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Abstract
In recent years, there are research trends from constant to variable density and low-order to high-order gravitational potential
gradients in gravity field modeling. Under the research circumstances, this paper focuses on the variable density model for
gravitational curvatures (or gravity curvatures, third-order derivatives of gravitational potential) of a tesseroid and spherical
shell in the spatial domain of gravity field modeling. In this contribution, the general formula of the gravitational curvatures
of a tesseroid with arbitrary-order polynomial density is derived. The general expressions for gravitational effects up to
the gravitational curvatures of a spherical shell with arbitrary-order polynomial density are derived when the computation
point is located above, inside, and below the spherical shell. When the computation point is located above the spherical
shell, the general expressions for the mass of a spherical shell and the relation between the radial gravitational effects up
to arbitrary-order and the mass of a spherical shell with arbitrary-order polynomial density are derived. The influence of
the computation point’s height and latitude on gravitational curvatures with the polynomial density up to fourth-order is
numerically investigated using tesseroids to discretize a spherical shell. Numerical results reveal that the near-zone problem
exists for the fourth-order polynomial density of the gravitational curvatures, i.e., relative errors in log10 scale of gravitational
curvatures are large than 0 below the height of about 50km by a grid size of 15′ ×15′. The polar-singularity problem does not
occur for the gravitational curvatures with polynomial density up to fourth-order because of the Cartesian integral kernels of
the tesseroid. The density variation can be revealed in the absolute errors as the superposition effects of Laplace parameters
of gravitational curvatures other than the relative errors. The derived expressions are examples of the high-order gravitational
potential gradients of the mass body with variable density in the spatial domain, which will provide the theoretical basis for
future applications of gravity field modeling in geodesy and geophysics.
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1 Introduction

Generally, different structures of the Earth (e.g., atmosphere,
ice, water, topography, sediment, crust, mantle, and core)
have different densities. For example, the density from
the surface to the inner core of the Earth varied from
1020.0 to 13088.5 kg m−3 in the preliminary reference Earth
model (Dziewonski and Anderson 1981) and from 2651.0 to
13012.2 kg m−3 in the radial ek137 model (Kennett 2020).
The density hypothesis and digital models (e.g., CRUST1.0
(Laske et al. 2013) and UNB_TopoDens (Sheng et al. 2019))
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have wide applications in geodesy and geophysics, e.g., vari-
able topographic density on the determination of gravimetric
geoid (Huang et al. 2001; Tziavos and Featherstone 2001;
Kuhn 2003; Sjöberg 2004; Kiamehr 2006; Abbak 2020),
geoid-to-quasigeoid separation (Tenzer et al. 2016, 2021),
and gravity forward modeling of topographic and crustal
effects (Eshagh 2009c; Novák et al. 2013; Tenzer et al. 2015;
Yang et al. 2018; Rathnayake et al. 2020).

Among the commonly used density models, the polyno-
mial density was extensively applied in the spatial domain of
gravity field modeling. Regarding a right rectangular prism,
its gravitational effects (e.g., gravitational potential (GP),
gravity vector (GV) or gravitational attraction, and gravity
gradient tensor (GGT)) were derived in different types of the
polynomial density, i.e., the GV with the depth-dependent
cubic polynomial density (García-Abdeslem 2005) and an
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arbitrary-order polynomial density (Zhang and Jiang 2017),
GVandGGT in the Fourier domainwith the depth-dependent
polynomial density (Wu and Chen 2016; Wu 2018), GGT
with the depth-dependent density (Jiang et al. 2018), and
GP, GV, and GGT with the depth-dependent nth-order poly-
nomial density (Karcol 2018; Fukushima 2018b). Similarly,
the gravitational effects of a spherical shell were derived
in the form of the polynomial density, i.e., the GP and GV
with the radial fifth-order polynomial density (Karcol 2011)
and the GP, GV, and GGT with the linear, quadratic, and
cubic order polynomial density (Lin et al. 2020). Regarding
a tesseroid (Anderson 1976; Heck and Seitz 2007), its gravi-
tational effects up to the GGTwere derived in the form of the
linear density in Fukushima (2018a), Lin and Denker (2019),
and Soler et al. (2019). Lin et al. (2020) presented the general
expressions for the GP, GV, and GGT of a tesseroid in the
form of the polynomial density.

With the first measurement of radial gravitational curva-
tures (or gravity curvatures, GC, third-order derivatives of the
gravitational potential) using the atom interferometry sensors
in the laboratory condition (Rosi et al. 2015), the subsequent
study of the GC was focused on their theory and simulation
applications in geodesy and geophysics (Šprlák and Novák
2015, 2016, 2017; Šprlák et al. 2016;Hamáčková et al. 2016;
Sharifi et al. 2017; Novák et al. 2017; Pitoňák et al. 2017,
2018, 2020; Deng and Shen 2018a, b, 2019; Novák et al.
2019; Du and Qiu 2019; Romeshkani et al. 2020, 2021).
The GC were more sensitive to field sources than the low-
order gravitational effects (i.e., GP, GV, and GGT) (Heck
1984; Du and Qiu 2019). Numerical results showed that they
were more sensitive to local characteristics of the gravity
field (Romeshkani et al. 2020), can better describe areas with
large terrain undulations and the junction of the land and sea
(Deng and Shen 2019), and can more accurately identify
the near-underground shallow density structure in the spatial
domain (e.g., caves, salt domes, sediment base morphology,
continental margins, and hidden fault systems) (Novák et al.
2019) than the low-order gravitational effects. These advan-
tages of the GC are important for studying the distribution of
materials and geological structures within the Earth.

Currently, the expressions for the GC of a tesseroid and a
spherical shellwith the constant densitywere derived inDeng
and Shen (2018a). Meanwhile, Deng (2022) recently derived
the analytical solutions for the gravitational curvatures of
a spherical cap and spherical zonal band with the constant
density. With the increased depth inside the Earth, the actual
density shows a complex rule of variable density. The con-
stant density is not enough to represent the actual density
variation of the earth for the GC. In other words, the exist-
ing constant density assumption cannot meet the demand
for a real complex environment with the variable density.

Thus, it is essential to investigate their variable density forms,
especially the polynomial density. This study focuses on the
derivation of arbitrary-order (i.e., N ≥ 0) polynomial density
for the GC of a tesseroid and spherical shell.

This study goes beyond the previous studies in that the
general formulae of the GC of a tesseroid with N th-order
polynomial density and the general analytical expressions
for the GC of a spherical shell with N th-order polynomial
density are derived. In addition, we derive the general ana-
lytical expressions for gravitational effects (e.g., GP, GV, and
GGT) of a spherical shell with N th-order polynomial den-
sity when the computation point is located above, inside, and
below the spherical shell. The derived polynomial density
expressions of the GC would more accurately describe the
complex density characteristics of the Earth’s interior than
the constant density expressions, which will lay a theoretical
foundation for the applications of gravity field modeling in
geodesy and geophysics.

This paper is organized as follows. Section2 presents the
theoretical aspects, in which Sect. 2.1 provides the general
formula of the GC of a tesseroid with N th-order polynomial
density. In Sect. 2.2, the analytical expressions for gravita-
tional effects up to the GC of a spherical shell with N th-order
polynomial density are derived when the computation point
is located above, inside, and below the spherical shell. Sec-
tion3 performs the numerical experiments, where the setup
of the numerical experiments is provided in Sect. 3.1 and
the effects of density values on the gravitational effects of
a spherical shell are studied in Sect. 3.2. The influences of
the computation point’s height and latitude on the GC with
the polynomial density up to fourth-order are investigated in
Sects. 3.3 and 3.4, respectively. Finally, the conclusions of
this paper and outlooks on future research work are summa-
rized in Sect. 4.

2 Theoretical aspects

In this section, the theoretical contents are presented in detail.
Based on the previous works of Deng and Shen (2018b,
2019) and Lin et al. (2020), the formula of the GC of a
tesseroid with arbitrary-order polynomial density is derived
in Sect. 2.1. Section2.2 derives the expressions for the GC
of a spherical shell with arbitrary-order polynomial density
based on the work of Lin et al. (2020). The general formula
of the mass for a spherical shell with arbitrary-order poly-
nomial density is derived in Sect. 2.2. Moreover, Sect. 2.2
derives the general relation between the radial gravitational
effects up to arbitrary-order and the mass of a spherical shell
with arbitrary-order polynomial density when the computa-
tion point P is outside the spherical shell.
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Fig. 1 The geometry of a tesseroid in the spherical coordinate system
revised from Fig. 4 of Heck and Seitz (2007). P and Q are the compu-
tation (or field, observation) and running integration points with their
longitudes (λ and λ′), latitudes (ϕ and ϕ′), and geocentric distances (r
and r ′), respectively. Δλ = λ2 − λ1, Δϕ = ϕ2 − ϕ1, and Δr = r2 − r1
are the longitude, latitude, and radial dimensions of a tesseroid, respec-
tively. P(x, y, z) is in the local north-oriented frame system with x, y,
and z pointing to the north, east, and radial up directions, respectively

2.1 The GC of a tesseroid with arbitrary-order
polynomial density

Regarding the variable density model for a tesseroid (see
Fig. 1), Lin et al. (2020) derived the GP, GV, and GGT of a
tesseroidwith a polynomial densitymodel up to N th-order in
the vertical direction and evaluated these gravitational effects
with a polynomial density model up to cubic order (i.e.,
N = 3) in the numerical experiments. Due to the potential
benefits of the GC in geodesy and geophysics revealed in the
introduction, it is essential to investigate the variable polyno-
mial density model for the GC of a tesseroid. In this section,
based on the previousworks ofDeng andShen (2018b, 2019)
and Lin et al. (2020), the general expression for the GC of a
tesseroid with N th-order polynomial density is derived, and
the detailed components of the GC are provided as well.

Replacing the constant density ρ in Eq. (3) of Deng and
Shen (2018b) by the variable density model ρ(r ′), the opti-
mized formula of the GC (Vαβγ with α, β, γ = x, y, z) of a
tesseroid in Cartesian integral kernels with the variable den-
sity model can be derived as:

Vαβγ (λ, ϕ, r) = G
∫ λ2

λ1

∫ ϕ2

ϕ1

∫ r2

r1
ρ(r ′)r ′2 cosϕ′ Iαβγ (λ′, ϕ′, r ′)dr ′dϕ′dλ′ (1)

Iαβγ (λ′, ϕ′, r ′) = 3

(
5ΔαΔβΔγ

	7
− pαβγ

	5

)
(2)

	 =
√
r ′2 + r2 − 2r ′r (sin ϕ sin ϕ′ + cosϕ cosϕ′ cos(λ′ − λ)) (3)

Δx = r ′ (cosϕ sin ϕ′ − sin ϕ cosϕ′ cos(λ′ − λ)
)

(4)
Δy = r ′ cosϕ′ sin(λ′ − λ) (5)
Δz = r ′ (sin ϕ sin ϕ′ + cosϕ cosϕ′ cos(λ′ − λ)

) − r (6)

pαβγ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3Δα α = β = γ

0 α �= β & α �= γ & β �= γ

Δα α �= β & α �= γ & β = γ

Δβ α �= β & α = γ & β �= γ

Δγ α = β & α �= γ & β �= γ

(7)

where G is the Newtonian gravitational constant (i.e.,
G = 6.67430 × 10−11 m3 kg−1 s−2 (Tiesinga et al. 2021)).
[λ1, λ2], [ϕ1, ϕ2], and [r1, r2] are the longitude, latitude, and
radial boundaries of a tesseroid. Iαβγ (λ′, ϕ′, r ′) is the Carte-
sian integral kernel of the GC of the tesseroid, which can be
referred to in Eqs. (A.11–A.20) of Deng and Shen (2019).
	, Δx , Δy , and Δz in Eqs. (3–6) are from Eqs. (4) and (15)
of Grombein et al. (2013). (λ, ϕ, r) and (λ′, ϕ′, r ′) are the
spherical longitudes, latitudes, and geocentric distances of
the computation point P and integration point Q, respec-
tively. The computation point P is in the local north-oriented
frame system with its coordinate origin at the computation
point and x, y, and z pointing to the north, east, and radial
up directions, respectively.

The formula of the polynomial density ρ(r ′) of a tesseroid
is presented as:

ρ(r ′) = ρ0 + ρ1r
′ + ρ2r

′2 + ρ3r
′3 + · · · + ρNr

′N

=
N∑

n=0

ρnr
′n (8)

where n and N are the integers and n = 0, 1, 2, 3, ..., N with
N ≥ 0. ρn is the polynomial density coefficient with the unit
kg m−(n+3). For example, when n = 0, ρ0 is the constant
density with the unit kg m−3. Another method to obtain the
expressions for the ρn can be referred in Table 1 of Lin et al.
(2020).

Substituting Eq. (8) into (1), the optimized formula of the
GC (Vαβγ ) of a tesseroid in Cartesian integral kernels with
N th-order polynomial density is presented as:
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Vαβγ (λ, ϕ, r) = G
N∑

n=0

ρn

∫ λ2

λ1

∫ ϕ2

ϕ1

∫ r2

r1
κn Iαβγ (λ′, ϕ′, r ′)dr ′dϕ′dλ′ (9)

κn = r ′n+2 cosϕ′ (10)

Including the low-order gravitational potential gradients
(i.e., V , Vα , and Vαβ with α, β = x, y, z) presented in Eq. (3)
of Lin et al. (2020), the general expressions for the gravita-
tional effects up to the GC of a tesseroid in Cartesian integral
kernels with N th-order polynomial density are presented as:

⎧⎪⎪⎨
⎪⎪⎩

V (λ, ϕ, r)
Vα(λ, ϕ, r)
Vαβ(λ, ϕ, r)
Vαβγ (λ, ϕ, r)

⎫⎪⎪⎬
⎪⎪⎭

= G
N∑

n=0

ρn

∫ r2

r1

∫ ϕ2

ϕ1

∫ λ2

λ1

κn

⎧⎪⎪⎨
⎪⎪⎩

I (λ′, ϕ′, r ′)
Iα(λ′, ϕ′, r ′)
Iαβ(λ′, ϕ′, r ′)
Iαβγ (λ′, ϕ′, r ′)

⎫⎪⎪⎬
⎪⎪⎭
dλ′dϕ′dr ′ =

N∑
n=0

⎧⎪⎪⎨
⎪⎪⎩

(V tess)n
(V tess

α )n
(V tess

αβ )n

(V tess
αβγ )n

⎫⎪⎪⎬
⎪⎪⎭

(11)

where I (λ′, ϕ′, r ′), Iα(λ′, ϕ′, r ′), and Iαβ(λ′, ϕ′, r ′) are the
Cartesian integral kernels of the GP, GV, and GGT of a
tesseroid, which can be referred to in Eq. (21) of Grombein
et al. (2013) and Eqs. (A.1–A.10) of Deng and Shen (2019).
The (V tess)n , (V tess

α )n , (V tess
αβ )n , and (V tess

αβγ )n are the nth-
order polynomial density parts of the GP, GV, GGT, and GC
of a tesseroid in Cartesian integral kernels, respectively. In
order to show the completeness of the expressions for grav-
itational effects up to the GC, the detailed expressions for a
tesseroid in Cartesian integral kernels having a polynomial
density model up to N th-order are presented in Table 1.

The expressions in the second column of Table 1 for the
GP, GV, and GGT are the same as those in Eq. (21) of
Grombein et al. (2013) and the GC are the same as those
in Eqs. (A.11–A.20) of Deng and Shen (2019). It should be
noted that low-order gravitational potential gradients (i.e.,
GP (V ), GV (Vα), and GGT (Vαβ ) with α, β = x, y, z) pre-
sented in Table 1 are consistent with those in Table 2 and Eq.
(3) of Lin et al. (2020), although the expressions are slightly
different.

2.2 Gravitational effects up to the GC of a spherical
shell with arbitrary-order polynomial density

The detailed derivation process of analytical expressions
for the GP of a spherical shell having a polynomial density
model from constant up to cubic order was presented in the
electronic supplementary material of Lin et al. (2020). Fur-
thermore, the general expressions for gravitational quantities

Table 1 Detailed expressions for the GP (V ), GV (Vα), GGT (Vαβ ),
and GC (Vαβγ ) (α, β, γ = x, y, z) of a tesseroid in Cartesian inte-
gral kernels having a polynomial density model up to N th-order, where
	 = √

r ′2 + r2 − 2r ′r (sin ϕ sin ϕ′ + cosϕ cosϕ′ cos(λ′ − λ)), Δx =
r ′ (cosϕ sin ϕ′ − sin ϕ cosϕ′ cos(λ′ − λ)

)
, Δy = r ′ cosϕ′ sin(λ′ −

λ), Δz = r ′ (sin ϕ sin ϕ′ + cosϕ cosϕ′ cos(λ′ − λ)
) − r , and κn =

r ′n+2 cosϕ′

Quantity G
∑N

n=0 ρn
∫ λ2
λ1

∫ ϕ2
ϕ1

∫ r2
r1

κn (Expression) dr ′dϕ′dλ′

V 1/	

Vx −Δx/	
3

Vy −Δy/	
3

Vz −Δz/	
3

Vxx (3Δ2
x − 	2)/	5

Vxy 3ΔxΔy/	
5

Vxz 3ΔxΔz/	
5

Vyy (3Δ2
y − 	2)/	5

Vyz 3ΔyΔz/	
5

Vzz (3Δ2
z − 	2)/	5

Vxxx 3Δx (5Δ2
x − 3	2)/	7

Vxxy 3Δy(5Δ2
x − 	2)/	7

Vxxz 3Δz(5Δ2
x − 	2)/	7

Vxyz 15ΔxΔyΔz/	
7

Vyyx 3Δx (5Δ2
y − 	2)/	7

Vyyy 3Δy(5Δ2
y − 3	2)/	7

Vyyz 3Δz(5Δ2
y − 	2)/	7

Vzzx 3Δx (5Δ2
z − 	2)/	7

Vzzy 3Δy(5Δ2
z − 	2)/	7

Vzzz 3Δz(5Δ2
z − 3	2)/	7

(i.e., GP, radial GV, radial–radial GGT, and radial–radial–
radial GC) and mass of a spherical shell with N th-order
polynomial density are derived in this section.

A spherical zonal band (or a spherical layer in Fig. 15 of
MacMillan (1930), Fig. 1.1 of Tsoulis (1999), and a circular
ring element in Fig. E1 of Lin et al. (2020)) is shown in
Fig. 2. When the spherical distance θ of a spherical zonal
band is integrated from θ = 0 to π , a spherical shell can be
obtained (Vaníček et al. 2001, 2004). The formula of the GP
of a spherical shell at the computation point P is given as
(MacMillan 1930; Tsoulis 1999; Lin et al. 2020):

V (r) = G

r ′=r2∫

r ′=r1

θ=π∫

θ=0

α=2π∫

α=0

ρ(r ′)r ′2 sin θ

	
dαdθdr ′ (12)
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Fig. 2 The sectional view of a spherical zonal band revised from Fig.
15 of MacMillan (1930), Fig. 1.1 of Tsoulis (1999), and Fig. E1 of Lin
et al. (2020). r and r ′ are the geocentric distances of the computation
point P and integration point, respectively. 	 is the Euclidean distance
between the computation point P and integration point. dM is the mass
integral element of the spherical zonal band. θ and dθ are the spherical
distance and its integral element, respectively

	 =
√
r2 + r ′2 − 2rr ′ cos θ (13)

d	

dθ
= rr ′ sin θ

	
(14)

where ρ(r ′) is the polynomial density up to N th-order of a
spherical shell, which is assumed as the same as that of a
tesseroid in Eq. (8). r1 and r2 are the inner and outer radii
of the spherical shell. r ′ ∈ [r1, r2] is the geocentric distance,
α ∈ [0, 2π ] is the azimuth, and θ ∈ [0, π ] is the spherical
distance of the integration point in the local polar coordi-
nate of the spherical coordinate systems. 	 is the Euclidean
distance between the computation point P and integration
point.

Substituting Eqs. (8) and (14) into Eq. (12), the expression
for the GP (V (r)) of a spherical shell is simplified as:

V (r) = G

r

r ′=r2∫

r ′=r1

∫ 	2

	1

α=2π∫

α=0

(
N∑

n=0

ρnr
′n+1

)
dαd	dr ′

= 2πG

r

∫ r ′=r2

r ′=r1

	2∫

	1

(
N∑

n=0

ρnr
′n+1

)
d	dr ′

(15)
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where the computation point P is located above (i.e., r >

r2), inside (i.e., r1 ≤ r ≤ r2), and below (i.e., r < r1) the
spherical shell. The detailed derivation process of analytical
expressions for the GP of a spherical shell is presented in
Appendix 1.

Combining Eqs. (47), (48), and (49) in Appendix 1
together, the analytical expressions for the GP (V (r)) of a
spherical shell with N th-order polynomial density can be
presented as:

V (r) =
N∑

n=0

(V sh)n

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4πG
∑N

n=0 ρn
(rn+3
2 −rn+3

1 )

(n+3)r , r > r2

4πG
∑N

n=0 ρn

[
rn+2
2
n+2 − rn+2

(n+2)(n+3) − rn+3
1

(n+3)r

]
, r1 ≤ r ≤ r2

4πG
∑N

n=0 ρn
(rn+2
2 −rn+2

1 )

n+2 , r < r1

(16)

where the analytical expressions for the GP of a spherical
shell with different nth-order polynomial density parts begin-
ning from constant (i.e., (V sh)n with n = 0, 1, 2, 3, ..., N )
are listed in Table 2 to reveal the detailed variation of the
polynomial density parts.

By performing the differentiation with respect to the geo-
centric distance r of the computation point at one, two, and
three times on the analytical expressions for the GP (V (r))
of a spherical shell in Eq. (16), the analytical expressions for
radial GV (Vz(r)), radial–radial GGT (Vzz(r)), and radial–
radial–radialGC (Vzzz(r)) of a spherical shell with N th-order
polynomial density are derived as:

Vz(r) =
N∑

n=0

(V sh
z )n

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 4πG
N∑

n=0

ρn
(rn+3

2 − rn+3
1 )

(n + 3)r2
, r > r2

− 4πG
N∑

n=0

ρn
(rn+3 − rn+3

1 )

(n + 3)r2
, r1 ≤ r ≤ r2

0, r < r1

(17)

Vzz(r) =
N∑

n=0

(V sh
zz )n

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

8πG
N∑

n=0

ρn
rn+3
2 − rn+3

1

(n + 3)r3
, r > r2

− 4πG
N∑

n=0

ρn
(n + 1)rn+3 + 2rn+3

1

(n + 3)r3
, r1 < r < r2

0, r < r1

(18)

Vzzz(r) =
N∑

n=0

(V sh
zzz)n

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 24πG
N∑

n=0

ρn
rn+3
2 − rn+3

1

(n + 3)r4
, r > r2

− 4πG
N∑

n=0

ρn
n(n + 1)rn+3 − 6rn+3

1

(n + 3)r4
, r1 < r < r2

0, r < r1

(19)

where the analytical expressions for radial GV, radial–radial
GGT, and radial–radial–radial GC of a spherical shell with
different nth-order polynomial density parts (i.e., (V sh

z )n ,
(V sh

zz )n , and (V sh
zzz)n with n = 0, 1, 2, 3, ..., N ) are similarly

listed in Tables 3, 4, and 5, respectively.
The nonzero components of theGGT (i.e., Vxx (r), Vyy(r),

and Vzz(r)) and GC (i.e., Vxxz(r), Vyyz(r), and Vzzz(r)) sat-
isfy Laplace’s equation with the computation point locating
above and below the spherical shell (i.e., r > r2 and r < r1)
in Eqs. (20–21) Poisson’s equation, and Laplace’s equation
with the computation point locating inside the spherical shell
(i.e., r1 < r < r2) in Eqs. (22–23) as:

Vxx (r) + Vyy(r) + Vzz(r) = 0 (20)

Vxxz(r) + Vyyz(r) + Vzzz(r) = 0 (21)

Vxx (r) + Vyy(r) + Vzz(r) = −4πG
N∑

n=0

ρn (22)

Vxxz(r) + Vyyz(r) + Vzzz(r) = 0 (23)

where Vxx (r) = Vyy(r) and Vxxz(r) = Vyyz(r).
Substituting Eqs. (18–19) into Eqs. (20–23), the analytical

expressions for other nonzero components of the GGT and
GC of a spherical shell with N th-order polynomial density
are presented as:

Vxx (r) = Vyy(r) =
N∑

n=0

(V sh
xx )n =

N∑
n=0

(V sh
yy )n

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−4πG
∑N

n=0 ρn
rn+3
2 −rn+3

1
(n+3)r3

, r > r2

2πG
∑N

n=0 ρn

[
(n+1)rn+3+2rn+3

1
(n+3)r3

− 1

]
, r1 < r < r2

0, r < r1

(24)

Vxxz(r) = Vyyz(r) =
N∑

n=0

(V sh
xxz)n =

N∑
n=0

(V sh
yyz)n

=

⎧⎪⎪⎨
⎪⎪⎩

12πG
∑N

n=0 ρn
rn+3
2 −rn+3

1
(n+3)r4

, r > r2

2πG
∑N

n=0 ρn
n(n+1)rn+3−6rn+3

1
(n+3)r4

, r1 < r < r2

0, r < r1

(25)

where the analytical expressions for other nonzero GGT and
GC of a spherical shell with different nth-order polynomial
density parts (i.e., (V sh

xx )n = (V sh
yy )n and (V sh

xxz)n = (V sh
yyz)n
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Table 3 Analytical expressions for radial GV of a spherical shell with different nth-order polynomial density parts (i.e., (V sh
z )n)

Quantity Above (r > r2) Inside (r1 ≤ r ≤ r2) Below (r < r1)

(V sh
z )0 −4πGρ0(r32 − r31 )/(3r2) −4πGρ0(r3 − r31 )/(3r2) 0

(V sh
z )1 −πGρ1(r42 − r41 )/r2 −πGρ1(r4 − r41 )/r2 0

(V sh
z )2 −4πGρ2(r52 − r51 )/(5r2) −4πGρ2(r5 − r51 )/(5r2) 0

(V sh
z )3 −2πGρ3(r62 − r61 )/(3r2) −2πGρ3(r6 − r61 )/(3r2) 0

(V sh
z )4 −4πGρ4(r72 − r71 )/(7r2) −4πGρ4(r7 − r71 )/(7r2) 0

(V sh
z )5 −πGρ5(r82 − r81 )/(2r2) −πGρ5(r8 − r81 )/(2r2) 0

(V sh
z )n −4πGρn(r

n+3
2 − rn+3

1 )/[(n + 3)r2] −4πGρn(rn+3 − rn+3
1 )/[(n + 3)r2] 0

Other parameters are the same as in Table 2

Table 4 Analytical expressions for radial–radial GGT of a spherical shell with different nth-order polynomial density parts (i.e., (V sh
zz )n), where

the computation point P is located above (r > r2), inside (r1 < r < r2), and below (r < r1) the spherical shell

Quantity Above (r > r2) Inside (r1 < r < r2) Below (r < r1)

(V sh
zz )0 8πGρ0(r32 − r31 )/(3r3) −4πGρ0(r3 + 2r31 )/(3r3) 0

(V sh
zz )1 2πGρ1(r42 − r41 )/r3 −2πGρ1(r4 + r41 )/r3 0

(V sh
zz )2 8πGρ2(r52 − r51 )/(5r3) −4πGρ2(3r5 + 2r51 )/(5r3) 0

(V sh
zz )3 4πGρ3(r62 − r61 )/(3r3) −4πGρ3(2r6 + r61 )/(3r3) 0

(V sh
zz )4 8πGρ4(r72 − r71 )/(7r3) −4πGρ4(5r7 + 2r71 )/(7r3) 0

(V sh
zz )5 πGρ5(r82 − r81 )/r3 −πGρ5(3r8 + r81 )/r3 0

(V sh
zz )n 8πGρn(r

n+3
2 − rn+3

1 )/[(n + 3)r3] −4πGρn[(n + 1)rn+3 + 2rn+3
1 ]/[(n + 3)r3] 0

Table 5 Analytical expressions for radial–radial–radial GC of a spherical shell with different nth-order polynomial density parts (i.e., (V sh
zzz)n)

Quantity Above (r > r2) Inside (r1 < r < r2) Below (r < r1)

(V sh
zzz)0 −8πGρ0(r32 − r31 )/r4 8πGρ0r31/r4 0

(V sh
zzz)1 −6πGρ1(r42 − r41 )/r4 −2πGρ1(r4 − 3r41 )/r4 0

(V sh
zzz)2 −24πGρ2(r52 − r51 )/(5r4) −24πGρ2(r5 − r51 )/(5r4) 0

(V sh
zzz)3 −4πGρ3(r62 − r61 )/r4 −4πGρ3(2r6 − r61 )/r4 0

(V sh
zzz)4 −24πGρ4(r72 − r71 )/(7r4) −8πGρ4(10r7 − 3r71 )/(7r4) 0

(V sh
zzz)5 −3πGρ5(r82 − r81 )/r4 −3πGρ5(5r8 − r81 )/r4 0

(V sh
zzz)n −24πGρn(r

n+3
2 − rn+3

1 )/[(n + 3)r4] −4πGρn[n(n + 1)rn+3 − 6rn+3
1 ]/[(n + 3)r4] 0

Other parameters are the same as in Table 4

with n = 0, 1, 2, 3, ..., N ) are listed inTables 6 and 7, respec-
tively.

When the computation is located on the top (i.e., r = r2)
or bottom (i.e., r = r1) of the spherical shell, there are discon-
tinuities as the density jumps. Regarding the GP component
V in Eq. (16) or Table 2 and GV component Vz in Eq. (17)
or Table 3, r = r2 and r = r1 are applied for the situation
where the computation point is inside the spherical shell (i.e.,
r1 ≤ r ≤ r2) (Fukushima 2018a, Eqs. (46) and(47)). For the
GGT components (Vzz in Eq. (18) and Table 4; Vxx and Vyy

in Eq. (24) and Table 6) and GC components (Vzzz in Eq.
(19) and Table 5; Vxxz and Vyyz in Eq. (25) and Table 7),
the computation point that is located on the top or bottom
of the spherical shell is slightly moved inside the spherical

shell. This strategy is the same as that in Fukushima (2018a).
In detail, the geocentric distance r of the computation point
when it is on the top (rtop) or bottom (rbottom) of the spherical
shell can be presented as:

rtop = R + (1 − ε)(r2 − R) (26)

rbottom = R + (1 + ε)(r1 − R) (27)

where R is the radius of the reference sphere. ε is themachine
epsilon as ε = 2−53 ≈ 1.11 × 10−16 for double precision
and ε = 2−113 ≈ 9.63 × 10−35 for quadruple precision
(Fukushima 2012, 2018a).

Another strategy to treat the special condition of the com-
putation point located on the top of the spherical shell is to
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Table 6 Analytical expressions for other nonzero gravity gradient tensor of a spherical shell with different nth-order polynomial density parts (i.e.,
(V sh

xx )n = (V sh
yy )n)

Quantity Above (r > r2) Inside (r1 < r < r2) Below (r < r1)

(V sh
xx )0 = (V sh

yy )0 −4πGρ0(r32 − r31 )/(3r3) 2πGρ0
[
(r3 + 2r31 )/(3r3) − 1

]
0

(V sh
xx )1 = (V sh

yy )1 −πGρ1(r42 − r41 )/r3 2πGρ1
[
(r4 + r41 )/(2r3) − 1

]
0

(V sh
xx )2 = (V sh

yy )2 −4πGρ2(r52 − r51 )/(5r3) 2πGρ2
[
(3r5 + 2r51 )/(5r3) − 1

]
0

(V sh
xx )3 = (V sh

yy )3 −2πGρ3(r62 − r61 )/(3r3) 2πGρ3
[
(2r6 + r61 )/(3r3) − 1

]
0

(V sh
xx )4 = (V sh

yy )4 −4πGρ4(r72 − r71 )/(7r3) 2πGρ4
[
(5r7 + 2r71 )/(7r3) − 1

]
0

(V sh
xx )5 = (V sh

yy )5 −πGρ5(r82 − r81 )/(2r3) 2πGρ5
[
(3r8 + r81 )/(4r3) − 1

]
0

(V sh
xx )n = (V sh

yy )n −4πGρn(r
n+3
2 − rn+3

1 )/[(n + 3)r3] 2πGρn

[
[(n + 1)rn+3 + 2rn+3

1 ]/[(n + 3)r3] − 1
]

0

Other parameters are the same as in Table 4

Table 7 Analytical expressions for other nonzero gravitational curvatures of a spherical shell with different nth-order polynomial density parts
(i.e., (V sh

xxz)n = (V sh
yyz)n)

Quantity Above (r > r2) Inside (r1 < r < r2) Below (r < r1)

(V sh
xxz)0 = (V sh

yyz)0 4πGρ0(r32 − r31 )/r4 −4πGρ0r31/r4 0

(V sh
xxz)1 = (V sh

yyz)1 3πGρ1(r42 − r41 )/r4 πGρ1(r4 − 3r41 )/r4 0

(V sh
xxz)2 = (V sh

yyz)2 12πGρ2(r52 − r51 )/(5r4) 12πGρ2(r5 − r51 )/(5r4) 0

(V sh
xxz)3 = (V sh

yyz)3 2πGρ3(r62 − r61 )/r4 2πGρ3(2r6 − r61 )/r4 0

(V sh
xxz)4 = (V sh

yyz)4 12πGρ4(r72 − r71 )/(7r4) 4πGρ4(10r7 − 3r71 )/(7r4) 0

(V sh
xxz)5 = (V sh

yyz)5 3πGρ5(r82 − r81 )/(2r4) 3πGρ5(5r8 − r81 )/(2r4) 0

(V sh
xxz)n = (V sh

yyz)n 12πGρn(r
n+3
2 − rn+3

1 )/[(n+ 3)r4] 2πGρn[n(n + 1)rn+3 − 6rn+3
1 ]/[(n + 3)r4] 0

Other parameters are the same as in Table 4

move the computation point 1m above the spherical shell for
the evaluation of the GGT components (Kuhn and Hirt 2016;
Lin et al. 2020). This strategy can also be applied to the GC
components of this special condition.

Furthermore, the general formula of the mass for a spher-
ical shell with N th-order polynomial density is provided as:

M =
N∑

n=0

(Msh)n =
r ′=r2∫

r ′=r1

θ=π∫

θ=0

α=2π∫

α=0

N∑
n=0

ρnr
′n+2 sin θdαdθdr ′

= 4π
N∑

n=0

ρn

r ′=r2∫

r ′=r1

r ′n+2dr ′ = 4π
N∑

n=0

ρn
rn+3
2 − rn+3

1

n + 3

(28)

where the formulae of the mass for a spherical shell with dif-
ferent nth-order polynomial density parts (i.e., (Msh)n) are
listed in Table 8. The expressions for the (Msh)0, (Msh)1,
(Msh)2, and (Msh)3 in Table 8 are the same as those in Eqs.
(E6b), (E7b), (E8b), and (E9b) of Lin et al. (2020), respec-
tively.

When the computation point P is outside the spherical
shell (i.e., r > r2), the relation between Eq. (28) and Eqs.
(16–19) can be found as:

V (r) = 1

r
GM (29)

Table 8 Expressions for the mass of a spherical shell with nth-order
polynomial density parts (i.e., (Msh)n)

Quantity Expression

(Msh)0 4πρ0(r32 − r31 )/3

(Msh)1 πρ1(r42 − r41 )

(Msh)2 4πρ2(r52 − r51 )/5

(Msh)3 2πρ3(r62 − r61 )/3

(Msh)4 4πρ4(r72 − r71 )/7

(Msh)5 πρ5(r82 − r81 )/2

(Msh)n 4πρn(r
n+3
2 − rn+3

1 )/(n + 3)

Vz(r) = − 1

r2
GM (30)

Vzz(r) = 2

r3
GM (31)

Vzzz(r) = − 6

r4
GM (32)

Based on Eqs. (30–32), the general relation between the
radial gravitational effects (Vt (r)) up to arbitrary-order and
the mass (M) of a spherical shell with N th-order polynomial
density where the computation point P is above the spherical
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shell (i.e., r > r2) is derived as:

Vt (r) = ∂ t (1/r)

∂r t
GM

=
[
(−1)(−2)(−3)...(−t)

] 1

r t+1 GM

= (−1)t t !
r t+1 GM (33)

where t is the nonzero positive integer (i.e., t = 1, 2, 3, ...),
which means the number of derivation in the radial direction
of the computation point.

In this section, the work goes beyond the previously cited
studies (MacMillan 1930; Tsoulis 1999; Deng and Shen
2018a; Lin et al. 2020) in that we derive the general ana-
lytical expressions for the GP (V (r) in Eq. (16) and Table 2),
radial GV (Vz(r) in Eq. (17) and Table 3), nonzero GGT
(Vxx (r), Vyy(r) in Eq. (24) and Table 6, and Vzz(r) in Eq.
(18) and Table 4), and nonzero GC (Vxxz(r), Vyyz(r) in Eq.
(25) and Table 7, and Vzzz(r) in Eq. (19) and Table 5) of
a spherical shell with N th-order polynomial density when
the computation point P is located above, inside, and below
the spherical shell. Moreover, the consistent expressions for
the GP, GV, GGT, and GC of a spherical shell are listed in
Table 9.

The general formula of the mass for a spherical shell hav-
ing a polynomial density model up to N th-order is derived
in Eq. (28) and Table 8 as well. Moreover, we derive the
general relation between the radial gravitational effects up to
arbitrary-order and the mass of a spherical shell with N th-
order polynomial density in Eq. (33) when the computation
point P is outside the spherical shell.

3 Numerical investigations

In this section, the numerical experiments are performed to
investigate the effects of the GC of the tesseroids and spher-
ical shell with the polynomial density up to fourth-order.
The setup of the numerical experiments, including numeri-
cal strategy, layout, method, and chosen values, is described
in Sect. 3.1. The effects of selected numerical density values
on the gravitational effects of a spherical shell are investi-
gated in Sect. 3.2. Sections3.3 and 3.4 examine the effects of
the computation point’s height and latitude on the GC with
the polynomial density up to the fourth-order.

3.1 Setup of the numerical experiments

In the following experiments, the commonly used numerical
strategy of using tesseroids to discretize a whole spherical
shell is adopted due to the simple analytical solutions of the
gravitational effects of a spherical shell. As the continuous

work of Deng and Shen (2018a), the numerical layouts of
the experiments are the same as each other. The main differ-
ence lies in that the focus of the experiments in this paper
is the effect of variable density models on the gravitational
effects with the influence of height and latitude. This effect is
revealed by the relative errors between the calculated gravi-
tational effects of the discretized tesseroids and the analytical
solutions of the gravitational effects of a spherical shell.

Specifically, the relative errors ((δF)N ) of the tesseroids
discretizing the whole spherical shell with N th-order poly-
nomial density are given in log10 scale, where F represents
the function of the nonzero gravitational effects from the
GP to GC, i.e., F = V , Vz , Vxx , Vyy , Vzz , Vxxz , Vyyz , and
Vzzz . The reference values are the analytical nonzero gravi-
tational effects of a spherical shell, which can be calculated
from Tables 2, 3, 4, 5, 6 and 7. The calculated values are the
sum of the nonzero gravitational effects of the discretized
tesseroids forming the total spherical shell.

Laplace’s equation of the GGT andGC is applied to reveal
the internal numerical quality as:

(δΔL1)N

= log10

(
ΔVxx + ΔVyy + ΔVzz

)

= log10

(∣∣∣∣
N∑

n=0

(∑
V tess
xx

)
n

+
N∑

n=0

( ∑
V tess
yy

)
n

+
N∑

n=0

( ∑
V tess
zz

)
n

−
N∑

n=0

(V sh
xx )n −

N∑
n=0

(V sh
yy )n −

N∑
n=0

(V sh
zz )n

∣∣∣∣
)

(34)

(δΔL2)N = log10

(
ΔVxxz + ΔVyyz + ΔVzzz

)

= log10

(∣∣∣∣
N∑

n=0

(∑
V tess
xxz

)
n

+
N∑

n=0

( ∑
V tess
yyz

)
n

+
N∑

n=0

( ∑
V tess
zzz

)
n

−
N∑

n=0

(V sh
xxz)n −

N∑
n=0

(V sh
yyz)n −

N∑
n=0

(V sh
zzz)n

∣∣∣∣
)

(35)

where (δΔL1)N and (δΔL2)N are the Laplace parameters of
the GGT and GC with N th-order polynomial density. They
are theoretically equal to zero and denoted as absolute errors
in the numerical experiments. In the following experiments,
the numerical calculationwith respect to relative and absolute
errors is performed in quadruple precision.

The 3D Gauss–Legendre quadrature method is applied
to obtain the numerical values of gravitational effects up to
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Table 9 Consistent expressions for the GP, GV, GGT, and GC between this paper and previous papers

Quantity This paper Previous papers

GP with constant density (V sh)0 in Table 2 Equation (15a) in Lin et al. (2020)

GP with linear, quadratic, and cubic density (V sh)1, (V sh)2, (V sh)3 in Table 2 Equations (16a), (17a), (18a) in Lin et al. (2020)

GV with constant density (V sh
z )0 in Table 3 Equation (15b) in Lin et al. (2020)

GV with linear, quadratic, and cubic density (V sh
z )1, (V sh

z )2, (V sh
z )3 in Table 3 Equations (16b), (17b), (18b) in Lin et al. (2020)

GGT with constant density (V sh
zz )0 in Table 4 Equation (15c) in Lin et al. (2020)

GGT with linear, quadratic, and cubic density (V sh
zz )1, (V sh

zz )2, (V sh
zz )3 in Table 4 Equations (16c), (17c), (18c) in Lin et al. (2020)

GC with constant density (V sh
xxz)0,(V

sh
yyz)0 in Table 7 and (V sh

zzz)0 in Table 5 Equations (8) and (9) in Deng and Shen (2018a)

Table 10 Numerical values of the parameters of the spherical shell and tesseroid in the numerical experiments

Parameter Notation Magnitude Unit

Newtonian gravitational constant G 6.67 430 × 10−11 m3 kg−1 s−2

Radius of the reference sphere R 6371 000 m

Constant density of the spherical shell and tesseroid ρ0 2670 kg m−3

Outer radius of the spherical shell r2 6371 000 m

Inter radius of the spherical shell r1 6370 000 m

Longitude dimension of the tesseroid Δλ = λ2 − λ1 15
′

Arc minute

Latitude dimension of the tesseroid Δϕ = ϕ2 − ϕ1 15
′

Arc minute

Vertical dimension of the tesseroid Δr = r2 − r1 1000 m

the GC of the tesseroid in the 3D integral forms in Table 1.
The general expression for 3D Gauss–Legendre quadrature
method is given as (Wild-Pfeiffer 2008; Uieda et al. 2016;
Deng and Shen 2018b; Lin et al. 2020):

F ≈ (r2 − r1)(ϕ2 − ϕ1)(λ2 − λ1)

8
Nr∑
k=1

Nϕ∑
j=1

Nλ∑
i=1

W λ
i W

ϕ
j W

r
k I (λi , ϕ j , rk) (36)

λi = xi (λ2 − λ1) + (λ2 + λ1)

2
(37)

ϕ j = x j (ϕ2 − ϕ1) + (ϕ2 + ϕ1)

2
(38)

rk = xk(r2 − r1) + (r2 + r1)

2
(39)

where F means the function of detailed expressions for grav-
itational effects up to the GC in Table 1. I (λi , ϕ j , rk) denotes
the function of detailed integral kernels of gravitational
effects up to the GC in Table 1. [λ1, λ2] × [ϕ1, ϕ2] × [r1, r2]
is the integration domain; Nλ, Nϕ , and Nr are the integer
degrees;W λ

i ,W
ϕ
j , andW

r
k are the weights; xi , x j , and xk are

the nodes with respect to the longitude, latitude, and radial
directions, respectively. With larger degrees, better compu-
tational accuracy can be obtained, whereas the computation
time will be longer. Based on Sect. 4.2 of Deng and Shen
(2018b), the degrees of Nλ, Nϕ , and Nr are chosen as 2, 2,

and 2 to present the acceptable numerical results at the height
of 260 km, and related weights and nodes can be referred in
Table 4 ofWild-Pfeiffer (2008) andTable 5 ofDeng and Shen
(2018b).

The numerical values of the parameters of the spherical
shell and tesseroid are listed in Table 10. It should be noted
that the constant density of the spherical shell and tesseroid
is the same as each other as ρ0 = 2670 kg m−3, which is
often assumed as the mean density for the topography of the
earth (Heiskanen andMoritz 1967; Hinze 2003; Tenzer et al.
2021).

3.2 Effects of density values on gravitational effects
of a spherical shell

The chosen numerical values of the density coefficient
ρn in the different expressions for gravitational effects (e.g.,
V , Vz , Vzz , and Vzzz) of a spherical shell and tesseroid are
important for the evaluation of the gravitational effects of a
spherical shell and tesseroid. Due to the analytical solutions
of the gravitational effects of a spherical shell as the refer-
ence values for discretized tesseroids, the effects of density
values on the gravitational effects of a spherical shell are
investigated in this section.

In the numerical experiments, the values of gravitational
effects of a spherical shell with the chosen density coefficient
ρn (n ≥ 1) are assumed to be at the same level as these of a
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Fig. 3 Visualization of the
reference values in log10 scale
for the GP ((V sh)0 blue curve),
radial GV ((V sh

z )0 red curve),
radial–radial GGT ((V sh

zz )0
green curve), and
radial–radial–radial GC ((V sh

zzz)0
purple curve) of a spherical shell
using the constant density
ρ0 = 2670 kg m−3 with the
influence of the height
h ∈ [0, 300] km with an interval
of 1 km

Table 11 Statistic information of the reference values in log10 scale of
theGP (V sh)0, radial GV (V sh

z )0, radial–radial GGT (V sh
zz )0, and radial–

radial–radial GC (V sh
zzz)0 of a spherical shell with constant density ρ0

in Fig. 3

Quantity Minimum Maximum Mean Variance

(V sh)0 4.1 4.2 4.1 0.00 003

(V sh
z )0 −2.7 −2.6 −2.7 0.00 013

(V sh
zz )0 −9.2 −9.2 −9.2 0.00 030

(V sh
zzz)0 −15.6 −15.5 −15.5 0.00 054

spherical shell with the constant density ρ0 = 2670 kg m−3.
The numerical values of the parameters of the spherical shell
are shown in Table 10. The computation point P is located
above the spherical shell (i.e., r > r2) with the height h ∈
[0, 300] km using an interval of 1 km. The relation between
geocentric distance r and height h of the computation point
P is r = R + h, where R is the radius of the reference
sphere and equal to the outer radius of the spherical shell r2
in Table 10. In other words, the spherical case is adopted.

Substituting the above numerical values into the first
expressions with the constant density ρ0 when the computa-
tion point is located above the spherical shell in Tables 2, 3 4
and 5, the values of the GP (V sh)0, radial GV (V sh

z )0, radial–
radial GGT (V sh

zz )0, and radial–radial–radial GC (V sh
zzz)0 of a

spherical shell using the constant density ρ0 with the influ-
ence of the height are obtained and illustrated in log10 scale
in Fig. 3. In Fig. 3, the x-axis means the height h of the com-

Table 12 Mean values in log10 scale of gravitational potential (V
sh)1,

radial gravity vector (V sh
z )1, radial–radial gravity gradient tensor

(V sh
zz )1, and radial–radial–radial gravitational curvatures (V sh

zzz)1 of
a spherical shell with linear density coefficient ρ1 = ρ0 × 10−m

(m ∈ [2, 4, 6, 8]), where the unit of ρ1 is kg m−4 and the values are
truncated to one decimal place

Quantity ρ0 × 10−2 ρ0 × 10−4 ρ0 × 10−6 ρ0 × 10−8

(V sh)1 8.9 6.9 4.9 2.9

(V sh
z )1 2.1 0.1 −1.9 −3.9

(V sh
zz )1 −4.4 −6.4 −8.4 −10.4

(V sh
zzz)1 −10.7 −12.7 −14.7 −16.7

Table 13 Mean values in log10 scale of gravitational potential (V
sh)2,

radial gravity vector (V sh
z )2, radial–radial gravity gradient tensor

(V sh
zz )2, and radial–radial–radial gravitational curvatures (V sh

zzz)2 of a
spherical shell with quadratic density coefficient ρ2 = ρ0 × 10−m

(m ∈ [10, 12, 14, 16]), where the unit of ρ2 is kg m−5 and the val-
ues are truncated to one decimal place

Quantity ρ0 × 10−10 ρ0 × 10−12 ρ0 × 10−14 ρ0 × 10−16

(V sh)2 7.8 5.8 3.8 1.8

(V sh
z )2 0.9 −1.1 −3.1 −5.1

(V sh
zz )2 −5.6 −7.6 −9.6 −11.6

(V sh
zzz)2 −11.9 −13.9 −15.9 −17.9

putation point above the reference sphere. The y-axis means
the reference values in log10 scale of the GP ((V sh)0), radial
GV ((V sh

z )0), radial–radial GGT ((V sh
zz )0), and radial–radial–
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Table 14 Mean values in log10 scale of gravitational potential (V
sh)3,

radial gravity vector (V sh
z )3, radial–radial gravity gradient tensor

(V sh
zz )3, and radial–radial–radial gravitational curvatures (V sh

zzz)3 of
a spherical shell with cubic density coefficient ρ3 = ρ0 × 10−m

(m ∈ [18, 20, 22, 24]), where the unit of ρ3 is kg m−6 and the val-
ues are truncated to one decimal place

Quantity ρ0 × 10−18 ρ0 × 10−20 ρ0 × 10−22 ρ0 × 10−24

(V sh)3 6.6 4.6 2.6 0.6

(V sh
z )3 −0.3 −2.3 −4.3 −6.3

(V sh
zz )3 −6.8 −8.8 −10.8 −12.8

(V sh
zzz)3 −13.1 −15.1 −17.1 −19.1

Table 15 Mean values in log10 scale of gravitational potential (V
sh)4,

radial gravity vector (V sh
z )4, radial–radial gravity gradient tensor

(V sh
zz )4, and radial–radial–radial gravitational curvatures (V sh

zzz)4 of a
spherical shell with quartic density coefficient ρ4 = ρ0 × 10−m

(m ∈ [26, 28, 30, 32]), where the unit of ρ4 is kg m−7 and the val-
ues are truncated to one decimal place

Quantity ρ0 × 10−26 ρ0 × 10−28 ρ0 × 10−30 ρ0 × 10−32

(V sh)4 5.4 3.4 1.4 −0.6

(V sh
z )4 −1.5 −3.5 −5.5 −7.5

(V sh
zz )4 −8.0 −10.0 −12.0 −14.0

(V sh
zzz)4 −14.3 −16.3 −18.3 −20.3

radial GC ((V sh
zzz)0) of a spherical shell using the constant

density ρ0 = 2670 kg m−3. Meanwhile, the related statistic
information (i.e., minimum, maximum, mean, and variance)
of gravitational effects is shown in Table 11, where the units
of (V sh)0, (V sh

z )0, (V sh
zz )0, and (V sh

zzz)0 are m2 s−2, m s−2,
s−2, and m−1 s−2, respectively.

From Fig. 3, with the increased heights, the reference val-
ues of the (V sh)0, (V sh

z )0, (V sh
zz )0, and (V sh

zzz)0 of a spherical
shell with the constant density are gradually getting smaller.
The statistic information in Table 11 reveals that the ranges
of the values of the (V sh)0, (V sh

z )0, (V sh
zz )0, and (V sh

zzz)0 in
log10 scale are small especially with the small variances.
Consequently, the magnitude of the numerical results for the
spherical shell in Fig. 3 is stable, and they can be used as the
reference values for the calculated values of the tesseroids in
the following numerical experiments.

Furthermore, the mean values in Table 11 using the con-
stant densityρ0 are set as the reference values. In otherwords,
by changing the density coefficients ρ1, ρ2, ρ3, and ρ4 at the
level of ρ0 × 10−m (m ≥ 1), the values of different gravita-
tional effects of a spherical shell can be obtained to reach the
same level as the mean values using the constant density ρ0
in Table 11.

The mean values in log10 scale of the GP (i.e., (V sh)1,
(V sh)2, (V sh)3, and (V sh)4), radial GV (i.e., (V sh

z )1, (V sh
z )2,

(V sh
z )3, and (V sh

z )4), radial–radial GGT (i.e., (V sh
zz )1, (V sh

zz )2,

(V sh
zz )3, and (V sh

zz )4), and radial–radial–radial GC (i.e.,
(V sh

zzz)1, (V sh
zzz)2, (V sh

zzz)3, and (V sh
zzz)4) of a spherical shell

with linear, quadratic, cubic, and quartic density coefficients
(i.e., ρ1, ρ2, ρ3, and ρ4) are listed in Tables 12, 13, 14, and
15, respectively.

Regarding themeanvalues in log10 scale betweenTables 11,
12, 13, 14 and 15 to reach the level of mean values for differ-
ent gravitational effects in Table 11, the ranges of density
coefficients ρ1, ρ2, ρ3, and ρ4 are in about [ρ0 × 10−7,
ρ0 × 10−6], [ρ0 × 10−14, ρ0 × 10−13], [ρ0 × 10−21, ρ0 ×
10−20], and [ρ0 × 10−28, ρ0 × 10−27], respectively. It can
be found that the difference of the magnitude among the
ranges is at the level of −7, i.e., −14− (−7) = −7 between
ρ1 and ρ2, −21 − (−14) = −7 between ρ2 and ρ3, and
−28 − (−21) = −7 between ρ3 and ρ4. In other words, the
order of magnitude decreases with 1/r in the spherical case.

Herein, the relation between ρn (n ≥ 0) and ρ0 is theo-
retically derived. The initial assumption is that the nonzero
gravitational effects (i.e., (V sh)n , (V sh

z )n , (V sh
xx )n , (V sh

yy )n ,
(V sh

zz )n , (V sh
xxz)n , (V sh

yyz)n , and (V sh
zzz)n) of a spherical shell

with different nth-order polynomial density parts in Tables 2,
3, 4, 5, 6 and 7 are equal when the computation point is
located above the spherical shell. The physical meaning of
this assumption is the uniform equality of the polynomial
density parts. It helps to understand the magnitude of each
term of the polynomial density. The formulae of this assump-
tion can be expressed as:

(V sh)0 = 4πGρ0(r32 − r31 )

3r

= 4πGρn(r
n+3
2 − rn+3

1 )

(n + 3)r
= (V sh)n (40)

(V sh
z )0 = −4πGρ0(r32 − r31 )

3r2

= −4πGρn(r
n+3
2 − rn+3

1 )

(n + 3)r2
= (V sh

z )n (41)

(V sh
xx )0 = (V sh

yy )0 = −4πGρ0(r32 − r31 )

3r3

= −4πGρn(r
n+3
2 − rn+3

1 )

(n + 3)r3
= (V sh

xx )n = (V sh
yy )n

(42)

(V sh
zz )0 = 8πGρ0(r32 − r31 )

3r3

= 8πGρn(r
n+3
2 − rn+3

1 )

(n + 3)r3
= (V sh

zz )n (43)

(V sh
xxz)0 = (V sh

yyz)0 = 4πGρ0(r32 − r31 )

r4

= 12πGρn(r
n+3
2 − rn+3

1 )

(n + 3)r4
= (V sh

xxz)n = (V sh
yyz)n

(44)
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Table 16 Numerical relation
between ρn (n = 1, 2, 3, 4) and
ρ0 with the values of r1 and r2
in Table 10, where the nonzero
gravitational effects of a
spherical shell with different
nth-order polynomial density
parts are equal when the
computation point is located
above the spherical shell and the
values are truncated to one
decimal place

Quantity ρ0×Coefficient

ρ1 1.6 × 10−7

ρ2 2.5 × 10−14

ρ3 3.9 × 10−21

ρ4 6.1 × 10−28

(V sh
zzz)0 = −8πGρ0(r32 − r31 )

r4

= −24πGρn(r
n+3
2 − rn+3

1 )

(n + 3)r4
= (V sh

zzz)n (45)

After simplifying Eqs. (40–45), the relation between ρn
(n ≥ 0) and ρ0 is obtained as:

ρn = ρ0
(n + 3)(r32 − r31 )

3(rn+3
2 − rn+3

1 )
(46)

where this same relation exists for the mass of a spheri-
cal shell with different nth-order polynomial density parts
if Msh

0 = Msh
n in Table 8.

RegardingEq. (46), once the values of inner and outer radii
(i.e., r1 and r2) of the spherical shell are known, the numerical
relation between ρn and ρ0 can be obtained. Substituting the
values of r1 and r2 in Table 10 into Eq. (46), the relation
between ρn (n = 1, 2, 3, 4) and ρ0 is listed in Table 16. The
coefficients in Table 16 are in the ranges of [ρ0 ×10−7, ρ0 ×
10−6], [ρ0 × 10−14, ρ0 × 10−13], [ρ0 × 10−21, ρ0 × 10−20],
and [ρ0 × 10−28, ρ0 × 10−27] for density coefficients ρ1, ρ2,
ρ3, and ρ4 presented in Tables 12, 13, 14 and 15. Regarding
the following experiments in Sects. 3.3 and 3.4, the numerical
density coefficients are set according to the formula in Eq.
(46) in quadruple precision to show the extreme situation that
the values of gravitational effects are correspondingly equal
due to the different polynomial density parts.

3.3 Influence of height on the GC with polynomial
density up to fourth-order

The near-zone problem (or very-near-area problem) of the
computation point for the tesseroid mass body (i.e., there
are large approximation errors when the computation point
approaches the surface of the tesseroid mass body) has been
investigated by using tesseroids to discretize the spherical
shell for the GP, GV, GGT (Uieda et al. 2016; Shen and Deng
2016), GC (Deng and Shen 2018a, b, 2019), and invariants
of the gravity gradient tensor and their first-order deriva-
tives (Deng et al. 2021) with the constant density. Based on

the same numerical situation to investigate the influence of
the geocentric distance on the GC (Deng and Shen 2018a,
Sect.3.3), we extend the constant density to the polynomial
density up to fourth-order to reveal the density variation on
the effects of the GC using the relative and absolute errors.
The GP, GV, and GGT are included for comparison as well.

For the position of the computation point, the height h is
chosen as h ∈ [0, 300] km (Lin et al. 2020, Sect. 3.3) with an
interval of 1 km and the spherical longitude and latitude are
(0◦, 0◦) (Deng and Shen 2018a, Sect. 3.3). Other numerical
values of the spherical shell and tesseroid can be referred to
in Table 10.

Due to the same performance of relative errors in log10
scale from zero- up to fourth-order polynomial density, only
the relative errors in log10 scale of the GP ((δV )4), radial
GV ((δVz)4), GGT ((δVxx )4, (δVyy)4, and (δVzz)4), and GC
((δVxxz)4, (δVyyz)4, and (δVzzz)4) with fourth-order polyno-
mial density with the influence of the height are illustrated in
Fig. 4a. The absolute errors in log10 scale of Laplace param-
eters of the GGT ((δΔL1)N ) and GC ((δΔL2)N ) from zero-
up to fourth-order polynomial density (i.e., N = 0, 1, 2, 3, 4)
are presented in Fig. 4b based on Eqs. (34–35).

From Fig. 4a, the relative errors of the GC (i.e., (δVxxz)4,
(δVyyz)4, and (δVzzz)4) are larger than other gravitational
effects (i.e., (δV )4, (δVz)4, (δVxx )4, (δVyy)4, and (δVzz)4)
with the influence of the height at the same numerical sit-
uation. Specifically, the relative errors in log10 scale are
in the range of about [−14, −4] for (δVz)4, [−14, 0] for
(δVz)4, [−15, 3] for (δVxx )4, (δVyy)4, and (δVzz)4, and
[−14, 6] for (δVxxz)4, (δVyyz)4, and (δVzzz)4. Regarding
the general trends of relative errors for different gravita-
tional effects, they decrease with the increased height. For
the height below 30km, there exist turning points because
of the sign change of the absolute operation within the loga-
rithmic scale, which are similar to those in Fig. 4a of Deng
and Shen (2018a). The ranges of the rapid drop zone, i.e., its
relative errors decline rapidly (Deng and Shen 2018b, Sect.
4.4), are below about 110km for (δV )4, 140km for (δVz)4,
150km for (δVxx )4, (δVyy)4, and (δVzz)4, and 180km for
(δVxxz)4, (δVyyz)4, and (δVzzz)4. The concussion zones are
found for the GGT ((δVxx )4 and (δVzz)4) and GC ((δVxxz)4,
(δVyyz)4, and (δVzzz)4), where the relative errors changewith
large variation at the range of [150, 170] km for the GGT and
[180, 200] km for the GC. In the stable zones, the relative
errors in log10 scale are at the level of about −14 and −13.
The relative errors in log10 scale of the GGT and GC are
large than 0 below the height of about 24 km and 50 km,
respectively.

The ten rough curves in Fig. 4b decreasewith the increased
height as well. With the polynomial density from zero- to
fourth-order (i.e., N = 0, 1, 2, 3, 4), the absolute errors of
Laplace parameters of the GC ((δΔL2)N ) increase slightly,
which are also found for Laplace parameters of the GGT
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Fig. 4 a Visualization of the
relative errors in log10 scale of
the GP ((δV )4 blue curve),
radial GV ((δVz)4 red curve),
GGT ((δVxx )4 black curve,
(δVyy)4 green dashed curve, and
(δVzz)4 cyan dotted curve), and
GC ((δVxxz)4 deep-sky-blue
curve, (δVyyz)4 thistle dashed
curve, and (δVzzz)4 magenta
dotted curve) with fourth-order
polynomial density by a grid
size of 15′ × 15′ with the
influence of the height h from
the surface 0 to 300km with an
interval of 1 km; b the absolute
errors in log10 scale of the
Laplace parameters of the GGT
((δΔL1)0 magenta curve,
(δΔL1)1 thistle curve, (δΔL1)2
deep-sky-blue curve, (δΔL1)3
orange curve, and (δΔL1)4
yellow curve) and GC ((δΔL2)0
blue curve, (δΔL2)1 red curve,
(δΔL2)2 green curve, (δΔL2)3
black curve, and (δΔL2)4
purple curve) using different
order polynomial density in
quadruple precision with the
unit s−2 for (δΔL1)N and
m−1 s−2 for (δΔL2)N (i.e.,
N = 0, 1, 2, 3, 4)
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((δΔL1)N ). The reason lies in that as the order of the poly-
nomial density decreases, the superposition effect of absolute
errors in Eqs. (34–35) becomes obvious. The ranges of the
absolute errors in log10 scale are approximately [−42, −34]
for (δΔL1)N and [−47, −37] for (δΔL2)N . Regarding the
quadruple precision, its machine epsilon of IEEE 2008 in
log10 scale is about log10(9.63×10−35) ≈ −34 (Fukushima
2012). The ranges of ten rough curves in Fig. 4b in log10 scale
are almost below−34, which means that the sum of the com-
ponents of the GGT and GC with different order polynomial
density in Eqs. (34–35) satisfied Laplace’s equation under
current numerical condition.

The reason for the same performance of relative errors in
log10 scale from zero- to fourth-order polynomial density for
different gravitational effects using tesseroids to discretize
the spherical shell lies in that the assumption of the den-
sity coefficient in Eq. (46) of Sect. 3.2. In other words, the
same coefficients are cancelled both in the numerator and
denominator in the relative errors for different order poly-
nomial density, whereas the absolute errors can reflect the
error superposition effect caused by different order polyno-
mial density in Eqs. (34–35), which are revealed under the
log10 operation in Fig. 4b.

Furthermore, the existence of the rapid drop zone, espe-
cially below the height of 10km for the GGT and GC in
Fig. 4a, shows that the near-zone problem still occurs for
different order polynomial density, i.e., the choice of poly-
nomial density model does not affect the existence of the
near-zone problem. Solving the near-zone problem will be
focused on improving the numerical method for triple (or
double) integrals and refined geometrical shape (or grid size)
of the tesseroid mass body.

3.4 Influence of latitude on the GC with polynomial
density up to fourth order

The influence of the computation point’s latitude on the
GC of the tesseroid mass body was investigated with the
constant density using the spherical integral kernels (Deng
and Shen 2018a) and Cartesian integral kernels (Deng and
Shen 2018b). Herein, the constant density is extended up to
fourth-order polynomial density to study thedensity variation
on the effects of the GC with the influence of latitude using
the relative and absolute errors. Meanwhile, the low-order
gravitational potential gradients (i.e., GP, GV, and GGT) are
also investigated. The latitude variation of the computation
point indirectly reveals the effects of the geometrical shape
of the tesseroid mass body on the gravitational effects.

The computation point is at the satellite height of h =
260 km above the surface of the spherical shell, where the
near-zone effects of different gravitational effects are largely
reduced as revealed in Fig. 4. The longitude and latitude of
the computation point are λ = 0◦ and ϕ ∈ [0◦, 90◦] with

an interval of 1◦ because of the spherical symmetry of the
spherical shell. Table 10 lists other numerical values of the
spherical shell and tesseroid.

Analogously, the relative errors in log10 scale with zero-
up to fourth-order polynomial density are the same as each
other. Figure5a only presents the relative errors in log10 scale
of the GP ((δV )4), GV ((δVz)4), GGT ((δVxx )4, (δVyy)4,
and (δVzz)4), andGC ((δVxxz)4, (δVyyz)4, and (δVzzz)4) with
fourth-order polynomial density with the influence of the lat-
itude. Using Eqs. (34–35), Fig. 5b shows the absolute errors
in log10 scale of Laplace parameters of the GGT ((δΔL1)N )
and GC ((δΔL2)N ) using different order polynomial density
(i.e., N = 0, 1, 2, 3, 4) with the influence of the latitude.

From Fig. 5a, all the relative errors show the similar rule
that as the latitude increases, the relative errors increase as
well, especially in the polar region (i.e., ∼ 80◦ ≤ ϕ ≤ 90◦).
There are a decreased turning point for (δVyyz)4 at about ϕ ≈
44◦ and other decreased turning points for other gravitational
effects in the polar region due to the absolute operation of the
sign change inside the logarithmic scale. The ranges of the
relative errors in log10 scale are about [−14, −9] for (δV )4,
[−14, −7] for (δVz)4, [−14, −5] for (δVxx )4, (δVyy)4, and
(δVzz)4, and [−14,−3] for (δVxxz)4, (δVyyz)4, and (δVzzz)4.

Although the curves between Fig. 5a and Fig. 8 of Deng
and Shen (2018a) are similar, it should be noted that there
are some differences between them. Firstly, the coordinate
system of gravitational effects in Fig. 5a is the local north-
oriented frame system with x , y, z pointing to the north, east,
and radial up and in Fig. 8 of Deng and Shen (2018a) is
the local East-North-Up topocentric reference system with
x , y, z pointing to the east, north, and radial up. In other
words, (δVxx )4, (δVyy)4, (δVxxz)4, and (δVyyz)4 in Fig. 5a
are correspondingly with respect to GGT_δVyy , GGT_δVxx ,
GC_δVyyz , and GC_δVxxz in Fig. 8 of Deng and Shen
(2018a). Secondly, there are no gaps for (δVyy)4 and (δVyyz)4
at latitude ϕ = 90◦ in Fig. 5a, whereas the curves of the
GGT _δVxx and GC_δVxxz have gaps at latitude ϕ = 90◦
in Fig. 8 of Deng and Shen (2018a). The reason is that the
tesseroid formulae of the GGT and GC in this paper are in
Cartesian integral kernels, whereas they were in spherical
integral kernels in Deng and Shen (2018a). Using Carte-
sian integral kernels can avoid the gap at the polar point
(i.e., the polar-singularity problem). Thirdly, the curve of the
(δVyyz)4 is smooth at the low latitude region (i.e., ϕ < 44◦)
in Fig. 5a, whereas the GC_δVxxz has a slightly rough curve
at the same low latitude region. Fourthly, the numericalmeth-
ods are Gauss–Legendre quadrature with 3D degrees (2, 2,
2) for Fig. 5 in this section and Taylor series expansion with
a second-order for Fig. 8 of Deng and Shen (2018a). Finally,
Fig. 5 in this section adopts the fourth-order polynomial den-
sity model, whereas Fig. 8 of Deng and Shen (2018a) applied
the constant density.

123



18 Page 16 of 21 X.-L. Deng

Fig. 5 a Visualization of the
relative errors in log10 scale of
the GP ((δV )4 blue curve), GV
((δVz)4 red curve), GGT
((δVxx )4 dark-blue curve,
(δVyy)4 green curve, and
(δVzz)4 yellow curve), and GC
((δVxxz)4 thistle curve, (δVyyz)4
deep-sky-blue curve, and
(δVzzz)4 magenta curve) with
fourth-order polynomial density
by a grid size of 15′ × 15′ with
the influence of the latitude ϕ

from 0 to 90◦ with an interval of
1◦ at the satellite height of
h = 260 km; b the absolute
errors in log10 scale of the
Laplace parameters of the GGT
((δΔL1)N ) and GC ((δΔL2)N )
using different order polynomial
density (i.e., N = 0, 1, 2, 3, 4),
where other parameters are the
same as in Fig. 4b
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Regarding Fig. 5b, the ten curves of the absolute errors
in log10 scale do not change particularly as the latitude
rises. Similar superposition effects of absolute errors both
for Laplace parameters of the GGT ((δΔL1)N ) and GC
((δΔL2)N ) are obvious as the increased polynomial den-
sity from zero- to fourth-order. The absolute errors in log10
scale are in ranges of about [−42, −39] for (δΔL1)N and
[−46, −43] for (δΔL2)N , which are all below the machine
epsilon of quadruple precision in log10 scale as −34. It can
be confirmed that under the current numerical condition, the
components of the GGT and GC with zero- up to fourth-
order polynomial density in Eqs. (34–35) satisfy Laplace’s
equation at the satellite height of h = 260 km.

4 Conclusions and outlooks

In recent years, the research trends in gravity field model-
ing have been from constant to variable density and from
low-order to higher-order gravitational potential gradients
(e.g., the GC). In this contribution, the formulae of the GC
of a tesseroid and spherical shell are extended from con-
stant density to arbitrary-order polynomial density. In detail,
the general expression for the GC of a tesseroid with N th-
order polynomial density is derived in Cartesian integral
kernel, and the detailed components of the GC are presented
in the spherical coordinate system. The general analytical
expressions for gravitational effects up to the GC of a spher-
ical shell with N th-order polynomial density are derived
when the computation point is located above, inside, and
below the spherical shell. Meanwhile, the general formula of
the mass for a spherical shell having a polynomial density
model up to N th-order is derived. Furthermore, we derive
the general relation between radial gravitational effects up to
arbitrary-order and the mass of a spherical shell with N th-
order polynomial density with the computation point located
above the spherical shell.

Under the assumption that the nonzero gravitational
effects of a spherical shell with different nth-order polyno-
mial density parts are equal when the computation point is
located above the spherical shell, the effects of density val-
ues on gravitational effects up to the GC of a spherical shell
are investigated. The relation between the constant density
ρ0 and density coefficient ρn (n ≥ 0) is derived. The differ-
ence of the magnitude between the density coefficients ρn
and ρn+1 is about at the level of −7.

The influence of the computation point’s height on grav-
itational effects up to the GC with polynomial density up
to fourth-order is investigated. Numerical experiments show
that the near-zone problem occurs for the GC with differ-
ent order polynomial density. In other words, the change in
density does not affect the existence of the near-zone prob-
lem. The relative errors in log10 scale of the GGT and GC

are large than 0 below the height of about 24 km and 50 km,
respectively. The key to solving the near-zone problem of the
GC of the tesseroid lies in the improvement of the numeri-
cal algorithm to calculate the triple or double integrals and
the selection of the geometrical shape of the tesseroid mass
body, e.g., the rotation method (Marotta and Barzaghi 2017;
Marotta et al. 2019), splitting line method using the double
exponential quadrature (Fukushima 2018a), different types
of the regular, adaptive and combined subdivision (Li et al.
2011;Grombein et al. 2013; Shen andDeng2016;Uieda et al.
2016; Deng and Shen 2019; Lin andDenker 2019; Soler et al.
2019; Zhong et al. 2019; Zhao et al. 2019; Lin et al. 2020;
Qiu and Chen 2020, 2021).

In addition, we study the influence of the latitude on grav-
itational effects up to the GC with the polynomial density
up to fourth-order at the satellite height of h = 260 km.
The polar-singularity problem does not occur for the GC and
GGT with different order polynomial density because of the
applied Cartesian integral kernels of the tesseroid. The rel-
ative errors in log10 scale of gravitational effects up to the
GC increase with the increased latitude. In other words, the
geometrical shape of the tesseroid in the high latitude region,
especially in the polar region, leads to an increase in the rel-
ative errors, whereas the relative errors in log10 scale are still
within an acceptable range below −3. Under the assumption
in Eq. (46), the density variation can be revealed in the super-
position effects of the absolute errors of Laplace parameters
of the GGT and GC in log10 scale with the influence of the
height and latitude.

Regarding the potential applications of the formulae of the
GC of a tesseroid in Cartesian integral kernels with arbitrary-
order polynomial density in Eqs. (9–10), the atmospheric,
topographic, and crustal effects of the Earth and other celes-
tial bodies can be studied for the GC components in the
gravity field modeling, which are similar to the GGT com-
ponents (Eshagh 2009a, b, c, 2010, 2021). For example, the
contribution of the binomial expansion up to degree four in
topographic and atmospheric effects for the GC at the satel-
lite altitude will be investigated in the future based on the
similar application of the contribution of the second and third
terms of the topographic and atmospheric effects for theGGT
(Eshagh 2009a). In the future, the chosen exponents of the
polynomial density coefficient of the GC will be examined
for their topographic and atmospheric effects.

The analytical expressions for the gravitational effects up
to theGC of a spherical shell with arbitrary-order polynomial
density in Eqs. (19) and (25) can be regarded as the refer-
ence values for the tesseroid and other spherical mass bodies
(e.g., spherical triangular tessellation (Zhang et al. 2018a))
in the numerical experiments. Other variable density mod-
els (e.g., exponential and sinusoidal density functions (Soler
et al. 2019)) for the GC of the tesseroid and spherical shell
will be focused on compared to the arbitrary order poly-
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nomial density model. Moreover, the residual topographic
effects of the Earth can be investigated for the GC compo-
nents using the spherical shell in the gravity field modeling,
which are analogous to the GGT components (Kuhn and Hirt
2016). Note that the spherical harmonic expansion of the
potential for the spherical shell even with irregular bound-
aries and laterally variable density was determined in the
spectral domain (Eshagh 2010). The spherical harmonic
coefficients of the potential of the irregular and heteroge-
neous layers (e.g., topographic and atmospheric effects in
Eshagh (2009b); crustal effects in Eshagh (2021)) can sim-
ply be computed and inserted into the spherical harmonic
expansions of the GC. Further investigations on the consis-
tencies of the GC of the spherical shell between this paper in
spatial domain and Eshagh (2009b, 2010, 2021) in spectral
domain will be performed in the future, c.f. Kuhn and Seitz
(2005), Hirt and Kuhn (2014), and Hirt et al. (2016).

When modeling the GC with an arbitrary-order poly-
nomial density of the atmosphere, water, ice, topography,
crust, mantle, and core of the Earth or other celestial bodies,
the choice of density coefficient in the polynomial density
in the practical situation should be made carefully accord-
ing to the available density models (e.g., CRUST1.0 (Laske
et al. 2013), GEMMA (Reguzzoni and Sampietro 2015),
and UNB_TopoDens (Sheng et al. 2019)), seismic waves,
and geological survey results. The mentioned density mod-
els include the density jumps at the boundaries of the mass
bodies. The technique to treat the density jumps can be
referred to Eqs. (26–27). In other words, the computation
point can be slightly moved inside the mass bodies to avoid
the density jumps based on the chosen double or quadruple
precision. When adopting these density models in the appli-
cation of the topographic effects, the density gradients can
be taken, and the grid sizes of the tesseroids are 1◦ × 1◦ for
the CRUST1.0, 0.5◦ × 0.5◦ for the GEMMA, and 30′′ × 30′′
for the UNB_TopoDens.

The modeling of the GC of the tesseroid and spherical
shell with different layers of the Earth or other celestial
bodies belongs to the forward problem in geophysics. The
low-order gravitational quantities (e.g., GV and GGT) of the
tesseroid have been widely applied for the inversion in stud-
ies of the internal structures of the Earth or the Moon (Liang
et al. 2014; Uieda and Barbosa 2017; Zhang et al. 2018b;
Zhao et al. 2019, 2021). In the future, the inverse problem of
the GC using different mass bodies (e.g., the tesseroid and
spherical shell) that are likely to appear in applications will
be investigated.
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Appendix 1: Derivation of analytical expres-
sions for the GP of a spherical shell with
arbitrary-order polynomial density

The analytical expressions for the GP (V (r)) of a spheri-
cal shell with arbitrary-order polynomial density are derived
with the computation point P located above (i.e., r > r2)
inside (i.e., r1 ≤ r ≤ r2), and below (i.e., r < r1) the spher-
ical shell.

If the computation point P is located above the spherical
shell (i.e., r > r2), 	1 = r − r ′ and 	2 = r + r ′. Then, Eq.
(15) can be presented as:

V (r) = 2πG

r

r ′=r2∫

r ′=r1

	2=r+r ′∫

	1=r−r ′

(
N∑

n=0

ρnr
′n+1

)
d	dr ′

= 4πG

r

r ′=r2∫

r ′=r1

(
N∑

n=0

ρnr
′n+2

)
dr ′

= 4πG
N∑

n=0

ρn
rn+3
2 − rn+3

1

(n + 3)r
(47)

When the computation point P is located below the spherical
shell (i.e., r < r1), 	1 = r ′ − r and 	2 = r ′ + r . Under this
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condition, Eq. (15) can be derived as:

V (r) = 2πG

r

r ′=r2∫

r ′=r1

	2=r ′+r∫

	1=r ′−r

(
N∑

n=0

ρnr
′n+1

)
d	dr ′

= 4πG

r ′=r2∫

r ′=r1

(
N∑

n=0

ρnr
′n+1

)
dr ′

= 4πG
N∑

n=0

ρn
rn+2
2 − rn+2

1

n + 2
(48)

If the computation point P is located inside the spherical
shell (i.e., r1 ≤ r ≤ r2), the original spherical shell can be
divided as two spherical shell (Lin et al. 2020), i.e., the first
spherical shell with inner and outer radii as [r1, r ] where the
computation point is above this spherical shell (i.e., 	1 =
r − r ′ and 	2 = r + r ′) and the second spherical shell with
inner and outer radii as [r , r2] where the computation point
is below the spherical shell (i.e., 	1 = r ′−r and 	2 = r ′+r ).
In this case, Eq. (15) can be derived as:

V (r) = 2πG

r

r ′=r∫

r ′=r1

	2=r+r ′∫

	1=r−r ′

(
N∑

n=0

ρnr
′n+1

)
d	dr ′

+ 2πG

r

r ′=r2∫

r ′=r

∫ 	2=r ′+r

	1=r ′−r

(
N∑

n=0

ρnr
′n+1

)
d	dr ′

= 4πG

r

r ′=r∫

r ′=r1

(
N∑

n=0

ρnr
′n+2

)
dr ′+4πG

r ′=r2∫

r ′=r

(
N∑

n=0

ρnr
′n+1

)
dr ′

= 4πG
N∑

n=0

ρn

[
rn+3 − rn+3

1

(n + 3)r
+ rn+2

2 − rn+2

n + 2

]

= 4πG
N∑

n=0

ρn

[
rn+2
2

n + 2
− rn+2

(n + 2)(n + 3)
− rn+3

1

(n + 3)r

]

(49)
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