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Abstract
Earth orientation parameters (EOPs) are essential in geodesy, linking the terrestrial and celestial reference frames. Due to
the time needed for data processing and combining different space geodetic techniques, EOPs of the highest quality suffer
latencies from several days to several weeks. However, real-time EOPs are needed for multiple geodetic and geophysical
applications. Predictions of EOPs in the ultra-short term can overcome the latency of EOP products to a certain extent.
Traditionally, predictions are performed using statistical methods. With the rapid expansion of computing capacity and data
volume, the application of deep learning in geodesy has become increasingly promising in recent years. In particular, the Long
Short-TermMemory (LSTM) neural networks, one of the most popular Recurrent Neural Network varieties, are promising for
geodetic time series prediction. In this study, we investigate the potential of using LSTM to predict daily length of day (LOD)
variations up to ten days in advance, accounting for the contribution of effective angular momentum (EAM). The data are first
preprocessed to obtain residuals by combining physical and statistical models. Then, we employ LSTM networks to predict
the LOD residuals using both LOD and EAM residuals as input features. Our methods outperform all other state-of-the-art
methods in the first eight days with an improvement of up to 43% under the first EOP Prediction Comparison Campaign
conditions. In addition, we assess the performance of LOD predictions using more extended time series to consider the
improvements of EOP products over the last decade. The results show that extending data volume significantly increases the
performance of the methods.

Keywords Earth orientation parameters (EOPs) · Length of day (LOD) · Long short-term memory (LSTM) · Deep learning ·
Hybrid modeling · Time series prediction

1 Introduction

Earth orientation parameters (EOPs) describe the motion
of the Earth-centered-Earth-fixed reference frame (Interna-
tional Terrestrial Reference Frame, ITRF) w.r.t. the barycen-
tric and barycentric-fixed celestial reference frames (Interna-
tional Celestial Reference Frame, ICRF) (Petit and Luzum
2010). This relation is a function of time and consists of
several parameters, including Universal Time (UT1), coor-
dinates of the pole (x, y) of Earth’s rotation axis, and celestial
pole offsets (dX, dY). Of particular interest is UT1, which is
not a uniform timebut includes variations due to irregularities
in the Earth’s rotation period. Two important parameters that
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can be derived fromUT1 are the length of day (LOD, usually
denoted byΔ) and the difference betweenUT1 and the Coor-
dinated Universal Time (UTC), denoted by dUT1. LOD is
the first negative derivative of dUT1 w.r.t. time (Gross 2007),
i.e., LOD = −d(UT1 − UTC)/dt and usually provided with
a diurnal sampling rate. LOD is not directly included in the
transformation from ITRF to ICRF, but can be used to densify
and predict dUT1, the determination of which relies on Very
Long Baseline Interferometry (VLBI, Sovers et al. 1998;
Senior et al. 2010; Mikschi et al. 2019). The variations in
LOD are at the milliseconds level, corresponding to the sub-
meter level on the Earth’s surface at the equator. Therefore,
accurate LOD plays a vital role in many space applications.
Since high-precision EOPs (including LOD) are provided at
latencies of up to around onemonth, their accurate prediction
can overcome shortcomings for real-time demands in navi-
gation or orbit determination, for example. As a result, the
precise ultra-short-term prediction of LOD is an important
task in geodesy.
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The fundamental requisite to understanding the changes
in the EOPs is to apply the principle of conservation of
angular momentum to the Earth system. Under this prin-
ciple, two primary reasons for changes in Earth’s rotation
can be summarized: internal mass redistribution and the
exchange of angular momentum between the solid Earth and
fluid parts (Gross 2007). In addition, the applied external
torques also have substantial impacts, known as tides (Dehant
and Mathews 2015). Therefore, understanding the dynam-
ics and redistribution of the fluid layers of the atmosphere,
oceans, and the terrestrial hydrosphere is critical for under-
standing the non-tidal changes of EOPs, caused by the fluid
layers of the Earth (Dobslaw and Dill 2019). The effective
angular momentum functions (EAM), including the AAM
(atmospheric angular momentum), OAM (oceanic angular
momentum), HAM (hydrological angular momentum), and
SLAM(sea-level angularmomentum), describe the non-tidal
geophysical excitations of EOPs (Dobslaw and Dill 2018,
2019). Among them, the zonal component (z-component)
of the AAM dominates the non-tidal changes on a short
timescale of LOD with some additional contributions from
the ocean and hydrological system (Holme and De Viron
2013). In addition, the angular momentum is typically cat-
egorized into mass and motion terms, except SLAM, which
only contains the mass term.

There have been many studies on the prediction of LOD
time series, which can be divided into two categories, namely
only based on LOD data or in a combination of LOD
and its geophysical excitation. In the last few decades,
most efforts focused on the first category. Many statisti-
cal forecasting methods have been applied, including the
autoregressive moving average model (Hamdan and Sung
1996) and auto-covariance based procedure (Kosek et al.
1998). The combinations of individual methods were also
realized, like the combination of fuzzy-inference system and
wavelet filtering (Akyilmaz et al. 2011), which is superior
to the purely fuzzy logic method for the ultra-short term. Xu
et al. (2012) achieved accurate predictionwithmean absolute
error (MAE) up to 0.13ms in the ultra-short term by com-
bining least-squares (LS), autoregressive (AR) model and
Kalman filter. Besides, many studies realized the potential
application of machine learning algorithms for prediction of
EOPs. Schuh et al. (2002) applied an artificial neural network
(ANN) to predict polarmotion andLOD,which showed com-
parable results to traditional statisticalmethods.Other studies
using ANNs and their combination with stochastic methods
can be found in (Kosek et al. 2005; Liao et al. 2012; Lei
et al. 2017). In addition, Lei et al. (2015) applied another
type of machine learning algorithm called extreme learning
machine,which tried to reduce the computational complexity
of the training phase. The first EOP Prediction Comparison
Campaign (EOP PCC), organized by the Polish Academy of
Sciences, took place from 2005 to 2009, including more than

20 methods (Kalarus et al. 2010). The primary conclusion of
the first EOP PCCwas that there was no best algorithm for all
parameters in all prediction horizons. Besides, it also high-
lighted that more attention should be put on the contribution
of EAM. Freedman et al. (1994) considered the contributions
of meteorological AAM forecast data in their Kalman fil-
ter model. They concluded that the AAM information could
be an important adjunct to geodetic measurements of Earth
orientation. In recent years, more and more studies include
forecasts of geophysical excitations (AAM or EAM) into
EOP predictions (Niedzielski and Kosek 2008; Kosek 2012;
Dill et al. 2019; Modiri et al. 2020; Kiani Shahvandi et al.
2022b). Among them,Modiri et al. (2020) combined the sin-
gular spectrum analysis (SSA) and Copula theory to predict
LOD in the ultra-short term, which reached the state-of-the-
art results of day-5 to 10 with MAE of 0.06ms to 0.08ms,
whereas the Kalman filter algorithm (Freedman et al. 1994;
Gross et al. 1998) dominated the prediction of the first four
days with MAE of 0.04ms to 0.06ms. Only a few studies
considered the EAM contributions in machine learning algo-
rithms. Wang et al. (2008) incorporated the LOD and AAM
prediction series into an ANNmodel to predict LOD for five
days and proved a significant improvement up to 27.6%.

With the availability of more data and computational
resources, deep learning approaches have gained colossal
attention in recent years because of their high modeling and
predicting power on different datasets. The recent achieve-
ments, shortcomings and outlooks of machine learning and
deep learning approaches in geoscience are discussed by
Reichstein et al. (2019) and Bergen et al. (2019). The authors
concluded that the application of machine learning in geo-
sciences is very promising and highlight the combination
of physical modeling and machine learning approaches as
a main future research direction. Motivated by the success
of time series forecasting with deep learning, we present
the application of this approach in the context of LOD pre-
diction. In particular, we focus on the so-called sequential
deep learning models because of the time series nature of
LOD data. More specifically, among the sequential models,
we use the Long Short-Term Memory (LSTM, Hochreiter
and Schmidhuber 1997; Gers et al. 2000) neural network
architecture, which is one of the most popular varieties of a
Recurrent Neural Network (RNN, Rumelhart et al. 1985), as
it can solve the vanishing gradient problem and thus, cap-
ture long-term dependencies. LSTM has proven to be highly
accurate in the prediction of time series data in geosciences,
including land deformation analysis (Pu et al. 2018), fog fore-
casting (Miao et al. 2020), and ocean temperature prediction
(Zhang et al. 2020). The geodetic community also realizes
the potential application of LSTM for predicting geodetic
time series (Kitpracha et al. 2019; Kiani Shahvandi and Soja
2021; Kiani Shahvandi and Soja 2022).
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Our study focuses on ultra-short-term prediction of LOD
using a hybrid modeling approach, which combines phys-
ical, statistical and deep learning methods while consid-
ering geophysical excitations. We test four varieties of
LSTM neural networks, considering both LOD and EAM
(AAM+OAM+HAM) data as inputs for LOD prediction.
In the preprocessing phase, we remove the secular trend,
tidal and seasonal variations of LOD by combining the
Savitzky–Golay (SG) filtering (Savitzky and Golay 1964),
tidal corrections (Petit and Luzum 2010), and least-squares
sinusoidal regression (Brockwell and Davis 2002) to gener-
ate the LOD residuals. We also use the sinusoidal regression
to remove seasonal variations in theEAM time series (includ-
ing 6-day and 10-day forecasts) to create the EAM residuals.
Then, our networks consider the LOD and EAM residuals as
input features to learn from them and predict the LOD residu-
als in the next ten days.Additionally, signal portions removed
in the preprocessing phase (we call them deterministic in the
following) are predicted to recover the full LOD signal. We
first compare the performance of four LSTM variants with
other studies of EOP PCC in a hindcast experiment (1996–
2008) under the same conditions. Then, extended data from
1985 to the end of 2020 are considered to study the impact
of data volume. In addition, all the experiments are repeated
oncewithAAMand corresponding forecasts instead of EAM
to analyze the contributions of oceanic and hydrological sys-
tems.

The rest of this paper is organized as follows: Sect. 2
introduces the principles of applied methods. The data, the
preprocessing, as well as the prediction strategy, are dis-
cussed in Sect. 3. The results and discussions are reported
in Sect. 4. Finally, conclusions are stated in Sect. 5.

2 Methods

2.1 Savitzky–Golay filter

For the extraction and the modeling of interannual and
decadal trend signals, we use a SG filter (Savitzky and Golay
1964), which belongs to the class of finite impulse response
filters (Oppenheim and Schafer 2013; Schafer 2011). The SG
filter is based on the concept of least-squares curve fitting
in successive windows. It resembles the so-called weighted
moving average method in which the weights of smoothing
differ according to the location in the window. However, to
derive theweights, the coefficients of thementioned curve are
determined using the least-squares approach. In mathemati-
cal representations, withm being an integer, let the (2m+1)
values in the window around the j th point of the time series
y be y j−m, . . . , y j+m . The SG filter tries to minimize the
following quadratic function

+m∑

i=−m

q∑

k=0

(aki
k − y j−i )

2 −→ min (1)

The coefficients ak, k = 0, . . . , q are determined based
on y j−m, . . . , y j+m and multiplied with the powers of i =
−m, . . . ,m to give a weighted moving average.

Compared to other filtering methods, the SG filter obtains
a good trade-off between waveform smoothing and preserva-
tion of important signals and thus, outperforms other filtering
methods (Liu et al. 2016). The kernel of a SG filter is only
needed to be computed once and the smoothing process is
based on discrete convolution (Savitzky and Golay 1964;
Schafer 2011), which results in a remarkable computational
efficiency. Therefore, SG filters are broadly used by the
geoscience community to separate additive noise from sig-
nals (Liu et al. 2016; Roy 2020).

2.2 LSTM

In this part, we give an overview of the LSTM network
architecture (Hochreiter and Schmidhuber 1997). Motivated
by resolving the issue in modeling the long-term depen-
dencies in RNNs (Rumelhart et al. 1985), LSTM uses the
forget mechanism to prevent overflow of information (Gers
et al. 2000). As a result, the so-called problem of vanishing
gradients, which is a drawback of RNNs, is avoided. This
makes LSTM a powerful method for sequential data predic-
tion, where the order of and dependencies between values are
essential. In the following, we review the LSTMarchitecture.

Definition 1 Let the inputs and targets to the LSTM network
be denoted by X = [x1, . . . , xn] and Y = [y1, . . . , yn],
respectively, where xi ∈ R

s× f and yi ∈ R
o×1. The number

of samples, sequence length, number of features and output
length are denoted by the integers n, s, f and o, respectively.
The basic LSTM network uses 8 groups of weights and 4
groups of biases to map the input xi to the target yi . For this
purpose, the temporal components of each input sample xi ,
which are denoted by xi,t with t = 1, . . . , s, are added recur-
rently. The mathematical representation of a single LSTM
layer is as follows:

It = σ
(
UI · xt + WI · ht−1 + bI

)

Ft = σ
(
UF · xt + WF · ht−1 + bF

)

Ot = σ
(
UO · xt + WO · ht−1 + bO

)
(2)

Ct = Ft ∗ Ct−1 + It � σ
(
UC
i · xt + WC

i · ht−1 + bC
)

ht = tanh (Ct ) � Ot

in which I, F and O are the input, forget, and output gates,
respectively, whereasC refers to cell state. ht denotes the so-
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called hidden states. In addition, the weights are denoted by
U and W, biases by b, sigmoid function with σ , hyperbolic
tangent functionwith tanh, and theHadamard (element-wise)
product with �.

Using the initial value of h0 = 0, the input, forget, output
gates, and cell input are computed. Then, based on the initial
value C0 = 0, the cell state is updated for the current step.
The cell state and output gates are then used for the update
of the hidden state. The computed values for hidden and cell
states are used for the next steps. The essential steps would
have larger hidden state values so that the input, forget and
output states can be mapped onto a larger value (closer to 1).
The reason is that a value closer to 1 in the sigmoid func-
tion can keep the hidden states in the next cell since smaller
values (closer to 0) would have value 0 in the hyperbolic tan-
gent function. Therefore, LSTM can effectively capture time
series dynamics.

Definition 2 Let the outputs of the neural networks be
denoted by Ŷ. The optimization of the network by the loss
functionL (Ŷ,Y) refers to the followingminimization prob-
lem

argmin
θ

n∑

i=1

L (Ŷi ,Yi ) (3)

where θ denoting all the trainable parameters including the
weights U,W and biases b.

Remark 1 We use the L1 norm for the optimization, thus
Eq. (3) reads

argmin
θ

n∑

i=1

|Ŷi − Yi | (4)

Other choices for the loss function would be the Lk, k =
2, 3, ... norms. However, for our problem of LOD prediction
the L1 norm has been proven to perform the best compared
to our experiments using other loss functions. Furthermore,
evaluation metrics will also be based on the L1 norm, so it
is logical to train the networks trying to minimize this norm.
For the optimization process, the Adam optimizer is used to
derive the optimal set of weights and biases (Kingma and Ba
2014).

Definition 3 TheEncoder–DecoderLSTM(EDLSTM)archi-
tecture (Nayak and Ng 2020) is a variant of LSTM for
sequence-to-sequence prediction problems where the num-
ber of input items differs from the number of output items.
The encoder of the network is usually based on LSTM neu-
rons, and the last hidden state of the encoder is considered
as the context C. Then, the context Cwill be repeated o time
to fit the dimensions of the outputs, allowing application of

sequentialmodeling in the decoder.As a result, the sequential
relationship in the outputs can also be considered.

Definition 4 The CNN-LSTM (Donahue et al. 2015), which
was originally designed for visual recognition and descrip-
tion, combines the concepts of Convolutional Neural Net-
work (CNN) and EDLSTM. It introduces a CNN layer before
the LSTM layers to further extract patterns from features. In
our case, we introduce one-dimensional convolutional lay-
ers before the LSTM layers to extract patterns from the input
features. The outputs of the CNN layers will be fed into the
LSTM layers, which have different features as the original
inputs X.

Definition 5 Convolutional LSTM (ConvLSTM), proposed
by Shi et al. (2015), is an architecture combining the con-
volution operator with the LSTM network. The difference
between the LSTM and ConvLSTM lies in how the weights
are multiplied with the inputs and hidden states. In Con-
vLSTM weights are convolved with the inputs, while in
LSTM weights are multiplied with the inputs by usual
matrix operations. In contrast to CNN-LSTM, which first
produces high-level feature maps and then, feeds them into
the sequential modeling procedure, the ConvLSTM consid-
ers the spatial and temporal correlations jointly.

2.3 Evaluationmetrics

In this study, we evaluate the performance of our predictions
using two metrics, namely the mean absolute error (MAE)
and absolute error (AE). The difference between the j-days
ahead prediction of the i th sample of LOD is defined as:

δi, j = Δobs
i, j − Δ

pred
i, j (5)

where Δobs denotes the observed LOD, Δpred denotes the
predicted LOD, i is the index of date, and j is from 1 to 10
for the ultra-short term. Then, AE is defined as:

AEi, j = |δi, j | (6)

which shows the absolute difference between the predictions
and the observations. To assess the averaged performance,
we calculate the MAE:

MAE j = 1

n p

np∑

i

AEi, j (7)

where n p denotes the number of samples in the test set.
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3 Data and processing strategy

3.1 Data description

3.1.1 LOD time series

In this study, we use the LOD time series provided by the
International Earth Rotation and Reference Systems Service
(IERS). TheEOPs are derived from the combination of obser-
vations from different space geodetic techniqueswith diurnal
sampling rate. In the first hindcast experiment, we use the
IERS EOP 05C04 time series (Bizouard and Gambis 2009)
to compare the performance of our methods with the results
of the first EOP PCC under the same conditions. The IERS
EOP C04 time series was updated during the first EOP PCC
from 97C04 to 05C04, which caused difficulties in the eval-
uation process. However, the impact on LOD quality was
minor (Kalarus et al. 2010), so we do not consider it here.
For the subsequent experiments with longer time series, we
use IERS EOP 14C04 (Bizouard et al. 2019), which results
from the combination of operational EOP series that are con-
sistent with ITRF2014 (Altamimi et al. 2016).

3.1.2 EAM time series

One of the pivotal EAManalysis data sets are provided by the
GFZ German Research Center for Geosciences (GFZ). GFZ
provides effective angular momentum functions, including
AAM,OAM,HAM, andSLAMfrom1976onward (Dobslaw
and Dill 2018). In addition, they provide the correspond-
ing 6-day forecast data of the individual components and
90-day prediction data of EAM (AAM+OAM+HAM). As
we described in Sect. 1, the z-components have a major
impact on LOD. Therefore, we consider the z-components
(mass+motion) of EAM, denoted as EAMz in the following,
and the 6-day forecast data of EAMz (denoted as EAMz fore-
casts) as additional features. Additionally, we implemented
the same experiments with AAMz-only (including the fore-
casts) instead of EAMz to assess the contributions of oceanic
and hydrological systems. In the following text, we will only
describe the approaches focusing on EAMz, since all the pro-
cessing steps are the same for EAMz andAAMz. A difficulty
is that the 6-day forecast data are only archived back to 2016.
Therefore, we have to simulate the forecast data for the time
interval before 2016. To achieve this goal, we downgrade
the observed EAMz data by adding white noise considering
the root-mean-square deviation (RMSD) of the 6-day fore-
cast data reported in (Dobslaw and Dill 2019, Figure 8.4) to
generate pseudo-forecast data. To verify the quality of the
synthetic data, we generated the pseudo-forecast data also
for 2016 onward and compared them with the real forecast
data. The noise levels agree with each other. Nevertheless,

the actual errors are not purely white noise, which may harm
the performance of our networks (Dill et al. 2021).

Since 2021, ETH Zurich has also investigated EAM fore-
casts based on GFZ EAM products to improve the accuracy
and prediction horizon (Kiani Shahvandi et al. 2022a). The
operational 14-day forecasts of the complete set of EAM
components, based on first-order neural ordinary differential
equations, are available from theGeodetic PredictionCenter1

atETHZurich (GPC,Soja et al. 2022).Thedetails about these
EAM forecasting algorithms can be found in Appendix A.
Therefore, we also implemented the experiments with the
ETH EAM forecasts as features instead of GFZ EAM fore-
casts, which also helps to analyze the impact of longer EAM
forecasts. The 10-day forecasts of ETH EAMz and AAMz
are used since the errors of the forecasts on the latter days
increase steadily to a point where the longer forecasts have
negative impacts on the LOD predictions. Here, we have a
similar problem as for the GFZ forecasts: the real EAM fore-
casts are only archived back to 2021. Therefore, we generate
the pseudo-forecasts following the same approach. All the
used RMSD for generating pseudo-forecasts are reported in
the supplementary information.

3.1.3 Splitting of data sets

For training the networks, we divide the whole dataset into
training, validation, and test sets. Figure1 shows the LOD
datasets used in this study. For the first experiment, the train-
ing and validation data sets start on 1996–09–01 and ends on
2005–09–30, whereas the test set starts on 2005–10–01 and
ends on 2008–10–31, as depicted in Fig. 1a. However, not all
the daily data in this time range will be used for the test set
because the submission of predictions for the first EOP PCC
was only on Thursdays. Therefore, there are 161 test samples
in total. The splitting of the training and validation sets is not
based on the date but on the number of samples. Here, we
have 3000 training samples and 248 validation samples. For
the other experiments that rely on the extended data, the train-
ing and validation data sets start on the beginning of 1985 and
the test set starts on 2016–01–01 and ends on 2020–12–31,
as shown in Fig. 1b. In this experiment, the models predict
the LOD every day. Therefore, we have 1827 test samples in
total. The training and validation sets are also split based on
number of samples. We have 9025 (80%) training and 2026
(20%) validation samples, respectively.

3.2 Data processing

Figure 2 shows the data processing workflow used in this
study. Since we can treat some parts of the LOD-contributing

1 https://gpc.ethz.ch/.
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Fig. 1 LOD datasets used in this study. The training (blue), validation
(dark yellow) and the test (green) data of a experiment 1 under the first
EOP PCC conditions, and b experiments 2 and 3 with extended time
series from 1985 to the end of 2020

signals as deterministic,we subtracted themprior to the appli-
cation ofLSTMand restored themafterward. Since the inputs
to LSTMneural networks should be detrended, standardized,
and normalized (Goodfellow et al. 2016), the preprocessing
approach is necessary and beneficial.Wefirst remove the sec-
ular trend and known signals from the LOD time series by
combining the SG filter, tidal corrections and least-squares

adjustment to generate the LOD residuals (ΔR). Then, we
use LSTM networks to predict ΔR .

As described by Gross (2007), the LOD time series
contains decadal, interannual, seasonal, and interseasonal
signals. Besides, a secular trend of around 1.8ms/century
is observed. Since the tidal deformations (zonal tides) can
explain a large part of the LOD signals, we first removed
the tidal variations (ΔT) following the IERS conventions
2010 (Petit andLuzum2010) and obtainedLODwithout tidal
variations Δ1. For computing Δ2, we removed the decadal
trend of LOD (ΔS) from Δ1 by applying the SG filter with
the polynomial order of 2 and the window length of 3653.
The motivation for this choice is to optimally capture the
long-term trend using a low-order nonlinear polynomial and
obtain a smooth ΔS. However, in the first experiment using
data from 1996 to 2005, the length of the LOD time series is
shorter and the secular trend within around ten years is easier
to model. Thus, we use a quadratic function to model the sec-
ular trend for EOP PCC instead of the SG filter. We further
applied the least-squares sinusoidal regression to estimate
the seasonal signals with annual, semiannual and terannual
periods (ΔP). By further removingΔP fromΔ2, we received
the LOD residuals (ΔR).

Before applying a similar strategy to the EAM observa-
tions and forecasts to obtain residuals,we shouldproject them

Fig. 2 The data processing workflow of this study. The gray parallel-
ograms indicate the input data. The yellow parallelograms indicate the
intermediate values after certain processing steps. The green parallelo-

grams show the predicted and modeled values in the future. The blue
rectangles show the processing methods. The plus symbol means sum
of the four terms
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Fig. 3 An example of preprocessing the LOD [ms] data based on the IERS EOP 14C04 time series between 1985 and 2016. The left-bottom plot
shows the LOD residuals that enter the LSTM neural networks beside the other features

to similar value ranges as the LOD data to reduce training
difficulties. Since the used EAM functions from both sources
are in the form of non-tidal normalized EAM (Dobslaw and
Dill 2018, 2019), they are unitless and highly correlated
with the LOD after removing tidal effects and secular trend.
Therefore, we cannot apply geophysical equations to convert
EAMz into LOD but should use a simple empirical relation-
ship to convert the unit and obtain a similar value range:

EAMz [ms] = EAMz · 86400 · 103 (8)

which agrees with the equation given by Gross (2007). Then,
the least-square sinusoidal regression was applied to the
EAMz time series to remove the seasonal signals with the
same frequencies as for LOD. In the end, we obtained both
LOD and EAMz residuals, which are in the interval of±1ms
and highly correlated with each other. Both ΔR and EAMzR
will later enter the LSTM neural networks as input fea-
tures. To preprocess the test set, we always concatenated the
’new’ data with the training and validation set and reran the
preprocessing process, which caused edge effects as a con-
sequence of the filtering step. To overcome this issue, we
applied an additional linear offset adjustment as described in
Appendix B.

In summary, Fig. 3 shows the whole preprocessing
progress for LOD and corresponding modelled signals using
the training and validation set of the experiments with
extended data. The right column of Fig. 3 shows themodelled

signals, and the left column shows the corresponding remain-
ing signals before and after removing themodelled parts. The
outputs of the preprocessing approach (left-bottom plot) will
be used as the inputs of the LSTM neural networks. After the
LSTM-prediction step, the predictions of the deterministic
signals (right-hand-side of Fig. 3) are added to Δ̂R (Fig. 2)
in order to produce the predictions of LOD.

3.3 Prediction of LOD residuals using LSTM neural
networks

After preprocessing, we reshaped the whole time series into
samples and divided them into training, validation, and test
sets. In order to tune the hyperparameters and choose the best
structure of networks, we applied the grid search strategy and
tenfold cross-validation (Goodfellowet al. 2016). In this step,
we tested different input sequence lengths for the prediction
of ten days in future and concluded that the best results were
obtained by considering 30 previous days as inputs. Another
motivation for using 30 previous days as input is to model
themonthly and biweekly LOD signals, which are not explic-
itly removed beforehand, using the networks. We reshaped
the whole time series into three-dimensional tensors with the
dimensions of n × s × f to fulfill the requirement of LSTM
networks (Sect. 2.2), where n is the number of samples as
reported in Sect. 3.1, s is the length of input sequence, and f
is the number of features. The features of each input epoch
are the LOD residuals, the observed EAMz residuals, and the
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Fig. 4 Schematic diagram of the EDLSTM network in the experiments with longer time series. The inputs, hidden states and outputs are denoted
using x, h, y, respectively. C refers contexts. The data flow through the layers from left to right, but also from the begin to the end of a sequence in
the LSTM layers

forecasted EAMz residuals, respectively. The LSTM, EDL-
STM, and CNN-LSTMnetworks take this three-dimensional
matrix as input.However, thismatrix has to be reshaped again
to fulfill the requirement of the ConvLSTMnetwork. In order
to prevent overfitting, we applied an early-stopping strat-
egy: we monitored the loss of the validation set and stopped
the training phase when the loss stops decreasing or starts
increasing. We noticed that the limited data volume under
the conditions of the first EOP PCC is not enough to train
our networks so that they can distinguish different prediction
days. Therefore, we implemented ten separate networks to
predict the ten different days in future to reduce this issue
to a certain degree. In the second and third experiments, one
networkwas sufficient to predict all ten days of LODbecause
a significantly larger amount of data was available.

We used TensorFlow V2.4.0 (Abadi et al. 2015) to imple-
ment all the networks as well as the training, validation, and
test processes. Figure4 shows the structure of the EDLSTM
network for the experiments with longer time series. The first
LSTM layer is the encoder section, which is responsible for
interpreting the input sequence. This layer takes the input
tensor ∈ R

30× f and outputs a non-sequence context C ∈ R
o

with o denoting the output dimension. Then, the RepeatVec-
tor layer repeats the context so that the required length of the
output is fulfilled, followed by the decoder section that con-
sists of two LSTM layers. In the end, two Dense layers map
the outputs of the decoder section with the outputs. Since the
output of the decoder section is a sequence, the Dense lay-
ers have to be wrapped using the TimeDistributed wrapper.
The structures of all the other networks are reported in the
supplementary information.

3.4 Prediction of deterministic components

In addition to predicting the LOD residuals with the LSTM
networks, we have to predict the deterministic components of
LOD. During the preprocessing steps described in Sect. 3.2,
we obtained functional forms to describe the tidal varia-
tions (IERS convention 2010, Petit and Luzum 2010) and the
parameters of the seasonal signals (least-squares sinusoidal
regression). Therefore, we could extrapolate these two com-
ponents into the future to obtain Δ̂T and Δ̂P. Since only 30
previous days were considered as inputs in our networks, the
trend function in this short time interval was usually linear,
sometimes with a slight curvature. Therefore, we used the
PCHIP (Piecewise Cubic Hermite Interpolating Polynomial)
extrapolation (Fritsch and Carlson 1980) to precisely predict
the secular trend.

3.5 Setups of experiments

In this study, we performed three experiments to evaluate the
performance of our proposedmethods comprehensively. The
basic setups of the experiments are summarized in Table 1.
First, we implemented a hindcast experiment to compare the
performance of our methods to the other studies of the first
EOP PCC. In an operational setting, we cannot use the IERS
final products as our inputs due to the latency of one month
and would have to resort to the rapid products which have
a latency of two days for LOD. However, the historic rapid
products are not fully archived once the final products are
available. Therefore, we can only use the final products to
train our networks and compute the predictions. The latency
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Table 1 The setups of the three experiments

ID Training and validation time span Test time span Output shape Remark

Experiment 1 Sept. 1996–Sept. 2005 Oct. 2005–Nov. 2008 (n, 1) 12 networks for 12 days

Experiment 2 Jan. 1985–Dec. 2016 Jan. 2017–Dec. 2020 (n, 12) One network for 12 days

Experiment 3 Jan. 1985–Dec. 2016 Jan. 2017–Dec. 2020 (n, 10) One network for 10 days

of two days was still considered to provide the most realistic
results. For the following experiments, we expanded the data
volume to investigate the benefits of longer time series on the
training process and the prediction accuracy that would be
achievable nowadays. In the second experiment, we consid-
ered both the longer time series as well as the latency of input
data. Therefore, the reported quality should be operationally
achievable. In the final experiment, we studied the most opti-
mistic accuracy by considering the optimal data availability
without any latency to assess the theoretical limits of the
proposed methods.

4 Results and discussion

We have generated predictions using the four LSTM vari-
ants in all three experiments. The results for the individual
methods are reported in the supplementary information. We
observed that the differences between the four variants are
minor while the EDLSTM networks slightly outperform the
others in most of the cases, with the lowest number of train-
able parameters. Therefore, we conclude that the key to LOD
prediction problem is the LSTM neuron rather than the dif-
ferent structures in encoders. We will thus only report the
results using EDLSTM networks in this section and focus on
the impacts of AAM and EAM and their forecasting hori-
zons.

4.1 First experiment

In the first hindcast experiment, our study was carried out
under the same conditions as for the first EOP PCC (Kalarus
et al. 2010), resulting in a relatively fair comparison with
others. The splitting of training, validation and test sets is
reported in Sect. 3.1.3. We consider the latency of the IERS
LOD rapid products, typically two days. Therefore, we gen-
erate LOD predictions for the next twelve days and take
the latter ten predictions as our 10-day predictions. In this
context, the 1-day delay of EAM forecasts has no impact.
Figure5 shows the MAE of our results and compares them
to other studies of EOP PCC and the study by Modiri et al.
(2020), which is the state-of-the-art study for days 5–10
(Modiri et al. 2020, Table 1). TheMAE values are reported in
the supplementary information. Concerning the comparisons
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Fig. 5 The MAEs of the predicted LOD using EDLSTM networks
between Oct. 2005 and Oct. 2008 under the first EOP PCC conditions
(first experiment). The results of other studies under the EOP PCC
conditions are denoted as light gray lines (without AAM/EAM) and
light yellow lines (with AAM/EAM) for comparison

withModiri et al. (2020), we note that the EAM forecasts are
generated differently and based on different data sources.
Moreover, the ways to handle the latencies of the underlying
products are also different (Modiri, personal communica-
tion).

This comparison proves the promising short-term perfor-
mance of our method. Using the GFZ 6-day forecasts, we
achieve the best results over the first four days. Afterward,
the accuracy of our methods decreases more rapidly due to
a lack of EAM forecasts, indicating the importance of the
EAM forecasts for our purpose. Therefore, the ETH 10-day
EAM forecasts significantly increase the quality of LOD pre-
dictions with an average improvement of 29% compared to
using only 6-day EAM forecasts. As a result, ourmethod out-
performs other studies in the first eight days with amaximum
improvement of 43%on day 3,whereas themethod ofModiri
et al. (2020) is still slightly better for days 9 and 10. More-
over, we observe steadily better performance if the networks
using EAM instead of AAMwith an average improvement of
10% for ETH 10-day forecasts, which proves the important
contributions of the oceanic and hydrological systems to the
LOD variations.

Figure 6 shows the AEs of the individual predicted days of
all the test samples between 2005 and 2008. Due to the small
amount of data, the networks are not extensively trained,
which leads tomore noisy patterns starting from day 5.When

123



52 Page 10 of 17 J. Gou et al.

D
ay

s 
in

 fu
tu

re

a) GFZ AAM

Oct. 2005 Oct. 2006 Oct. 2007 Oct. 2008

10

8

6

4

2

b) GFZ EAM

Oct. 2005 Oct. 2006 Oct. 2007 Oct. 2008

10

8

6

4

2

c) ETH AAM

Oct. 2005 Oct. 2006 Oct. 2007 Oct. 2008

10

8

6

4

2

d) ETH EAM

Oct. 2005 Oct. 2006 Oct. 2007 Oct. 2008

10

8

6

4

2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

A
E

 [m
s]

Fig. 6 Absolute errors of the predicted LOD using EDLSTM networks with different input features (first experiment). The test time interval follows
the first EOP PCC conditions

comparing the results of using GFZ 6-day and ETH 10-day
predictions, we observe significant reductions of the outliers
on latter days. This phenomenon indicates the considerable
help of the future EAM information to the LOD predictions.
The contributions of OAM and HAM are clearly visible,
given the fact that the errors in extreme cases, such as the
one around October 2006, can be reduced.

4.2 Second experiment

For this experiment, we use data from 1985 to 2016 to train
our networks. In order to obtain results under operational
conditions, we also consider a LOD latency of two days,
which means we again generate 12-day-ahead predictions
and consider the last 10 days as the predictions in the future.
The networks benefit from the more extensive data volume
and therefore achieve a better generalization. As a conse-
quence, we are able to determine all twelve outputs from one
network rather than twelve separate networks as in the first
experiment. Figure7 shows the MAEs of our results with the
numerical values shown in the supplementary information.
We note that the comparison with the results from the first
EOP PCC is not entirely fair since the expanded data vol-
ume and improvements in the EOP time series (from EOP
05C04 to EOP 14C04) positively impact the results. The goal
of plotting the results of other studies is to give an intuition
about the performance of our methods.

The more extended amount of data enables us to train one
networkwith twelve outputs simultaneously, which results in
more stable predictions. The contributions of more extended
EAM forecasts are significant since the average MAE of
the results from the network using 10-day EAM forecasts
is about 32% lower than from the network using 6-day fore-

1 2 3 4 5 6 7 8 9 10
Days in future

0

0.05

0.1

0.15

0.2

M
A

E
 [m

s]

GFZ AAM
GFZ EAM

ETH AAM
ETH EAM

Fig. 7 The MAEs of the predicted LOD using EDLSTM networks
between 2016 and 2020 (second experiment). The results of other stud-
ies under the EOP PCC conditions are denoted as light gray lines
(without AAM/EAM) and light yellow lines (with AAM/EAM)

casts. As a result, the network with 10-day EAM forecasts
can provide high-quality 10-day LOD predictions withMAE
of about 0.08ms. However, the benefits of using EAM are
not ensured for the latter days since we can also observe
that the network using 10-day EAM forecasts can only give
comparable or even worse results compared to the network
using 10-day AAM predictions. A possible reason for this
degradation is the higher forecasting errors of AAM, OAM
and HAM. Since the EAM time series is the sum of the three
terms, the forecasting errors of all three sources also propa-
gate into the EAM forecasts. Therefore, the signal-to-noise
ratios for the latter days are worse than the earlier days, and
the network cannot effectively benefit from the meaningful
signals.
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Fig. 8 Absolute errors of the predicted LOD using EDLSTM networks with different input features (second experiment). The test time interval is
from 2016 to the end of 2020

Figure 8 shows the AEs of individual prediction days of
all the samples in the test set of the second experiment. We
observe outliers at the beginning of 2016 and 2020, which are
likely caused by the biases in the GFZ 6-day forecasts (Dill
et al. 2021). Due to the existence of these biases, the dis-
tribution of the generated pseudo-forecasts of EAM before
2016 differs from the distribution of the actual forecasts,
which can cause a systematic error in our LOD predictions.
In contrast, no noticeable irregularity is detected from the
results using ETH 10-day predictions. However, this report
could be slightly over-optimistic since no real EAM fore-
casts are available in this time interval and, therefore, the
pseudo-predictions are used, which optimistically assumes
the identical distributions of the training and test sets. In
future work, we will continuously monitor the performance
of our EAM forecasts to analyze the distributions of errors.

4.3 Third experiment

In the third experiment, we want to explore the achievable
accuracy when using our methods under optimal conditions
without the latency of theLODandEAMobservations. There
are three motivations behind this experiment: First, it is cru-
cial to fill in the missing values of LOD caused by the delay
to receive the continuous time series, even though thesemiss-
ing values are not in the future. Secondly, we want to analyze
the potential benefits if the processing time of LOD obser-
vations can be reduced. Furthermore, it is also more trivial
to understand the correlation between EAM forecasts and
LOD predictions since the time shift of two days does not
exist anymore. Figure9 shows the MAEs of the results with
the numbers shown in the supplementary information.
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Fig. 9 The MAEs of the predicted LOD using EDLSTM networks
between 2016 and 2020 without considering the latency of LOD obser-
vations (third experiment). The results of other studies under the EOP
PCC conditions are denoted as light gray lines (without AAM/EAM)
and light yellow lines (with AAM/EAM)

As the evidence in Fig. 9, the networks provide accurate
LOD predictions with MAEs under 0.1ms using GFZ 6-day
EAM forecasts and under 0.06ms using ETH 10-day EAM
forecasts. We notice that the results shown in Fig. 9 are not
fully equivalent to the ones shown in Fig. 7 shifted by two
days. Because the networks only have ten outputs instead of
twelve, the losses changed as well, see Eq. (4). The higher
degradation of predictions based on 6-day EAM forecasts
demonstrates the importance of longer EAMforecasts for our
task. In contrast, MAEs of the predictions based on 10-day
EAM forecasts increase more slowly due to the availabil-
ity of EAM forecasts for the whole prediction horizon. The
slightly higher gradient on latter days can be explained by the
increasing uncertainties of the EAM forecasts on latter days.
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Fig. 10 Absolute errors of the predicted LOD using EDLSTM networks with different input features under the most optimistic conditions (third
experiment). The test time interval is from 2016 to the end of 2020

The impact of the uncertainties in EAM forecasts can also
be observed by the convergence of MAEs using EAM and
AAM. As we discussed in the second experiment, the supe-
riority of EAM forecasts decreases with predicting horizon
as the forecasting errors of EAM forecasts are higher than
that of AAM forecasts.

Figure 10 shows the optimistically achievable AE of indi-
vidual prediction days of all the test samples between 2016
and the end of 2020 for the third experiment. We observe
that most of the significant errors during the latter days are
reduced in all four cases. However, the problems caused by
the biases in theGFZ forecast are still observable at the begin-
ning of 2016 and 2020. The results for ETH 10-day forecasts
of AAM and EAM are similarly homogeneous.

4.4 Feature analysis

In this section, we discuss the impact of various features
and different parts of the input sequences. The deep learning
models have a black-box nature to a certain extent because
they can, in principle, approximate any function, but it is
difficult to understand the internal structure of the trained net-
works. Unlike other machine learning methods (e.g., random
forests), there is no simplemethod to describe the importance
of features in LSTM neural networks. To address this issue,
we implemented empirical experiments, namely modifying
the inputs by randomly adding or removing values equal to
30% of their magnitudes, followed by an investigation of
the impact on the resulting MAE changes. The motivation
for changing the magnitude of input values by 30% is that
the changes are significant enough for us to learn the con-
sequences. At the same time, the changes are also not too
large to significantly impact the distribution of the features,

which would hurt the performance of neural networks. We
repeated this process 1000 times with different random seeds
and computed the averaged MAE of these 1000 MAEs to
obtain a general conclusion. Then, the relative changes of
MAE are computed using the equation:

MAEchanged[%] = MAEnew − MAEoriginal

MAEoriginal
× 100% (9)

We performed this analysis based on the networks in
the third experiment. In this case, there is no temporal gap
between the EAM forecasts and LOD observations, which
simplifies the interpretation of the temporal relationship
between the features and outputs.

First, we changed 30% of individual features on all the 30
input days to study the impact of different features. Figure11
shows the resulting changes ofMAE in percent on a logarith-
mic scale. As expected, the LOD observations are the most
prominent features because they provide direct information
related to our targets. Beside LOD, the analysis data of EAM
are also important, especially for the first days, although they
do not offer any horizon in the future. The critical contri-
bution of the analysis data is to provide information about
misalignments between the geophysical excitations and the
LODs. Therefore, the EAMforecast data can contributemore
to the LOD predictions by including the analysis data. Note
the diagonal structure in Fig. 11, which outlines the impact
of the EAM forecasts on the prediction quality, meaning the
EAM forecasts of the day i have the most significant impact
on the LOD predictions around day i , as expected. Never-
theless, the EAM forecast data on the following days also
impact the LOD prediction of previous days. This effect can
also beobservedby comparing the results using10-day and6-
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Fig. 11 Relative change of MAE w.r.t. changing 30% of the different
features on a logarithmic scale. The numbers of the y-axes show the
AAM (a), and EAM (b) forecasts of the corresponding days, whereas
0 indicates analysis data

day EAM forecasts in aforementioned results such as Fig. 9:
Including EAM forecasts of latter days do not only improve
the accuracy of the predictions after day six but also affect
the predictions in the first six days positively. This finding is
counterintuitive since there cannot exist a causal relationship
between the EAMforecasts on latter days andLODon earlier
days. The reason is that the EAM forecasts are fed into the
networks as separate features, while the LSTM networks do
not consider the sequence between different features. There-
fore, the networks benefit from the high correlation between
input features. In view of causality, the observations of earlier
days do not depend on the EAM of the next days; however,
they are highly correlated, and the network can take advan-
tage of this effect. Therefore, information from the future can
also be helpful for the networks to predict the previous days.

For a second run, we changed 30% of all features on indi-
vidual input days and computed the relative change of MAE
to study the impact of different input days, shown in Fig. 12
on a logarithmic scale. The features on the last input day
dominate the prediction process since this input day contains
the most recent information. The context is the last output of
the encoder (Fig. 4), where the inputs on the last day only
go through the nonlinear activation functions once. There-
fore, the outputs are most sensitive to the last input epoch.
Due to the existence of the forget gate in LSTM neurons,
the high-frequency variations of inputs on previous epochs
are more likely discarded, and only the major signals are
restored. Therefore, we observe that the predictions are not
sensitive to the 30% change in inputs from more than one
week ago. However, there is still a visible impact of inputs
from a week ago on the predictions of days 3–6, which may
roughly indicate the known 14-day periods of the LOD time
series.
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Fig. 12 Relative change of MAE w.r.t. changing 30% of all features on
different input time steps on a logarithmic scale

5 Conclusions

In order to accommodate the need for real-time EOPs of
the highest quality in geodetic applications, precise predic-
tion of EOPs, especially in the ultra-short term, is necessary.
In this study, we employed one of the most popular vari-
ants of RNN called LSTM to predict LOD for the next ten
days, in accordance with the definition of ultra-short-term
in the first EOP PCC. To obtain highly accurate predic-
tions, we implemented a hybrid modeling approach, which
combines physical, statistical, and deep learning modeling.
First, we corrected the tidal effects and estimated the deter-
ministic components (long-term trend, seasonal variations),
and removed them from the LOD time series to generate
LOD residuals. We also removed the seasonal signals from
the geophysical excitations (including forecasts) to generate
EAM and AAM residuals. Both LOD and EAM/AAM resid-
ual time series were considered as the inputs of the LSTM
neural networks. Compared with the state-of-the-art studies,
we achieved significant improvements up to 43% under the
comparable conditions of the first EOP PCC and reduced
the MAE further by including more data. Overall, accurate
ultra-short-term LOD predictions with MAE below 0.08ms
are achieved in the realistic scenario. We investigated the
predicting accuracy without considering the data latency. In
this scenario, our method achieves MAE under 0.06ms by
day ten. Moreover, we discussed the contributions of atmo-
spheric, oceanic and hydrological systems to LOD as well
as the impact of their forecasting horizon. We conclude that
the atmospheric contributions are the most dominant, while
including the oceanic and hydrological systems also has clear
benefits, with an additional MAE reduction of around 10%.
The drawback of the EAM time series is its higher forecast-
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ing error level inherited from the three components (AAM,
OAM, HAM), which impedes its contribution in the latter
days. The feature analysis shows that the most crucial fea-
ture is LOD itself with clear contributions of EAM forecasts.
An interesting fact is that the forecasts on latter days also
impact predictions of previous days. With this finding, we
can explain the reason for the better predictions on the first
days while including longer EAM forecast data. Besides, this
result also indicates the potential improvement by including
more extended EAM forecast data, even after the 10th day.
However, the rapidly decreasing quality of EAM forecast
data hinders this approach.

In this study, we proved the advantages of LSTM neu-
ral networks for LOD prediction and the benefits of large
data volumes for this approach. With the help of LSTM neu-
ral networks, we can provide reliable LOD predictions in
the ultra-short term operationally, from which many real-
time geodetic and geophysical applications can benefit. We
conclude that more attention should be paid to including
the geophysical excitations in the machine-learning-based
LOD prediction framework. The higher errors caused by
the summation of the atmospheric, oceanic and hydrologi-
cal systems should be investigated further. This study also
confirms the benefits of accurate EAM forecasts to LOD
predictions, which should also apply to other EOPs, such
as polar motion. We identified two needs in further improv-
ing EOP predictions: First, more attention should be paid
to employing and testing other machine learning approaches
for predicting EOPs. In this regard, suitable techniques may
vary among different EOPs due to the different characteris-
tics of the data. Second, improving the quality of rapid EOP
products is also crucial, since the operational predictionmust
rely on them. In the end, more accurate EAM forecasts with
a more extended forecasting horizon also have the potential
to improve the quality of EOP predictions significantly.
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Appendix A: ETH 14-day EAM forecasts

Both the accuracy and prediction horizon of EAM forecasts
are of great importance to improve the quality of EOP pre-
dictions (Kiani Shahvandi et al. 2022b; Kur et al. 2022). We
developed a method based on the concept of Neural Ordi-
nary Differential Equations (Neural ODE, Chen et al. 2018)
to forecast EAM up to 14 days ahead. A recurrent neural
network, whose hidden state follows a first-order ordinary
differential equation, is fitted to the EAM values. The inputs
to the network are the historical observations and forecasts of
EAM provided by GFZ.We trained 18 individual models for
the different components (x, y, z), andmass andmotion terms
of AAM, OAM, and HAM plus three models for SLAM,
since it only contains mass terms. The input sequence con-
tains two epochs: the current time epoch t and the previous
epoch t − 1. At each time epoch t , we have seven features,
namely the GFZ analysis products (ot ) and 6-day forecasts
ft+1:t+6. The output sequence length is 14, corresponding to
the forecasts at epochs t + 1 : t + 14. Therefore, the fol-
lowing model can be represented as the hidden states of the
algorithm:

ht = M (ot , ot−1, ft , ft−1,W1) (10)

dht+1

dt
= RNN (ht ,W2) (11)

r = W3 · ht+1 + b3 (12)

where ht and ht+1 denote the hidden states at epochs t and
t + 1, respectively. The hidden state ht can be obtained from
the two previous epochs with analysis data (ot , ot−1) and
6-day forecast data (ft , ft−1) by considering a transforma-
tion M with weights W1. We note that each forecast vector
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ft contains six components ft,1:6 corresponding to the 6-day
forecasts. The RNN cell with parameters W2 describes the
differential equation. In the end, the resulting forecasting vec-
tor r, including the 14-day forecasts at time epochs t + 1 to
t + 14, can be obtained by a linear transformation from the
hidden states ht+1 with parameters b3,W3.

The operational quality control at GPC shows that ETH
EAM forecasts are slightly more accurate than GFZ EAM
forecasts in the first six days. On days 7 to 14, the predictions
show good agreement with the corresponding observations,
but the forecasting errors accumulate more rapidly. In our
experiments, we observed that the EAM forecasts after day
10 negatively impacted the LOD predictions due to their
higher noise level. As a result, we only use the first ten days
of EAM forecasts in this study. The RMSDs used to generate
the pseudo-forecasts are shown in Table 1 of the supplemen-
tary information.

AppendixB:Preprocessingusing theSavitzky–
Golay filter

In this study, we choose the SGfilter tomodel and remove the
secular trend in the LOD time series. For the time series from
1985 to 2015, we use the frame length of 3653 with order
2. However, in the first experiment using data from 1996
to 2005, the length of the LOD time series is shorter and
the secular trend within around ten years is easier to model.
Thus, we use a quadratic function to model the secular trend
for EOP PCC instead of the SG filter.

Topreprocess the test set,we always concatenate the ’new’
data with the training and validation set, and rerun the pre-
processing process. However, there is a boundary issue of
the SG filter in the last windows since the number of data
is smaller than the length of window, see Fig. 13. Therefore,
the resultingLOD residuals sometimes differ from theEAMz
residuals. To solve this issue, we estimate the difference of
Δ2 and EAMz within the input interval (30 days) linearly
by applying one more least-squares adjustment. Then, we
remove this difference from Δ2 and add this in ΔS to gener-
ate Δ′

2 and Δ′
S as the following:

Δ′
2 = Δ2 − b (13)

Δ′
S = ΔS + b (14)

where b is the estimated linear offset betweenΔ2 and EAMz.
Then, we can estimate the seasonal signals based on Δ′

2 for
the test dataset and generate the corresponding Δ′

R . In the
end, the LOD residuals and EAMz residuals are highly corre-
lated. Figure14 shows an example of the test set in the second
experiment. The dashed blue line shows ΔR , which is the
original LOD residuals without any linear offset correction.
Sincewecandetect a significant linear offset betweenΔR and

1985 1990 2000 2010 2016 2021

0

1

2

[m
s]

Prediction starts

Fig. 13 The boundary issue of the SG filter. The blue line shows the
real estimated secular trend based on data until the beginning of 2015,
and the red line shows the theoretical secular trend based on data until
the end of 2020
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Fig. 14 One example from the test set. The blue dashed line shows
the LOD residuals without linear offset correction (ΔR). The blue line
shows the LOD residuals after removing the linear offset (Δ′

R). The red
line shows the EAMz residuals

EAMz residuals, the LSTM neural networks cannot provide
correct predictions relying on these two features. However,
after removing the linear offset, we getΔ′

R (blue line), which
is highly correlated with the EAMz residuals. The remain-
ing differences are relatively small and mainly caused by
data noise and the remaining low-frequency Earth’s interior
signals, which are potentially insufficiently modeled by the
SG filter. Therefore, the LSTM neural networks can provide
accurate predictions based on Δ′

R and EAMz residuals.
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