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Abstract
Wepresent a new, physicallymotivated triaxial reference ellipsoid for the Earth. It is an equipotential surface in the gravity field
and closely approximates the geoid, akin to the conventional reference ellipsoid of revolution. According to Burša and Fialová
(Studia Geophysica et Geodaetica 37(1):1–13, 1993), the triaxial reference ellipsoid is uniquely, but not exclusively, specified
by the body’s total mass, the dynamic form factors of polar and equatorial flattening, the longitude of the equatorial major axis,
the rotation rate, and the designated surface potential. We model the gravity field using triaxial ellipsoidal harmonics. While
they are rarely considered practical for near-spherical planets, we leverage an intrinsic property that ellipsoidal harmonics
yield an exact expression for the constant potential on a triaxial ellipsoid. A practical procedure is proposed to solve for the
ellipsoidal parameters that converge iteratively to fulfill the exact condition of equipotentiality. We present the solution for
the Earth Gravitational Model 2008.

Keywords Earth · Triaxiality · Reference ellipsoid · Ellipsoidal harmonics · Exact solution

1 Introduction

Earth has a mean radius of 6371km. The polar semi-axis is
shorter than the equatorial semi-axis by some 20km. That
is, to a first-order approximation in terms of polar flattening,
the Earth is an oblate biaxial ellipsoid or spheroid. A flat-
tened figure is common for large rotating planetary bodies
and a manifestation of their states of (near) hydrostatic equi-
librium. Sea level on Earth closely approximates a gravity
equipotential surface called the geoid. The maximum devi-
ations between these surfaces is ∼ 1 m. An oblate biaxial
ellipsoid can be used in turn to approximate the geoid: The
maximum vertical deviation of the geoid from this ellipsoid
is∼ 100 m. This ellipsoid is widely referred to as a reference
ellipsoid (Heiskanen and Moritz 1967; Moritz 2000; Torge
and Müller 2012; Jekeli 2007; Grafarend et al. 2010). In this
work, we shall refer to this conventional reference ellipsoid
as the biaxial reference ellipsoid.

B Xuanyu Hu
xuanyuhu@gmail.com

1 Institute of Geodesy and Geoinformation Science, Technical
University Berlin, Kaiserin-Augusta-Allee 104-106,
10553 Berlin, Germany

2 Division of Geodetic Science, School of Earth Sciences, The
Ohio State University, 125 South Oval Mall, Columbus,
OH 43210, USA

Gravity described in the rotating body-fixed frame con-
sists of two distinct components, the gravitation due to body’s
mass distribution and the centrifugal acceleration due to its
rotation (Pizzetti 1894; Heiskanen and Moritz 1967). We
denote the gravity potential as

W = V + � = G
∫
M

dM∣∣r − r
∣∣ + 1

2
|ω × r|2, (1)

where V is the gravitational potential at a field point r due to
a distribution of differential body mass dM located at r, G is
the gravitational constant, and � is the centrifugal potential
at r where ω = ωω̂ is the rotational velocity of the body. For
example, the expression in the Cartesian coordinate system
whose z axis coincides with ω̂, the unit vector of the rotation
axis, is � = ω2(x2 + y2)/2.

1.1 Biaxial reference ellipsoid of Earth

An equipotential surface is a level or surface on which the
gravity potential is constant. The definition of the biax-
ial reference ellipsoid is conveniently and most concisely
expressed in terms of biaxial ellipsoidal or spheroidal har-
monics (Pizzetti 1894; Heiskanen and Moritz 1967; Thong
and Grafarend 1989; Jekeli 2007; Grafarend et al. 2010;
Sebera et al. 2016). We denote the normal gravity potential
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due to this biaxial ellipsoid in the following way

U (u, β) = V + � =
∞∑
n=0

Qn (iu/E)

Qn (ib/E)
An Pn(sin β)

+1

2
ω2(u2 + E2) cos2 β, (2)

where the notation conforms to that of Heiskanen andMoritz
(1967). u and β are the biaxial ellipsoidal coordinates of
the semiminor axis and reduced latitude, respectively. The
expression does not involve the third coordinate of longi-
tude because of rotational symmetry. On the biaxial reference
ellipsoid, we have u = b. E = √

a2 − b2 is the focal length,
with a being the semimajor axis. Pn and Qn are the Legendre
functions of the first and second kind, respectively, of degree
n. i is the imaginary unit. An are coefficients quantifying the
degree-wise variation of the gravitational field. The second
term on the right-hand side is the centrifugal potential.

We suppose that U on the biaxial reference ellipsoid
reduces to a constant, namely

U (u = b, β) = U0. (3)

Taking note that cos2 β = 2
3 [1 − P2(sin β)], this condition

yields a closed-form expression for the normal gravitational
potential generated by the ellipsoid. Specifically, all An other
than those of n = 0 and n = 2 vanish,

A0 = U0 − 1

3
ω2a 2, A2 = 1

3
ω2a 2. (4)

Simply put, the reduction of (3) requires that any lati-
tudinal variation of the normal gravitational potential over
the biaxial reference ellipsoid must be canceled out by the
centrifugal component, thereby removing β. As a result, the
resolution of the normal gravitational field does not exceed
degree two.

The gravitational field is most often modeled as a series
of spherical harmonics (Hobson 1931; Heiskanen andMoritz
1967; Jekeli 2007),

V = GM

r

N∑
n=0

n∑
l=0

(r0
r

)n
Pnl(sin ϕ)(Cnl cos lλ+Snl sin lλ) ,

(5)

where r , ϕ, and λ are the spherical coordinates of radius,
latitude, and longitude, respectively. Pnl is the associated
Legendre function of degree n and order l. r0 is a refer-
ence radius that can be chosen as that of the circumscribing
sphere of the body mass. Cnl and Snl are Stokes’ coeffi-
cients and C0,0 = 1 and Sn0 = 0 for all n. Note that
Pnl and Cnl , Snl are normalized in practice, e.g., P̄nl =

√
(2 − δl0)(2n + 1) (n−l)!

(n+l)! Pnl with δl0 being the Kronecker
delta. The series is truncated at some finite degree N . The
Stokes’ coefficients are determined from satellite tracking,
ground gravity measurements, etc.

The biaxial reference ellipsoid can be specified with the
aid of such a model. For example, the polar oblateness of
Earth’s mass distribution, indicated by J2 = −C2,0, was
adopted alongside a (i.e., r0),GM , andω for definingGeode-
ticReferenceSystem1980 (GRS1980) (Moritz 2000) aswell
as the descendent World Geodetic System 1984 (WGS 84)
(DefenseMappingAgency1991).Here, the physical parame-
ter J2 is equivalent to the geometric flattening, f = (a−b)/a,
by virtue of Clairaut’s theorem. The theory above is from an
authoritative account of the topic by Heiskanen and Moritz
(1967).

1.2 Triaxial figure: Burša and Fialová’s approach

Earth also exhibits an equatorial flattening. It is a second-
order effect but nonetheless easily perceptible given ever
more precise geodetic measurements. The triaxiality of Earth
is a classic topic in geodesy, whose signature in the early days
was a subject of debate (Herschel 1879). A brief history can
be found in Hollis (1906) and Heiskanen (1962). The equa-
torial flattening indicates a degree of deviation of the body
from the perfect isostatic equilibrium, or mass anomalies at
depths, e.g., the core–mantle boundary (Heiskanen 1962).

Earth’s triaxiality has been investigated historically via
astro-geodetic or gravimetric measurements (Clarke 1861;
Heiskanen 1928), and since the advent of the space era,
(togetherwith) observed satellitemotions (Kaula 1959; Izsak
1961; Kozai 1961). As an approximate equipotential surface,
this reference figure, whether a biaxial or triaxial ellipsoid,
can be determined as best fits to the geoid derived from the
gravitational field model (Burša 1970; Burša and Sima 1980;
Tserklevych et al. 2016; Panou et al. 2020; Soler and Han
2020). This is the same principle as determining the triaxial
dimensions of other planetary bodies (Smith et al. 1999; Iz
et al. 2011). On the other hand, Burša and Fialová (1993)
(hereafter B&F 1993) presented a definition and solution
for the Earth’s triaxial figure, which is a generalization of
the biaxial case as described in Sect. 1.1. The approach is
based on spherical harmonics and applies the same ratio-
nale as the condition of (3). In addition to a,GM, J2, ω,
the sectoral coefficients, C2,2, S2,2, are needed to specify the
equatorial flattening. While the equatorial flattening itself
can be measured by one parameter, which we denote by

J2,2 =
√
C2
2,2 + S22,2, it gives rise to an issue of orientation,

thus requiring another parameter. Beside C2,2, the parameter
S2,2 is needed to specify the longitude of the second (equa-
torial) semimajor axis, say λ0 = 1

2 atan2(S2,2,C2,2). For the

123



A triaxial reference ellipsoid for the Earth Page 3 of 15 29

Table 1 Constants of biaxial and triaxial reference ellipsoids

Parameters Biaxial Triaxial

Reference scale a R0

Rotation rate ω ω

Mass moments (by scale) GM , J2 GM , J2
J2,2, S2,2 (or λ0)

Source Moritz (2000) B&F (1993)

purpose of clarity, the physical constants of the biaxial and
triaxial reference ellipsoids are compared in Table 1.

Spherical harmonics in the form of Eq. (5) do not directly
provide a closed-form expression for the constant poten-
tial on a triaxial ellipsoid (or a biaxial one). B&F (1993)
first expanded the radius coordinate, r , of a point on the
ellipsoid as another infinite spherical harmonic series with
respect to r0, i.e., r(ϕ, λ) = r0 +∑∞

k=0
∑k

l=0(akl cos lλ +
bkl sin lλ)Pkl(sin ϕ). The coefficients, akl , bkl , are them-
selves power series of the polar and equatorial flattening as
well as their product; those smaller than 10−11 were omitted.
Then, r(ϕ, λ) was incorporated into an analogue of Eq. (3)
to solve for the triaxial figure on which the gravity potential
reduces to a constant.

1.3 Statement of problem

In this work, we present an alternative solution for the tri-
axial reference ellipsoid of Earth. Hereafter, we reserve the
term “ellipsoid” (and “ellipsoidal”) exclusively for the triax-
ial figure, while the biaxial case will always be designated
explicitly. The solution is based on triaxial ellipsoidal har-
monics (EHs) and it has closed form (Morera 1894; Caputo
1967;Hu2017). The closure results from the fact that the con-
stant potential on an ellipsoid can be represented by a single
term of degree zero, similar to the degree-zero spherical and
biaxial EH that indicate constant potential on a sphere and
a biaxial ellipsoid, respectively (Hu and Jekeli 2015). Con-
sequently, we may rigorously impose the same condition as
Eq. (3) for the triaxial case.

Zagrebin (1973) formulated the Earth’s normal gravity
field in terms of EHs as generated by a geoid-fitting ellipsoid,
i.e., of known dimensions. Hu (2017) presented an iterative
approach to determine the dimensions of this reference ellip-
soid for small, irregular-shaped extraterrestrial bodies, such
as the Martian moon, Phobos (Hu et al. 2020). The valid-
ity of the algorithm rests on the assumption that the body’s
polar and equatorial flattenings are comparable. It is hence
inapplicable to the Earth whose equatorial flattening∼ 10−6

is far smaller than the polar flattening of ∼ 10−3. In other
words, the triaxiality of the Earth is not prominent. (By con-
trast, the polar and equatorial flattening of Phobos are both

on the order of 0.1.) Here we present an efficient, alternative
method, which finds the ellipsoidal semi-axes by searching
for the equipotential level along the respective gravity vec-
tors. Because the flattenings are never explicitly invoked,
any assumption or restriction concerning their magnitude is
obviated. The method presented here is complete and stand-
alone: It yields the same results as in Hu (2017) for Phobos,
but also applicable to the Earth and other planetary bodies
with indistinctly triaxial figures.

The effort of developing an EH gravity field model for
the Earth dates back several decades, when the triaxiality of
the figure was no longer in doubt (see Walter 1970; Madden
1970, and reference therein). Since then, however, the practi-
cal interest has not quite materialized and is limited to small
bodies, following the work by Garmier and Barriot (2001).
Granted, a biaxial ellipsoid remains an intuitive and appo-
site reference for the Earth in near hydrostatic equilibrium.
With the measurement precision nowadays far exceeding the
(in)distinctness of the equatorial flattening, the triaxial ellip-
soid has received renewed attention for being amore accurate
and natural reference figure (Panou et al. 2020; Soler andHan
2020). This work exploits the innate advantages of the EHs
and is among the first to offer a practical solution on the topic.
It is intended to lay a piece of the groundwork for a possible,
generalized approach for large and small bodies alike.

The discussion proceeds as follows. In Sect. 2, the basics
of triaxial EHs are given for modeling the gravitational field
and the centrifugal effect. InSect. 3, the definitionof the refer-
ence ellipsoid based onEHs is reviewed and themethodology
of reference ellipsoid determination is given, with somemore
cumbersome derivations arranged in the appendices.We then
present a benchmark solution in Sect. 4, based on the same
parameters used by B&F (1993), as a means of validation. In
Sect. 5, the solution compatible with the Earth Gravitational
Model 2008 (EGM 2008) will be given (Pavlis et al. 2012).
The geoid undulations with respect to the triaxial reference
ellipsoid are presented. We also discuss our results in com-
parison with a least-squares solution by Panou et al. (2020).

2 Gravity field in terms of triaxial ellipsoidal
harmonics

The gravitational potential can be expressed as an EH series
as follows (Hobson 1931; Garmier and Barriot 2001; Hu
2012),

V =
∞∑
n=0

2n+1∑
m=1

cnm
Fnm(ρ)

Fnm(ρ = a)
Enm(μ)Enm(ν), (6)

where Enm(λ) and Fnm(λ) are Lamé functions of the first
and second kind, respectively, for degree n and order m. The
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infinite series is always convergent for ρ > a. ρ,μ,ν are the
ellipsoidal coordinates, being the three distinct roots of the
following cubic equation of t2,

x2

t2
+ y2

t2 − h2
+ z2

t2 − k2
= 1, (7)

for certain real constants k > h > 0. It is imposed that
ρ2 ≥ k2 ≥ μ2 ≥ h2 ≥ ν2 ≥ 0. Then, ρ specifies (the
semimajor axis of) an ellipsoid, while μ, ν specify a one-
sheet and a two-sheet hyperboloids, respectively, all with
focal lengths h and k. The long, intermediate, and short axes
of the ellipsoid are alignedwith x , y, and z axes, respectively.
The Cartesian coordinates are related to the ellipsoidal via

x2 = ρ2μ2ν2

h2k2
,

y2 =
(
ρ2 − h2

) (μ2 − h2)(h2 − ν2)

h2(k2 − h2)
,

z2 =
(
ρ2 − k2

) (k2 − μ2)(k2 − ν2)

k2(k2 − h2)
. (8)

Hence, while they have the dimension of distance, μ, ν play
the role of the angular arguments (e.g., latitude and lon-
gitude). There is a sign ambiguity, which, however, is not
an obstacle in practice since the ellipsoidal coordinates are
never used exclusively and the above expressions are not
often applied for coordinate transformation.

The solution of (6) refers to an ellipsoid of semi-axes a,
b = √

a2 − h2, and c = √
a2 − k2. cnm are coefficients

characterizing the gravitational field of the body associated
with the ellipsoid.

There are four classes of Lamé functions, to one of which
Enm belongs. The present discussion is only concerned with
functions of class “K” of the following form (Hobson 1931),

Knm(μ) =
d∑

i=0

a(i)
nm μn−2i , (9)

with d = �n/2�. There are d + 1 such functions for
each degree. The coefficients a(i)

nm are to be determined for
given h, k so that Enm satisfies the Lamé equation (Hobson
1931). The scale of a Lamé function is arbitrary, however.
Enm(μ)Enm(ν) has the same role as the surface spherical

harmonics, Pnl(sin ϕ)

[
cos lλ
sin lλ

]
. Note that the orderm differs

from the counterpart l in general. The classK is distinguished
by the correspondence between the associated surface har-
monic Knm(μ)Knm(ν) and the surface spherical harmonic

Pn,2l(sin ϕ) cos 2lλ. The Lamé function of the second kind
is

Fnm (ρ) = (2n + 1)Enm (ρ)

∫ ∞
ρ

ds

[Enm (s)]2
√
s2 − h2

√
s2 − k2

, (10)

analogous to the radial function of r−n−1 of spherical har-
monics and Qnl(iu/E) of biaxial EHs.

Enm(ρ)Enm(μ)Enm(ν) of any class represents an alter-
native solution to Laplace’s equation. It is commonly known
as a solid EH, in analogy to the solid spherical harmonic of

rn Pnl(sin ϕ)

[
cos lλ
sin lλ

]
(Heiskanen and Moritz 1967). A solid

harmonic of degree n corresponds to a certain linear combi-
nation of mass density moments of the order rn .

2.1 Sectoral and zonal EHs of the second degree

The evaluation of EHs is far more complicated than that of
spherical harmonics or biaxial EHs (Garmier and Barriot
2001; Hu and Jekeli 2015; Reimond and Baur 2016). Fortu-
nately, in this work only three EHs are of concern, namely, of
degree zero and two and all belonging to class K. The degree-
zero EH is a constant, e.g., K01 = 1 is usually assumed. We
simplify the notation for a second-degree EH as

K2,m(μ) = μ2 + am, m = 1, 2. (11)

The coefficient am is given by

am = (h2 + k2)
(sm − 4)

6
(12)

where sm is a root of the following quadratic equationHobson
(1931),

(
1 + h2

k2

)(
1 + k2

h2

)
s(s − 4) + 12 = 0. (13)

2.1.1 Example: Earth

It is now illustrative to consider an example for the Earth.
Taking the lengths of the three semi-axes as (Panou et al.
2020),

a = 6378171.88, b = 6378102.03, c = 6356752.24 (m),

we obtain,

K2,1(μ) = μ2 − 0.499591021244871h2

K2,2(μ) = μ2 − 204.2595652297377h2.

It can be shown that the corresponding solid EHs, K2,m =
K2,m(ρ)K2,m(μ)K2,m(ν), can be expressed in terms of
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Cartesian coordinates as (Appendix A),

K2,m(x, y, z) = px x
2 + py y

2 + pzz
2 + p0, (14)

where px , py, pz, p0 are coefficients. Those for a, b, c given
above are

K2,1 =x2 − 0.998365421994839 y2

− 0.001634578005162 z2

− 0.499591021244871 h2,

K2,2 = − x2 − 1.004919817666981 y2

+ 2.004919817666980 z2

− 204.2595652297377 h2.

The expressions are rescaled such that px = ±1.

2.1.2 Properties

Two things are noteworthy. First, K2,1 is formally similar to
the sectoral solid spherical harmonic, r2P2,2(sin ϕ) cos 2λ =
3(x2 − y2) and K2,2 to the zonal harmonic, r2P2(sin ϕ) =
z2 − (x2 + y2

)
/2. Note that the coefficients of the respec-

tive (squared) coordinates are similar but not identical in
proportion to those of spherical harmonics. The solid EHs
also consist of a constant term, here factored by h2, which is
absent in spherical harmonics. The variations of the sectoral
and zonal EHs over the ellipsoid surface (i.e., for constant ρ)
are illustrated in Fig. 1, where the triaxiality is exaggerated
compared with Earth’s. The patterns are fully analogous to
those of the respective spherical harmonics on a sphere.

Second, for both K2,m we note the obvious, necessary
condition (in the absence of round-off errors),

px + py + pz = 0, (15)

Fig. 1 EHs of degree two, class K. Upper panels: sectoral harmonics.
Lower panels: zonal harmonics. The views are along the x (left), y
(middle), and z axes (right). The scale of the variations is arbitrary

which results directly from the Laplace’s equation, to which
the solid harmonics are a solution, i.e.,
K = 0. The equality
by (15) is of practical interest to us in this work, as will be
illustrated in the following section.

2.1.3 Numerical precision

The computation of EHs is susceptible to numerical insta-
bilities from a low degree, e.g., about 15 in the case of the
elongated comet (nucleus) Wirtanen (Garmier and Barriot
2001). One issue, for instance, is that the roots of the Lamé
polynomials become increasingly inseparable. Our calcula-
tion is based on the 16-digit format (for double-precision
floating-point numbers). While the model resolution is only
up to degree two, a potential issue resides with the indistinct
equatorial flattening of Earth comparedwith the polar flatten-
ing, e.g., h ≈ 1

20k. To examine the numerical precision of the
Lamé polynomials, we make use of the following equality
(Hobson 1931),

Pn(cos�) = π

2γnm (2n + 1)

2n+1∑
m=1

Enm (μ)Enm (ν)Enm (μ′)Enm (ν′),

(16)

where� is the angle between two vectors, r, r′, and cos� =
r · r′/(|r||r′|). The expression in spherical coordinates is
cos� = sin ϕ sin ϕ′ + cosϕ cosϕ′ cos(λ − λ′). The normal-
ization factor is defined as γnm = ∫

S [Enm(μ)Enm(ν)]2 dS,

where
∫
S dS = ∫ h0

∫ k
h (μ2 − ν2)/√

(μ2 − h2)(k2 − μ2)(h2 − ν2)(k2 − ν2)dμdν.
We set r′ = (a 0 0) and let r trace the equator, the equi-

latitudes of 30◦ and 60◦ on the ellipsoid, with the longitude
incrementing from0 through 180◦ in all cases. Thus,� varies
from 0 through 180, 150, and 120 degrees, respectively. Fig-
ure2 shows the discrepancy between the left- and right-hand
sides of Eq. (16). The error is at the level of 10−13. Because
|P2(cos�)| ∈ [0, 1], this error indicates a loss of 3 digits in
precision.

2.2 Centrifugal potential

Our goal is to solve for an equipotential triaxial ellipsoid.
The centrifugal potential needs to be expressed as EHs in
terms of the ellipsoidal coordinates, ρ,μ, ν. Toward this end,
we seek to express a solid EH on an ellipsoid in a simi-
lar form as the centrifugal potential of x2 + y2. Referring
to Eq. (7), on the ellipsoid of semimajor axis a we have
z2 = c2

(
1 − x2/a2 − y2/b2

)
. Consequently, Eq. (14) can

be rewritten as follows,
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Fig. 2 Discrepancy between P2(cos�) and the evaluation by the right-
hand side of Eq. (16). The solid, dashed, and dot dashed lines correspond
to the cases where r moves along the equator, the latitudes of 30◦ and
60◦, respectively. r′ is fixed at (a 0 0)

K|ρ=a = K (a) K (μ)K (ν)

= px x
2 + py y

2 + pzc
2
(
1 − x2

a2
− y2

b2

)
+ p0

=
(
px − pz

c2

a2

)
x2 +

(
py − pz

c2

b2

)
y2

+
(
p0 + pzc

2
)

. (17)

It is now clear that the centrifugal potential over the ellip-
soid can be expressed by a linear combination of the surface
sectoral and zonal EHs plus a constant, i.e.,

� = φ0 + φ1 K2,1(μ)K2,1(ν) + φ2 K2,2(μ)K2,2(ν), (18)

whereφ0, φ1, φ2 are coefficients that dependona. Let us con-
tract the result of Eq. (17) as K2,m = (

1 x2 y2
)
p2,m with

p2,m being a column vector of (p0 + pzc2 px − pzc2/a2 py
− pzc2/b2)T for the corresponding harmonic.

Then, φ0, φ1, φ2, are the solution of the linear system:

⎛
⎝ 0

ω2

ω2

⎞
⎠ 1

2
=
⎛
⎝ 1
0
0

p2,1/K2,1(a) p2,2/K2,2(a)

⎞
⎠
⎛
⎝φ0

φ1

φ2

⎞
⎠ ,

(19)

where the left-hand side corresponds to � = (1 x2 y2)
(0 ω2/2 ω2/2)T, and accordingly, the rows of the matrix
on the right-hand side account for the constant, x2, and y2,
respectively. K2,m is evaluated via Eq. (11); it is never zero
for a > k (Hobson 1931); hence, no singularity arises.

2.3 Gravitational field: transformation from
spherical to EHs

As remarked in Sect. 1.1, the gravitational field model is usu-
ally determined in the form of a spherical harmonic series.
Therefore, it is required to transform a spherical harmonic
model into an EH model. Here we apply an exact transfor-
mation method as discussed in Hu (2016). The method is
founded on the fact that the series coefficients, spherical,
biaxial or triaxial EHs, are uniquely determined by the mass
distribution of the body (Jekeli 1988; Hu 2016). Therefore,
the transformation can be accomplished by expressing the
solid EH as a linear combination of the solid spherical har-
monics. We note that the transformation from spherical to
the biaxial EHs and the reversion was presented by Jekeli
(1988).

Happily, we are concerned with the transformation of
coefficients only up to degree two. The physical meaning
of the second-degree zonal and sectoral spherical harmonic
coefficients is well known, noting the trivial case of C00 = 1
(Heiskanen and Moritz 1967),

[
C2,0

C2,2

]
= 1

Mr20

∫
M

[ R2,0
1
12R2,2

]
dM

= 1

Mr20

∫
M

[
z2 − x2

2 − y2

2
1
12 (3x

2 − 3y2)

]
dM, (20)

where R2,0, R2,2 denote, respectively, the solid zonal and
sectoral spherical harmonics. On the other hand, it can be
shown that the EH coefficients are related to the body’s mass
density moments as follows (Hu 2016),

c0,1 = F0,1(a) · GM,

c2,m = π

10γ2,m
F2,m(a) · G

∫
M

(px x
2 + py y

2 + pzz
2 + p0) dM,

(21)

where γ2,m is the normalization factor. The integrand is none
other than the solid EH given by Eq. (14). Thus, the physical
meaning of cnm is fully analogous to that of Cnm . Note that a
superficial difference is that Cnm is unitless, whereas cnm is
defined to beof the samedimension as potential (i.e.,GM/a),
for the sake of convenience.

We may express the second-degree EH coefficients as a
linear combination of the C2,0,C2,2 plus a constant. The
strategy is the same as for the centrifugal potential (Sect. 2.2).
We first express the solid EH as a linear combination of solid
spherical harmonics. With the resulting expression incor-
porated into the integrand of Eq. (21), c2,m is then related
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linearly to C2,0,C2,2. Let the solid EH be,

K2,m = α(Z)R2,0 + α(S)R2,2 + α(0). (22)

The coefficients, α(Z), α(S), α(0), can be determined in the
same way as Eq. (19),

⎛
⎝p0
px
py

⎞
⎠ =

⎛
⎝ 1
0
0

0
−1/2
−1/2

0
3

−3

⎞
⎠
⎛
⎝α(0)

α(Z)

α(S)

⎞
⎠ . (23)

This expression is perhaps worth a brief remark. The three
equations account for the coefficients for the constant term,
x2, and y2, respectively. Moreover, we note that the term of
pzz2 in K and also the integrand in Eq. (21) is not needed,
since pz = −px − py as dictated by Laplace’s equation
(Eq.15). The columns in the square matrix on the right-hand
side correspond to the constant term, the zonal and the sec-
toral spherical harmonics, respectively; again, the terms of
z2 are redundant and thus omitted. The solutions had best be
rearranged explicitly as follows

α(0) = p0,

α(Z) = − (px + py
)
,

α(S) = 1

6

(
px − py

)
.

(24)

Finally, upon substituting Eq. (22) with α given by (24) into
the integrand of (21), we have

c2,m = π

10γ2,m
F2,m(a)

· G
∫
M

(α(Z)R2,0 + α(S)R2,2 + α(0))dM

= π

10γ2,m
F2,m(a) · GM

[
−(px + py) r

2
0C2,0

+2(px − py) r
2
0C2,2 + p0

]
.

(25)

Such is the direct, exact transformation from spherical har-
monic coefficients into zonal and sectoral EH coefficients
of degree two. The expressions can also be obtained via the
more general numerical procedure as described inHu (2016).

3 Definition and determination of a triaxial
reference ellipsoid

3.1 Criterion of triaxial reference ellipsoid

Once equipped with Eqs. (18) and (25), we are ready to con-
struct the same condition to define and determine the triaxial
reference ellipsoid, as by Eq. (3) for the biaxial ellipsoid.

First, let us express the gravity potential due to the ellipsoid
in terms of EHs as follows,

U (ρ, μ, ν) = V (ρ, μ, ν) + �(ρ,μ, ν)

=
1∑

n=0

n+1∑
m=1

c2n,m
F2n,m(ρ)

F2n,m(a)
K2n,m(μ)K2n,m(ν) +

[
φ0(ρ)

+ φ1(ρ)K2,1(μ)K2,1(ν) + φ2(ρ)K2,2(μ)K2,2(ν)
]
, (26)

where the compacted expression of V sums up only three
terms associated with c0,1, c2,1, and c2,2. We impose that on
the reference ellipsoid, say, of semi-axes a0, b0, c0 and cor-

responding focal lengths h0 =
√
a20 − b20, k0 =

√
a20 − c20,

the gravity potential is constant,

U (ρ = a0, μ, ν) = U0, (27)

which can only hold if the arguments of μ, ν vanish. Be
reminded of Eq. (3) that on the biaxial reference ellipsoid,
the latitudinal argument, β, is canceled out when the associ-
ated terms in gravitational and centrifugal potentials cancel
out. Here, we expect not only latitudinal but also any lon-
gitudinal variation given by μ, ν in the gravitational field
to be canceled out by the respective centrifugal terms. The
criterion is, specifically,

U0 = c0,1 + φ0 + (
c2,1 + φ1

)
︸ ︷︷ ︸

≡0

K2,1(μ)K2,1(ν)

+ (c2,2 + φ2
)

︸ ︷︷ ︸
≡0

K2,2(μ)K2,2(ν). (28)

Thus, the gravitational field coefficient, c2,m , and the cen-
trifugal, φm , must cancel out such that the gravity potential
no longer depend onμ, ν. The above expression then reduces
to three diagnostics formally equal to zero, with the other
being c0,1 + φ0 −U0.

3.2 First-order solution

Suppose we work with an initial ellipsoid, whose semimajor,
semi-intermediate, and semiminor axes are given by a, b, c.
In general, this ellipsoid is not equipotential, in which case
Eq. (28) does not hold.Wenow face one last task to determine
a new set of parameters, a0, b0, c0, which satisfy Eq. (28) and
which correspond to the reference ellipsoid.

Wenote that the gravity field due to an ellipsoid has triaxial
symmetry, namely U (x, y, z) = U (|x |, |y|, |z|). Further-
more, to determine three parameters, it suffices to deal with
three field points along the respective axes, i.e., U (a, 0, 0),
U (0, b, 0), and U (0, 0, c). The deviation of the potentials
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from U0 is then given by,


Ua = U0 −U (a, 0, 0) ≈ ∂U

∂x

∣∣∣∣
x=a


a,


Ub = U0 −U (0, b, 0) ≈ ∂U

∂ y

∣∣∣∣
y=b


b,


Uc = U0 −U (0, 0, c) ≈ ∂U

∂z

∣∣∣∣
z=c


c,

(29)

where
a = a0 −a,
b = b0 −b,
c = c0 −cmeasure the
deviation of the current ellipsoidal dimensions from those
of the target reference ellipsoid. The approximation applies
as long as 
U is small compared with U . The three partial
derivatives are associated with the signed magnitude of the
“normal” gravity,

γ = ∇U =
(

∂

∂x

∂

∂ y

∂

∂z

)
U , (30)

which is always orthogonal to the ellipsoid. At the respec-
tive ellipsoidal extremities, only one coordinate component
is nonzero, e.g., γ |x=a = (γa 0 0)with γa = (∂U/∂x)|x=a .
The first-order solution of the reference ellipsoid can be
explicated as

a(1)
0 = a + 
a = a + 
Ua

γa
,

b(1)
0 = b + 
b = b + 
Ub

γb
,

c(1)
0 = c + 
c = c + 
Uc

γc
.

(31)

For the sake of completeness of our discussion, the formulas
for calculating γ are given in Appendix B. However, for the
Earth, this calculation can be bypassed. Instead, a zeroth-
order approximation suffices in practice, e.g.,

γ ≈ −9.8 m s−2. (32)

Note the minus sign must be included.

3.3 Practical procedure

Depending on the desired precision, the first-order solution
may not always be sufficient. The above solution can be iter-
ated until the result has converged whose variation is within a
threshold of tolerance. The solution can be simplified for the
Earth (and other nearly spherical bodies) as the evaluation of
the normal gravity is unnecessary.

We assume the following information is at hand:

1. The base or original gravitational field model is a spheri-
cal harmonic series as Eq. (5). Specifically, we will need

GM , J2 = −C2,0, J2 = −C2,0, J2,2 =
√
C2
2,2 + S22,2.

2. The rotation rate, ω, of Earth is known.
3. The target potential number, U0, or equivalently, the ref-

erence radius, R0 = GM/U0.

Note that the six parameters are exactly as prescribed byB&F
(1993).

The practical procedure of the reference ellipsoid solution
consists of the following steps.
Step 1. Start with an initial ellipsoid with semi-axes, a, b, c
and prepare the Lamé polynomials of degree two, class K,
according to Eqs. (11)–(13). Then, derive the solid EH in
terms of the Cartesian coordinates as Eq. (14); the formu-
las for calculating coefficients px , py, pz, p0 are given in
Appendix A.
Step 2. Prepare the gravity field model in terms of EHs up to
degree two as given by (26). This consists of two operations:

(i). For the gravitational field, the zero-degree coefficient,
c0,1 is given by Eq. (21) while c2,m are given by (25). Note
that, in the latter case, J2,2 is used in place of C2,2, since S2,2
also contributes to the equatorial flattening.

(ii). For the centrifugal potential, the coefficients,φ0, φ1, φ2,
are determined by Eq. (19).
Step 3. Evaluate the gravity potential viaEq. (26) at (a, 0, 0),
(0, b, 0), (0, 0, c) in the Cartesian coordinate system. Then,
calculate the respective deviation from the target potential,
i.e., 
Ua , 
Ub, and 
Uc in Eq. (29).
Step 4. Evaluate the signed magnitude of gravity, γa, γb, γc
as are needed in Eq. (31). For a first-order solution, γ =
−9.8 m s−2 can be used. Then, Eq. (31) is used to solve for
the new parameters for the reference ellipsoid, accurate to
the order of 
U .
Step 5. Check error tolerance, e.g., if the condition below
holds,

|
a|, |
b|, |
c| < ε. (33)

Table 2 Defining parameters of the benchmark solution byB&F (1993)

Parameters Values

Reference scale R0 = 6363672.5 m

Rotation rate ω = 7292115 × 10−11 rad s−1

Mass moments GM = 398600.441 × 109 m3 s−2

J2 = 1082.6269 × 10−6

J2,2 = 1.8154 × 10−6

S2,2 = −0.9038 × 10−6
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Table 3 Comparison of the
benchmark solutions: reference
ellipsoidal parameters

Solved parameters B&F (1993) This work (full output)

Semimajor axis, a0 6378171.36 ± 0.3 m 6378171.36(4331512) m

Inverse of polar flattening, 1/ f 297.7738 ± 0.0003 297.7736(994668283)

Inverse of equatorial flattening, 1/ f ′ 91449 ± 60 91446(.49173892032)

First semiminor axis, b0 6378101.61(4334548) m∗ 6378101.61(6752977) m

Second semiminor axis, c0 6356751.84(1694495) m∗ 6356751.83(8779887) m

*Calculated from a0, f , f ′ above

Fig. 3 Convergence of solution indicated by the non-equipotential
residuals after each iteration. The quantities are defined in Eq. (28)

Such a choice is not unique. One may check other quantities
that are formally zero, e.g., |c0,1+φ0−U0|, |c2,1+φ1|, |c2,2+
φ2| in Eq. (28), or |
Ua |, |
Ub|, |
Uc| in Eq. (29), against
the appropriate threshold.

If the above condition is not met, repeat the process from
Step 1; otherwise, the solution is accomplished.

4 Benchmark solution: comparison with
Burša and Fialová (1993)

We applied the iterative method described above to solve
for the Earth’s reference ellipsoid. For illustrative as well as
validating purposes, we performed the solution obtained by
B&F (1993). The parameters are given in Table 2. Note that
the target potential is U0 = GM/R0.

We used a = 6380 km, b = 6379 km, c = 6350 km as the
starting semi-axes. The starting values are unimportant here,
as long as they satisfy a > b > c and are distinct from one
another. Setting the criterion to be ε = 1 mm in Eq. (33), the
solution converged after 3 iterations. The solution is given in
Table 3 alongside the original inB&F (1993). The full numer-
ical output of 16 digits is shown for the present solution.
The result is almost in perfect agreement with B&F (1993),
whose solution retained terms down to 10−10. The two solu-

tions are identical for the semimajor axis. The difference in
(the inverse of) polar and equatorial flattening occurs only in
the last digit. Compared with the corresponding semiminor
axes obtained by B&F (1993), the difference is at the level of
10−3 m, which well corresponds to 10−10 of the semi-axes.

We performed another solution using a more stringent cri-
terion of ε = 10−8 m.Here, twomore iterationswere needed.
Figure 3 shows the behavior of the residual potential, given
by |c0,1+φ0−U0|, |c2,1+φ1|, |c2,2+φ2|, after each iteration.
According to Eq. (28), the last two quantities indicate devi-
ation from an equipotential ellipsoid while the first indicates
discrepancy in scale; all three should numerically approach
zero as the solution is being iteratively refined. The residu-
als decreased steadily and after five iterations the difference
from the target U0 was less than 10−8 m2 s−2 (solid black
curve), which is on the order of 10−16 of U0 and thus the
limit of the machine precision in this work.

5 Triaxial reference ellipsoid for EGM 2008

As a further demonstration, we performed a solution for the
reference ellipsoid compatible with EGM 2008 (Pavlis et al.
2012). A milestone accomplishment, EGM 2008 has assim-
ilated both gravity and altimetric data and since its release
served as a benchmark solution for various further model
syntheses.1 The six parameters required for the reference
ellipsoid solution are summarized in Table 4. Tidal effects
were neglected, i.e., the solution was for the tide-free case.
The potential was set to be U0 = 62636851.7146 m2 s−2,
which corresponds to the number for WGS 84 (biaxial) ref-
erence ellipsoid. The resulting parameters of the reference
ellipsoid are given in Table 5.

It is informative to compare the result with another solu-
tion by Panou et al. (2020). They derived the reference
ellipsoids for various gravitational fieldmodels via a geomet-
ricmethod, i.e., as the best-fitting shapes to the corresponding
geoid models. In comparison, the solution here is exact for
the designated parameters; it is blind to the geoid model

1 Available at the International Centre for Global Earth Model
(icgem.gfz-potsdam.de, accessed in November 2022).
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Table 4 Parameters of EGM
2008 (Pavlis et al. Pavlis et al.
2012)

Parameters Values

Reference radius a (m) 6378136.3

Mass moments GM (m3 s−2) 398600.4415 × 109

J2 1.082626173852 × 10−3

J2,2 1.815598921307090 × 10−6

S2,2 −0.9038727891965667 × 10−6

Table 5 Solution of reference
ellipsoid for EGM 2008

Parameters Panou et al. (2020) This work (full output)

Semimajor axis, a0 6378171.88 ± 0.06m 6378171.86(0779762) m

First semiminor axis, b0 6378102.03 ± 0.06m 6378102.10(4632902) m

Second semiminor axis, c0 6356752.24 ± 0.06m 6356752.33(4340346) m

Potential, U0 – 62636851.7146 m2 s−2

(beyond degree two) and involves no minimization of dis-
tances between the geoid and the reference ellipsoid.

Our results are in reasonable agreement with those
obtained by Panou et al. (2020). The difference of the
semimajor axis is 2cm, within 1 σ uncertainty of their least-
squares solution. The discrepancy of other two axes is larger,
at about 7 and 9cm, respectively, but still within 2 σ . Hence,
even for a preliminary treatment, the physical solution here
is consistent with the geometric solution.

Figure 4 shows the geoid undulations of EGM 2008 with
respect to the WGS84 biaxial reference ellipsoid (top), the
derived triaxial ellipsoid in Table 5 (middle), and the differ-
ence between them. The gridded undulations with respect to
WGS 84 were obtained from Office of Geomatics, National
Geospatial-Intelligence Agency (https://earth-info.nga.mil/
index.php?action=home) and interpolated at an interval of
1◦ in both longitude and geodetic latitude. The geoid undu-
lations vary between −106.52 and 84.61m. We evaluated
the area-weighted root mean square (WRMS) as follows,

WRMS(N ) ≈
(
1

A

∑
i

N 2
i 
Ai

) 1
2

, (34)

where Ni is the geoid undulation at the i th grid point,

Ai is the surface area of the corresponding grid cell and
A ≈ ∑

i 
Ai . We used spherical approximation 
A ≈
cosβ
β
λ; the discrepancy from the ellipsoidal expression
is on the order of f 2 (with f being the polar flattening) hence
immaterial. The WRMS of the undulations with respect to
the WGS84 biaxial ellipsoid is 30.60m.

We re-measured the undulations of the geoid grid points
with respect to the triaxial reference ellipsoid along the

ellipsoidal normal via the method by Lin and Wang (1995)
adapted for the triaxial case (see also Ligas 2012). Note that
this ellipsoid is rotated by λ0 = −14.93◦ with respect to the
prime meridian, which must be accounted for in the mea-
surements. In this case, the maximum and minimum were
moderated to 69.67 and−72.31m, respectively. TheWRMS
was also reduced to 24.71m. Thus, the RMSmisfit is reduced
by more than 19%. The behavior of these statistics is similar
to that reported by Panou et al. (2020). Table 6 provides a
summary of the comparison. The difference of a given statis-
tic therein is calculated as
∣∣∣∣ sbiaxial(N ) − striaxial(N )

sbiaxial(N )

∣∣∣∣× 100%, (35)

which always indicates an improvement of fitting.
The difference between the two sets of geoid undulations

displays a sectoral pattern of the second degree, more promi-
nent at lower latitudes (bottom panel of Fig. 4). The pattern is
conceivable, as it reflects the presence of Earth’s equatorial
flattening, a feature unaccounted for in the biaxial case (thus
present in the geoid undulations). On the other hand, it is
worth noting that the semiminor axis of the triaxial reference
ellipsoid, c0 = 6356752.33 m (right column in Table 5), dif-
fers from that of theWGS84biaxial ellipsoid, 6356752.31m,
by only 2cm, which explains the vanishing difference near
the poles.

The Supplementary Information contains the data file of
geoid undulations with respect to the biaxial and triaxial ref-
erence ellipsoids as displayed in Fig. 4. The results are also
presented in pole-centered, orthographic map projections,
which incur less area distortion in the polar regions.
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Fig. 4 Geoid undulations with
respect to WGS 84 (top), the
triaxial reference ellipsoid
(middle), and the difference
between the two cases (bottom).
The meridians containing the
equatorial semimajor axes are
marked by the dotted lines,
located at λ0 = − 14.93◦ and
λ0 + 180◦, respectively. The
undulations range between
−106.64 and 84.95m around
WGS 84, and between −72.31
and 69.67 m around the triaxial
ellipsoid. The minimum and
maximum differences are
−34.90m and 34.86m,
respectively
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Table 6 Statistics of geoid undulations around biaxial (WGS84) and
triaxial reference ellipsoids for EGM 2008

Biaxial Triaxial Difference

Min(N ) −106.64m −72.31m 32.19%

Max(N ) 84.95m 69.67m 17.99%

WRMS(N ) 30.60m 24.71m 19.24%

6 Conclusion and discussion

We have presented a new method to determine the Earth’s
triaxial reference ellipsoid from its gravity field model. The
condition of equipotentiality is formulated by a finite EH
series up to degree two, in analogy with the well-known
theory for the biaxial case. The formulation was previously
proposed for irregular-shaped Phobos as described in Hu
(2017).The algorithmsdiffer from theoriginal in twoaspects.
First, the present solution approaches the equipotential refer-
ence ellipsoid via iterative corrections of the semi-axes along
the respective normal gravity vectors, whereas the method in
Hu (2017) does not involve evaluation of the normal gravity.
The use of a constant gravity as an approximation is fully jus-
tified in the case of Earth. Second, the transformation of the
gravitational field from spherical harmonics into triaxial EHs
is founded on the uniqueness of mass distribution and there-
fore the exactness of the respective expressions (Hu 2016).
This ismore efficient than the approach inHu (2017) based on
the solution of a triaxial ellipsoidal boundary value problem,
with gridded boundary values given by spherical harmonics.
In the case of Phobos, the twomethods are numerically iden-
tical. But, the method in Hu (2017) cannot be applied (i.e.,
won’t converge) for the Earth.

Compared with the method by B&F (1993) involving
an infinite spherical harmonic series, an obvious advantage
here is that the solution is exact, i.e., incurs no truncation
errors. The exactness is a consequence or expression of the
fact that the EHs up to degree two are sufficient to cap-
ture the ellipsoidicity of the gravity field (equipotentials),
which exhibits an infinite bandwidth in the spherical, or any
non-ellipsoidal, spectrum. A potential deterrence in practice
is that the EHs are computationally more complicated than
spherical or biaxial ellipsoidal harmonics. However, the pro-
cedure only requires evaluation of three terms up to degree
two and of the same class, for which the Lamé polynomials
are but quadratic functions. The computation is thus decep-
tively straightforward. In a benchmark case, we obtained
results in remarkable agreement with those by B&F (1993)
for the given truncation errors at the level of millimeters.

Our solution also differs in nature from least-squares solu-
tions, such as those by Tserklevych et al. (2016) and Panou
et al. (2020),which adjust not only dimensions but also ori-
gin and orientation of the ellipsoid so as to best fit the geoid.
For instance, the longitude of the equatorial elongation, λ0, is

directly estimated by the least-squares approach (Panou et al.
2020). In comparison, the same parameter is fully specified
by the sectoral Stokes’ coefficients, C2,2, S2,2, in the present
solution. The ellipsoidal origin is also fixed at the center-of-
mass of the Earth, as is (always) stipulated in the gravitational
field model in order to suppress the degree-one coefficients.
Despite the essential difference, our result for the EGM2008
differs from that of Panou et al. (2020) by no more than a
decimeter and within the 2σ uncertainty. These comparisons
indicate that the result here is a valid alternative and can be
directly used as a triaxial reference ellipsoid for the Earth.
The procedure should also be practical for solutions compati-
blewith other gravitational fieldmodels or for other planetary
bodies.

The present solution is for the tide-free case. At least
the permanent tidal effect can be addressed without extra
effort. All that is required is to use C2,0 for the “zero-tide”
case, namely one that has been corrected for permanent tide
(see IERS Conventions, Petit and Luzum 2010). Then, the
procedure outlined in Sect. 3.3 is applied without any alter-
ation.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00190-023-01717-
1.
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Appendix A: Sectoral and zonal solid ellip-
soidal harmonics of the second degree

Wewant to express the second-degree sectoral and zonal EHs
in the form of E(ρ)E(μ)E(ν) = px x2 + py y2 + pzz2 + p0.
We first find the polynomial expressions of y2 and z2 in Eq.
(8) and organize them as follows

x2 = ρ2μ2ν2

h2k2
,

y2 = − ρ2μ2ν2

h2(k2 − h2)
+ ρ2μ2 + ρ2ν2 + μ2ν2

k2 − h2

− h2(ρ2 + μ2 + ν2)

k2 − h2
+ h4

k2 − h2
,

z2 = ρ2μ2ν2

k2(k2 − h2)
− ρ2μ2 + ρ2ν2 + μ2ν2

k2 − h2

+ k2(ρ2 + μ2 + ν2)

k2 − h2
− k4

k2 − h2
. (A1)

On the other hand, the second-degree Lamé polynomial of
class K is E(μ) = μ2 + a, and the corresponding solid EH
is:

E(ρ)E(μ)E(ν) =ρ2μ2ν2

h4
+ a

h2
(ρ2μ2 + ρ2ν2 + μ2ν2)

h2

+ a2

h4
(ρ2 + μ2 + ν2) + a3

h6
h2 ,

(A2)

where the expression is divided by h4 such that the solid
harmonic is of the same dimension as x2.

Comparing the coefficients for each of the four terms in
Eq. (A2)with those in (A1) yields a linear systemof equations
for px , py, pz, ph , the last of which is non-dimensionalized
as ph = p0/h2:

⎛
⎜⎜⎝

1
a/h2

a2/h4

a3/h6

⎞
⎟⎟⎠ = A

⎛
⎜⎜⎝
px
py
pz
ph

⎞
⎟⎟⎠ , (A3)

with

A =
(
x2 | y2 | z2 | h2

)
=

⎛
⎜⎜⎜⎜⎝

h2

k2
− h2

k2−h2
h4

k2(k2−h2)
0

0 h2

k2−h2
− h2

k2−h2
0

0 − h2

k2−h2
k2

k2−h2
0

0 h2

k2−h2
− k4

h2(k2−h2)
1

⎞
⎟⎟⎟⎟⎠ .

(A4)

Thus, all the quantities are non-dimensional.

In another example for Phobos, taking h=7.35km and
k=10km, we find a = −1.4858 h2 for one of the Lamé poly-
nomials so that

E(ρ)E(μ)E(ν) = −0.1778x2 − 0.5439y2 + 0.7217z2

+0.2642h2.

Another harmonic, with a = −0.4155 h2, is

E(ρ)E(μ)E(ν) = 0.8396x2 − 0.5968y2 − 0.2429z2

−0.3488h2.

These are the same as Eq. (44) in Hu (2017).

Appendix B: Evaluation of normal gravity

This appendix discusses how the normal gravity is evaluated,
i.e.,

γ = ∂U

∂r
=
(

∂U

∂x

∂U

∂ y

∂U

∂z

)T

= ∂V

∂r
+ ∂�

∂r
. (B1)

The centrifugal acceleration is directly obtained as ∂�/∂r =
(ω2x ω2y 0)T. For the gravitation, we first calculate the
partial derivatives with respect to the ellipsoidal coordinates,
ρ,μ, ν, followed by a propagation of the components into
the Cartesian coordinate system,

∂V

∂r
= ∂ρT

∂r
∂V

∂ρ
=

⎛
⎜⎜⎝

∂ρ
∂x

∂μ
∂x

∂ν
∂x

∂ρ
∂ y

∂μ
∂ y

∂ν
∂ y

∂ρ
∂z

∂μ
∂z

∂ν
∂z

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∂V
∂ρ

∂V
∂μ

∂V
∂ν

⎞
⎟⎟⎠ (B2)

The Jacobian form matrix ∂ρT/∂r is evaluated via inversion
of ∂rT/∂ρ, eventually yielding (Garmier and Barriot 2001),

∂ρ

∂x
= x(ρ2 − k2)(ρ2 − h2)

ρ(ρ2 − μ2)(ρ2 − ν2)
,

∂ρ

∂ y
= yρ(ρ2 − k2)

(ρ2 − μ2)(ρ2 − ν2)
,

∂ρ

∂z
= zρ(ρ2 − h2)

(ρ2 − μ2)(ρ2 − ν2)
,

∂μ

∂x
= x(k2 − μ2)(μ2 − h2)

μ(ρ2 − μ2)(μ2 − ν2)
,

∂μ

∂ y
= yμ(k2 − μ2)

(ρ2 − μ2)(μ2 − ν2)
,

∂μ

∂z
= − zμ(μ2 − h2)

(ρ2 − μ2)(μ2 − ν2)
,

∂ν

∂x
= x

ν

(k2 − ν2)(h2 − ν2)

(ρ2 − ν2)(μ2 − ν2)
,

∂ν

∂ y
= − yν(k2 − ν2)

(ρ2 − ν2)(μ2 − ν2)
,

∂ν

∂z
= − zν(h2 − ν2)

(ρ2 − ν2)(μ2 − ν2)
.

(B3)

where ∂ν/∂x = hk/(ρμ) at the singularity x = 0 or ν = 0.
The gradient component of V of degree n and order m with
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respect to the ellipsoidal coordinates are

∂Vnm
∂ρ

= cnm
Fnm(a)

dFnm(ρ)

dρ
Enm(μ)Enm(ν),

∂Vnm
∂μ

= cnm
Fnm(ρ)

Fnm(a)

dEnm(μ)

dμ
Enm(ν),

∂Vnm
∂ν

= cnm
Fnm(ρ)

Fnm(a)
Enm(μ)

dEnm(ν)

dν
.

(B4)

The issue here is onlywith the derivative of theLamé function
of the second kind. We restrict ourselves to n = 0, 2, class
K,

dFnm (ρ)

dρ
= 1

Enm (ρ)

[
dEnm (ρ)

dρ
Fnm (ρ) − 2n + 1√

ρ2 − h2
√

ρ2 − k2

]
,

(B5)

whereas the derivative of the first kind is simply,

dEnm(μ)

dμ
=

d∑
i=0

(n − 2i)a(i)
nm μn−2i−1 (B6)

The calculation of higher-, odd-degree harmonics, and those
of other classes, ismore complicated, e.g., the sign ambiguity
of the Lamé functions must be carefully addressed (Garmier
andBarriot 2001). For the present discussion concerning only
normal gravity, the above formulas suffice.

At the ellipsoidal extremities the evaluation is much sim-
pler. At (x, y, z) = (a, 0, 0), we have ρ = a, μ = k, ν = h;
thus, only ∂ρ/∂x in Eq. (B3) is nonzero. Similarly, we
have ρ = b, μ = k, ν = 0 at (x, y, z) = (0, b, 0) and
ρ = c, μ = h, ν = 0 at (x, y, z) = (0, 0, c). Hence,
only ∂ρ/∂ y and ∂ρ/∂z remain in the respective cases. Thus,
∂V /∂μ, ∂V /∂ν need not be calculated. It confirms that only
one coordinate component is nonzero along the correspond-
ing axis, e.g., γ |x=a = (γa 0 0) as in Eq. (31).

The above formulas are not needed for deriving Earth’s
reference ellipsoid, and an approximate value of−9.8 m s−2

can be used for the gravity without any perceptible difference
in performance. However, in the case of a distinctly triaxial
object (e.g., Phobos), the formulas are more accurate and
ensure better convergence of the solution.
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