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Abstract
Change of boundary is a method that iteratively downward continues data from a star-shaped boundary to a regular surface,
such as the sphere or the ellipsoid of revolution, and then solves a boundary value problem using the downward continued
data on the changed boundary. Although the method belongs to concepts involved in the development of recent high-degree
Earth’s gravity models, it is still unclear whether the iterations converge to the true solution for boundaries as complex as, for
instance, the Earth’s surface. In this paper, we revisit the method and show that convergence in terms of the Cesaro limit can
be achieved under the assumption that the operator performing the iterations is non-expansive. The validity of the assumption
is, however, still not proved. Therefore, we examine the hypothesis numerically using boundaries of various complexity. We
start with a simple synthetic topography defined by a Legendre polynomial and move to more realistic finite-degree shapes
of the asteroids Bennu and Eros. The numerical experiments indicate that the assumption is valid as long as the boundary
deviates not too far from a sphere and the truncation degree of the gravity model is not too high (the experiments with the
synthetic topography and Bennu). Otherwise, the hypothesis seems to be false (the Eros case). Finding an analytical condition
to separate between shapes for which the change of boundary method converges/diverges remains an open issue.

Keywords Geodetic boundary value problem · Change of boundary · Gravity field · Spherical harmonics · Downward
continuation

1 Introduction and notation

The determination and use of global gravity models has been
the story of a success of physical geodesy in the last decades.
A global model of the external anomalous potential of the
Earth T (r , σ ), in this context, is just a harmonic function
represented by a truncated series of solid spherical harmonics
(Pavlis 2013; Sansò 2013b)

u(r , σ ) =
N∑

n=2

n∑

m=−n

unm

(
R

r

)n+1

Ynm(σ ), (1)
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where r is the spherical radius and

σ = (ϑ, λ) (2)

is a pair of spherical angles, colatitude and longitude. Ynm(σ )

are fully-normalized real spherical harmonics and unm are
spherical harmonic coefficients. N is the maximum (or trun-
cation) degree of the model. R is in principle any radius,
essentially defining the length unit of the problem; in fact, it
is obvious that, under the transformation

R → R′; unm(R) → u′
nm(R′) =

(
R

R′

)n+1

unm(R), (3)

u(r , σ ) is left invariant.
In the literature, we find the choice R = a, the equatorial

radius of the ellipsoid, or R =mean radius of the Earth. In this
paper, we will use for R any radius of a sphere SR , internal
and separated from the Earth surface S ≡ {r = Rσ }, that
we assume to be a star-shaped and Lipschitz surface. Let
us notice here too, that we will use the notation � for the
domain exterior to S. Furthermore, the notation Rσ , which
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is a shorthand for a function of σ , should not be confused
with R, which is the constant radius of a sphere.

If we put

R0 = min
σ

Rσ , R = max
σ

Rσ (4)

(i.e. the sup of the Bjerhammar radius and inf of the Brillouin
radius), we will assume that

R < R0. (5)

The reason why R is so loosely defined is that, with the up
and down transformation (3), we leave u(r , σ ) invariant and
what really matters is that the global model (1) needs to be a
“good” approximation of the actual anomalous potential.

On this point one has to be very clear.What we are looking
for is a theory that certifies that our global potential (1) is a
good approximation of the anomalous potential T (r , σ ) in�

(or in some cases on S, too), in the sense that in this domain

lim
N→∞ u(r , σ ) = T (r , σ ) (6)

in some topology for a space of functions harmonic in �.
In this paper, we will use exclusively the harmonic Hardy

space HL2 with norm defined by

‖u‖2
HL2 = lim

ε→0

∫

σ

|u(Rσ + ε, σ )|2 dσ. (7)

Let us note that we find it convenient to use in the paper a
normalized measure on the unit sphere, that we will denote

dσ = 1

4π
sin ϑ dϑ dλ. (8)

Fatou’s lemma and Cimmino’s theory (Axler et al. 1992
revisited in Sansò and Sideris 2017 and Sansò and Venuti
2001) guarantee that the limit (7) exists and in fact HL2 is
in a unitary correspondence with L2(σ ), namely the Hilbert
space of functions of σ with norm

‖u‖2 =
∫

σ

|u(Rσ , σ )|2 dσ , (9)

of course on condition that (7) be bounded.
The choice of this topology is because it is strongly

set in geodetic tradition and, when discretized, it leads to
least squares approximation, which is a universal tool in the
arsenal of geodetic methods. In addition, the theory of (lin-
earized) geodetic boundary value problems has shown that
once a datum of free air gravity anomaly or disturbance is
givenon S, belonging to L2(σ ), then a solution (or anomalous
potential T ) exists, is unique and continuously dependent on

the data in L2(σ ) norm (Sansò 2013a). This fact together
with a theorem of completeness of the base functions

ϕnm(σ ) = {qn+1
σ Ynm(σ )}, (10)

where

qσ ≡ R

Rσ

, (11)

which is a particular case of Runge–Krarup theorem (Krarup
1975; Sansò 2013c), says that the problem of the approxi-
mation of T (r , σ ) by a global potential of the form (1) is
well-posed in L2(σ ).

Yet the way in which the most important global models
at high resolution (N � 2159) are actually computed (see
for instance Pavlis 2013) is not by the use of least squares
directly applied to the original data, but rather the data are
moved (“downward continued”) from the surface down to
the ellipsoid, which is then perturbatively approximated by
a sphere, and finally the global model is computed as the
solution of the boundary value problem from this easy to
treat “changed boundary”.

Residuals are then computed at the level of S, where data
are given, and the process is iterated. Indeed the real way in
which a global model is computed includes a number of very
important intermediate steps, including the transformation of
marine altimetric data into gravity anomalies and the assimi-
lation of satellite only gravity models (see Pavlis 2013; Rapp
1993).

In particular, this last step has a large influence in the
estimation of harmonic coefficients up to some intermediate
degree (a few hundreds) and has a fundamental role in the
correction of biases present in the ground data, due to the non-
homogeneous historical measurement process (height datum
problem; Sansò and Venuti 2001; Rapp 1993).

Yet for the high-frequency (degree) coefficients the deter-
mination process is essentially outlined above. Therefore, the
question arises on how good is the result obtained. No doubt
the answer has to be given by testing the estimated field on
independent data or by cross-validation.

This has been quite successfully done (e.g., Pavlis et al
2012) and therefore it is clear, on a scientific ground, that a
mathematical proof of convergence of the iterations is needed
to explain/understand such a success. This is how the idea
of the change of boundary (CoB) theory was born. Up to
now the results obtained are not complete, because of a hard
obstacle in proving that a certain operator is non-expansive.
Some steps forward have been done by conjecturing that
this assumption is correct, based on a perturbative argument
(Sansò and Sideris 2017); yet a rigorous proof is still lacking.

In such a situation it was deemed useful by the authors to
set up controlled simulations to test at least numerically the
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validity of the conjecture. This is what is done in this paper,
together with some mathematical refinements, showing the
results that can be obtained if the mentioned assumption is
correct.

In particular a verifiable sufficient condition is given, to
guarantee the convergence if we pose an a priori hypoth-
esis that in real world, or better in our model world, both
the anomalous potential and the shape of S are expressed
by spherical developments with known maximum degree.
Therefore, we want to stress again that the purpose of the
paper is not to propose CoB as a new method to estimate
global models, but rather to set up a formal frame in which
to understand the success of existing methods.

Concluding this section, it is worth mentioning that the
item of convergence of global models has been tackled by
several authors, also outside the geodetic literature (e.g.,
Takahashi and Scheeres 2014; Hu and Jekeli 2015; Reimond
and Baur 2016; Sebera et al. 2016; Hirt and Kuhn 2017).
However, the purpose of this paper is slightly different in
that we try to assess the extent at which our present theo-
retical understanding of the problem is reliable; in particular
this will be done by examining the norm of a certain matrix
operator, rather than following the sequence of models of
increasing degree.

2 Foundation of CoB

In order to set up the formal definition of CoB we need to
recall first of all that the linearized geodetic boundary value
problem amounts to determining T (r , σ ) in� given, depend-
ing on what we consider as known on the boundary,

δg = −∂T

∂h
or �g = −∂T

∂h
+ γ ′

γ
T

(
γ ′ = ∂γ

∂h

)
(12)

on S ≡ {r = Rσ }; here h is as usual the ellipsoidal height,
γ the modulus of the normal gravity vector, δg the gravity
disturbance and �g the gravity anomaly. Let us recall that
the CoB has been first defined in Sansò (1993) and its theory
more carefully analysed in Sansò and Sideris (2017).

The spherical approximation of (12) (see Sansò and
Sideris 2017) is just the so-called simple Molodensky prob-
lem

δg ∼= − ∂T

∂r

∣∣∣∣
S
, �g ∼= − ∂T

∂r

∣∣∣∣
S

− 2

r
T

∣∣∣∣
S

(13)

and its solution is the first step for the solution of (12). The
point is that in either cases (13) the boundary value problem
can be reduced to the solution of a Dirichlet problem; in fact,

one has that

u = −r
∂T

∂r
or u = −r

∂T

∂r
− 2T (14)

have to be harmonic too (Heiskanen and Moritz 1967; Sansò
and Sideris 2017) in � and they satisfy one or the other
boundary condition

−r
∂T

∂r

∣∣∣∣
S

= u(Rσ , σ ) = f (σ ) = Rσ δg(σ ), (15)

−r
∂T

∂r

∣∣∣∣
S

− 2T |S = u(Rσ , σ ) = g(σ ) = Rσ �g(σ ). (16)

For the sake of simplicity let us choose one of the two, for
instance the first that has no singularity at degree 1, as it
happens to the second.

So the problem of finding T harmonic in � ≡ {r >

Rσ }, satisfying the boundary condition (15), is equivalent
to searching for the solution u(r , σ ) of the Dirichlet problem
with boundary values (15), and then retrieving T (r , σ ) by
integration of −u(r , σ )/r along the radius (Sansò 2013a).
The geodetic practice is then to “lower” f (σ ) from S to SR ;
this step can be done in different ways, for instance by collo-
cation or simply by a truncated Taylor series (Martinec 1998;
Pavlis 2013). Whatever it is, we call PB (pull back) the oper-
ator that lowers f (σ ) to SR . After that the Dirichlet problem
is solved for the pull back PB f by Poisson formula and the
residuals between f and the upward continuation of PB f are
computed. Would the residuals be zero, we could say that the
problem has been solved. Since this is not the case, we will
see that it cannot be, the same procedure is applied to the
residuals and the same approach is repeated iteratively.

Then all contributions from the iterations are added to
find hopefully a series convergent, in some sense, to the cor-
rect solution. The situation is formalized in the scheme of
Fig. 1 where PB represents the pull back operator, denotes
the Poisson operator, harmonically propagating the bound-
ary values on the sphere SR to the outer domain �R (i.e. the
exterior of the sphere SR) and � is the trace on S operator,
namely given that S ≡ {r = Rσ }, � is the operator that, for
any continuous u(r , σ ) defined in �R , computes

�u = u(Rσ , σ ). (17)

Furthermore, we call U the upward continuation operator

U = �  (18)

or, more precisely (Heiskanen and Moritz 1967)

∀ f (σ ), U f ≡
∫

σ

R (R2
σ − R2)

�3
σσ ′

f (σ ′) dσ ′ (19)
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Fig. 1 The iterative scheme of CoB. The first line gives the sets on
which functions in the same columns are defined

(�σσ ′ = [R2 + R2
σ − 2 R Rσ cosψσσ ′ ]1/2,

ψσσ ′ = spherical angle between σ and σ ′).

Notice that the Poisson formula (19) is written without the
factor (4π)−1 which is included by definition in the area
element dσ ′ (see 8). Since S is star-shaped by hypothesis,
U transforms functions of σ (i.e. defined on the unit sphere)
into functions again defined on the unit sphere. Let us further
observe that, if S ⊂ �R and

R0 = inf
σ

Rσ > R, (20)

as we assume, any function harmonic in �R is continuous
there, so that (19) is well-defined. Moreover, in Fig. 1 we
use D to denote the Dirichlet solver that, given a function
f (σ ) on S, provides the function w(r , σ ), harmonic in �

and agreeing with f (σ ) on S.
The scheme of Fig. 1 implies the following relations

v�(σ ) = PB s�(σ ) (� = 1, 2, . . . ; v0(σ ) = PB f0(σ )),

(21)

s�(σ ) = s�−1(σ ) − f�(σ ) (� = 2, 3, . . . ;
s1(σ ) = f0(σ ) − f1(σ )), (22)

f�(σ ) = Uv�−1(σ ) (� = 1, 2, . . . ). (23)

Combining the three relations one gets:

s�(σ ) = s�−1(σ ) −Uv�−1(σ ) = s�−1(σ ) −U PB s�−1(σ )

= (I −U PB)s�−1(σ ), (24)

s1(σ ) = f0(σ ) − f1(σ ) = f (σ ) −Uv0(σ )

= (I −UPB) f (σ ). (25)

So, putting

K = I −U PB, (26)

one can write

s�(σ ) = Ks�−1(σ ), (27)

implying, also recalling (25), that

s�(σ ) = K �−1s1(σ ) = K � f (σ ). (28)

On the same time, iterating (22) we see that

s�(σ ) = s�−1(σ ) − f�(σ )

= s�−2(σ ) − f�−1(σ ) − f�(σ ) = . . .

= f0(σ ) −
�∑

k=1

fk(σ ) ≡ f (σ ) − F�(σ )

(F�(σ ) =
�∑

k=1

fk(σ )). (29)

Therefore, a first conclusion of our construction is that if
in some topology we can claim that

s�(σ ) → 0, (30)

then we have found a sequence F�(σ ), defined only by appli-
cations of PB and U (i.e. Poisson formula), that in the same
sense (topology) tends to f (σ ).

In addition, still looking at Fig. 1, one realizes that

w�(r , σ ) = D f�(σ ), (31)

which are the solutions of Dirichlet problem agreeing with
f�(σ ) on S, have to be just the restriction of u�−1(r , σ ) to
�; in fact, these are harmonic in �R > � and they are
equal to f�(σ ) on S, by definition of f�(σ ). Therefore, if the
topologies used are such that

F�(σ ) → f (σ ) ⇒ W�(r , σ ) =
�∑

k=1

wk(r , σ )

=
�∑

k=1

D fk(σ ) = DF�(σ ) → w(r , σ ) = D f (σ ), (32)
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we can conclude too that

�−1∑

k=0

vk(r , σ ) =
�−1∑

k=0

uk(r , σ ) → w(r , σ ), (r , σ ) ∈ �,

(33)

namely we have found the approximate solution we are look-
ing for.

By expressinguk(r , σ ) in terms of solid spherical harmon-
ics, what is natural since they are given by Poisson formula,
we will also find convergence theorems for global models.

Remark 1 It is important to underline again that the operators
PB and U = �  (see 19), which are the constituents of the
iterative process, can be interpreted as transforming functions
of σ only into functions of σ again so they can be thought
of as transformations between some functional space into
itself. In this paper this space, i.e. the topology in which we
embed the problem, is simply L2(σ ), i.e. the Hilbert space
with norm

‖ f ‖2L2(σ )
=

∫

σ

f 2(σ ) dσ. (34)

Moreover, with the L2(σ ) topology for F�(σ ) − f (σ ),
the property (31), with W�(r , σ ) → w(r , σ ) interpreted as
pointwise convergence or uniform convergence on compact
subsets of �, holds, in force of Runge–Krarup’s theorem in
the simplified form as presented on p. 137 of Sansò (2013b)
(see also Krarup 1975, [p. 254]).

Before developing our analysis, we want to recall a first
choice done for the operator PB:

PB = I . (35)

We justify such a position by examining the two sphere exam-
ple, first presented in Sansò (1993).We are going to see in fact
that any choice of PB as a Taylor formula in radial direction
has essentially not very different characteristics than (35) and
therefore this is the simplest assumption.

Nevertheless, as we will see in Sect. 6, the alternative

(hσ = Rσ − R) PB = I − hσ

∂

∂r

∣∣∣∣
S

(36)

has been explored too, in an attempt to improve our results.
Yet we will find that even more complex gravity field models
produce results similar to those obtained by next example.

Since it will be used later on, we give also a spectral
representation of PB from (36), when acting on a potential
harmonic down to SR , namely

PBu =
∑

n,m

unm cn(σ ) qn+1
σ Ynm(σ )

=
∑

n,m

unm

[
1 + (n + 1)

hσ

Rσ

]
qn+1
σ Ynm(σ ). (37)

Example 1 (Two spheres SR, SR0 ) In this example we exam-
ine the case that S = SR0 , a sphere of radius R0 > R. This
is because, despite the elementary character of this case, we
can work it out analytically and read directly how the CoB
scheme works.

We put

q0 = R

R0
(< 1), h = R0 − R, η = h

R
; (38)

let us notice that in this example the three quantities q0, h, η
are constant. We test the CoB iterations with the two choices

PB = I or PB = I − h
∂

∂r

∣∣∣∣
SR0

.

In both cases we can write the spectral representation of PB
as

PB ∼ cn ( f ∼ { fnm}, PB f ∼ {cn fnm}) (39)

with
⎧
⎪⎨

⎪⎩

cn = 1 when PB = I

cn = 1 + h

R0
(n + 1) when PB = I − h

∂

∂r

∣∣∣∣
SR0

.
(40)

Moreover, the spectral representation of U is just

U ∼ qn+1
0 (41)

and so

K = I −U PB ∼ 1 − cn q
n+1
0 = kn, (42)

with cn one of the two choices in (40). Clearly if kn < 1,
the operator K as well as all K � for any � are continuous
operators in L2(σ ).

Since q0 < 1, it is obvious that kn < 1 when cn = 1,
so we have to look into (42) when cn = 1 + h

R0
(n + 1).

Considering that

h

R0
= η

1 + η
, q0 = 1

1 + η
, (43)

we easily get, for the second case in (40),
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cn q
n+1
0 = 1 + (n + 2)η

(1 + η)n+2 < 1. (44)

Summarising, we have for kn the values

kn = 1 − qn+1
0 = (1 + η)n+1 − 1

(1 + η)n+1 , (45)

corresponding to the first of (40), and

k′
n = (1 + η)n+2 − [1 + η(n + 2)]

(1 + η)n+2 , (46)

corresponding to the second. As we see, we have

∀n 0 < k′
n < kn < 1; (47)

moreover

lim
n→+∞ kn = lim

n→+∞ k′
n = 1. (48)

It is not difficult to verify that the same would happen
even if we pushed the Taylor expansion in PB to a higher
order. Since the convergence of the iterative scheme critically
depends on the behaviour of kn , which are the eigenvalues
of K corresponding to the eigenfunctions Ynm(σ ), and the
relation (47) holds, it is enough here to consider the case of
kn (45) in order to prove convergence of the CoB scheme.

With (45) and recalling (28), one has

s�(σ ) = K � f (σ ) =
∑

n,m

[1 − qn+1
0 ]� fnm Ynm(σ ), (49)

i.e.

‖s�(σ )‖2L2(σ )
=

∑

n,m

[1 − qn+1
0 ]2� f 2nm . (50)

Since kn , satisfying (47), are uniformly bounded, one can
take the limit for � → ∞ in (50) under the summation sign,
obtaining

lim
�→∞ ‖s�(σ )‖2L2(σ )

=
∑

nm

lim
�→∞[1 − qn+1

0 ]2� f 2nm = 0. (51)

This proves the sought convergence, namely F�(σ ) =∑�
k=1 fk(σ ) tends to f (σ ) in L2(σ ) and, (32) holding true

in this case, we also have W�(r , σ ) → w(r , σ ) in �R0 .

Two important comments are in order.

Remark 2 We have to underline that the forms (45), (46) of
the eigenvalues ofU , together with relations (47), (48) show
that

‖K‖L2(σ ) = sup kn = sup k′
n = 1, (52)

because 1, the spectral radius of K , is also equal to its operator
norm in L2(σ ).

This will be a hard point when we will try to extend this
analysis to a general surface S different from a sphere SR0 .
On the other hand, if we truncated the operator K to some
maximum degree N , then we would have

‖KN‖ = ‖I −UN‖L2(σ ) = 1 − qN+1
0 < 1 (53)

and the convergence will immediately descend from the fact
that K becomes a contraction. Also this remark will be used
in a more general setting.

Remark 3 Considering Example 1, we have to understand
that the coefficients { fnm} of f (σ ) refer to a function, the
datum, which is given on the surface SR0 . So the convergence
of s� to 0 leading to the convergence of the method is for
functions defined on SR0 and W�(r , σ ) tend to w(r , σ ) in
�R0 .

On the other hand, if we call

V�(σ ) =
�−1∑

k=0

vk(σ ), (54)

i.e. the sum of the residuals seen at the level of SR (recall that
R < R0), we see from (23) that

F�(σ ) = UV�(σ ). (55)

Now the eigenvalues ofU are cn = qn+1
0 , so they are positive

tending to 0 for n → ∞. It follows that U is a compact
operator and then the convergence of F�(σ ) to f (σ ) in L2(σ )

does not imply that V�(σ ) is convergent too to some function
in L2(σ ). Would this be true, we could always downward
continue f (σ ) from SR0 to SR , which is known to be false.

A final word of caution, before closing the section, is
that although the choice PB = I makes the problem more
comfortable to analyse, in practice a radial Taylor expansion
should always be applied before going to numbers (see, e.g.
Sansò and Sideris 2017; Martinec 1998).

3 Properties of the upward continuation
operator U

Aswewill see in the next section, the success of convergence
of CoB depends on whether the statement that ‖K‖ = 1 is
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correct or not. Whatever we choose as PB, we have

K = I −U PB, (56)

so it is important to get a quite clear understanding of the
properties of U .

They are summarized below in a list from a) to e). Since
U can be represented as an integral operator, as in (19), most
properties of U are just well-known classical properties of
such operators, so theywill be only formulatedwith reference
to literature. We would like to underline that such a matter
is well-known in mathematics since the times of Fredholm,
more than one century ago, and is presented in classical old
books of Analysis, like Goursat (1964).

(a) U is a compact operator. According to (19), U is an
integral operator with kernel

U (σ, σ ′) = (Rσ , ψσσ ′). (57)

It is enough to use the identity

�2σσ ′ = (R2
σ + R2 − 2 R Rσ cosψσσ ′)

= (Rσ − R)2 + 2 Rσ R (1 − cosψσσ ′)
(58)

to realize that

�σσ ′ ≥ Rσ − R ≥ R0 − R = h0. (59)

Similarly, one has

�σσ ′ ≤ Rσ + R ≤ 2R, (60)

so that the following (very rough) upper and lower
bounds hold for U (σ, σ ′):

U (σ, σ ′) ≤ R (Rσ − R) (Rσ + R)

(Rσ + R) �2
σσ ′

≤ 2 R R

h20
= c,

(61)

U (σ, σ ′) ≥ R (Rσ − R) (Rσ + R)

(Rσ + R)3
≥ R h0

4R
2 = c > 0.

(62)

So U (σ, σ ′) is a bounded strictly positive function.
Clearly U (σ, σ ′) is also continuous in its arguments, in
fact Lipschitz continuous, as it is Rσ by hypothesis.

Whence, since the unit sphere is a compact set with
measure 1, by the hypothesis done on dσ , we have a
fortiori
∫∫

U 2(σ, σ ′) dσ dσ ′ ≤ c2 < +∞. (63)

The first conclusion then is that U is a continuous oper-
ator L2(σ ) → L2(σ ). Moreover, U is (sequentially)

completely continuous, namely it transforms anyweakly
L2(σ )-convergent series into a strongly convergent one.

(b) The kernel U (σ, σ ′) admits the representation

U (σ, σ ′) =
∑

n,m

qn+1
σ Ynm(σ ) Ynm(σ ′)

=
+∞∑

n=0

qn+1
σ (2n + 1) Pn(cosψσσ ′), (64)

where qσ is defined by (11) and Pn are the ordinary
Legendre polynomials. In fact, (64) is nothing but the
well-known series

(r , ψσσ ′) =
+∞∑

n=0

n∑

m=−n

(
R

r

)n+1

Ynm(σ ) Ynm(σ ′)

(65)

restricted to S ≡ {r = Rσ }.
An important consequence of the representation (64)

is that the range of U in L2(σ ), R(U ), is dense in this
space. In fact, it is clear that

span{qn+1
σ Ynm(σ )} ⊂ R(U ), (66)

the inclusion being dense and, as it is proved in Theo-
rem 9 of Sansò (2013c), the sequence {qn+1

σ Ynm(σ )} is
complete in L2(σ ). This is as amatter of fact a by-product
of Runge–Krarup’s theorem.

(c) The compact operatorU has a representation in terms of
singular elements {λi , ϕi , ξi } such that

(i) λi > 0; λi → 0, i → ∞, (67)

(ii) {ϕi } and {ξi } are both orthonormal sequences in
L2(σ ),

(iii) U =
+∞∑

i=1

λi ξi ⊗ ϕi , (68)

where

(ξi ⊗ ϕi )(u) ≡ ξi 〈ϕi , u〉L2(σ ), (69)

(iv) UT ≡
+∞∑

i=1

λi ϕi ⊗ ξi , (70)

(v)

{
Uϕi = λi ξi

UT ξi = λi ϕi
⇒

{
UTUϕi = λ2i ϕi ,

UUT ξi = λ2i ξi .
(71)
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This representation is also standard (see Appendix of
Sansò and Sideris 2017). Since the kernel of the operator
ξi ⊗ ϕi is

ξi ⊗ ϕi ∼ ξi (σ ) ϕi (σ
′) = ωi (σ, σ ′), (72)

it is clear that the kernel U (σ, σ ′) is given by

U (σ, σ ′) =
+∞∑

i=1

λi ξi (σ ) ϕi (σ
′). (73)

To verify that the series (73) is not only formal one can
observe that indeed

∫∫
ωi (σ, σ ′) ωk(σ, σ ′) dσ dσ ′ = 〈ξi , ξk〉 〈ϕi , ϕk〉 = δik,

(74)

i.e. {ωi (σ, σ ′)} is orthonormal in L2(σ, σ ′), then

+∞∑

i=1

λ2i ≡
∫∫

U 2(σ, σ ′) dσ dσ ′ < c2, (75)

which shows that the series is L2(σ, σ ′) convergent.
Further on, by using the orthonormality of {ξi }, we can
write, ∀u ∈ L2(σ )

‖Uu‖2L2(σ )
=

∥∥∥∥
+∞∑

i=1

λi 〈u, ϕi 〉L2(σ ) ξi

∥∥∥∥
2

L2(σ )

=
+∞∑

i=1

λ2i 〈u, ϕi 〉2. (76)

Since also {ϕi } is orthonormal in L2(σ ), one has

sup
‖u‖L2(σ )

≤1
‖Uu‖L2(σ ) = sup

i
λ2i < c2. (77)

Therefore, if we put λi in decreasing order, one can state
that

‖U‖2 .= λ21. (78)

Finally, we observe that since by (68)

span{ξi } ⊂ R(U ), (79)

with dense embedding, and since R(U ) is densely con-
tained in L2(σ ) by point b), we have that also span{ξi } is
dense in L2(σ ). Since {ξi } is orthonormal we conclude
that it is an orthonormal basis of L2(σ ).

(d) U is an invertible operator, namely the equation

v = Uu = 0 (80)

has only the solution u = 0. In fact, consider the potential

v(r , σ ) =
∫

(r , ψσ,σ ′) u(σ ′) dσ ′, (81)

which is harmonic in �R . By (80)

v(Rσ , σ ) ≡ 0,

so that v ≡ 0 in �. But then, by the unique continuation
property, v ≡ 0 in �R , too; so

u(σ ) = lim
r↘R

v(r , σ ) ≡ 0, (82)

as it was to be proved.
We notice that, from (71), no λi can be equal to zero;

i.e. λi is an infinite bounded sequence tending to zero
through positive values. Moreover, since

u ∈ N (U ) ⇒ u ⊥ span{ϕi } (83)

and since by the above N (U ) = ∅, we conclude that

span{ϕi } ⊂ L2(σ ) (densely); (84)

therefore also {ϕi } is an orthonormal basis of L2(σ ).
(e) As a compact operator we know that U has only a point

spectrum of eigenvalues {μi } such that

μi → 0. (85)

Since μi can never be zero, {μi } is an infinite sequence.
SinceU (σ, σ ′) is real and non-symmetric, it is clear that
in general μi are complex and they come in couples, i.e.
if μi is an eigenvalue, μi is an eigenvalue too, unless
they are both real. Moreover, we know that the spectral
radius ρ of U is also the norm of U , i.e.

‖U‖ = sup
i

|μi | = ρ(U ). (86)

Since {μi } is a bounded sequence with zero as unique
accumulation point it has to be, by suitably choosingμ1,

sup
i

|μi | = max
i

|μi | = |μ1|. (87)

Therefore, there is an eigenfunction p1(σ ) such that

μ1 p1(σ ) =
∫

(Rσ , ψσσ ′) p1(σ
′) dσ ′. (88)
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Now (88) tells us that p1(σ ) has to be a continuous func-
tion, so that we find

|μ1| |p1(σ )| ≤
∫

|(Rσ , ψσσ ′)| dσ ′ M1

(M1 = max
σ

|p1(σ )|).
(89)

On the other hand, since  > 0,

∫
|(Rσ , ψσσ ′)| dσ ′ =

∫
(Rσ , ψσσ ′) dσ ′

= qσ = R

Rσ

,

(90)

as it is clear also from (64). Therefore (89) yields

|μ1| M1 ≤ M1 max
σ

qσ ≤ M1 q0, (91)

namely

|μ1| = ‖U‖ ≤ q0 < 1. (92)

So under the geometrical hypotheses done, particu-
larly (5), U is a contraction and K = I − U is an
invertible operator.

Remark 4 Let us observe that the operator K = I −U , enter-
ing into our theory with the choice PB = I , has indeed
eigenvalues (1 − μi ) and its spectral radius is

ρ(K ) = sup
i

|1 − μi |. (93)

On the other hand, since μi → 0 for i → ∞, we must have

ρ(K ) ≥ 1. (94)

Therefore, considering that, |μi | ≤ |μ1| = q0 < 1, the
only possibility to have ‖K‖ = 1 is that the complex values
μi belong to the filled area in Fig. 2. In particular, any real
negative value of μi would imply ‖K‖ > 1.

Remark 5 We underline that the abstract representation of
U by (68) and of its kernel U (σ, σ ′), (73), is once more
an old achievement of Analysis, going back to Schmidt and
Picard (Goursat 1964). The form (68) in particular provides
an explicit expression for U−1, i.e.

U−1 =
+∞∑

i=1

1

λi
ϕi ⊗ ξi ; (95)

attention has to be paid to the fact that (72) cannot be rep-
resented by a kernel in L2(σ, σ ′), because λi → 0. In fact
U−1, as the inverse of a compact operator, is an unbounded

Fig. 2 Area in the complex plain (the grey colour) to which μi have to
belong to guarantee that ‖K‖ = 1 holds

operator in L2(σ ) with domain dense in this space. More
explicitly, the equation

v = Uu (96)

has a solution that in terms of components can be written as

〈u, ϕk〉 = 1

λk
〈v, ξk〉, (97)

showing that u ∈ L2(σ ) only if ( Goursat 1964, p. 158)

‖u‖2L2(σ )
=

+∞∑

k=1

〈u, ϕk〉2L2(σ )
=

+∞∑

k=1

〈v, ξk〉2L2(σ )

λ2k
< +∞.

(98)

So it is clear that not for every v ∈ L2(σ ) there is a solution
u ∈ L2(σ ) of (96); only if (98) is verified, which is also
known as Picard’s condition, can u be “reasonably” com-
puted. This is just another way to claim that the downward
continuation operator

D = U−1, (99)

is unbounded in L2(σ ) and therefore the downward contin-
uation operation is improperly posed in L2(σ ).

4 The sandwich conjecture and its functional
implications

In this sectionwe restrict our choice of PB toPB = I (see 35),
because this makes the presentation quite smoother, while,
as we will see in Sect. 6, on a numerical ground the other
choice (36) gives only small advantages. Then we start from
Remark 4 and we observe that when the CoB algorithm is
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seen as acting on the whole L2(σ ), the operator K = I −U
cannot have a norm smaller than 1; therefore, the question is
whether we have

‖K‖ = 1; (100)

if on the contrary we would decide that ‖K‖ > 1, the whole
CoB concept would be destroyed. Yet in this section we
would like to analyse the consequences of (100). In other
words, would ‖K‖ be equal to 1, what happens to the resid-
uals s� given by (28)?

As already recalled, (100) is a “reasonable” hypothesis
descending from the sandwich conjecture, namely that call-
ing hnm the eigenvalues of

H = KT K = (I −UT )(I −U ), (101)

one has

[
1 −

(
R

R

)n+1
]2

≥ hnm ≥
[
1 −

(
R

R0

)n+1
]2

; (102)

therefore, would (102) be correct, we should have

sup hnm = ‖K‖2 = 1. (103)

The relation (102) is only guessed on the basis of a pertur-
bative argument (see Sansò and Sideris 2017, Appendix).
We shortly recapitulate the reasoning for the right inequality
in (102); a similar reasoning holds for the left inequality.

Proof Let SR be the sphere completely internal to S, so that
R < R0 < R (recall the definition 4) and S is totally inside
the layer between SR0 and SR . Let us put

U ∼
∑

n,m

qn+1
σ Ynm(σ ) Ynm(σ ′),

U0 =
∑

n,m

qn+1
0 Ynm(σ ) Ynm(σ ′),

(104)

where as always qσ = R
Rσ

, q0 = R
R0

and qσ < q0.
Then

δU = U −U0, δH ∼= −δUT (I −U0) − (I −UT
0 ) δU .

(105)

Indeed U0 is selfadjoint with eigenvalues h0nm = qn+1
0 and

eigenvectors {Ynm(σ )}.
Accordingly H0 = (I − UT

0 ) (I − U0) = (I − U0)
2 has

eigenvaluesh0nm =
[
1 − qn+1

0

]2
and eigenvectors {Ynm(σ )}.

By first-order perturbative formulas we know that

δhnm = hnm − h0nm = 〈Ynm, δH Ynm〉; (106)

the right-hand side of (102) is proved if we can show
that δhnm > 0.

But, using (105),

δhnm = −〈Ynm, δUT (I −U0) Ynm〉
−〈Ynm, (I −UT

0 ) δU Ynm〉
= −2〈(I −U0) Ynm, δU Ynm〉
= −2h0nm 〈Ynm, δU Ynm〉. (107)

On the other hand

δU Ynm =
[
qn+1
σ − qn+1

0

]
Ynm(σ ), (108)

so that

〈Ynm, δU Ynm〉 =
∫ [

qn+1
σ − qn+1

0

]
Y 2
nm(σ ) dσ < 0.

(109)

Since h0nm > 0, (107) and (109) give δhnm > 0 as we
wanted to prove. ��

The authors want to comment once more that the above
proof is only heuristic in character, and that it holds under
the condition that (105) be satisfied, i.e. that the linearization
of U with respect to U0 gives a good approximation of this
operator.

So we assume that (100) is true, namely that K is a non-
expansive operator. An immediate consequence is that s� is
a bounded sequence

‖s�‖ ≤ ‖ f ‖ (110)

and therefore a subsequence of it is weakly convergent; yet
the point is whether such a limit is 0 or not and whether 0 is
the limit for the whole sequence. Even more we would prefer
to have a stronger result, namely that s� → 0 in the L2(σ )

norm. This is not possible in general, yet a close result can
be obtained by using the concept of Cesaro limit.

Definition 1 We say that the sequence of real numbers {xn}
has the Cesaro limit x if the Cesaro means

CN ({xn}) = 1

N

N∑

n=1

xn (111)

have x as usual limit, i.e.

lim
N→∞CN ({xn}) = x . (112)

In this case we write

xn
c→ x . (113)
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Remark 6 It is obvious that such a definition can be general-
ized to any topological space, where the definition of the limit
of a sequence is specified by the topology. So, for instance,
in a Hilbert space X we say that

xn
c→ x (114)

means that

‖CN ({xn}) − x‖X → 0. (115)

Similarly, endowing X of the weak topology, we say that

xn
c�−→ x (116)

if

〈h,CN ({xn})〉X → 〈h, x〉X ∀h ∈ X . (117)

Supplied with this definition, we turn our attention to the
sequence {s�} ∈ L2(σ ) and recalling (28) we see that their
Cesaro means can be written as

CN ({sn}) ≡ 1

N

N∑

n=1

Kn f . (118)

It is therefore convenient to define the mean operators

MN = 1

N

N∑

n=1

Kn; (119)

it is obvious that, like K , all the mean operators are non-
expansive, namely

‖MN‖ ≤ 1. (120)

Considering the sequence MN ( f ) ≡ CN ({sn}), we get an
immediate result recurring to the ergodic theory,more specif-
ically to the Mean Ergodic Theorem (Yosida 1995).

Proposition 1 If ‖K‖ ≤ 1 we have

sn
c→ 0 in L2(σ ), (121)

i.e.

∀ f ∈ L2(σ ), MN ( f ) −−−→
L2(σ )

0. (122)

Proof We adapt here the very general proof given in Yosida
(1995) to our much simpler case.

We first notice that the following identity holds

KMN − MN = 1

N
(K N+1 − K ), (123)

so that

‖KMN − MN‖ ≤ 2

N
→ 0. (124)

Now, given (120) we know that ∀ f ∈ L2(σ ) fixed, the
sequence MN ( f ) is bounded by ‖g‖2; so there is a subse-
quence {N j } such that

MNj ( f )
�−→ g (125)

for some g ∈ L2(σ ).
Therefore

KMNj ( f ) − MNj ( f ) −→ 0 (126)

by (124) and on the same time (K is continuous)

KMNj ( f ) − MNj ( f )
�−→ Kg − g; (127)

so we must have

Kg − g = −Ug = 0 ⇒ g = 0, (128)

because of property d) in Sect. 3. We conclude that

MNj ( f )
�−→ 0. (129)

Since the same reasoning can be repeated for any other
subsequence {Nk}, we can conclude that for the whole
sequence

MN ( f )
�−→ 0. (130)

Hence

sn
c�−→ 0. (131)

Now take any w ∈ R(U ), i.e

w = Uu, u ∈ L2(σ ) (132)

and notice that

MN (w) = MN (Uu) = U (MN (u)). (133)

Since MN (u)
�−→ 0 and U is compact by property a) from

Sect. 3, we find

MN (w) → 0. (134)
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On the other hand we know thatR(U ) is dense in L2(σ )

by property b) from 3; then given any f ∈ L2(σ ) and any
ε > 0 we can find w ∈ R(U ) such that

‖ f − w‖ < ε. (135)

Then we have

‖MN ( f )‖ = ‖MN ( f − w) + MN (w)‖
≤ ‖ f − w‖ + ‖MN (w)‖ ≤ ε + ‖MN (w)‖.

(136)

Therefore, by using (134) we get

lim
N→∞‖MN ( f )‖ ≤ ε, (137)

i.e.

MN ( f ) → 0. (138)

��
Remark 7 Returning to (29), we see that

s�
c→ 0 ⇒ F�(σ )

c→ f (σ ), (139)

namely that

1

N

N∑

�=1

F�(σ ) → f (σ ). (140)

Since, by definition,

F�(σ ) =
�∑

k=1

fk(σ ), (141)

(140) can be written in the comfortable form

N∑

k=1

(
1 − k − 1

N

)
fk(σ ) → f (σ ), (142)

showing that f (σ ) can be obtained directly from fk(σ ) as
limit of the series (142).

5 Amodified CoB for global models

Agravitymodel, as recalled in the Introduction, is just a finite
degree potential (see 1). The reason to concentrate on this par-
ticular case is twofold: on the one hand, this is what we really
want to get in our analysis, namely that CoB is converging
for a global model. On the other hand, we will introduce in

the space of global models of degree N a “natural” topol-
ogy, which however would become more problematic to be
extended to the whole L2(σ ).

So we first define the space of global models of degree N

MN =
{
u =

N∑

n=0

n∑

m=−n

unm

(
R

r

)n+1

Ynm(σ )

}
, (143)

with

{unm} ∈ R
(N+1)2 . (144)

Then we observe that, given any smooth star-shaped surface,
S ≡ {r = Rσ , Rσ > 0}, u ∈ MN is totally identified by its
trace on S, i.e. we have the one-to-one correspondences

v(σ ) =
N∑

nm

unm Ynm(σ ) ←→ u ∈ MN ←→ f (σ )

=
N∑

n,m

unm qn+1
σ Ynm(σ ).

(145)

A rapid inspection of the CoB scheme in Fig. 1 shows
that (145) can be formally written as

f = �S u = �S v = �S �SR u; (146)

each operator in (146) is invertible, whence the above corre-
spondence.

We call

HN = span{qn+1
σ Ynm(σ )} ⊂ L2(σ ), (147)

HN = span{Ynm(σ )} ⊂ L2(σ ) (148)

andwenotice thatMN , HN ,HN are all (N+1)2 dimensional
linear spaces, since their elements depend ultimately on the
(N + 1)2 real constants unm . The one-to-one relations (146)
can therefore be used to introduce a norm in one of them and
then extend it to the others by isometry.

In particular, we will define

|u|2MN
= |v|2HN

= | f |2HN
=

N∑

n=0

n∑

m=−n

u2nm . (149)

Such norms correspond to the usual scalar product in L2(σ )

for HN

〈h, g〉HN = 〈h, g〉L2(σ ), (150)

such that

{Ynm(σ ); n ≤ N } (151)
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is an orthonormal basis of HN , and to the unusual scalar
product

{
Uh = v ∈ HN , Ug = w ∈ HN ,

〈w, v〉HN = 〈g, h〉L2(σ ).
(152)

It is clear that in this case

{qn+1
σ Ynm(σ )} (153)

is an orthonormal basis ofHN .
It is clear from (149) and (152) that if we tried to go to

infinite dimensions, N → ∞, with this definitions we would
end up with functions v defined on S, that in any way can be
harmonically continued down to SR ; at this point it is more
handy to work directly with finite degree potentials, what
justifies our previous choice.

Now let us return to the CoB scheme of Fig. 1. The iter-
ation is accomplished by going from S to SR with the pull
back operator PB and then going back to S by the upward
operator U . Spectrally this means (see 38)

PB(qn+1
σ Ynm) = cn q

n+1
σ Ynm, (154)

U (Ynm) = qn+1
σ Ynm . (155)

As we see from (155) we always have

U : HN → HN ; (156)

however in general we have that, unless cn qn+1
σ is constant,

i.e. S is a sphere, PB sends functions in HN to a subspace
of L2(σ ), spanned by many more harmonics. The ordinary
practice at this point would be that we restrict Rσ to be a
surface with finite spectrum, i.e. Rσ ∈ Hp for some p. Yet
this implies that qσ = R/Rσ has full spectrum up to infinity
and the same would be true for f = �su (Bucha et al. 2019).
So to cut short the discussion, we make here the unconven-
tional, but numerically equivalent, hypothesis that directly
qσ ∈ Hp for some p. Then, returning to our discussion, even
assuming that

cn = 1 (PB = I ), qσ ∈ Hp, (157)

we have

qn+1
σ ∈ H(n+1)p, qn+1

σ Ynm ∈ Hn+(n+1)p, (158)

namely

PB : HN → HN ′ , N ′ = n + (n + 1)p, (159)

and

U PB : HN → HN ′ . (160)

This means that at every cycle in the iteration we are accu-
mulating more and more high degrees in the residuals

s = K f = (I −U PB) f (161)

which are not useful in building the approximation to f ,
which we know a priori to have zero components on all the
degrees beyond N . An easy remedy to this anomalous infla-
tion of the norm of the residuals is just to truncate U PB f
at the maximum degree N . This can be done in two ways,
either by projecting U PB f on HN , using the orthonormal
basis {qn+1

σ Ynm} and the scalar product 〈·, ·〉HN , or by pro-
jecting PB f on HN , using the orthonormal basis {Ynm} and
the scalar product 〈·, ·〉HN = 〈·, ·〉L2(σ ). The two results coin-
cide, so we can choose the second approach and introduce
the truncation operator TN with kernel

TN (σ, σ ′) =
N∑

n,m

Ynm(σ ) Ynm(σ ′) (162)

to be used with the ordinary L2(σ ) scalar product.
We find then,

f =
N∑

n,m

fnm cn q
n+1
σ Ynm ∈ HN , (163)

UTNPB f =
N∑

jk

q j+1
σ Y jk

(
N∑

n,m

〈Y jk, cn q
n+1
σ Ynm〉 fnm

)
,

(164)

namely the matrix K jk,nm performing the iteration f →
K f ∈ HN , is given by

K jk,nm = δ jn δkm − 〈Y jk, cn q
n+1
σ Ynm〉. (165)

Since the scalar product 〈·, ·〉 is coupled with the norm of f
in HN , we also have that

‖K‖ = ‖I −U TN PB‖ = ‖{K jk,nm}‖, (166)

where the matrix norm is given by the square root of the
maximum eigenvalue, i.e. the spectral radius of the matrix.

Remark 8 It is convenient to elaborate already here the form
of the matrix K jk,nm when cn is not just 1, but it is given
by cn = 1 + (n + 1) hσ

Rσ
. Recalling that hσ = Rσ − R and

noticing that

hσ

Rσ

= 1 − qσ , (167)

we easily find

cn q
n+1
σ = (n + 2) qn+1

σ − (n + 1) qn+2
σ , (168)
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that is the formula we will use in the next section.

Remark 9 It is important to understand that when we pass to
finite dimensional potentials and on the same timewe restrict
the CoB algorithm to a finite dimensional subspace of L2(σ ),
i.e.HN , we represent the operator K by a finite matrix which
has only a finite number of singular values. So the argument
that necessarily they tend to 1 used to claim that ‖K‖ = 1 (or
larger) (see 100) is not valid here and in fact, if the sandwich
conjecture (see 101 and 102) holds, we can expect

‖K‖ < 1. (169)

Indeed, in lack of a rigorous proof, the contractive charac-
ter of the finite dimensional K expressed in (169) is just an
expectation, even if the sandwich conjecture should hold true.

6 Numerical experiments

In this section, we numerically examine the conjecture (169),
the validity of which is critical for CoB to converge. We
start by studying the pull back operator (35), for which
cn qn+1

σ = qn+1
σ (see 40). The experiments are performed

for surfaces S of various complexity: a synthetic topogra-
phy (Sect. 6.1) and the topographies of the asteroids Bennu
(Sect. 6.2) andEros (Sect. 6.3). Finally, in Sect. 6.4,webriefly
report the results obtained with the improved pull back oper-
ator (36) with cn qn+1

σ being given by (168).
Before moving to the experiments, let us emphasize that

numerical investigations of this kind can never prove or
disprove the convergence of CoB. Nevertheless, a rigorous
analytical study with realistic surfaces S appears to be too
difficult, so the numerics is used to shed some light on the
behaviour of CoB in practice. Hopefully, the experiments
will allow us to draw some general conclusions.

6.1 Synthetic topography

Let S be represented by a zonal function as

qσ (ϑ) = 1 − a + α PM (cosϑ). (170)

The shape of S is dominated by the oscillations of the Legen-
dre polynomial PM (cosϑ), while the parameters a and α are
numerical constants to control the oscillations. In any case,
a and α are chosen such that qσ (ϑ) < 1 for all ϑ (see 11).
We call this surface a synthetic topography of degree M .

As an advantage, the synthetic topography is independent
of the longitude, allowing us to think of CoB as being inde-
pendent of the longitude, too. This reduces the size of the
matrix K jk,nm and simplifies the evaluation of its elements

to (see 165)

K jn = δ jn − 1

2

π∫

0

Y j0(ϑ) qn+1
σ (ϑ) Yn0(ϑ) sin ϑ dϑ

= δ jn −
√
2 j + 1

√
2n + 1

2

×
π∫

0

Pj (cosϑ) qn+1
σ (ϑ) Pn(cosϑ) sin ϑ dϑ. (171)

Note that the (2π)−1 factor is missing before the integrals
due to the independence on the longitude. For n = j and
qσ = 1, we therefore have

2n + 1

2

π∫

0

Pn(cosϑ) Pn(cosϑ) sin ϑ dϑ = 1. (172)

The matrix K jk was computed for two synthetic topogra-
phies of degree M = 180, one with a1 = 0.001 and α1 =
0.0003 and the other with a2 = 0.01 and α2 = 0.003. On the
Earth, the oscillations of the two topographies would roughly
correspond to the range of max

σ
Rσ − min

σ
Rσ ≈ 9 km and

90km, respectively, with the half-wavelength of 110km. The
larger is the range max

σ
Rσ −min

σ
Rσ , the more non-spherical

is the surface S which, in turn, increases the numerical com-
plexity. The {K jn} elements were obtained by (171) for
j = 0, 1, . . . , N and n = 0, 1, . . . , N , where N gradually
varies from 0 to 720. The scalar products were computed in
Fortran in double and quadruple precision using the numeri-
cal integration technique of Fukushima (2017). The relative
error tolerance δ, affecting the accuracy of the numerical
integration, was set to δ = 10−16 in double precision and
to δ = 10−32 in quadruple precision. In double precision,
the norms ‖K‖ were computed for all N = 0, 1, . . . , 720 in
Python using the norm function (the ord=2 flag) from the
numpy.linalg module (Harris et al. 2020). In quadruple
precision, the norms were computed in MATLAB using the
ADVANPIX toolbox (www.advanpix.com).

Figures 3 and 4 show that somewhere around degree 700,
the norms in double precision do not satisfy the (169) con-
jecture, as they are equal to or larger than the threshold of 1.
In quadruple precision, the inequality (169) is, however, sat-
isfied for all studied N . Therefore, we attribute the jump near
degree 700 to numerical errors caused by the limited accu-
racy of the double precision environment. A comparison of
the two figures also shows that the norms of the second syn-
thetic topography approach the threshold of 1 faster, owing
to the stronger oscillations of S.

As a conclusion,we expect the conjecture (169) is satisfied
for the studied synthetic topographies, even for the strongly
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Fig. 3 Norms ‖K‖ as a function of the maximum harmonic degree
of the scalar products N for a synthetic topography (170) defined by
M = 180, a1 = 0.001 and α1 = 0.0003. The abbreviations dp and qp
stand for the double andquadruple precision environments, respectively,
in which the scalar products and the norms were computed

Fig. 4 The same as Fig. 3 but for a more oscillatory synthetic topogra-
phy defined by M = 180, a2 = 0.01 and α2 = 0.003

oscillating one. This conclusion is valid at least up to the
studied maximum degree N = 720.

6.2 Asteroid Bennu

In this section, the surface S is represented by a realistic shape
model of the asteroid Bennu. We define Rσ as

Rσ =
15∑

n=0

n∑

m=−n

rnm Ynm(σ ), (173)

where rnm are spherical harmonic coefficients of Bennu’s
shape taken from the Bucha and Sansò (2021) study. This
scenario is significantly more challenging than that with
the synthetic topographies for two reasons. First, Rσ now
varies both with the colatitude and longitude, so that all
{K jk,nm} elements up to some maximum degree N are con-
sidered. Second, the ratio between the radii of the minimum
Brillouin sphere and the maximum Bjerhammar sphere, the
shape ratio R/R0 (see Bucha and Sansò 2021), is about
282.5 m/224 m ≈ 1.261 for Bennu while it is only about
(6378 km + 90 km)/6378 km ≈ 1.014 for the second syn-
thetic topography from Sect. 6.1. The shape ratio reflects the

extent, to which the surface S deviates from a sphere. Large
shape ratio therefore implies highly non-spherical surface S,
hence increased numerical complexity (see Sect. 6.1).

Due to the complexity of this scenario, we were able to
compute K jk,nm only up to degree N = 65. To get the scalar
products, we used δ = 10−8 in the numerical integration
technique at first and executed the computation in double
precision. Despite the seemingly lowmaximumdegree of 65,
the norms were revealed to exceed the threshold of 1 already
at degree N = 31 (Fig. 5). To make sure this result is not
affected by numerical inaccuracies, we tightened the relative
error tolerance to δ = 10−16. With the improved numerical
accuracy, it turned out the norms are in fact smaller than 1 for
all N ≤ 63, meaning that the critical degree moved to higher
figures (see Fig. 5). It would certainly be of interest to repeat
the experiment in quadruple precision with some δ < 10−16

to confirm/disprove that the degree of 63 is not again limited
by the numerics, similarly as we did in Sect. 6.1. Unfor-
tunately, this is not possible for us with our hardware and
software, as already the integration in double precision with
δ = 10−16 required a few weeks of wall-clock time when
using about 96 CPU cores. This clearly demonstrates that
our numerical experiments cannot provide definite answers
on the validity of (169), but at most some hints, though valu-
able.

To summarize the experiment, we have shown that even
with as irregularly shaped body as the asteroid Bennu, the
norms stay below the threshold of 1 at least up to degree 63.
Using the very same shape of Bennu, Bucha and Sansò
(2021) have shown that a relative accuracy of ∼10−6 can
be achieved on S in terms of the gravitational potential that
is expanded in a single series of external spherical harmonics
up to degree 65. This might indicate that CoB could deliver
reasonably accurate gravity field models even in advanced
conditions.

Fig. 5 Norms ‖K‖ obtained for the asteroid Bennu in double precision
with two relative error tolerance parameters δ. The blue line is above
the threshold of 1 for N ≥ 31 and the orange one for N ≥ 64
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Fig. 6 Norms ‖K‖ obtained for the asteroid Eros in double precision
with the relative error tolerance of δ = 10−16. The norms are larger
than 1 for N ≥ 6

6.3 Asteroid Eros

Finally, we repeated the previous experiment, but this time
with a non-spherical asteroid Eros. The shape coefficients
rnm of Eros were taken from the Zuber et al. (2000) study up
to degree 5. The shape ratio for such defined surface reads
roughly 16000 m/3250 m ≈ 4.923 which demonstrates the
non-sphericity of Eros.

The K jk,nm elements were computed up to degree N =
20 in double precision with δ = 10−16 and in quadruple
precisionwith δ = 10−32. In both cases, the norms are almost
identical and quickly approach the threshold of 1, exceeding
it already at degree 6 (Fig. 6). This indicates that there might
indeed exist conditions, for which the conjecture (169) is
not satisfied. Yet, we cannot reject the conclusion that (169)
is satisfied but instead quadruple precision and the relative
error tolerance of δ = 10−32 still do not ensure sufficient
numerical accuracy for Eros.

6.4 Improved pull back operator

To study the effect of the Taylor order on the downward con-
tinuation, we repeated some of the previous experimentswith
the improved pull back operator (36). We studied the norms
for the second synthetic topography in quadruple precision
(see Sect. 6.1) and for Eros in double precision (Sect. 6.3).
The plots of the norms are not shown here as the curves are
visually the same as seen in the previous sections.

With the second synthetic topography, the norms stayed
below the threshold of 1 with both variants of the pull back
operator.However, the improved pull back operator produced
slightly smaller norms (e.g., 0.999 vs. 0.994 at degree 720 in
favour of the improved pull back operator). In case of Eros,
the norms exceeded the threshold of 1 at degree 7 which
is one degree higher than with the pull back operator (35)
(see Sect. 6.3). The generally smaller norms indicate that
the improved pull back operator (36) has better convergence
properties than (35), though the enhancement is probably not
significant.

7 Some conclusions and perspectives

In the paper the concept of change of boundary has been
revisited and in particular the functional implications of the
hypothesis that

‖K‖ ≤ 1 (174)

have been explored, showing that even in the case of a non-
expansive operator, ‖K‖ = 1, we can have a convergence of
the method when the concept of Cesaro limit is used.

The hypothesis (174) has no strict analytical proof for the
moment, yet it is a consequence of a first-order perturbative
argument, in which the surface S ≡ {r = Rσ } is supposed
to be not too far from a sphere.

In lack of a rigorous proof, our hypothesis has been subject
to numerical tests in order to verify its plausibility.

In the first experiment, we have used data from a simula-
tion of the gravity field of objects with various topographic
surfaces with a width up to 1.4 % of the radius (∼90 km
in the case of the Earth) and wavelength corresponding to a
maximum degree 720.

In the second experiment, data related to the asteroid
Bennu (Bucha and Sansò 2021) have been used. In this
case the topographic surface is quite smooth but the ratio
between minimum Brillouin radius and maximum Bjerham-
mar radius, R/R0, is about 1.261 meaning a significant, but
not too large, deviation from a spherical shape. In both exper-
iments, the hypothesis (174) has proved to be tenable.

In a third experiment we have been stressing the condi-
tions of validity of hypothesis (174) by using data related to
the asteroid Eros which has a shape very far from a sphere,
with ratio R/R0 ≈ 4.923. In this case the ‖K‖ norm has
been estimated to be larger than 1, i.e. the CoB theory is not
applicable.

Furthermore two forms of the pull back operator have
been tested, arriving at the conclusion that they display a
not significantly different behaviour as for what concerns
convergence.

Summarizing wemay claim that the hypothesis (174), and
the consequent convergence of the method, can be consid-
ered as effective when working with boundaries S not far
from the sphere, as for long wavelength behaviours, while
short wavelength perturbations seem not to effect too much
convergence.

On the contrary, for a surface S significantly deformed
with respect to the sphere, we certainly cannot rely on the
CoB method and we expect non-convergence even for low-
degree truncated models.

The threshold between the two behaviours still needs to
be studied both theoretically and numerically.
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