proposed by Watanabe et al. (2020) with

some updates. In theGNSS-A,we solve the problem to deter-
mine the positions of the seafloor transponders, Xj , where j
denotes the serial number of transponders, from the observed
acoustic round-trip travel time, To, between the sea-surface
transducer and the seafloor transponder, as

To � T c
(
P(t), Xj , V (e, n, u, t)

)
+ ε, (1)

where T c, P(t), V (e, n, u, t), and ε denote the calculated
travel time, the sea-surface transducer position, the sound
speed structure, and the observation error vector, respec-
tively. Although T c can be fully calculated by ray-tracing
based on Snell’s law, we cannot obtain the complete expres-
sion of V (e, n, u, t). Therefore, Watanabe et al. (2020) took
an approach to divide the effects of the 4-dimensional sound
speed variation, i.e., V (e, n, u, t), into a horizontally strat-
ified static reference profile, i.e., V0(u), and a perturbation.
This leads to the following travel time expression:

T c
i

(
P

(
t � ti+ , ti−

)
, Xj , V (e, n, u, t)

)

� exp(−γi ) · τi
(
P

(
t � ti+ , ti−

)
, Xj , V0(u)

)
, (2)

where ti+ , ti− , γi , and τi denote the transmission and recep-
tion times of acoustic signals at the sea-surface transducer,
the perturbation term, and the reference travel time under
the reference sound speed profile V0(u), respectively. The
term exp(−γi ) is selected to easily relate γi to the sound
speed perturbation. As shown by Watanabe et al. (2020),
when |γi | � 1 is satisfied, (1 + γi )V0, where V0 is an aver-
age of V0(u), approximately denotes the average sound speed
along the ith acoustic path. The perturbation term can be con-
sidered as a value extracted from a scalar perturbation field
depending on time and the acoustic instrument positions, i.e.,
�(t , P , X), as follows:

γi ≡ 1

2

∑

tl∈
{
ti+ , ti−

}
�

(
tl , P(tl), Xj

)
. (3)

With this general �-formulation, all perturbations includ-
ing the random error can be fully covered in principle when�

has a sufficiently large degree of freedom (also see Sect. 3.1).
The practical problem is to find out the reasonable and realis-
tic expression of�, avoiding overfitting to the high-frequency
noise. Watanabe et al. (2020) took an assumption of conti-
nuity and simplicity of the perturbation field �(t , P , X) to
express the perturbation field as a linear system with respect
to P and X , as follows:

�(t , P , X) ≡ α0(t) + α1(t) · P
L∗ + α2(t) · X

L∗ , (4.1)

where L∗ denotes a characteristic length for the observa-
tion scale, and the temporal variations of each coefficient are
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expanded using a linear basis set as

⎧
⎪⎪⎨

⎪⎪⎩

α0(t) � ∑Ka
k�0 a

〈0〉
k �

〈0〉
k (t)

α1(t) � ∑Kb
k�0

(
a〈1E〉
k �

〈1E〉
k (t), a〈1N 〉

k �
〈1N 〉
k (t), 0

)

α2(t) � ∑Kc
k�0

(
a〈2E〉
k �

〈2E〉
k (t), a〈2N 〉

k �
〈2N 〉
k (t), 0

) ,

(4.2)

where a〈·〉
k are the coefficients of the kth basis function,

�
〈·〉
k (t), for each term named 〈·〉 and E and N in 〈·〉 denote the

eastward and northward components of the vector, respec-
tively. In GARPOS, the B-spline functions (e.g., de Boor
1978) are taken for the basis. The vertical components of α1

andα2 are set to zero because both P and X hardly vary in the
vertical direction. For simplification, we compile these coef-
ficients into a vector a, and call it “perturbation coefficients”,
hereafter.

In the present study, we take the rigid-array constraint
formerly introduced byWatanabe et al. (2020) based onMat-
sumoto et al. (2008), where the local deformation within the
transponder array is assumed to be sufficiently small so that
the same array geometry can be used throughout all the obser-
vation visits. Under this assumption, X j can be expressed
with a 3-dimensional vector x, denoting the parallel dis-
placement of the transponder array. Hence, we define the
observation equation in logarithmic form as follows:

log
(
T o
i /T ∗) � log

(
τi

(
x|Xj , P , V0

)
/T ∗) − γi

(
a|Xj , P

)
+ ei
(5)

for the i th acoustic signal, where T ∗, Xj , and ei denote
the characteristic travel time, the relative positions of each
transponder and the observation error, respectively. The vari-
ables on the left and right sides of the vertical bar indicate
the estimators and the observables, respectively. Because γ ,
as defined by Eqs. (3) and (4), is linear with respect to a, we
can rewrite the observation equation in a simpler form as

d � f (x) + Ga + e, (6)

where di � log
(
T o
i /T ∗

)
, fi (x) � log

(
τi

(
x|Xj , P , V0

)
/T ∗

)
,

and Ga � −γ
(
a|Xj , P

)
. Note that P is derived from the

GNSSantenna position, the gyro data, and the local-tie vector
of the transducer to the GNSS antenna in the gyro’s rectan-
gular coordinates (called the “ATD offset” in Watanabe et al.
2020). Although the ATD offset can be estimated from well-
distributed data, we do not solve it in the present study.

2.2 Bayesian formulation

When solving the observation equations, constraints or
assumptions are usually imposed. As far as parameters in
the stochastic model are concerned, they can be typically
estimated by using the standard variance and covariance esti-
mation (VCE)methods such asHelmert’sVCEmethod,max-
imum likelihood, least-squares andminimum norm unbiased
quadratic method (Koch 1999; Helmert 1907; Pukelsheim
1976; Rao and Kleffe 1988). For nonlinear VCE, Teunis-
sen and Amiri-Simkooei (2008) introduced the least-squares
procedure by means of the Gauss–Newton iteration method.

In the present study, we apply a Bayesian approach to
seafloor geodesy. More precisely, we follow the formulation
of Watanabe et al. (2020), which will be briefly outlined in
this section. To solve the observation equation, Watanabe
et al. (2020) took an approach based on Bayesian estimation,
by introducing several parameters that control the data error
variance–covariance such as correlation time scale, and the
prior constraints for model parameters such as smoothness
constraints. Here, these additional parameters in stochastic
models are compiled into a vector, θ , for generality of the
formulation.

In the Bayesian formulation, all parameters are given
as the probability distributions, and the posterior probabil-
ity density function (pdf), p(x, a, θ |d), is calculated using
Bayes’ theorem as

p(x, a, θ |d) � p(d|x, a, θ)p(x, a, θ)

p(d)
, (7)

where p(d) and p(x, a, θ) are a marginal pdf for data that
can be considered as a constant in this problem, and a prior
pdf, respectively. By taking the reasonable assumptions that
the priors for x and θ are independent, i.e., p(x, θ) �
p(x)p(θ), and that the prior for a does not depend on x,
i.e., p(a|x, θ) � p(a|θ), one obtains

p(x, a, θ |d) � p(x)p(θ)

p(d)
p(d|x, a, θ)p(a|θ). (8)

For the simplicity, we assume that the observation error e
follows aGaussian distributionwith a variance–covariance of
�d(θ), as Watanabe et al. (2020). In that case, the likelihood
function for the observation equation is expressed as

p(d|x, a, θ) � (2π)−
n
2 |�d(θ)|− 1

2

exp

[
−1

2
(d − f (x) − Ga)T �d(θ)−1(d − f (x) − Ga)

]
,

(9)
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where n and |�d(θ)| are the number of data and the deter-
minant of �d(θ), respectively (Watanabe et al. 2020). In
general, �d(θ) may have finite non-diagonal components.
Because acoustic ranging data are collected while a ship is
sailing, the data have both spatial and temporal biases in the
short term. This will lead to correlations in the data error
vector e. Specifically, the data for similar acquisition tim-
ing tend to be affected by similar error sources in the ocean
because they have similar acoustic paths. This was quanti-
fied with the non-diagonal components of �d(θ), as already
discussed byWatanabe et al. (2020). They showed the impor-
tance of setting the finite non-diagonal components of�d(θ)

to suppress overfitting. We take over their expression, where
the data error covariance is controlled by three parameters in
stochastic models, i.e.,

[
σ 2, μt , μMT

] ∈ θ , as follows:

�d

(
σ 2, μt , μMT

)
� σ 2�0

d(μt , μMT ) (10.1)

and

�0
di j (μt , μMT ) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp

(

−
∣∣ti − t j

∣∣

μt

)

if the transponders for i and j are the same

μMT exp

(

−
∣∣ti − t j

∣∣

μt

)

for others

. (10.2)

The values of μt and μMT control the correlation time
scale for the ranging observation and the inter-transponder
correlation, respectively.Because the correlation between the
observation errors cannot be independently obtained from
the specifications of the GNSS-A observation system, these
parameters should be estimated from each dataset. Note that
this expression was taken over from Fukahata and Wright
(2008).

Regarding p(a|θ), Watanabe et al. (2020) imposed the
prior constraint that the temporal changes of the perturbation
coefficients are smooth, to suppress overfitting to the data. By
defining the roughness in a quadratic form with a positive-
semidefinite matrix H(θ), the constraint is expressed as
follows:

p(a|θ) � (2π)− h
2 ‖
H (θ)‖ 1

2 · exp[− 1
2 a

TH(θ)a
]
, (11)

where h and ‖
H (θ)‖ are the rank of H(θ) and the abso-
lute value of the product of non-zero eigenvalues of H(θ),
respectively. Specifically, we can compose the following def-
inition:

aTH(θ)a � ∑

l∈{0, 1E , 1N , 2E , 2N }

∫

t
ν−2
l

(
∂2αl(t)

∂t2

)2

dt , (12)

where ν2l ∈ θ (l ∈ {0, 1E , 1N , 2E , 2N }) are the hyper-
parameters denoting the degree of contribution from each
component, respectively. We also take ν21 ≡ ν21E/ν20 �
ν21N/ν20 and ν22 ≡ ν22E/ν20 � ν22N/ν20 , and use the same
knot vectors for five coefficients for easier implementa-
tion. Thus, the concrete expression of θ defined here is
θ 
 [

σ 2, μt , μMT , ν20 , ν21 , ν22

]
. The contents of θ may be

changed with the assumed models introduced in Sect. 3.

2.3 Estimationmethods

2.3.1 Empirical Bayes approach (conventional)

To estimate the seafloor transponder positions, Watanabe
et al. (2020) took an approach based on the empirical Bayes
estimation (called the “EB solution” hereafter). In their
approach, the values of θ are deterministically selected by
maximizing the marginal likelihood, as follows:

θ̂ � argmaxθ

(¨
p(d|x, a, θ)p(x, a, θ)dxda

)
. (13)

This approach only estimates the conditional posterior
pdf, i.e., p

(
x, a|d, θ̂

)
, as an approximation with a normal

distribution. The concrete derivation for the existing GAR-
POS is shown by Watanabe et al. (2020). Note that this
selection procedure is actually the same as the ABIC-based
approach because the dimension of θ does not change with
the models in the previous study.

2.3.2 Full-Bayes approach

In the present study,weuse stochastic samplingmethods such
as Markov-Chain Monte Carlo (MCMC), for the efficient
estimation of the joint posterior, p(x, a, θ |d) (e.g., Fukuda
and Johnson 2008). It is also an important advantage of the
full-Bayes estimation that it can directly estimate the poste-
rior pdf of all parameters, which cannot be accessed by the
empirical Bayes approach. MCMC also has an advantage
in expandability for further works such as in cases where
the assumption of a non-Gaussian likelihood function for
p(d|x, a, θ) is required insteadofEq. (9), unlike the assump-
tions used in many papers (e.g., Koch and Kusche 2002;
Fukuda and Johnson 2008). Actually, acousticmeasurements
in the GNSS-A possibly have discrete ambiguities in the unit
of wavelength of carrier waves (0.1 ms in our configuration),
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like a cycle slip in GNSS. This would require multimodal
likelihood functions for error distribution. The expandability
of MCMC would be helpful to survey such features.

In the case where a Gaussian distribution is used for the
likelihood function as Eq. (9) as assumed in Watanabe et al.
(2020), we can largely reduce the dimension ofMCMC sam-
ples analytically by using the marginalized pdf with respect
to a, as follows:

p(x, θ |d) �
∫

p(x, a, θ |d)da. (14)

Because the observation equation is linear with respect to
a, the integral can be theoretically calculated. From Eqs. (8),
(9), and (11), one obtains

p(x, a, θ |d) � p(x)p(θ)

p(d)
(2π)−

n+h
2 |�d(θ)|− 1

2

× ‖
H (θ)‖ 1
2 exp

[
−1

2
s(a; d, x, θ)

]
,

(15.1)

where

s(a; d, x, θ) � (d − f (x) − Ga)T�d(θ)−1

(d − f (x) − Ga) + aTH(θ)a. (15.2)

By integrating Eq. (15.1) with respect to a, we obtain the
concrete expression of the marginal pdf, as follows:

p(x, θ |d) � p(x)p(θ)

p(d)
(2π)−

n+h
2 |�d(θ)|− 1

2 ‖
H (θ)‖ 1
2

×
∫

exp

[
−1

2
s(a; d, x, θ)

]
da. (16)

We can rewrite Eq. (15.2) by completing the square, as

s(a; d, x, θ) � s(a∗) + (a − a∗)TC(θ)−1(a − a∗),
(17.1)

where a∗ and C(θ) correspond to the maximum likelihood
solution and its variance–covariance, respectively, for the
given x and θ . Specifically, they can be written as follows:

a∗ � C(θ)GT�d(θ)−1(d − f (x)), (17.2)

C(θ) � (
GT�d(θ)−1G + H(θ)

)−1
. (17.3)

Therefore, by calculating the integral in Eq. (16) using
Eq. (17.1), one obtains

p(x, θ |d) � p(x)p(θ)

p(d)
(2π)−

n+h−m
2 |�d (θ)|− 1

2 ‖
H (θ)‖ 1
2 |C(θ)| 12

× exp

[
−1

2
s
(
a∗(d, x, θ)

)] ,

(18)

wherem and |C(θ)| are the rank and the determinant ofC(θ),
respectively. Although we can also reduce the scale param-
eter σ 2 by analytically marginalizing out using an inverse
gamma distribution as the prior pdf (e.g., Koch and Kusche
2002), it remains in the MCMC sample vector because it
would little contribute to the improvement on the computa-
tional speed.

3 Models for the perturbation field

In this section, we first show the physical meaning of the
perturbation field �(t , P , X) defined as Eq. (4), and then
suggest several constraints on it by taking the oceanographic
features into account. The key subject in the �-formulation
is to appropriately model the perturbation due to the sound
speed structure for a reasonable sound speed correction in
the GNSS-A.

3.1 Interpretation of the perturbation field 0

From the definition in Eq. (2), the perturbation term γi is
introduced to cover the effects of (i) the spatio-temporal
variations of the sound speed from the referenceprofile.How-
ever, in general, it is also affected by other perturbations, such
as (ii) randomerrors in acoustic travel timemeasurement, (iii)
bias errors in acoustic instruments and integrated systems
including artificial errors, and (iv) the kinematic positioning
error for the sea surface GNSS observation.

When considering perturbation sources sufficiently corre-
lated with t , P , and X for a reasonable construction of the
parametric model for �(t , P , X) as Eq. (4), the effects from
(i) the spatio-temporal variations of the sound speed with
respect to the reference profile should be taken into account.
Almost all the other perturbation sources are either suffi-
ciently random, correctable with a well-arranged dataset, or
unable to be corrected within a single dataset. It should be
noted that this�-formulation still possibly affected by (iv) the
GNSS positioning error containing the relatively short-term
(shorter than the observation and sufficiently longer than the
shot interval) random-walk type noise, though on the order
of centimeter (e.g., Watanabe et al. 2017).

In the �-formulation, it is easy to relate the perturba-
tion field to the effect of the sound speed variation. Because
(1 + γi )V0 approximately denotes the average sound speed
along the acoustic path asmentioned in Sect. 2.1, the function
V0� can also be considered as the sound speed anomaly field
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Fig. 2 Schematic diagrams of holographic projection onto coefficients
of linearized perturbation field for simplified cases with a large scale
oceanographic structure and b water intrusion. In the expression of
�(t , P , X), the actual sound speed structure is estimated separately
for the horizontally-stratified reference profile, the spatially-uniform

time-dependent perturbation (the 0th-order residual structure), and the
horizontal gradient terms (the 1st-order residual structure). The 1st-
order residual structure is estimated by projecting to two parameters
α1 and α2 on a sea surface and a seafloor, respectively. The figure is
updated from Yokota et al. (2022)

(Fig. 2). In the linearized form as Eq. (4), V0α0 is interpreted
as a spatially uniform perturbation from the reference profile
(the second terms of the right-hand side of Fig. 2, as the 0th-
order residual structure), and V0α1 and V0α2 correspond to
the spatial gradients of residual sound speed structure pro-
jected onto the sea surface and seafloor, respectively (the
gray-shaded area in Fig. 2, as the 1st-order residual struc-
ture).

3.2 Model “m100”: no constraint

Firstly, we define a model without any additional constraint
on the �-formulation, named as model “m100” (the number
means the model version in the software, i.e., model version
1.0.0). This model solves two gradient components, α1 and
α2 independently. This is the same formulation defined by
Watanabe et al. (2020), and provides the same constraint
as the conventional GARPOS. This model has a parameter
vector as θm100 ≡ [

σ 2, μt , μMT , ν20 , ν21 , ν22

]
.

3.3 Model “m101”: single gradient layer assumption

To add constraints on �, it is important to understand which
is the dominant or plausible sound speed structure in the
GNSS-A observation scale (typically < 10 km × 10 km, as

shown in Fig. 1a). Specifically, in the cases with large-scale
structure such as the Kuroshio current or with internal waves
having a long wavelength (left-hand side of Fig. 2a), the 1st-
order residual structures can be approximately expressed as
structures with a single gradient layer at a certain depth (the
third terms on the right-hand side of Fig. 2a).

Such cases lead to identical directions for the gradient
components, and their ratio, i.e., κ(t) ≡ |α1(t)|/|α2(t)|,
gives the characteristic depth of the gradient layer. When the
acoustic ray bending due to the refraction is sufficiently negli-
gible, the travel time perturbation from the residual structure
is equivalent to the perturbation from the structure where a
thin layer of a uniform gradient lies at a certain depth, dc:

dc(t) � (1 + κ(t))−1D, (19)

where D denotes the water depth at the site (see Appendix
A for the derivation). This setting provides a more general
expression than that for themodels suggested byYasuda et al.
(2017) and Honsho et al. (2019), where a uniform gradient
layer lies in the shallow portion from the sea surface to a
certain depth, d0. With the proposed thin-layer model, d0 in
the conventional models can be written as d0 � 2dc.

We assume that the large-scale oceanographic structure in
the observation area does not changeduring aGNSS-Aobser-
vation visit, though the strength or direction of the gradient
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can vary. For example, this reflects oceanographic conditions
dominated by a steady strong current or internal waves with
long wavelengths (Fig. 2a). This assumption is implemented
by setting dc(t) as a constant, i.e., κ(t) � κ0, where κ0 is con-
stant through the observation. By simultaneously estimating
the posterior of κ0, we can obtain the solution under the situ-
ation where a temporally-variable gradient layer steadily lies
at a certain depth.

As naively tested by Yokota et al. (2022) with conven-
tional GARPOS, the positioning accuracy is often improved
by constraining κ(t) as a constant. They used a primitive
two-step approach: the ratio of α1 to α2, i.e., κ0, is extracted
from the conventional GARPOS result (the 1st step), and
then α1 and α2 are solved for the given κ0 (the 2nd step).
Different from their strategy, the proposed method, where
κ0 is included in the parameter vector θ , has advantages in
estimating the joint posterior pdf.

Under this assumption, the perturbation field is written as,

�101(t , P , X) ≡ α0(t) + α1(t) · P
L∗ + κ0α1(t) · X

L∗ (20)

and the model parameter vector a is contracted to

aT �
[
a〈0〉T, a〈1E〉T, a〈1N 〉T

]
. (21)

According to the above modification, the penalty term
defined in Eq. (12) is also redefined as

aTH101(θ)a �
∑

l∈{0, 1E , 1N }

∫

t
ν−2
l

(
∂2αl(t)

∂t2

)2

dt , (22)

Thismodel version is called “m101” hereafter. It should be
noted that this model is expected to be applicable not only for
seas with strong currents but also in other situations because
it results in applying a simpler fit for noisy or complicated
sound speed structures. This model has a parameter vector
as θm101 ≡ [

σ 2, μt , μMT , ν20 , ν21 , κ0
]
.

3.4 Model “m102”: single gradient layer with offset
of˛2

According to Yokota et al. (2022), some of the GNSS-A
datasets showed deterioration of the positioning accuracy
when the two-step single gradient constraint was applied.
This is considered to be partly because of the inadequateness
of the applied assumption. For example, in cases where the
steady backgroundgradient structure due to both currents and
large internal waves are dominant, two or more gradient lay-
ers can existwith different directions at different depths. Such
cases, where an additional spatio-temporally steady gradi-
ent layer coexists with the spatially steady but temporally
variable single gradient layer, can be expressed by adding

an offset to either α1 or α2, i.e., α2(t) ≡ κ0α1(t) + δα2.
δα2 denotes the residual for the m101 model. In the cases
where the single gradient layer assumption is appropriate,
δα2 should be reduced to zero. Although δα2 can be a func-
tion of time, we assume it to be a constant in the time domain.

To solve the observation equation with this constraint, we
can use the following perturbation field:

�102(t , P , X) ≡ α0(t) + α1(t) · P
L∗ + (κ0α1(t) + δα2) · X

L∗

(23)

and the model parameter vector a as

aT �
[
a〈0〉T, a〈1E〉T, a〈1N 〉T, δα2

T
]
. (24)

To suppress the absolute value of δα2, we added a penalty
term to Eq. (22) as follows:

aTH102(θ)a �
∑

l∈{0, 1E , 1N }

∫

t
ν−2
l

(
∂2αl(t)

∂t2

)2

dt+ρ2
2 (δα2)

2,

(25)

where ρ2
2 ∈ θ is a hyperparameter denoting the degree of the

penalty due to the absolute value of δα2. This model version
is called “m102” hereafter. Thismodel has a parameter vector
as θm102 ≡ [

σ 2, μt , μMT , ν20 , ν21 , κ0, ρ2
2

]
.

4 Data andmethods

4.1 GNSS-A data

To discuss the effects of the proposed constraints on seafloor
positioning, we processed the GNSS-A data obtained at sev-
eral SGO-A sites (red circles in Fig. 1b). We selected two
SGO-A sites from each of the off-Shikoku/Kii and the off-
Tohoku regions, i.e., TOS2 and KUM2, and FUKU and
MYGI, respectively. Table 1 shows the specifications of the
GNSS-A data we used. Because the seafloor transponders
are battery-powered instrument, they are regularly replaced,
typically about every 10 years. To avoid possible bias errors
due to the misestimation of relative positions for old/new
transponder sets, we used the GNSS-A data obtained for the
same transponder set in the present study. The data used in the
present study are available from Japan Coast Guard (2022).

In the off-Shikoku region (for TOS2), where the strong
Kuroshio current regularly flows eastward (shown as a broad
purple band in Fig. 1b), a uni-directional oceanographic
structure perpendicular to the current tends to be dominant.
In the off-Kii region (for KUM2), the Kuroshio current usu-
ally flows eastward, except during periodswhen theKuroshio
meanders (shown as broken bold band in Fig. 1b). In contrast,

123



89 Page 10 of 30 S. Watanabe et al.

Table 1 Locations and
observation periods of the
GNSS-A observation sites used
in the present study

Site Latitude Longitude Height (m) Dataset Observation period

TOS2 32.43 ◦N 134.03 ◦E – 1740 27 Nov. 2011—Sep. 2018

KUM2 33.43 ◦N 136.67 ◦E – 1970 40 Feb. 2012—Oct. 2021

FUKU 37.17 ◦N 142.08 ◦E – 1210 26 Dec. 2012—Jun. 2020

MYGI 38.03 ◦N 142.92 ◦E – 1640 27 Nov. 2012—Jun. 2020

in the off-Tohoku region (for FUKU and MYGI), mixing of
warm and cold currents easily generates a more complicated
oceanographic structure with, e.g., multiscale eddies.

4.2 Sampling from posterior distribution

When considering the prior p(x) in Eq. (18) as a uniform
distribution,meaning no constraint on the position, we obtain
the following likelihood function:

p(x, θ |d) � c · p(θ)|�d(θ)|− 1
2 ||
H (θ)|| 12 |C(θ)| 12

exp

[
−1

2
s
(
a∗(d, x, θ)

)
]
, (26)

where c is a constant depending on the selected model and
dataset. Technically, the term p(θ) should be a sufficiently
broad distribution, or it can be used to avoid numerical
instability such as rank deficiency due to the divergence
of relevant parameters. It can also be used to restrict the
parameter values, such as σ 2 > 0, and 0 ≤ μMT ≤ 1. For
this implementation,we transformed these variables by using
the logarithmic or logit functions (the left column in Table
2). In the present study, we tentatively use the Gaussian dis-
tributions with sufficiently large variances as the prior pdf of
these transformed parameters.

We obtained the samples from p(x, θ |d), with the
Metropolis–Hastings algorithm (Hastings 1970). In this algo-

rithm, MCMC sample series, zk � [
xTk , θTk

]T
, are generated

from an arbitrary proposal distribution, p(zk−1|zk), as fol-
lows: (1) Choose an arbitrary value for z0 as an initial
sample. (2) Pick a candidate for the kth sample (k ≥ 1),

z′ �
[
x

′T , θ
′T]T

, from the proposal distribution. (3) Cal-

culate the ratio of likelihood to the previous sample, i.e.,
r � p

(
x′, θ ′|d)

/p(xk−1, θk−1|d). (4) Compare the value r
with a value randomly generated from a uniform distribu-
tion u ∈ [0, 1]. (5) If r ≥ u, set zk � z′ (the candidate is
accepted). If r < u, set zk � zk−1 (the candidate is rejected).

The newly developed MCMC solver named “GARPOS-
MCMC v.1.0.0,” is available in the Zenodo repository
(Watanabe et al. 2022b). For the proposal distribution
p(zk−1|zk), we selected a Gaussian distribution. The spec-
ifications for the proposal distribution and sampling are

summarized in Table 2. Initial values and proposal distri-
butions for the parameters were selected by trial and error,
with reference to the results of conventional EB solutions, for
earlier convergence. We obtained 50,000 MCMC samples at
a sampling rate of 50 but dumped the first 25,000 samples as
a burn-in period.

5 Results

All outputs of GARPOS-MCMC, including the sample
series, distributions, and the 2.5th, 25th, 50th, 75th, and
97.5th percentiles for each dataset are stored in the Zenodo
repository (Watanabe et al. 2022c). Examples of these per-
centiles for the posterior distributions for the parameters are
summarized in Table 3. Figures 3 and 4 show examples of
the series and the distributions of MCMC samples, respec-
tively. Note that the ranges of the axes in Fig. 3 vary in each
panel, to clearly show the behavior of the MCMC sample
convergence. The MCMC sample series in the m100 model
(e.g., Fig. 3a) rapidly converges to a certain distribution (typ-
ically less than 2000 samples). In contrast, the sample series
in the m101 (e.g., Fig. 3b) and m102 (e.g., Fig. 3c) mod-
els for several datasets show multimodality in the smoothing
hyperparameters. One of the most significant cases is the
dataset “MYGI.1910.meiyo_m4,” which is shown in Figs. 3
and 4. The multimodality in such cases was caused by the
indivisibility of α0(t) and α1(t) in the single surface-unit
configuration, which comes from the dependency of the sur-
face position P(t) on time. Nonetheless, almost all of the
datasets including such cases show approximately unimodal
distributions of seafloor positions, which were determined
on the order of centimeters (e.g., Table 3 and Fig. 4).

To survey the effects of the uncertainty of the smooth-
ing hyperparameters on the seafloor positions, we plotted
the histograms of the correlation coefficients between each
component of the seafloor position and each parameter for
all datasets (Fig. 5). Figure 5 clearly shows that all of the
datasets have little correlation between the seafloor posi-
tion components and the smoothing hyperparameters. The
smoothing hyperparameters are strongly independent of the
seafloor positions, indicating that the multimodalities in the
smoothing hyperparameters shown in the tests (e.g., Fig. 3b,
c) are trivial in seafloor positioning.
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Table 2 Standard deviations of
proposal distribution for each
parameter in the MCMC
sampling

Parameter Range m100 m101 m102

x x ∈ R
3 5 mm 5 mm 5 mm

log10σ
2 σ 2 > 0 0.01 0.01 0.01

logit
(
μ∗
t

)
10 s < μt < 370 s 0.1 0.1 0.1

logit(μMT ) 0 < μMT < 1 0.1 0.1 0.1

log10ν0
2 ν0

2 > 0 0.2 0.2 0.2

log10ν1
2 ν1

2 > 0 0.2 0.2 0.2

log10ν2
2 ν2

2 > 0 0.2 N/A N/A

log10ρ2
2 ρ2

2 > 0 N/A N/A 0.2

logit(κ0) 0 < κ0 < 1 N/A 0.2 0.2

μ∗
t � (μt − 10 s)/6 min is selected to satisfy the range given in the 2nd column

For the discussion of the correlations among the seafloor
positions and the perturbation coefficients, it is useful to
generate a Monte Carlo sample from the joint posterior
p(x, a, θ |d). Because the conditional posterior distribution
of the perturbation coefficients for each MCMC sample
is given as a normal distribution, i.e., p(a|d, x, θ) ∼
N (a∗, C(θ)), a Monte Carlo sample from the posterior
p(x, a, θ |d) can be artificially generated by adding a vec-
tor a sampled from N (a∗, C(θ)). Figure 6 shows examples
of the posterior distribution of the seafloor position, x, and
the averages of perturbation coefficients in the dimension of
sound speed, i.e., V0α0, V0α1E, V0α1N, V0α2E, and V0α2N,
for them100 solutions. Figure 7 shows histograms of the cor-
relation coefficients between each component of the seafloor
position and each of the averaged perturbation coefficients.
All datasets (see alsofigures in theZenodo repository;Watan-
abe et al. 2022c) show strong positive correlations (> 0.6)
between the value of α2 and the horizontal position in the
m100 solutions (Fig. 7a). In contrast, slightly weaker nega-
tive correlationswere typically shownboth between the value
of α0 and the vertical position, and between the value of α1

and the horizontal position.
As shown in Fig. 7b, the correlation between the horizon-

tal position components and the corresponding components
of α2 significantly weakened especially in the m101 solu-
tions, compared to the m100 solutions. The connection of α1

and α2 by the parameter κ0 in the m101 model contributed
to a decrease in the independency of the estimation of the
horizontal parameters. This is also indicated by the tendency
of a larger correlation between κ0 and the horizontal position
(Fig. 5b). In the m101 model, additional information related
to α1 is used for the determination of α2, which results in a
shift of the horizontal position.

Compared to the m101 solutions, the m102 solutions have
almost the same or smaller correlation between κ0 and the
horizontal position (Fig. 5b and c). This means that the
parameter κ0 controlled the horizontal position along with

α2 in both models, but that the m102 model can suppress the
effect of constraints depending on the data’s suitability to the
m101 model’s assumption, as designed.

As the end products of the GNSS-A seafloor positioning,
the time series of seafloor displacements for each SGO-A
site are given in Figs. 8, 9, 10 and 11. Panels in the figures
show the solutions derived with the three suggested models
and the conventional EB solutions (JapanCoastGuard 2022),
aligned to the International Terrestrial Reference Frame 2014
(ITRF2014). The m100 solutions are almost consistent with
the EB solutions, including the ranges of 95% confidence
intervals. Both the m101 and m102 solutions show differ-
ences from the m100 solutions in the horizontal component,
as explained above.

6 Discussion and conclusions

The m100 solutions provided distributions almost consistent
with the EB’s normal distributions (Figs. 8, 9, 10 and 11).
This is because the position parameters have little correlation
with the other parameters in the m100 solutions, as shown
in the MCMC sample distributions (Figs. 4a and 5a). This is
the same for the EB solutions, as generally discussed in the
previous study (Watanabe et al. 2020). Among the parame-
ters, little correlation is shown, except σ 2 and μt (Fig. 4a).
These parameters should have a positive correlation when
the eigenvalues of �d is conserved, by definition.

The marginal probability for horizontal positions for the
m101 solutions generally showed a narrower distribution
than that for the m100 solutions (Figs. 8, 9, 10 and 11).
The horizontal positions are correlated with the character-
istic depth of the gradient layer, i.e., κ0, which worked as
an additional constraint as discussed in Sect. 5. This will
also lead to the inconsistency in full-Bayes and empirical
Bayes solutions under them101 constraint, different from the
m100 constraint. When selecting κ0 to be a certain value as a
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Table 3 Examples of the 2.5th,
25th, 50th, 75th, and 97.5th
percentiles of the MCMC sample
distributions for the dataset
named “TOS2.1305.kaiyo_k4”
and “MYGI.1910.meiyo_m4”

(a) TOS2.1305.kaiyo_k4 for the m100 model

Percentiles 0.025 0.250 0.500 0.750 0.975

xE (m) 0.0172 0.0306 0.0379 0.0452 0.0601

xN (m) − 0.0450 − 0.0316 − 0.0246 − 0.0177 − 0.0052

xU (m) 0.0544 0.0619 0.0655 0.0691 0.0758

log10σ
2 − 9.1658 − 9.1471 − 9.1358 − 9.1250 − 9.1036

logit
(
μ∗
t

) − 1.3008 − 1.1948 − 1.1327 − 1.0706 − 0.9471

logit(μMT ) − 2.1627 − 1.8415 − 1.7071 − 1.5770 − 1.3311

log10ν0
2 − 1.3955 − 1.1461 − 1.0219 − 0.8860 − 0.6385

log10ν1
2 − 3.9815 − 3.4224 − 3.1370 − 2.8302 − 2.1666

log10ν2
2 − 5.1246 − 4.4159 − 4.0661 − 3.7179 − 2.9619

(b) TOS2.1305.kaiyo_k4 for the m101 model

Percentiles 0.025 0.250 0.500 0.750 0.975

xE (m) − 0.0172 − 0.0068 − 0.0007 0.0047 0.0152

xN (m) − 0.0643 − 0.0549 − 0.0498 − 0.0445 − 0.0352

xU (m) 0.0553 0.0622 0.0659 0.0698 0.0772

log10σ
2 − 9.1592 − 9.1388 − 9.1273 − 9.1156 − 9.0934

logit
(
μ∗
t

) − 1.2618 − 1.1483 − 1.0831 − 1.0200 − 0.8902

logit(μMT ) − 2.2422 − 1.8784 − 1.7280 − 1.5926 − 1.3634

log10ν0
2 − 1.3607 − 1.0707 − 0.9122 − 0.7591 − 0.4816

log10ν1
2 − 4.5685 − 3.9882 − 3.7212 − 3.3959 − 2.8339

logit(κ0) − 0.3180 0.0115 0.1931 0.3811 0.7828

(c) TOS2.1305.kaiyo_k4 for the m102 model

Percentiles 0.025 0.250 0.500 0.750 0.975

xE (m) 0.0143 0.0282 0.0352 0.0424 0.0568

xN (m) − 0.0466 − 0.0322 − 0.0250 − 0.0180 − 0.0040

xU (m) 0.0552 0.0623 0.0661 0.0697 0.0768

log10σ
2 − 9.1699 − 9.1498 − 9.1396 − 9.1288 − 9.1081

logit
(
μ∗
t

) − 1.3215 − 1.2122 − 1.1510 − 1.0899 − 0.9688

logit(μMT ) − 2.2522 − 1.9000 − 1.7420 − 1.6032 − 1.3704

log10ν0
2 − 1.2820 − 1.0127 − 0.8748 − 0.7446 − 0.4786

log10ν1
2 − 4.1857 − 3.6382 − 3.3627 − 3.0747 − 2.4695

log10ρ2
2 − 1.2555 − 0.7381 − 0.4360 − 0.0576 0.9453

logit(κ0) − 6.6051 − 4.0192 − 2.7785 − 1.7831 − 0.6004

(d)MYGI.1910.meiyo_m4 for the m100 model

Percentiles 0.025 0.250 0.500 0.750 0.975

xE (m) − 0.2710 − 0.2371 − 0.2200 − 0.2017 − 0.1655

xN (m) 0.0172 0.0545 0.0717 0.0881 0.1192

xU (m) − 0.1575 − 0.1335 − 0.1222 − 0.1105 − 0.0886

log10σ
2 − 8.4853 − 8.4470 − 8.4284 − 8.4110 − 8.3793

logit
(
μ∗
t

) − 0.2163 0.1354 0.3399 0.5515 0.9725

logit(μMT ) 0.8258 1.0047 1.1006 1.1944 1.3662

log10ν0
2 − 1.5570 − 1.1645 − 0.9581 − 0.7367 − 0.2683

log10ν1
2 − 1.2636 − 0.4247 − 0.0262 0.3751 1.2361

log10ν2
2 − 4.1618 − 3.3271 − 2.9029 − 2.4932 − 1.7676
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Table 3 (continued)
(e)MYGI.1910.meiyo_m4 for the m101 model

Percentiles 0.025 0.250 0.500 0.750 0.975

xE (m) − 0.2694 − 0.2450 − 0.2314 − 0.2188 − 0.1936

xN (m) 0.0225 0.0417 0.0523 0.0624 0.0815

xU (m) − 0.1541 − 0.1339 − 0.1229 − 0.1117 − 0.0907

log10σ
2 − 8.5060 − 8.4598 − 8.4407 − 8.4217 − 8.3878

logit
(
μ∗
t

) − 0.3905 − 0.0082 0.1902 0.4112 0.8617

logit(μMT ) 0.8221 1.0096 1.1067 1.2021 1.3815

log10ν0
2 − 1.3794 − 0.9748 − 0.7329 − 0.4307 1.1698

log10ν1
2 − 3.0674 − 0.5130 − 0.0266 0.3810 1.1007

logit(κ0) − 5.4692 − 3.1066 − 2.5621 − 2.2034 − 1.7068

(f ) MYGI.1910.meiyo_m4 for the m102 model

Percentiles 0.025 0.250 0.500 0.750 0.975

xE (m) − 0.2703 − 0.2437 − 0.2299 − 0.2152 − 0.1877

xN (m) 0.0247 0.0456 0.0564 0.0682 0.0924

xU (m) − 0.1531 − 0.1316 − 0.1211 − 0.1100 − 0.0879

log10σ
2 − 8.5106 − 8.4644 − 8.4418 − 8.4210 − 8.3862

logit
(
μ∗
t

) − 0.4230 − 0.0395 0.1831 0.4283 0.8900

logit(μMT ) 0.7998 0.9984 1.1006 1.2000 1.3821

log10ν0
2 − 1.3678 − 0.9205 − 0.6349 − 0.1270 1.3514

log10ν1
2 − 3.4592 − 1.0422 − 0.2064 0.2966 1.0922

log10ρ2
2 − 10.3679 − 5.6375 − 3.9364 − 2.7059 − 1.2187

logit(κ0) − 0.2703 − 0.2437 − 0.2299 − 0.2152 − 0.1877

Note that μ∗
t � (μt − 10 s)/6 min, as defined in Table 2

point estimation, the conditional probability, i.e., the m101-
based EB solution, will provide a narrower distribution than
the marginal probability estimated from theMCMCmethod.
This is an important advantage of the full-Bayes MCMC,
for the flexible implementation of various constraints. To the
contrary, all tested models return almost the same posterior
pdf for the vertical position. This is because the spatial gradi-
ent components, i.e., α1 and α2, correlate only slightly with
the vertical position (Figs. 6 and 7), so that κ0 was unable to
control the vertical position.

From the viewpoint of stabilizing the position time series,
the smoothness of the horizontal displacement time series
was improved, although with some outliers (Figs. 8, 9, 10
and 11). Those outliers might have been affected by the over-
simplification of a complicated actual sound speed structure,
or biases in instruments and systems that became obvious
due to the decrease of degree of freedom.

The m102 solutions provided the approximate superpo-
sition of the m100 and m101 solutions (Figs. 8, 9, 10 and
11). In some datasets, the m102 model seemed to correct the
adverse effect of them101model, especially for observations
in Mar 2016 and Nov 2016 at TOS2, in Oct 2016 at KUM2,
and in Dec 2017 at FUKU. In contrast, although the m101
solutions improved the positioning stability compared to the

m100 solutions, somem102 results showed restoration to the
relatively worse m100 solutions, e.g., in Nov 2017 and Aug
2018 at KUM2, and in Jun 2016 at MYGI. This is possibly
caused by some system bias errors leading to the misestima-
tion of the α2 component, which strongly correlates with the
horizontal position. It is important to robustly estimate the
offset of α2, regardless of its error sources.

Them101model is considered to bemore suitable for sites
located in waters affected by the steady and strong Kuroshio
current, i.e., in the Nankai Trough region (TOS2 and KUM2;
Fig. 1b). ForTOS2, them102method appropriately corrected
the outliers in the m101 solutions and provided a smoother
time series than that for the other models, though the outliers
might be caused by system biases rather than the compli-
cated sound speed structure. Meanwhile, the m102 solutions
at KUM2 became more unstable than the m101 solutions
especially in the eastward component. In the cases of KUM2,
it is considered that the misestimation of δα2, possibly due to
system biases, caused the deterioration of positioning accu-
racy.

For FUKU and MYGI located in the eastern off-Tohoku
region where small eddies due to seasonal mixing of warm
and cold currents tend to be generated (Fig. 1b), it is expected
that the m101 assumption is less applicable. This will require
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Fig. 3 Examples of MCMC sample series for datasets named “TOS2.1305.kaiyo_k4” and “MYGI.1910.meiyo_m4,” solved with the a m100,
b m101, and c m102 models
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Fig. 3 continued

123



89 Page 16 of 30 S. Watanabe et al.

Fig. 3 continued
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Fig. 4 Examples of MCMC
sample distributions for datasets
named “TOS2.1305.kaiyo_k4”
and “MYGI.1910.meiyo_m4,”
solved with the a m100, b m101,
and c m102 models. The values
of correlation coefficients are
shown in the upper triangular
part of the matrix
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Fig. 4 continued

123



Full-Bayes GNSS-A solutions for precise seafloor positioning with single uniform sound speed… Page 19 of 30 89

Fig. 4 continued
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Fig. 5 Histograms of correlation coefficients between each component of seafloor position and other parameters for all the dataset solved with the
a m100, b m101, and c m102 models
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Fig. 6 Examples of artificially
sampled posterior distributions
for m100 solutions among
seafloor positions and averages
of perturbation coefficients in
dimension of sound speed, for
datasets named
“TOS2.1305.kaiyo_k4” and
“MYGI.1910.meiyo_m4.” The
values of correlation coefficients
are shown in the upper triangular
part of the matrix
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Fig. 7 Histograms of correlation
coefficients between each
component of seafloor positions
and averaged perturbation
coefficients for all datasets
solved with the a m100, b m101,
and c m102 models
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Fig. 8 Time series of array-center
displacement at TOS2 derived
from the m100 (blue
histograms), m101 (red
histograms), and m102 (orange
histograms) models, aligned to
ITRF2014. EB solutions are also
shown as green circles with
3-sigma error bars in panel (a)
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Fig. 9 Time series of array-center
displacement at KUM2 derived
from the m100 (blue
histograms), m101 (red
histograms), and m102 (orange
histograms) models, aligned to
ITRF2014. EB solutions are also
shown as green circles with
3-sigma error bars in panel (a)
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Fig. 10 Time series of
array-center displacement at
FUKU derived from the m100
(blue histograms), m101 (red
histograms), and m102 (orange
histograms) models, aligned to
ITRF2014. EB solutions are also
shown as green circles with
3-sigma error bars in panel (a)
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Fig. 11 Time series of
array-center displacement at
MYGI derived from the m100
(blue histograms), m101 (red
histograms), and m102 (orange
histograms) models, aligned to
ITRF2014. EB solutions are also
shown as green circles with
3-sigma error bars in panel (a)
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a case-by-case selection for the appropriate models depend-
ing on additional information on oceanographic states during
each GNSS-A observation.

As discussed above, the full-Bayes formulation in
GARPOS-MCMC can improve the implementation of flexi-
ble priors for better solutions that adequately extract typical
oceanographic features, or also for further evaluation of sys-
tem biases.Moreover, them101 solutions for several datasets
had larger position biases in the displacement time series,
not all of which were corrected in the m102 solutions. This
means that the offset δα2 not only reflected more compli-
cated actual sound speed structures as designed, but also
could be contaminated by other system errors. By extend-
ing this discussion, instrumental errors and modeling errors
are possibly divided even within a single dataset with appro-
priate parameterization and various modeling realized by a
flexible MCMC method. This clarifies future subjects and
targets for improvement of GNSS-A accuracy.

By parameterizing the corresponding bias, instrumental
errors such as system-specific biases can be quantified from
the data. Furthermore, we can easily expand the algorithm to
apply a non-Gaussian likelihood function instead of Eq. (9),
for the further surveys on the characteristics of the GNSS-A’s
acoustic measurements. For the modeling errors, regard-
less of the dominant oceanographic features, researchers can
improve the positioning stability by carefully selecting the
constraints on the perturbation field, �(t , P , X), from addi-
tional information. In those ways, GARPOS-MCMC has the
potential to be a basic platform for the further improvement
of analysis techniques to develop more precise GNSS-A
seafloor geodesy and oceanography.
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Appendix A

In this appendix, we show the constraints imposed on the
gradient components, α1 and α2, for the cases where the
residual sound speed structure contains only a single uniform
sound speed gradient layer at a certain depth.

First, the reference travel time for the horizontally-
stratified reference sound speed profile V0(u) is obtained by
integrating the reference slowness along the acoustic path, as
follows:

τ �
∫

ds

V0(s)
. (A1)

We then consider the sound speed structure where a per-
turbation is added to the reference profile along the path, i.e.,
V (e, n, u) � V0(u) + δυ(s). If we assume that δυ � V0 is
satisfied, which also leads to the assumption that refraction
due to the perturbation term is negligible, the travel time T
can be calculated as

T

τ
� 1

τ

∫
ds

V0(u) + δυ(s)
∼� 1 − 1

τ

∫
δυ(s)ds

V0(u)2
. (A2)

We define the sound speed anomaly for each path, δV ,
using the path length S � ∫

ds and the average reference
sound speed V0 � S/τ , as, δV � S/T − V0. From equation
(A2), we obtain

δV � V0

((
1 − 1

τ

∫
δυ(s)ds

V0(u)2

)−1

− 1

)
∼� V0

2

S

∫
δυ(s)ds

V0(u)2
.

(A3)

For the easier interpretation, we consider a toy model
where the V0(u) is uniform so that V0(u) � V0 is satisfied.
Under this assumption, the acoustic ray path is a geomet-
rically straight line connecting X and P , and Eq. (A4) is
simplified to
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Fig. 12 Schematics of effects of uniform gradient layer lying at given
depth, in case where refraction can be sufficiently negligible. (a) Case
where the gradient layer has a finite thickness. (b) Case where the gra-

dient layer has an infinitesimal thickness, but has the same consequence
as case (a). This figure was adapted from Yokota et al. (2022)

δV ∼� 1

S

∫
δυ(s)ds. (A4)

Here, we consider the 2-dimensional case for the sound
speed perturbation with a single uniform gradient layer that
lies on dc − dL/2 < z < dc + dL/2 in a site with a uni-
form water depth, D, as shown in Fig. 12a, i.e., δυ(s) �
xζ0rect((z − dc)/dL),with ζ0 and rect(z)denoting a constant
and the rectangular function, respectively. In this case, the
gradient field can be written as ζ (z) � ζ0rect((z − dc)/dL).
Setting the depression angle of X � (xX , D) seen from
P � (xP , 0) as φ, i.e., S cos φ � xX − xP , the sound speed
anomaly can be calculated as

δV ∼� ζ0x0xc
xX − xP

, (A5)

where

x0 � (xX − xP )
dL
D

, (A5.1)

xc � dc
D
xX +

(
1 − dc

D

)
xP . (A5.2)

Therefore, we obtain

δV ∼� ζ0
dL
D

(
1 − dc

D

)
P + ζ0

dL
D

dc
D
X . (A6)

Recalling that V0� is comparable with δV (Sect. 3.1), we
obtain

dc � 1

1 + κ0
D, (A7)

which is identical toEq. (19). In addition,we can easily derive
the relationship as, |α1| ∝ |α2| ∝ ζ0dL . This derivation also
shows that the strength of the gradient, ζ , and the thickness
of the gradient layer, dL , are non-separable in this formula-
tion. For example, when taking an infinitesimally small value
for dL , the perturbation is written as δυ(s) � xζ0δ(z − dc),
where δ(z) denotes the Dirac delta function (Fig. 12b).
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