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Abstract
The period TCW and quality factor QCW of the Chandler wobble (CW) as well as polar motion (PM) transfer functions are
all determined by the Earth’s layered structure, mass distribution, elasticity, rheology and energy dissipation, via the Earth’s
dynamic figure parameters and complex degree-2 Love numbers. However, most previous studies used geophysical excitations
derived from real-valued PM transfer functions to invert for TCW andQCW, thus leading to results that are not self-consistent.
By separating the observed PM into the freely decaying CW and the excited PM, a traverse-based method is proposed to
search values of TCW and QCW that can fit both sides simultaneously, yielding the self-consistent estimates of TCW = 430.4
mean solar days andQCW = 130. This implies the degree-2 tidal Love number k = 0.35011− 0.00226i and load Love number
k’ = − 0.36090 + 0.00233i, and the PM transfer functions TNL = 1.80001 − 0.00692i (non-loading) and TL = 1.15040 −
0.00023i (loading) valid at the Chandler period.

Keywords Earth rotation · Chandler wobble · Quality factor · Love number · Transfer function

1 Introduction

For an Earth model with (an)elastic mantle, fluid outer core
and solid inner core, there are four important normal modes
of the rotating Earth, namely the Chandler wobble (CW), the
free core nutation (FCN), the free inner core nutation (FICN)
and the inner core wobble (ICW) (e.g., Mathews et al 1991,
2002). While the FCN plays a significant role in the Earth’s
nutations, the CW is one of the two dominant oscillations of
the Earth’s polar motion (PM; the other is the forced annual
wobble, or AW).

Without excitations, the CW would decay freely and van-
ish within only a few decades due to a number of causes,
such as mantle an elasticity and oceanic dissipations, etc.
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(e.g., Lambeck 1980; Gross 2015a). The free decay is evi-
dent as the decrease in the CW amplitude and thus as the
energy loss, which can be described by the CW quality fac-
tor QCW. Then the CW frequency σCW becomes a complex
value and can be written as (with TCW being the CW period)

σCW = 2π

TCW

(
1 + i

2QCW

)
= 2π

TCW
+ i

π

DCW
,

DCW = TCWQCW (1)

with its imaginary part accounting for dissipation.
Numerous studies have been dedicated to the determi-

nations of TCW and QCW. Around three decades ago, the
excitation functions were usually considered to be a random
Gaussian process at frequencies near the CW frequency, with
the estimated TCW being in the range 433.0–434.8 days with
uncertainties between ~ 1–3 days, and QCW in the range
63–179 with uncertainties between 36–1000 (e.g., Jeffreys
1972; Ooe 1978; Wilson and Haubrich 1976; Wilson and
Vicente 1980, 1990). Later, Furuya and Chao (1996) and
Kuehne et al. (1996) assumed CW to be maintained by
atmospheric excitation, and obtainedTCW being respectively
433.7 and 439.5 days with uncertainties 1.8 and 2.1 days, and
QCW being respectively 49 and 72 with uncertainty intervals
35–100 and 30–500. Gross (2005) and Seitz et al. (2012)
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further used the atmospheric and oceanic excitations to esti-
mate TCW andQCW,with values between 429.4–432.98 days
and 83–107, respectively. Bizouard (2020) also considered
atmospheric and oceanic excitations and obtained TCW in
the range [432, 435] days and QCW in [43, 102]. Based on
satellite laser ranging (SLR) and Gravity Recovery and Cli-
mate Experiment (GRACE) observations, Nastula and Gross
(2015) obtained TCW = 430.9 ± 0.7 solar days and QCW =
127 (56, 255).

Gross (2000), Gross et al. (2003); also see Brzezinski and
Nastula 2002) proved that mass redistributions and relative
motions in atmosphere and oceans are the main causes excit-
ing the CW against its free decay. Therefore, the observed
CWmust not be a purely free wobble but rather a free wobble
superposed by a forced resonant oscillation. This fact makes
the determinations of the periodTCW and especially the qual-
ity factorQCWmore complicated since the excited part ofCW
must be removed to obtain a reliable QCW, which is closely
related to the free decay of the CW. Further, as shown in
Chen et al. (2013a), both the PM transfer functions (TL and
TNL, used to derive the effective atmospheric and oceanic
excitations as explained in Sect. 4) and the complex CW fre-
quency are determined by the Earth’s layered structure, mass
distribution, elasticity, rheology and energy dissipation, via
the Earth’s dynamic figure parameters and Love numbers
(see Sect. 4 for details). That is, once the transfer functions
are chosen, the values of TCW and QCW are also fixed; thus
many of the published estimates are not self-consistent. Fur-
ther, most previous studies used real valued TL and TNL,
implying the adoption of real Love numbers, while real Love
numberswill only produce realCWfrequency (and thusQCW

is infinite, contrary to their finite QCW results). To conclude,
improved studies are needed to obtain self-consistent esti-
mates of TCW and QCW.

In this work, we propose a new and self-consistent
traverse-based method to search values of TCW and QCW

that can fit both the freely decaying CW and the excited
PM simultaneously, and further provided values of degree-2
complex Love numbers and PM transfer functions valid at
the CW frequency.

2 Method

As discussed in the Appendix, the observed time series of
PM, since the time t0, can be decomposed as

pobs(t) = pfdCW(t) + pextobs(t), (2)

with the freely decaying part of the CW (let At0
CW and α

t0
CW

be its initial amplitude and phase at t0, respectively)

pfdCW(t) = At0
CW exp

[
iσCW(t − t0) + iαt0

CW

]
(3)

and the excited part of PM through integration

pextobs(t) = −iσCW exp(iσCWt)
∫ t

t0
χobs(τ ) exp(−iσCWτ)dτ

(4)

or through the time–frequency domain conversion (with
numerical improvements from Chen et al., 2023, Optimal
estimation of geodetic excitations from polar motion obser-
vations, manuscript in preparation)

pextobs(t) = IFT
[
pextobs( f )

]
,

pextobs( f ) = σCW

σCW − 2π f
χobs( f )

=
[
1 + 2 f

FCW(2 + i
/
QCW) − 2 f

]
χobs( f ). (5)

which will be respectively referred to as the “INT” and the
“IFT” cases hereafter (INT is short for numerical integra-
tionwhile IFTdenotes inverseFourier transformation; IFT[x]
means applying IFT to x). In Eqs. (2), (4) and (5), we have
used the subscript “obs” to stress that pextobs(t) is excited
by the observed excitation which is much more accurately
determined than geophysical excitations (please refer to dis-
cussions in the Appendix and references therein).

Given initial values T 0
CW and Q0

CW, pextobs(t) can be
obtained either from Eq. (4) for the INT case or from Eq. (5)
for the IFT case. Then, the time series for freely decaying
CW may be obtained by

pfdCW(t) = pobs(t) − pextobs(t) (6)

according to Eq. (2). The role of TCW and QCW in the exci-
tation of PM is obvious from Eqs. (1), (4), and (5). In Figs. 1
and 2, we present some examples of the observed PM, the
excited part of PM, and the freely decaying part of the CW
respectively derived from various PM data (more details can
be found in Sects. 3 and 4).

On the other hand, by substituting Eq. (1) into Eq. (3), the
freely decaying part of the CW can be written as (see also
Gross 2015b)

pfdCW(t) = ACW(t) exp

[
i

(
2π

TCW
(t − t0) + α

t0
CW

)]
(7)

with the decaying amplitude

ACW(t) = At0
CW exp

[
− π

DCW
(t − t0)

]
. (8)
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Fig. 1 The observed polar motion, the excited polar motion and freely
decaying part of the Chandler wobble derived from the COMB2020
and POLE2020 PM series with selected values of TCW and QCW.
The corresponding amplitudes of the freely decaying Chandler wob-
ble ACW(t) and the natural logarithm of ACW(t) are also provided. Here

pextobs(t) are derived from integration as defined by Eq. (4). Descriptions
of the data series are given in Sect. 3. a COMB2020 with TCW = 427.4
mean solar days and QCW = 162; b POLE2020 with TCW = 427.3
mean solar days and QCW = 159

Taking the natural logarithm of Eq. (8), we get

ln ACW (t) = ln At0
CW − π

DCW
(t − t0) ≡ K (t − t0) + B,

K = − π

DCW
, B = ln At0

CW

(9)

which implies ln ACW(t) is a linear function of time t
(Gross 2015b). Through the slope K , we will obtain D̂CW(≡
T̂CW Q̂CW) = −π

/
K .

For self-consistent estimates of TCW andQCW, D̂CW must
equal T 0

CWQ0
CW. However, usually D̂CW �= T 0

CWQ0
CW, thus

giving rise to inconsistencies. Let us denote the difference as

v = D̂CW − T 0
CWQ0

CW. (10)
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Fig. 2 Similar to Fig. 1, but for different PM series. a IERS 14 C04 with
TCW = 432.7 mean solar days and QCW = 95; b IERS C01 with TCW
= 420.0 mean solar days and QCW = 120; c ITRF2020 with TCW =

428.9 mean solar days and QCW = 99 (the ITRF2020 PM series has
been truncated as explained in Sect. 4.2)
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Then,we seek the best inputs T 0
CW and Q0

CW to let |v| → 0, or
numerically, |v| ≤ ε where ε is an arbitrarily small positive
number. In this study, we adopt the traverse method to find
the most self-consistent estimates.

3 Data

Due to the reasons explained in the Appendix and themethod
described in Sect. 2, only the observed PM data (expressed
as p(t) = x(t) − iy(t)) are needed in this study. A number of
EOP data (including PM time series) are available online or
upon request. The EOP data adopted by us are listed below.

(1) PM from both the COMB2020 and POLE2020 EOP
data (Gross et al. 1998; Ratcliff and Gross 2021) released by
the Jet Propulsion Laboratory (JPL; available upon request to
Dr. Richard Gross (richard.s.gross@jpl.nasa.gov); accessed
on 8 Aug. 2022). By combining the individual Earth ori-
entation series determined by lunar laser ranging (LLR),
satellite laser ranging (SLR), very long baseline interfer-
ometry (VLBI), the global positioning system (GPS), and
optical astrometric measurements using a Kalman filter, the
COMB2020 and POLE2020 EOP series are expected to inte-
grate unique strengths of each technique, which is sensitive
to a different subset and/or linear combination of the EOPs.
For both series, x and y are daily-sampled in 10–6 arcsec-
ond (10–3 milli-arcsecond, mas), with their temporal rates in
10–6 arcsecond/day (10–3 mas/day). The COMB2020 data
are daily-sampled and range from 20 January 1962 to 30
June 2021, while the POLE2020 data are monthly-sampled
(30.4375-day) and range from 20 January 1900 to 22 June
2021.

(2) PM from both the IERS (International Earth Rota-
tion and Reference Systems Service) C01 and original
IERS 14 C04 (sampled at noon; Bizouard et al. 2019)
released by the EOP Product Center (respectively avail-
able at https://datacenter.iers.org/data/latestVersion/EOP_
C01_IAU2000_1900-now.txt and ftp://iers.obspm.fr/iers/
eop/eopc04/eopc04.dX_dY.12h.84-now; both accessed on
4 Aug. 2022). The IERS EOP C01 is a long term EOP
series (Vondrak et al. 1995) given at 0.05 year interval and
range from 1900.00 to 2022.55. It is regularly recomputed
to take advantage on one hand of the improvement of the
various individual contributions and on the other hand of
the refinement of the analysis procedures. The IERS EOP
14 C04 is daily-sampled from 1 January 1984 to 4 July
2022 and routinely provided by the IERS in consistency
with the International Terrestrial Reference Frame 2014
(ITRF2014; Altamimi et al. 2016). The C04 data are derived
from a combination of operational EOP series observed by

VLBI, Global Navigation Satellite System (GNSS), SLR,
and Doppler Orbitography and Radiopositioning Integrated
by Satellite (DORIS). In this study, we choose to use the
original C04 solution sampled at UTC12:00 (Coordinated
Universal Time) since the data values are the pole coor-
dinates of the ITRF 2014 solution before 1 January 2015,
while the common C04 version is an interpolation of the
UTC12:00 version at UTC0:00 (Christian Bizouard, 2018,
personal communication). For both C01 and C04, x and y
are in arcsecond.

(3) PM from the ITRF2020 EOP files (Altamimi 2022)
released by the Institut national de l’information géo-
graphique et forestière (IGN; available at https://itrf.ign.fr/
ftp/pub/itrf/itrf2020/ITRF2020_EOP-F1.DAT; accessed on
5 Aug. 2022). The ITRF2020 is the latest realization of the
International Terrestrial Reference System based on com-
pletely reprocessed time series of station positions and EOPs
provided by the Technique Centers of VLBI, GNSS, SLR,
and DORIS, as well as local ties at colocation sites (accord-
ing to https://itrf.ign.fr/en/solutions/itrf2020). PM reflects
the time-dependent coordinates of the Earth’s reference pole
(currently the Celestial Intermediate Pole) with respect to the
ITRF. As a part of the ITRF2020 solutions, the ITRF2020
PM time series is certainly a good choice as it is the only PM
combination series that is computed in a fully consistent and
rigorous way with the terrestrial frame itself. In these data, x
and y are daily-sampled in mas with their temporal rates in
mas/day, and range from 26 November 1979 to 31 December
2020.

ThePMseries togetherwith their errors fromCOMB2020,
POLE2020, IERS 14C04, IERSC01 and ITRF2020 are plot-
ted in Fig. 3, from which one can see that PM errors are
considerably larger at early years (before 1994).

The geodetic (or observed) excitations derived from these
PM series through Eq. (21) are also provided in Fig. 4. One
can see that the ITRF2020-based excitations have significant
noise before ~ 1994,which leads to unrealistic estimatesTCW

= 420.9 mean solar days and QCW = 70. This is because the
ITRF series is based purely on observational data and the con-
tinuously observed GNSS input series only began in 1994,
while COMB2020, POLE2020, IERS 14 C04 and IERS C01
use filtermethods to smooth and interpolate the raw input PM
values. Therefore, either filtering or truncation is needed for
the ITRF2020 PM data to obtain reliable results (see Table
2). In this study, we prefer the estimates from truncated rather
than filtered ITRF2020 PM series as filtering brings some-
what artificial features to the results (for example, the choice
of passband and stopband frequencies is empirical and may
lead to discrepancies that are difficult to track down).
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Fig. 3 Comparisons of the COMB2020, POLE2020, IERS 14 C04, IERS C01 and ITRF2020 polar motion series (a) and their reported errors (b)

123



Free decay and excitation of the chandler wobble: self-consistent … Page 7 of 14 36

Fig. 4 Geodetic excitations derived from the COMB2020, POLE2020, IERS 14 C04, IERS C01 and ITRF2020 polar motion series

4 Numerical results

4.1 Preliminary results

The traverse algorithm (e.g., Hunt 2019) predicts a set of
outcomes based on a range of values versus a set of fixed
input values. Every inputwill be evaluated and thus traverse is
able to find the globally optimal. Although it is less efficient,
traverse is necessary to solve the current problem that has
multiple local extremes (see below).

Relying on the method as described in Sect. 2, we have
used TCW ranging from 420 to 450 days with a 0.1-day step,
andQCW ranging from20 to 200with a unit step to obtain v as
defined by Eq. (10). That is, 301*181= 54,481 trials for each
simulation and thus 762,734 trials for all the 14 simulations
(as listed in Table 2) are applied to find the best estimates.
The results are illustrated by Fig. 5 (for clarity, the natural
logarithm has been applied to 1/|v|; only the case of IERS 14
C04 is shown) as well as Tables 1 and 2. One can see there are
a number of local extremes lyingbetween~420 to~447days,
which is not unexpected as these equations obviously set up a
highly nonlinear problem. Therefore, one must be careful to
make sure not to drop in these local extremeswhen estimating
TCW and QCW.

It is worth pointing out thatmany previous studies adopted
theMonte Carlo Simulation to assign uncertainty intervals to
TCW and QCW, with white noises of some level added (e.g.,

Kuehne et al. 1996; Wilson and Chen 2005; Nastula and
Gross 2015). Their uncertainty intervals may be related with
the assumed level of white noises, while the uncertainties
provided below should be more objective.

From Table 2, one can see TCW and QCW estimates may
vary with EOP series and methods (INT or IFT) adopted.
They also vary with time span even for the same EOP series,
which will be discussed in the next subsection. In fact, we
have also used the famous digital filter developed by Wilson
(1985), and found the results agree extremely closely with
(almost exactly the same as) those listed in Table 2. The
reasonsmaybe: 1. theWilsonfilter is accurate at theChandler
frequency and thus produces exactly the same outputs as Eq.
(21) does at this frequency (valid for both the INT and IFT
cases); 2. the accumulated errors of numerical integration are
so large that the differences between theWilson filter and Eq.
(21) become unimportant (for the INT case only). In addition,
TCW and QCW estimates also vary with time span even for
the same EOP series according to Table 2. These aspects are
to be discussed in detail in the next subsection.

Obviously, the discrepancies in TCW and QCW estimates
reflect the errors introduced by the measurements and the
numerical methods adopted to process the measured data.
All the EOP series have provided formal errors, thus it seems
possible to obtain the best estimates by weighted averaging
of the preferred values (in bold) as listed in Table 2. How-
ever, the standard derivations of these errors in the given time
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Fig. 5 Values of ln(1/|v|) in the
traversal search (for the INT case
of IERS 14 C04 EOP). a The 3D
view; b The 2D contour. The
maximum is marked in both
figures
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Table 1 Local extreme values of
ln(1/|v|) and |v| corresponding to
Fig. 5 (only cases with ln(1/|v|)
values > 5 are listed; preferred
estimates are marked with bold
numbers)

TCW QCW ln(1/|v|) |v|

427.1 116 5.99989 0.002479

432.7 95 7.95527 0.000351

432.9 47 5.51115 0.004041

439.7 129 6.09516 0.002254

446.7 87 6.23023 0.001969

Table 2 Values of TCW andQCW derived from different EOP time series for both the INT and IFT cases (for the two TCW values for each simulation,
the first one is in mean solar days and the other is in sidereal days; preferred estimates are marked with bold numbers)

EOP data Time span TCW (INT) QCW (INT) TCW (IFT) QCW (IFT)

COMB2020 1962.1.20–2021.6.30 427.4 428.6 162 433.6a 434.8a 166a

COMB2020b 1984.1.1–2020.12.31 428.3 429.5 198 430.1 431.3 155

POLE2020 1900.1.20–2021.6.22 427.3 428.5 159 432.9a 434.1a 167a

IERS 14 C04 1984.1.1–2022.7.4 432.7 433.9 95 430.2 431.4 109

IERS C01 1900.00–2022.55 420.0 421.1 120 420.1 421.3 86

ITRF2020 EOPc 1979.11.26–2020.12.31 431.6 432.8 75 436.3 437.5 100

ITRF2020 EOPb 1984.1.1–2020.12.31 428.9 430.1 99 430.9 432.1 127

aTCW and QCW estimates are in fact unstable if too many data points before 1994 are used (see Sect. 4.2); these values appear to agree well with
the others but in fact this is only coincidental
bThese values are obtained from truncated EOP series in the time span 1 Jan. 1984 to 31 Dec. 2020
cThese values are obtained by removing high-frequency noise in ITRF2020 PM; for the original ITRF2020 PM data, TCW = 420.9 mean solar days
or 422.1 sidereal days, and QCW = 70

spans, as listed in Table 2, are respectively

σCOMB2020 = 0.1555 mas,

σIERS_C04 = 0.2145 mas, and

σITRF2020 = 6.4780 mas,

according to the COMB2020, IERS 14 C04 and ITRF2020
EOP data (also see Fig. 3b for their error time series). The
large σ values for ITRF2020 may indicate that its errors are
closer to the true errors of the PM measurements, while the
small σ values for the other series may be too optimistic,
depending on how the individual PM series were combined.
In other words, these σ values may not be of the same type,
and thus it is not suitable to obtain the weighted average of
the corresponding estimates relying on them. In view of this
reason and the preferred estimates, we decide to use their
arithmetic averages as the best estimates of CW parameters,
which are respectively

For INT : TCW = 430.0 ± 2.7 mean solar days/431.1 ± 2.8

sidereal days, and

QCW = 131 ± 67,

and

For IFT : TCW = 430.4 ± 0.5 mean solar days/431.6 ± 0.5

sidereal days, and

QCW = 130 ± 25,

wherewe have takenmax|TCW_X −TCW| andmax|QCW_X −
QCW| as the estimate errors (X = COMB2020, IERS 14 C04
or ITRF2020). The above INT and IFT results agree with
each other quite well, indicating that our results are reliable.
As the preferred results for the IFT case are obviously less
scattered than those for the INT case, we would recommend
the estimates from the IFT case as the best ones. The rec-
ommended estimates are generally in good agreement with
results obtained by previous studies, though many of those
are not self-consistent as explained in the Introduction aswell
as the Conclusion and Discussions (see also Sect. 5 for some
equations underlying these discussions).

4.2 Longer time series, better results?

It is usually assumed that longer PM series will lead to better
estimates of CW parameters. However, the numerical results
as listed in Table 2 do not imply so. How come?We think the
inhomogeneous errors and discontinuities in the long-term
PM data are probably responsible.

To illustrate this, we have presented in Table 3 the esti-
mates corresponding to three different periods for the same
EOP series COMB2020: the first one with an 18.6 year (~
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Table 3 Effect of data length on
the estimates of Chandler
parameters for both the INT and
IFT cases (the COMB2020 series
is adopted)

Time span TCW (INT) QCW (INT) TCW (IFT) QCW (IFT)

2002.11.2–2021.6.30 432.0 433.2 127 430.1 431.3 120

1984.4.18–2021.6.30 430.3 431.5 164 428.7 429.9 117

1965.9.11–2021.6.30 425.8 427.0 111 438.6 439.8 48

6794 days) length, the second with a 37.2 (= 2*18.6) year
length, and the third with a 55.8 (= 3*18.6) year length.

As pointed out in another study of ours (Luo et al. 2022),
“if the Earth is a body with fixed size, figure and density
distribution, the CW frequency, as a normal mode or eigen-
frequency of the Earth, would be a constant. However, as is
well known, the Earth is undergoing continuous deforma-
tions (namely changing figure and density distribution) due
to loading and tidal attractions, etc.” There may be notable
changes in TCW due to tidal deformations caused by the
largest, 18.6-year lunar tide, though for most loading and
tidal deformations, the amount of figure changes and mass
redistributionsmay not cause detectable TCW variations. The
choice of multiples of 18.6 years (as in Table 3) may help
to avoid the possible influence of the 18.6-year tide on the
estimates of TCW.

One can see fromTable 3 that, the 18.6-year and 37.2-year
estimates are quite acceptable, while the TCW value for the
55.8-year estimates is obviously somewhat biased for both
the INT and IFT cases (QCW is also biased for the IFT case).
We have also tried using POLE2020 and IERSC01 truncated
into different time spans, but found TCW estimates fluctu-
ate between 420 ~ 450 days while QCW estimates fluctuate
between 30 ~ 200, and no robust estimates can be obtained
if too many data points at the early years are used. These are
concrete examples supporting our argument that longer PM
time series do not necessarily lead to better estimates of CW
parameters, since early-year EOP data are of poor quality
and can degrade the results.

For the INT case, the excited PM is calculated by numer-
ical integration according to Eq. (4). During the course of
numerical integration, the errors will accumulate into the
integration results (the longer time span, the larger the error
accumulated) and may bring the results far from the true
values especially when the errors are large during the initial
years. While recent PM errors are quite small (less than 0.05
mas), those in early years can be very large (over a few mas
and can reach a few tens of mas; see Fig. 3b for errors for
all PM series). The obvious discontinuities in PM and thus
geodetic excitations (especially for IERS C01; see Figs. 3a
and 4) also contribute to the integration errors.

For the IFT case, the excited PM is derived through
time–frequency domain conversions. In the frequency
domain, high-frequency noises are naturally separated from
the frequencies near the Chandler band (thus TCW and QCW

estimates are less affected by high-frequency noises), while
in the time domain integration, high-frequency noises and
real signals are mixed together, and thus errors will accumu-
late and become larger and larger when the time series are
longer. Therefore, it is not unexpected that the preferred IFT
estimates for COMB2000, IERS 14 C04 and ITRF2020 as
listed in Table 2 are less scattered and all very close to the rec-
ommended values TCW = 430.4 mean solar days and QCW

= 130. Although the IFT method seems rather insensitive to
high-frequency noises, it is sensitive to data discontinuities
which lead to changes not only in trend but also in some
low-frequency components (see Figs. 3a and 4, especially
for IERS C01). While discontinuities are usually inevitable
for very long time series, the IFT method can not be used to
obtain reliable results either.

To conclude, for both the INT and IFT methods, longer
PM time series do not necessarily lead to better results when
taking into account the fact that PMdata are of poor quality in
the early years. Also, it is reasonable that we prefer the CW
parameters estimated from truncated rather than full EOP
series as discussed in Sect. 4.1.

5 Love numbers and PM transfer functions
at chandler period

With self-consistent estimates of TCW and QCW, we can
obtain the degree-2 Love numbers and further PM transfer
functions constrained by the CW parameters.

The theoretical expression for the Chandler wobble is
(e.g., Mathews et al. 1991, 2002)

σCW=2π

�

A

Am
(e − κ), e = C − A

A
, �= LOD

2π
/



(11)

where e and κ are respectively the dynamical ellipticity and
compliance for the whole solid Earth, while A and Am are
respectively the equatorial principal moments of inertia of
the whole solid Earth and the mantle, and LOD = 86,400 s
is the nominal length of mean solar day. The compliance κ is
closely related with the degree-2 tidal Love number k (e.g.,
Chen et al. 2013a):

κ = e

ks
k, ks = 3G(C − A)


2a5
= 3GAe


2a5
, (12)

123



Free decay and excitation of the chandler wobble: self-consistent … Page 11 of 14 36

Table 4 Values of relevant parameters (uncertainties are provided in
parentheses)

Parameter Numeric value Data source

G (× 10−11 m3 kg−1

s−2)
6.67430(15) CODATA2018

a (m) 6,378,136.6(1) IERS Conventions
(2010)

e (× 10–3) 3.2845479(12) Mathews et al. (2002)

Ω (× 10−5 rad s−1) 7.292115 IERS Conventions
(2010)

A (× 1037 kg m2) 8.00804(18) Updated from Chen
et al. (2015)

C (× 1037 kg m2) 8.03435(18) Updated from Chen
et al. (2015)

Am (× 1037 kg m2) 7.09675 Updated from Chen
et al. (2015)

Cm (× 1037 kg m2) 7.12065 Updated from Chen
et al. (2015)

ks 0.938324(89) Derived by this study

where ks is usually referred to as the secular Love number.
Combining Eqs. (1), (11) and (12), the “CW parameter-

constrained” complex tidal Love number reads (here TCW

should be in mean solar days; � must be replaced by 1 if
TCW is in sidereal days)

k = ks

[
1 − Am

Ae

�

TCW

(
1 + i

2QCW

)]
, �= LOD

2π
/



(13)

Using TCW = 430.4 mean solar days andQCW = 130, the
k value is.

k = 0.35010616−0.00226238i

according to numerical values of relevant parameters con-
sistent with the latest CODATA2018 (Committee on Data
for Science and Technology 2018) numerical standards
(Tiesinga et al. 2021; see Table 4). In Table 4, values of
relevant parameters together with their uncertainties (if any)
are provided. While 
 is the nominal mean Earth’s angular
velocity without uncertainty, Am and Cm are in fact modified
from thevalues derived from thePreliminaryReferenceEarth
Model (Dziewonski and Anderson 1981), which does not
provide parameter uncertainties, and thus the uncertainties of
Am and Cm can not be determined (see Chen et al. (2015) for
details). Uncertainties for all Love numbers discussed here
(according to Eq. (13)) and thus for PM transfer functions are
also unavailable. Although their values are assigned 8 deci-
mal places, it does not mean they have such high accuracy.
Users can truncate them according to their needs.

As shown in Chen et al. (2013a), the relation (let L denote
a Love number of any type and �L be its increment due to

the Earth’s frequency-dependent responses)

�k( f )

k( fR)
= �h( f )

h( fR)
= �l( f )

l( fR)
= �k′( f )

k′( fR)

= �h′( f )
h′( fR)

= �l ′( f )
l ′( fR)

(14)

holds at least from daily to decadal time scales. Wherein,
h and l are tidal Love numbers respectively for vertical and
horizontal displacements, while k’, h’ and l’ are the corre-
sponding load Love numbers (we limit the case to degree-2
here). Choosing the reference frequency f R = 1 cycle per
day and using the nominal values of diurnal Love numbers as
listed in Chapters 6 and 7 of the IERS Conventions (2010),
the numerical values of these Love numbers, valid for the
Chandler period, are

h = 0.71101009−0.00459453i

l = 0.09753209−0.00063025i

k′ = −0.36090393 + 0.00233215i

h′ = −1.17484499 + 0.00759182i

l ′ = −0.15199044 + 0.00098216i

The PM transfer functionsTL and TNL (see Eq. (19)) play
significant roles in understanding the relationship between
polar motion and the underlying geophysical processes asso-
ciatedwithmass redistributions and relativemotions, and can
be generally expressed as (e.g., Lambeck 1980; Dickman
2003; Chen et al. 2013a,b; Gross 2015a)

T L/NL
PM = (1 + k′)δ ks

ks − k

A

Am
, δ =

{
1 with loading
0 without loading

(15)

where δ equals 1 or 0, depending on whether the concerning
terms load the Earth or not (corresponding to the super-
scripts L and NL respectively). It is apparent thatTL and
TNL are determined by the Earth’s dynamic structure (A,Am),
(an)elasticity and rheology (k and k’), almost the sameparam-
eters determining the CW frequency as shown by Eqs. (11)
and (12). Thus, the values of (TL, TNL) and (TCW, QCW)
are not independent but closely related to each other. This
explains why in the Introduction we write “once the transfer
functions are chosen, the values of TCW and QCW are also
fixed”.

The numerical values for PM transfer functions valid at
the Chandler period are (these values are preferred by this
study)

TNL = 1.80000957−0.00692311i

T L = 1.15039519−0.00022664i
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which are obviously different from TNL = ~ 1.62 and TL

= ~ 1.12 (these two values are just those used by previous
studies to estimate TCW and QCW), valid around the diurnal
period.

There are some disagreements on the existence of the fac-
tor A/Am in the PM transfer functions (e.g., Dickman 2003;
Chen et al. 2013a; Bizouard 2020). Below the values without
the factor A/Am are also provided:

TNL = 1.59517423−0.00613529i

T L = 1.01948389−0.00020085i

which are still different from the commonly adopted values
TNL = ~ 1.62 and TL = ~ 1.12.

6 Conclusion and Discussions

The CW parameters (TCW, QCW) and PM transfer functions
(TNL,TL) reflect almost the same characteristics of the Earth,
namely its layered structure,mass distribution, elasticity, rhe-
ology and energy dissipation, in different aspects, and thus
they are not independent. Therefore, the CWparameters esti-
mated from constant and real-valued transfer functions are
not self-consistent. Recognizing this, we propose the use of
χobs(t) (rather than the geophysical excitationχgeo(t); see the
“Appendix” for a brief discussion) to separate the observed
PM into contributions from the freely decaying CW and
the excited PM, and develop a self-consistent traverse-based
method to search values of TCW and QCW that can fit both
parts simultaneously. It is worth noting that there are a num-
ber of local extremes and one must be careful to make sure
not to drop in these local extremes when estimating TCW and
QCW. Our estimates TCW = 430.4± 0.5mean solar days and
QCW = 130± 25 agree with the results obtained by previous
studies, but are more self-consistent.

One should note that it is the errors of EOPmeasurements
and the method adopted to derive geodetic excitation that
give birth to the uncertainties of TCW and QCW estimates.
Most EOP data (such as COMB2020 and IERS 14 C04) only
provide formal errors,which reflect the accuracy of data com-
binations and are usually smaller than true errors (One can
refer to the errors provided by the ITRF2020 EOP, which
are the most rigorously determined EOPs). In view of these
points, we believe the differences of these EOP data aremuch
closer to the true errors of EOP data, and thus our uncertainty
intervals are directly obtained from the differences of (TCW,
QCW) estimated from three EOP series. Our uncertainties for
TCW andQCW may bemore realistic than previous estimates.

Based on self-consistent estimates of TCW and QCW, the
degree-2 Love numbers and complex PM transfer functions
valid at the Chandler period are provided in Sect. 4, among
which the values of PM transfer functions are quite different

from the traditional transfer constants. However, even with
previously accepted values TCW = 433 mean solar days and
QCW = 100, the Love numbers will be

k = 0.35203743−0.00293143i

k′ = −0.36289477 + 0.00302184i

and PM transfer functions will be

TNL = 1.80592052−0.00902960i

T L = 1.15058869−0.00029560i

which are still quite different from the frequency-
independent values TNL = ~ 1.62 and TL = ~ 1.12 used by
previous studies (but consistent with the values provided by
Chen et al. 2013a).

Recently, Liu et al. (2022) analyzed seasonal PM exci-
tations in detail from both harmonic and inharmonic per-
spectives, and showed that the atmospheric, oceanic and
hydrological excitations, constrained by satellite gravimet-
ric measurements and with the frequency-dependent transfer
functions of Chen et al. (2013a) applied, agree best with the
geodetic excitation, while the unconstrained atmospheric,
oceanic and hydrological excitations derived from general
circulation models, with TNL = ~ 1.62 and TL = ~ 1.12
applied, have biased phases and smaller amplitudes com-
pared to the geodetic excitation. Therefore, on one hand,
geophysical excitations derived from general circulation
models need further improvements and should be constrained
by time-variable gravity observed by satellites; and on the
other hand, the transfer functions developed by Chen et al.
(2013a) and this study are reliable and can explain the geode-
tic excitation better provided that amplitudes and phases of
global mass redistributions and relativemotions are correctly
modeled.

To conclude, the CW parameters as well as associated
Love numbers and PM transfer functions derived by this
study are reliable and acceptable, though further improve-
ments are promising if accurate space geodetic EOP time
series over longer time span are available, since the poor opti-
cal astrometric measurements in the early years can degrade
these estimates.
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Appendix: Liouville’s Equation, Geophysical
and Geodetic Excitations

Under the law of conservation of angular momentum, theo-
retical studies of polar motion are based on the application of
the linearized Liouville equation for a rotationally stratified
Earth (e.g., Gross 2015a)

i

σCW

∂ p(t)

∂t
+ p(t) = χ(t), i = √−1, (16)

where p(t) = x(t) − iy(t) the coordinates of the CIP mea-
sured in the ITRS, andχ(t) the excitation function (excitation
for short hereafter) for polar motion.

As is well known, the time-domain solution to Eq. (16)
can be written as

pobs(t) = At0
CW exp

[
iσCW(t − t0) + iαt0

CW

]

− iσCW exp(iσCWt)
∫ t

t0
χ(τ) exp(−iσCWτ)dτ ,

(17)

where pobs(t) is the observed polar motion, and t0 is the
initial time.χ(t) is usually derived from data of mass redis-
tributions c(t) and relative motions h(t) (such χ(t) are often
called geophysical excitations,χgeo(t)). In order to take into
account the Earth’s frequency-dependent responses due to
mantle anelasticity and viscoelasticity etc., we can evaluate
χ(t) in the frequency domain (with 
 the nominal rotation
rate of the Earth; e.g., Chen et al. 2013a,b, 2017):

χ̃geo( f ) = T L( f )
c̃( f )

C − A
+ T NL( f )

h̃( f )


(C − A)
, (18)

and then apply the Inverse Fourier Transformation (IFT) to
it, namely χ(t) = IFT

[
χ̃( f )

]
. In Eq. (18), the PM transfer

functionsTL andTNL (L andNL forwith andwithout loading

effects, respectively) describe the responses of the stratified
and deformable Earth (e.g., Lambeck 1980; Dickman 2003;
Chen et al. 2013b, a; Gross 2015a).

The freely decaying part of the CW and the excited part
of PM can thus be written as

pfdCW(t) = At0
CW exp

[
iσCW(t − t0) + iαt0

CW

]
(19)

and

pext(t) = −iσCW exp(iσCWt)
∫ t

t0
χ(τ) exp(−iσCWτ)dτ ,

(20)

respectively. Obviously, pext(t) can be obtained by a numer-
ical integration once χ(t) is known. In this study we prefer
to use χ(t) derived from the observed polar motion (often
called observed excitation or geodetic excitation, χobs(t))
rather than the geophysical excitation χgeo(t). In the ideal
case, χgeo(t) should equal χobs(t), however there are notable
differences between them due to the fact that mass redistribu-
tions and relative motions are not accurately modeled (e.g.,
Chen et al. 2013b; Harker et al. 2021; Liu et al. 2022) and it
will take considerable extra efforts to improve χgeo(t) (e.g.,
Göttl et al. 2012, 2015; Chen et al. 2017, 2019) to obtain
reliable estimates of TCW and QCW. Further, it is sufficient
to use χobs(t) rather than χgeo(t) here since this study does
not discuss which geoprocess(es) contribute(s) the most to
the excitations of CW.

In addition, we shall use a method based on the combined
frequency and time-domain Liouville’s equation (see e.g.,
Chen et al 2017; 2023), to derive χ(t). Applying the Fourier
Transformation (FT) to Eq. (16), and letting χobs( f ) and
pobs( f ) respectively be the frequency components of χobs(t)
and pobs(t), one obtains

χobs( f ) = σCW − 2π f

σCW
pobs( f )

=
[
1 − 2

2 + i
/
QCW

f

FCW

]
pobs( f ),

FCW= 1

TCW
, (21)

and thus χobs(t) through the inverse Fourier transformation
(IFT) of χobs( f ). We then obtain the initial CW by replacing
χ(t) in Eq. (6) with χobs(t). More details on how to use
Eq. (21) to derive the geodetic excitation, together with some
improvements to Eq. (21), are discussed in Chen et al. (2023,
in preparation), where validations of this method are also
presented.
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