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Abstract
Mass change inferences from GRACE and GRACE-FO typically involve, first, the preparation of spherical harmonic (SH)
datasets on global gravity field changes and, second, their subsequent analysis that leads to mass change estimates. This
study addresses the second step, which builds on SH input datasets that comprise the monthly gravity field solutions as
well as amendments to low-degree components and subtraction or re-addition of certain modeled geophysical signals. A
variety of methods have been developed to estimate mass changes from SH input datasets. It remains a challenge to assess
and compare different methods adopted by different studies and to understand the mechanisms by which their results differ.
Methods are often distinguished as belonging to either the inverse or direct approach. In the inverse approach, mass changes
are estimated using a set of predefined spatial patterns. In the direct approach, surface mass density variations are integrated
by using a predefined weight function, or sensitivity kernel. In this paper, we recall that sensitivity kernels are inherent not
only to the direct approach. They are also inherent and may be made explicit, for inverse approaches. We prove that certain
implementations of the direct and inverse approach have identical sensitivity kernels, and are therefore equivalent, under the
condition that they rigorously incorporate the same signal and error covariance information. We present sensitivity kernels
for the example of four different methods to estimate Greenland Ice Sheet mass changes. We discuss the sensitivity kernels
in relation to the underlying differences in the methods. We propose to use sensitivity kernels as a means of communicating,
assessing and comparing methods of mass change estimates. Once the sensitivity kernels associated to a method are made
explicit, any user can readily investigate the method in terms of leakage effects, error propagation from the input SH datasets,
or effects of the choice of the SH input datasets.
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1 Introduction

The determination of mass changes within a specific area
at the Earth surface (such as a drainage basin) is the most
common application of satellite gravimetry realized by the
Gravity Recovery And Climate Experiment (GRACE) and
GRACE-Follow-On missions (Wouters et al. 2014; Tapley
et al. 2019), both referred to as GRACE in the following.
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Typically, mass change estimates are obtained by analyzing
GRACE-based spherical harmonic (SH) representations of
gravity field variations. Methods of this analysis, and hence
of SH-based GRACE mass change estimates, are the sub-
ject of this study. We do not address choices involved in
the preparation of the SH datasets that are input to the mass
change estimates. This preparation of SH input datasets (or
‘GRACE-based gravity field variations’) includes the gener-
ation of monthly GRACE gravity field solutions by GRACE
Level-2 processing centers, amendments to the low-degree
components of the solutions from additional data sources
(Sun et al. 2016; Loomis et al. 2019, 2020) aswell as subtrac-
tion or re-addition of certainmodeled gravity field effect such
as glacial isostatic adjustment or atmospheric and oceanic
mass redistributions, respectively.

A variety of methods have been developed for mass
change estimates from GRACE-based SH gravity field vari-
ations. These methods need to address effects of errors in
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the SH input datasets, notably the GRACE gravity field solu-
tions, and effects due to the imposed limitations to spatial
resolution. See Sect. 2.3 for a formal definition of the two
effects (‘GRACE error effects’ and ‘leakage errors’) that
follows Swenson andWahr (2002) and for a pertinent discus-
sion. Early methods directly modify the region function over
which the SH input datasets are integrated after their con-
version to a surface mass density representation. They hence
follow a direct approach. The resulting weight function (also
called sensitivity kernel, SK) can be represented in either the
spatial or SH domain (Swenson and Wahr 2002). An alter-
native approach (referred to as inverse approach) consists
in parametrizing expected mass changes by predefined pat-
terns and fitting these patterns to GRACE-based gravity field
variations or functionals thereof. Starting from early devel-
opments of this approach (Chen et al. 2006; Wouters et al.
2008; Forsberg and Reeh 2007; Horwath and Dietrich 2009;
Jacob et al. 2012), many different variants have been devel-
oped for many applications.

In this paper we consider applications to mass changes of
the Greenland Ice Sheet (GrIS) as an example. This choice is
guided by the authors’ previous work and does not imply
limitations of the theoretical framework of SKs. For the
GrIS (as well as for the Antarctic Ice Sheet), an extensive
assessment and comparison of different methods and dif-
ferent choices of the SH input datasets has been done on
the level of the results by the Ice sheet Mass Balance Inter-
comparison Exercise (IMBIE) studies (Shepherd et al. 2012,
2019). Shepherd et al. (2019) reported that different GRACE
mass change estimates for the GrIS over 2005–2015 had a
range of 104Gt a−1 (i.e., approximately between –189 and
–293Gta−1 (Extended Data Fig. 5, Shepherd et al. 2019)).
The spread between results may be more substantial for sin-
gle drainage basins (not addressed by IMBIE so far). For
example, for ice drainage basin 4 in Southeast Greenland,
Groh et al. (2019) reported a range of results between –30
and –78 Gta−1, that is by more than a factor 2, across dif-
ferent methods.

A large part of such spread is due to different choices
of the SH input datasets (including low-degree amendments
and corrections for certain geophysical signals). Their effect
has been investigated in detail by a number of studies (e.g.,
Barletta et al. 2013; Velicogna and Wahr 2013; Blazquez et
al. 2018; Shepherd et al. 2019), mostly based on a single
method of analyzing the SH input datasets.

Comparative assessments of different methods have been
more challenging, unless the different methods (or different
variants of a method) are implemented by the same inves-
tigator (e.g., Bonin and Chambers 2013; Ran et al. 2018).
Such comparative assessment could be done in a coordinated
action where different investigators apply their method to
identical SH input datasets. Within the first IMBIE assess-
ment (Shepherd et al. 2012) a preparatory experiment of this

kindwas conducted based on synthetic input SH datasets, but
not published in detail. A similar, andmore extensive, frame-
work for a systematical comparison of different methods was
implemented by Groh et al. (2019). The study imposed 27
synthetic test signals to each method. Results obtained with
those test signals were compared to the synthetic truth in
order to assess leakage effects induced by those test signals.

In this article we elaborate, illustrate and advocate SKs
as a framework for the definition, assessment and compari-
son of SH-based GRACE mass change estimation methods.
While SKs are quite obvious for the direct approach, they
may be less obvious for the inverse approach. Few stud-
ies have calculated and visualized SKs for specific inverse
approaches (e.g., Horwath and Dietrich 2009; Jacob et al.
2012; Tiwari et al. 2009; Joodaki et al. 2014; Mohajerani et
al. 2018; Mohajerani et al. 2019). In Sect. 2 we elaborate a
framework to express the SKs for a variety of methods fol-
lowing the direct or inverse approach. To illustrate the value
of SKs, we implement four different estimation methods for
GrIS mass changes. We express them by their inherent SKs
and discuss these SKs in Sect. 3. We provide a concluding
discussion in Sect. 4

Since many estimation methods can be fully described by
their SKs, optimizing an estimation method can also be done
by optimizing the SK itself. One of the four methods selected
for illustration purposes in this paper uses this approach of
directly optimizing the SK regarding a formal minimization
of propagated GRACE solution errors and leakage errors.
This method of tailored SKs was implemented at Technis-
che Universität Dresden in the frame of the Antarctic Ice
Sheet Climate Change Initiative (CCI) and the Greenland Ice
Sheet CCI projects (Groh and Horwath 2021). We also show
(in Sect. 2.7) the equivalence of the tailored SK method and
the inverse method in the case that the same stochastic char-
acterization of signal and error covariances is incorporated
rigorously in the implementation of both methods.

2 Theory

2.1 Surfacemass redistributions and their gravity
field effect

FollowingWahr et al. (1998), we model mass redistributions
at the Earth surface in terms of anomalies of surface mass
density (SMD) on a sphere, with units of mass per surface
area (kg m−2). SMD anomalies (with respect to some ref-
erence mass distribution) are denoted by κ(ϑ, λ) ≡ κ(�),
where the spherical position (colatitude ϑ and longitude λ)
is denoted by �. We expand κ(�) into spherical harmonics
according to
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κ(�) =
∞∑

n=0

n∑

m=−n

κnmYnm(�). (1)

Here, κnm are the SH coefficients of κ(�) and Ynm(�) are
the fully normalized SH base functions of degree n and order
|m| (Wahr et al. 1998; Horwath and Dietrich 2009) where
positive and negative m indicate cosine and sine dependence
on longitude, respectively. Changes in Earth’s gravitational
potential V are expressed by the SH expansion

�V (r ,�) = GM

a

∞∑

n=0

(a
r

)n+1 n∑

m=−n

�cnmYnm(�), (2)

where r is the radial component of the spherical coordinates,
GM is the product of the gravitational constant G and the
Earth mass M , a is the semi-major axis of the Earth ref-
erence ellipsoid, and �cnm are the changes of the Stokes
coefficients. The relation between surface mass changes κ

on a thin surface mass layer of an elastic Earth and gravity
field changes �V is given in the SH domain by

�cnm = 4πa2

M

1 + k′
n

2n + 1
κnm, (3)

where k′
n are the elastic load Love numbers (Wahr et al. 1998)

which depend on the elastic Earth model.

2.2 A general form of SH-based GRACEmass change
estimates

The GRACE satellite gravimetry mission provides time-
variable (typically monthly) SH gravity field solutions. After
their furthermodification (amendment of low-degree compo-
nents, account for certain modeled gravity field variations)
and after subtraction of a reference field, one obtains the
SH input dataset to the further analysis, namely ‘observed’
Stokes coefficient anomalies �c obsnm (t) for time t . They are
restricted to the observed, finite part of the SH spectrum
{(n,m)}obs (with a total of N pairs (n,m)), and they include
errors. The observed gravity field variations can be also
expressed as equivalent ‘observed’ SMD anomalies κobs

nm (t)
for (n,m) ∈ {(n,m)}obs, by applying Eq. (3). Here we use
κobs
nm not in the strict sense of being observed by GRACE
alone but already including the effects of amendments to the
GRACE solutions as recalled above in this paragraph.

Our target is to estimate �m(t), i.e., integrated surface
mass changes in a given region,

�m(t) =
∫∫

�

ϑ(�)κ(�, t) a2d�. (4)

The region is described by its region function ϑ(�) defined
as 1 inside the region and 0 outside. The expression

∫∫
�

. . . d� is used to abbreviate the spherical integra-

tion
∫ 2π
λ=0

∫ π

ϑ=0 . . . sin ϑ dϑ dλ. In the SH domain, Eq. (4)
becomes

�m(t) = 4πa2
∑

{(n,m)}all
ϑnmκnm(t), (5)

where ϑnm are the SH coefficients of ϑ(�) and
∑

{(n,m)}all is
an abbreviation for

∑∞
n=0

∑n
m=−n .

The estimation of mass changes �m(t) from satellite
gravimetry cannot apply Eq. (5) or (4) directly, in view of the
spectral truncation and the errors inherent to κobs

nm . Instead,

we consider estimatorŝ�m(t) of the general form

̂�m(t) = 4πa2
∑

{(n,m)}obs
ηnmκobs

nm (t). (6)

Here, the summation is only over the part of the SH spectrum
covered by theGRACE-basedSH input datasets, {(n,m)}obs.
The coefficients ηnm , with (n,m) ∈ {(n,m)}obs represent the
SK of the mass change estimator in the SH domain. This SK
defines themass change estimator. The spatial representation
of the sensitivity kernel is

η(�) =
∑

{(n,m)}obs
ηnmYnm(�). (7)

With

κobs(�, t) =
∑

{(n,m)}obs
κobs
nm (t)Ynm(�), (8)

the spatial representation of the estimator (Eq. 6) is

̂�m(t) =
∫∫

�

η(�)κobs(�, t) a2d�. (9)

Hence, in the spatial domain, the SK η(�) is the weight func-
tion applied for the integration of gravimetry-based SMD
anomalies.

The term ‘sensitivity kernel’ (SK) is used here for η in
either the spatial or SH domain. The same definition was
used by e.g., Jacob et al. (2012); Mohajerani et al. (2018,
2019). TheSKdeterminesweights to be applied in an integra-
tion. It is not meant as the kernel of a convolution. Previous
studies used alternative terms for the same concept. These
terms include ‘averaging kernel’ (e.g., Swenson and Wahr
2002), ‘averaging function’ (e.g., Velicogna andWahr 2006)
or ‘weight function’ (e.g., Horwath and Dietrich 2009).

To simplify notations, we arrange {ηnm : (n,m) ∈
{(n,m)}obs} in a column vector ηwith N elements. Likewise,
{κobs

nm (t)} and similar sets of SH coefficients are arranged
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in column vectors, annotated by bold-face symbols. Equa-
tion (6) then reads

̂�m(t) = 4πa2ηTκobs(t). (10)

The SH components of degree-1 and degree-0 deserve
additional remarks. The degree-1 components of κ are gen-
erally different from zero. They are commonly determined
either from a combination of GRACE and model assump-
tions or from satellite laser ranging (e.g., Sun et al. 2016).
Here we assume they are part of the SH input dataset,
that is, we subsume them under the observed components.
The degree-0 component κ0,0 is zero if global mass con-
servation is implied for the considered mass redistributions.
This is the case we address here. (The contrary case is
briefly discussed in the sequence.) Hence, no changes of
degree-0 are determined by the SH input dataset and
{(n,m)}obs excludes degree-0. The region function ϑ , by
its original definition, has a non-zero global average and
therefore includes a degree-0 component. However, since
κ0,0 = 0, omission of this degree-0 component does not
change the result of Eq. (5). Equivalently, subtraction of the
global average from ϑ does not change the result of Eq. (4).
By the same reasoning, adding a degree-0 component to η

does not change the results of Eqs. (6) and (9). We may
therefore choose to add any degree-0 component to η if we
want to illustrate how closely η can resemble ϑ in adopt-
ing the values 1 and 0 inside and outside the given region,
respectively. We note that in the more general case where
the SH input dataset has a nonzero degree-0 component, the
degree-0 component of η ismeaningful and needs to be deter-
mined. This is the case, for instance, if the preparation of the
SH input datasets includes the subtraction of a non-mass-
conserving signal, such as due to atmospheric mass changes
(Chen et al. 2019). However, the examples elaborated in this
article assume κ0,0 = 0.

2.3 GRACE error effect and leakage error

Let δκ(t) denote the errors of κobs(t) due to the errors of
the SH input datasets. The effect of these errors on the mass
change estimate (the ‘GRACE error effect’) is

δmobs(t) = 4πa2 Tδˇ(t). (11)

The leakage error of the mass change estimate,

δmleak(t) =
∫∫

�

(η(�) − ϑ(�)) κ(�, t) a2d�, (12)

arises from the fact that the true SMD κ is integrated with the
weight function η instead of ϑ . In the SH domain Eq. (12)
reads

δmleak(t) = 4πa2
∑

{(n,m)}all
(ηnm − ϑnm) κnm(t). (13)

While in Eq. (13) κnm and ϑnm are defined over the full
SH spectrum, the definition of the SK ηnm was originally
restricted to {(n,m)}obs so that we set ηnm = 0 for (n,m) /∈
{(n,m)}obs.

By definition, the leakage error depends on the true sig-
nal (κ). The GRACE error effect depends on the errors of
the SH input datasets (δκ , limited to the spectral range they
provide). It is worth mentioning that δκ may, in fact, include
components that are related to the actual signal. Such errors
may occur if details in the complex processing of level-1
data imply (possibly hidden) mechanisms of signal filtering
or dampening (e.g., Meyer et al. 2015; Ditmar 2022). Such
error components may be particularly difficult to include in
a stochastic error characterization. In our framework, their
effect onmass change estimates is subsumed under ‘GRACE
error effects’. However, they may resemble leakage errors in
the way how they depend on the actual signal.

2.4 The inverse approach

The basic idea of the inverse approach (or forward-modeling
approach, or mascon approach) is to prescribe a finite set of
mass redistribution patterns and to determine scaling factors
for these patterns such that the sum of scaled patterns fits
the GRACE data. Here we elaborate that inverse approaches
can be expressed by SKs in the form of Eqs. (6), (9) and
(10). For specific inverse approaches this has been elaborated
previously (Horwath and Dietrich 2009; Jacob et al. 2012).

We prescribe a set κ i (�) (i = 1, . . . , u) of patterns of
SMD anomalies. Each κ i (�) may be expressed as a set of
SH coefficients κ i

nm , (n,m) ∈ {(n,m)}all. We arrange {κ i
nm :

(n,m) ∈ {(n,m)}obs} in vectors ai . A simple realization of
the inverse approach is to solve

u∑

i=1

βi (t)ai = κobs(t) − ε (14)

for the scaling factors βi (t) (i = 1, . . . , u) that minimize the
residual vector ε in an ordinary least-squares sense. With the
vectors ai assembled in a (N , u)-matrix A and the numbers
βi (t) assembled in a vector β(t), Eq. (14) reads

Aβ(t) = κobs(t) − ε (15)

and the estimate for β(t) is

β̂(t) = (ATA)−1ATκobs(t). (16)
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In a region defined by the region function ϑ(�), the mass
changes associated to the patterns κ i (�) (i = 1, . . . u) are

mi =
∫∫

�

ϑ(�)κ i (�) a2d�, (17)

which we arrange in a vector m. The GRACE mass change
estimate for that region is

̂�m(t) =
u∑

i=1

mi β̂i (t) = mTβ̂(t). (18)

By substituting β̂(t) with Eq. (16), we find

̂�m(t) = mT(ATA)−1AT κobs(t). (19)

By comparing Eqs. (10) and (19), we identify the SK for this
simple realization of the inverse approach as

ηT = (4πa2)−1mT(ATA)−1AT. (20)

A realization of the inverse approach requires the choice
of patterns κ i (�) and a number of additional choices, which
may differ from the ones made above. Next, we address these
choices and the modifications of Eq. (20) they imply.

(a) Where available error variances and covariances of
the GRACE SH solutions can be accounted for in a general-
ized least-squares estimation. With Cobs denoting the error
covariance matrix of κobs, Eq. (15) is then replaced by

Aβ(t) = κobs(t) − ε, Cov(ε) = Cobs (21)

and the least squares estimate for β(t) is

β̂(t) = (ATC−1
obsA)−1ATC−1

obs κobs(t). (22)

Note that error covariances are not available for all GRACE
SH solutions and even if available likely realize an incom-
plete representation of the true error structure. However, in
practice also an imperfect approximation of theGRACEerror
covariance can be used to account for errors in the GRACE
SH solution.

(b) A filtered version of κobs can replace the pseudo-
observables κobs used in Eq. (15). As a way of accounting
for the GRACE error characteristics, isotropic Gaussian fil-
ters and non-isotropic destriping filters are popular choices,
usually applied in the SH domain. Filtering can be expressed
as a linear operation that transforms κobs(t) into a new vector
of pseudo-observables

yobs(t) = Fκobs(t), (23)

with a square filter matrix F. In that case, filtered versions
of the prescribed patterns of SMD anomalies

yi = Fai (i = 1, . . . , u) (24)

need to be employed in the inverse approach. Instead of
Eq. (14), the observation equation then reads

FAβ(t) = Fκobs(t) − ε (25)

and its ordinary least-squares solution is

β̂(t) = (ATFTFA)−1ATFTFκobs(t). (26)

(c) The pseudo-observables may be in fact any function-
als of the gravity field variations observed by GRACE. For
example, Wouters et al. (2008) and Schrama et al. (2014)
chose SMD anomalies κobs(� j , t) evaluated in the spatial
domain at nodes� j ( j = 1, . . . , J ) of a grid defined region-
ally or globally, respectively. Forsberg and Reeh (2007) and
Barletta et al. (2013) chose the effect of surfacemass changes
on gravity at satellite height, again evaluated at grid nodes
� j . Any such pseudo-observables can be expressed as a lin-
ear functional of the observed gravity field changes �cobsnm ,
and likewise ofκobs

nm .Hence, the pseudo-observables arranged
in a vector yobs can be written as

yobs(t) = Gκobs(t)

with a (J , N )-matrix G. The prescribed patterns ai need to
be mapped likewise into the same pseudo-observables

yi = Gai (i = 1, . . . , u).

The observation equation then reads

GAβ(t) = Gκobs(t) − ε,

and its ordinary least-squares solution is

β̂(t) = (ATGTGA)−1ATGTGκobs(t). (27)

All choices of pseudo-observables and of ways to account
for GRACE solution errors discussed so far lead to the gen-
eral relation

β̂(t) = (AT P A)−1AT Pκobs(t), (28)

where the weight matrix P is either the unity matrix I , C−1
obs,

FTF or GTG. Likewise, P can be derived for more general
choices. For example, a sequence of filtering the GRACE
data and transforming it into some spatial-domain gravity
field functional leads to P = (GF)TGF.

123



11 Page 6 of 20 T. Döhne et al.

(d) A regularization may be applied to stabilize the
inversion. In other words, a-priori information about the
variance-covariance structure of the expected mass redis-
tributions can be introduced. This can be done by using a
covariance matrix of β,

Cpat = Cov(β) (29)

in pseudo-observation equations

β = 0 − εpat, Cov(εpat) = Cpat, (30)

where εpat = −β is the vector of residuals. By includ-
ing these additional observation equations, the least-squares
solution becomes

β̂(t) =
(
AT P A + R

)−1
AT Pκobs(t) (31)

with R = C−1
pat .

By substituting Eq. (31) into Eq. (18), we identify that the
SK η for any variant of the inverse approach discussed here
has the form

ηT = (4πa2)−1mT(AT P A + R)−1AT P, (32)

or

η = (4πa2)−1P A(AT P A + R)−1m. (33)

2.5 The regional integration approach

From the start of GRACE mass change applications until
today, mass change estimators have been realized by directly
defining the SK (cf. η(�) in Eq. 9). This approach is referred
to as regional integration approach, or direct approach. Typi-
cally, the SKwas defined in a heuristic manner by modifying
the region function. For example, the original region was
extended or diminished by a buffer zone to avoid leakage,
it was smoothed to dampen GRACE error effects and it was
sometimes scaled subsequently for further leakage preven-
tion. Examples include work by Velicogna and Wahr (2006)
and Horwath and Dietrich (2009) for ice sheets, Johnson and
Chambers (2013) and Chen et al. (2018) for global ocean
mass and Famiglietti et al. (2011) for terrestrial water stor-
age.

2.6 Regional integration approach with tailored
sensitivity kernels

The pioneering study by Swenson and Wahr (2002) already
laid out a formal optimization of the SK based on covariance
information for both geophysical signal and GRACE errors.
Here we elaborate such a formalism for our purpose.We seek

for a sensitivity function η that minimizes, in a least-squares
sense—the sum of leakage errors and propagated GRACE
errors. An example of this method includes the work byGroh
and Horwath (2021) for the Antarctic ice sheet.

For the ease of presenting the basic ideas, in this subsec-
tion we neglect the SH components outside {(n,m)}obs. We
show in Appendix A that this neglection does not change the
expression of the tailored SK derived here (Eq. 44) .

We express the leakage effect (Eq. 13) in vector notation
as

δmleak = 4πa2 (η − ϑ)Tκ, (34)

where ϑ and κ contain the SH coefficients ϑnm and κnm ,
respectively, with (n,m) ∈ {(n,m)}obs.

Let Cκ denote the covariance matrix of the (true) SMD
anomalies κ . Its propagation through Eq. (34) gives the vari-
ance of the leakage effect,

Var(δmleak) = (4πa2)2 (η − ϑ)TCκ(η − ϑ). (35)

Likewise, propagating the GRACE error covariance matrix
Cobs through Eq. (11) gives the variance of the GRACE error
effect,

Var(δmobs) = (4πa2)2 ηTCobsη. (36)

We solve for the SK η that minimizes Var(δmleak + δmobs),
which equals Var(δmleak) + Var(δmobs) as we assume that
the two errors are uncorrelated. Hence, η must fulfill

∂

∂η

(
Var(δmleak) + Var(δmobs)

) = 0. (37)

The derivatives of Eqs. (35) and (36) are

∂

∂η
Var(δmleak) = 2(4πa2)2 Cκ(η − ϑ) (38)

∂

∂η
Var(δmobs) = 2(4πa2)2 Cobsη, (39)

and their substitution into Eq. (37) leads to

η = (Cκ + Cobs)
−1Cκϑ . (40)

We may express any signal covariance matrix Cκ as

Cκ = Cov(κ) = ACpatAT, (41)

where the annotations A and Cpat are intentional repetitions
from Sect. 2.4: A is a matrix with each column holding the
SH coefficients of a pattern of SMD anomalies; Cpat is the
covariance matrix of amplitudes (scaling factors) of these
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patterns. Indeed, Eq. (41) is a useful form of composing sig-
nal covariance information (e.g., by prescribing geographical
signal patterns) or of decomposing a given covariance matrix
(e.g., through an eigenvector, or empirical orthogonal func-
tion, decomposition). Then, Eq. (40) reads

η = (ACpatAT + Cobs)
−1ACpatATϑ . (42)

We define the vector

m = 4πa2ATϑ, (43)

which contains the mass changes in the region of interest
associated to the patterns assembled by the columns of A
(cf. Eq. 17). Then we finally get

η = (4πa2)−1(ACpatAT + Cobs)
−1ACpat m. (44)

To discuss the tailored SK approach in the context of pre-
vious work we recall that it adopts the concept by Swenson
and Wahr (2002) to minimize the total error of regionally
integrated mass changes. On a similar line of development,
Kusche (2007), Klees et al. (2008) andWu et al. (2009) elab-
orated on filtering for GRACE anomaly fields (referred to
as optimal filtering in the following) that incorporate signal
and error covariance information to minimize, in a global
least-squares sense, the combined effect of GRACE solu-
tion errors and signal distortion.While the resulting spatially
continuous filtered fields are invaluable for illustrations in
maps, quantification of mass changes necessarily involves
the additional step of regional integration. The transpose of
(Cκ +Cobs)

−1Cκ (cf. Eq. 40) is a representation of the opti-
mal filter matrix in the sense of Kusche (2007), Klees et al.
(2008) and Wu et al. (2009). Hence, the SK expressed by
Eq. (40) corresponds to the concatenation of an optimal fil-
tering of the GRACE field and subsequent integration with
the unfiltered region function. We note that some previous
studies on optimal filtering proposed deviating approaches
for the subsequent estimate of regional integrals. Wu et al
(2009, their Section 3) proposed to modify the filtering in
adaption to the target integration region. Siemes et al. (2013)
applied a buffering of the region function and a rescaling of
the integration result. This implies that some realizations of
optimal filtering may not be considered actually optimal for
subsequent integration over a given target region. We take
this note as an argument for optimizing, in a single coher-
ent scheme, the estimate of the target magnitude, which is
regionally integrated mass change.

Our way of expressing signal covariance information
through a set of prescribed patterns (Eq. 41) lends itself
to studies with a regional focus (such as for Greenland,
as addressed in Sect. 3) which make up a large portion of
GRACE applications. Scientists interested in a particular

region typically have knowledge and datasets on the expected
regional signal patterns and amplitudes that are more specific
and detailed than similar information for the rest of the globe
at the scientist’s disposal. Such specifically regional informa-
tion is also particularly relevant for leakage considerations in
regionally-oriented GRACEmass change studies. Hence, by
incorporating more detailed signal covariance information
for the region of study, scientists can ‘tailor’ their method
to their signal of interest. The term ‘tailored sensitivity ker-
nel’ might be suitable to convey this concept of refraining
from any global optimality despite the formal optimization
involved.

2.7 Proposition on the equivalence of approaches

The following proposition holds: The SKs from the inverse
approach (Eq. 33) and the tailored SK approach (Eq. 44)
are equal if the inverse approach uses P = C−1

obs and R =
C−1
pat and if both approaches use the same defining elements

Cobs, A and Cpat. In other words, the direct approach and the
inverse approach are equivalent if they rigorously incorporate
the same signal covariance and error covariance information.

Indeed, the stated equality

C−1
obsA

(
ATC−1

obsA + C−1
pat

)−1

= (ACpatAT + Cobs)
−1ACpat (45)

can be verified by multiplying both sides with (ACpatAT +
Cobs) from left and with

(
ATC−1

obsA + C−1
pat

)
from right.

After this equivalent transformation, both sides become
ACpatATC

−1
obsA + A.

We have elaborated earlier in Sect. 2.4 that inverse meth-
ods are particular realizations of the regional integration
approach so that they can be analyzed and interpreted from
the viewpoint of either the inverse approach or the regional
integration approach. Now we see that, conversely, the
regional integration approach, if realized through tailored
SKs, corresponds to a particular realization of the inverse
approach. Tailored SK estimates, too, can therefore be inter-
preted from the viewpoint of either the inverse approach or
the regional integration approach.

3 Application

3.1 Methods implemented in this study

Wederive, discuss and compare SKs andmass change results
from four different methods of mass change estimates for
the GrIS. These four methods adopt characteristics from
previous studies. However, we implemented these methods
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Table 1 Overview of different
realizations of mass change
estimation methods based on the
inverse approach (I–III) and the
regional integration approach
with tailored sensitivity kernels
(IV)

Method Pseudo-observable Predefined patterns

Ia SH EWH coefficients Square-shaped (and other shapes)
mascons in SH domain

IIb EWH in spatial domain, evaluated
on a regional grid

Drainage basins, and subdivision
into +- 2000 m elevation, distinct
ocean areas

IIIc Gravity variations at satellite
height, evaluated on a regional
grid

Point masses in the ice sheet
domain and neighboring
glaciated areas, complementary
solution aread

IVe SH EWH coefficients Point masses distributed on a
polar-stereographic grid in the
ice sheet domain and neighboring
glaciated areas, and on a global
icosahedron grid elsewhere

Implementation based on method by: aJacob et al. (2012)
bWouters et al. (2008); Schrama and Wouters (2011)
cForsberg and Reeh (2007); Forsberg et al. (2017)
dBarletta et al. (2013)
eGroh and Horwath (2021)

ourselves in the framework of this study. Our intention is not
to reproduce the methods of previous studies in detail but
to implement them in a way that facilitates comparison. We
limited the number of implemented methods in this study to
four but the same concept also applies to many other meth-
ods, notably inverse methods that do not explicitly consider
SKs in their original design (see Method II and III). Our
implementation of the four methods, referred to as ’Method
I – IV’ in the following, is described in more detail below.
The methods cover the inverse and the regional integration
approach and differ in their choice of patterns ai , pseudo-
observables yobs and filtering. An overview is given in
Table 1. The methods are adapted such that the patterns ai

can be aggregated to integrated mass changes of the same
8 drainage basins (Zwally et al. 2012) shown in Fig. 1. The
involved patterns are visualized in Fig. 2. All methods use the
same input GRACE SH solutions with degree n ≤ 90 so that
SKs are computed for {(n,m)}obs = {(n,m) : 1 ≤ n ≤ 90}.
Method I Method I is based on the inverse method by Jacob
et al. (2012). Patterns and observables are defined in the SH
domain. Each pattern (or mascon) corresponds to a constant
SMD anomaly in a distinct area. We defined 31 such patterns
for the GrIS, different from those used by Jacob et al. (2012),
by subdividing the GrIS basins along the 2000 m elevation
line and along further lines (Fig. 2a). In addition, we defined
81 patterns associated to glaciated areas outside the GrIS.
Smoothing is done by a Gaussian filter with a half-width
radius of 200 km. The smoothed patterns are then fitted to
the smoothed surface mass density anomalies from GRACE.
The SK in the general form of Eq. (33) has the weight matrix

P = FT
GFG, (46)

Fig. 1 Greenland drainage basins (colored) from Zwally et al. (2012).
The dashed line represents the 2000 m elevation contour

which arises from the discussion inSect. 2.4 (b). Thediagonal
matrix FG contains the filter coefficients of the Gaussian
filter. No regularization is required for this method.

Method II Method II is based on the inverse method by
Wouters et al. (2008) and Schrama and Wouters (2011). It
performs the fitting in the spatial domain. The fitting is done
by a formal least-squares minimization, as done by Schrama
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Fig. 2 Patterns in the region around Greenland used in our implemen-
tation of the four different methods. a, b Patterns for Methods I and II,
respectively, represented by colored areas. c, d Patterns for Method III
and IV, respectively, represented by individual dots. In the later analysis

they are aggregated to basins represented by colors. Note that Methods
I and IV use globally distributed patterns not restricted to the region
shown

and Wouters (2011) while Wouters et al. (2008) used an iter-
ative approximative minimization. Patterns are defined by
uniform SMD anomalies in distinct areas (Fig. 2b). They are
filtered and fitted to filtered GRACE-based SMD anoma-
lies evaluated on grid nodes. Schrama and Wouters (2011)
investigated the use of several basin configurations and ulti-
mately chose a representation by nine basins (they split eight
basins, different from those used here, by the 2000 m eleva-
tion contour andmerged the parts above 2000m to one basin).
For comparability to the other methods, we chose a 16-basin
representation for the GrIS (eight basins split by a 2000 m
elevation contour). For the surrounding regions (within the
map domain of Fig. 2), we defined patterns for the four ice
covered regions of Ellesmere Island, Baffin Island, Iceland
and Svalbard as well as for 15 additional patterns covering
the surrounding ocean and landmasses (Wouters et al. 2008,
Supp.). We applied a Gaussian filter with a half-width radius
of 200 km. To express the kernel of this method in the general
form of Eq. (33), the weight matrix has to include the map-
ping of the patterns in A into the spatial domain as discussed
in Sect. 2.4 (c):

P = (GSHSFG)T (GSHSFG) . (47)

The matrix GSHS expresses the spherical harmonic synthesis
and consists of SH basis functions YT

nm(�) for each grid

node. Unlike Schrama and Wouters (2011) we did not use a
form of regularization as given in Eq. (31).

Method III Method III is based on the inverse method by
Forsberg andReeh (2007), Barletta et al. (2013) and Forsberg
et al. (2017). Pseudo-observables in this method are gravity
changes at GRACE orbit altitude. Patterns of mass changes
are defined as point masses on the Earth surface. More pre-
cisely, the pseudo-observables were evaluated over a grid at
400 km altitude from the GRACE Stokes coefficient anoma-
lies after subtracting the elastic load deformation effect and
applying a DDK5 filter (Kusche 2007). The point masses
were placed on equal-area nodes with a radius of 20.2 km
per node over the GrIS and other ice covered regions nearby
(see Fig. 2c) and expressed in the SH domain (Pollack 1973).
Following Barletta et al. (2013), we included a complemen-
tary solution area to account for non-ice signals like land
hydrology or errors in the ocean models. For this purpose
we defined additional patterns within a sector around Green-
land (the map domain of Fig. 2) separated from the patterns
of ice mass changes by a gap of 550 km. According to the
formalism of Sect. 2.4, the mapping of the SH representation
of SMD changes to the pseudo-observables and the filtering
are expressed in the weight matrix
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P = (
GSHSGgorbFDDKGdefGκ2s

)T
(
GSHSGgorbFDDKGdefGκ2s

)
. (48)

The mapping is split into the conversion from coefficients of
SMD to Stokes coefficients (Eq. 3) (Gκ2s), the subtraction
of the elastic load deformation effect (Gdef), the conversion
to SH coefficients of gravity at orbit altitude (Ggorb) and
the synthesis into the spatial domain (GSHS). The filtering
with the non-isotropic DDK5 filter is realized by the non-
diagonal matrix FDDK. A regularization is required for this
method to stabilize the inversion. The matrix R in Eq. (33)
was set to the diagonal matrix λ2 I . We empirically derived
the regularization factor λ2 as 2.0 × 10−42 starting with an
approximation formula from Press et al. (2002). We note
that unlike Forsberg and Reeh (2007) we did not directly
use Newton’s law of gravitation to compute the gravitational
attraction of the point masses. Instead, we used the general
formofEq. (33)with thematrix Aholding theSHcoefficients
of SMD anomalies associated to point masses. This enables
us to use one weight matrix P (Eq. 48) that consistently
describes the mapping and filtering of both the patterns and
the observations, including their truncation to {(n,m)}obs.
Method IVMethod IVuses the regional integration approach
(Eq. 10)with tailoredSKs (Sect. 2.6).Unlike for thefirst three
methods, here the SKs are determined directly (Eq. 44). We
derivedSKs fulfillingEq. (37) for a set of regions that actually
correspond to grid cells of a dense polar-stereographic grid
with a spatial resolution of 50 km × 50 km covering the
GrIS. The kernels for the entire GrIS, a particular drainage
basin (as in Fig. 1) or any other region of interest can be
derived by adding up the SKs of all grid cells defining these
regions. Groh and Horwath (2021) describe the details of
a realization of the tailored SK approach for Antarctic ice
masses. Its realization for GrIS mass changes is outlined in
the following.

To express the leakage variance through Eqs. (35) and
(41), we defined patterns by means of point masses located
at the nodes of a dense 50 km × 50 km grid (890 nodes),
both for GrIS and surrounding glaciated regions, and at the
nodes of a coarser (1.4 × 104 km2), globally defined icosa-
hedron grid elsewhere (35863 nodes, Fig. 2d). The pattern
predefined for the targeted grid cells ensures the minimiza-
tion of leakage-out. Hence, the corresponding entry in m in
Eq. (44) equals the mass of the point mass. All remaining
patterns are included to minimize leakage-in, requiring the
elements of m to be zero for these patterns. The amplitudes
of the predefined patterns are expressed through their signal
covariance matrix Cpat. A constant signal standard deviation
of 400 mm was assumed for all patterns on the dense grid,
which reflects the order of magnitude of ice mass changes.
The standard deviation for all patterns on the coarser grid
was set to 33.6 mm. The essential choice here is about the

ratio between the signal standard deviations associated to the
two types of patterns (near-field ice and far-field). The ratio
of about 12 adopted here reflects that a larger mass vari-
ability is expected for the ice-covered regions in Greenland
and its vicinity than for their surroundings. This ratio was
found appropriate after testing different choices in simula-
tion experiments of the kind described by Groh et al. (2019).
No spatial correlations between the patterns were accounted
for, yielding a diagonal signal covariance matrix Cpat. In
terms of the notation of the inverse approach (Eq. 33), this
means that additional information were introduced through
a diagonal matrix

R = C−1
pat . (49)

We expressed the variance of the GRACE error effect
through a covariance matrix Cobs according to Eq. (36).
Hence, when expressed in terms of the inverse approach
(Eq. 33) the weight matrix is

P = C−1
obs . (50)

We derived Cobs based on the empirical covariance of resid-
uals of unfiltered surface density anomaly coefficients with
respect to a model of temporal changes consisting of a linear
component and harmonic components (Groh and Horwath
2021). Since such residuals still contain geophysical signals
on lower SH degrees, error variances and covariances were
not considered for SH degree ≤ 35 and were downweighted
by a factor that changes gradually from zero at degree 35 to
one at degree 55. The covariance matrix obtained in this way
was finally scaled to define Cobs. The scaling factor was set
to 0.1, which was found appropriate after testing different
choices in simulation experiments of the kind described by
Groh et al. (2019). This scaling effectively controls the rel-
ative weights between the leakage requirement and GRACE
error requirement imposed by Cκ and Cobs in Eq. (40). It
is justified not only because the imposed magnitude of the
signal covariance is somewhat arbitrary. More importantly,
the GRACE error requirement (just as the leakage require-
ment) needs to accommodate signals at different temporal
scales, including long-term linear trends.While the empirical
GRACE error covariance matrix applies for monthly anoma-
lies, smaller error covariances apply at longer time-scales.

3.2 GRACE releases and auxiliary data

We applied the methods described in Sect. 3.1 to
Level-2 GRACE monthly gravity-field solutions of Release
06 provided by the Center for Space Research (CSR RL06)
(Bettadpur 2018; Save 2019). We made use of 206 monthly
solutions up to a SH degree nmax = 90, spanning the
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interval from 2002-04 to 2020-07. We added degree-1 coef-
ficients derived by combining the monthly solutions and
assumptions on ocean mass redistribution (Swenson et al.
2008; Bergmann-Wolf et al. 2014; Sun et al. 2016). These
degree-1 series are similar to those provided in TN-13 by
the GRACE/GRACE-FO Science Data System.We replaced
C2,0 coefficients with estimates based on satellite laser rang-
ing provided in TN-14 (Loomis et al. 2019). We replaced
C3,0 coefficients by TN-14 values for the time period starting
from October 2016 in response to the GRACE and GRACE-
FO accelerometer instrument issues (Loomis et al. 2020).We
removed linear trends due to glacial isostatic adjustment by
using the model by Caron et al. (2018).

3.3 Results

We examine the SKs and the mass change estimates of
our implementation of four different methods outlined in
Sect. 3.1. We take the whole GrIS and two of its drainage
basins (Basin 7 and 4) as example target regions. For other
drainagebasins, results are shown in the supplementarymate-
rial.

The mass change time series are shown in Fig. 3. Linear
trends (computed by fitting a quadratic polynomial together
with annual and semiannual sinusoids) are also quoted. For
the whole GrIS as a target region (Fig. 3a), the time series
are very similar across the four methods. They agree in rep-
resenting seasonal signals as well as specific events like an
increased melt in 2019 (Sasgen et al. 2020). The linear trends
over 2002-04–2020-07 vary across methods between –251
and –263Gta−1, that is, by about 5 %. For Basin 7 (Fig. 3b)
the time series from different methods differ in their smooth-
ness and, accordingly, in how much a seasonal signal can be
distinguished. Specific events like the melt in 2019 appear in
all four time series but with different magnitudes. The trend
varies by up to 20 %. It amounts to –37.9Gt a−1 for Method
I and is less negative by 3.7–6.2Gta−1 for the other methods.
For Basin 4 (Fig. 3c) the time series differ most. Differences
in smoothness are much more pronounced than for Basin 7.
Time series are smoothest for Method III and IV and by far
most noisy for Method I. Trends are very different across
methods. They range from –30 to –70Gta−1 and thereby
differ by a factor of more than 2.

For our presentation of SKs in Figs. 4 and 5, we add a
degree-0 component to each SK, as indicated in the figures.
As discussed in Sect. 2.2, this has no effect on the mass
change estimator represented by the SK but may facilitate
comparison to the region functions ϑ . The degree-0 com-
ponent is derived empirically in the spatial domain after
synthesizing the SK over the whole globe. We mask out the
sector around Greenland (the map domain of Fig. 2) and take
the median value of the remaining grid as the degree-0 com-
ponent.

Figure4a–d shows regional maps of the SKs for the whole
GrIS. The SKs resemble the shape of the region function in
that they are close to 1.0 over the GrIS and decrease to values
close to 0.0 outside the GrIS. Unlike for the region function,
this decrease is slow and smooth. The four methods differ
in how fast the SKs decrease and how much they over- and
undershoot the values of 1.0 and 0.0 in the GrIS domain
and outside, respectively. The SK of Method III decreases
the smoothest, while the SKs of Method II and IV show
the steepest decrease. In turn, they exhibit over- and under-
shoots. Specifically, for Method II the SK stays negative
over extended ocean areas, going below –0.2 in some places,
while over the GrIS itself it partly exceeds 1.2.

For Basin 7 (Fig. 4e–h) all four SKs roughly resemble the
smoothed and rescaled region function. Inside the basin the
SKs for Method I, II and IV overshoot to more than 1.6,
while the SK of Method III does not reach 1.0 and appears
to be smoother, overall. The decrease of the SK across the
basin boundary is steepest for Method I and II. In turn, it is
followed by prominent undershoots (below –0.3 for Method
II) in adjacent ice drainage basins. All SKs decrease less
steeply in the direction of the ocean than in the direction of
the adjacent ice sheet basins.

For Basin 4 (Fig. 4i–l) with its narrow, elongated shape,
the SKs have peculiar features and differ substantially across
methods. For Method III and IV the SKs have similar char-
acteristics as for Basin 7 but their apex is offset from the
basin center to the adjacent ocean resulting in values smaller
than 1.0 over most of the drainage basin itself. The under-
and overshoots for both methods are larger than for basin 7.
Method III undershoots up to –0.4 in the oceanwest to south-
ernGreenlandwhileMethod IVundershoots up to –0.3 in the
ocean between Greenland and Iceland and overshoots up to
0.2 in the ocean west to southern Greenland. For Method II,
the apex is offset to the northern margin of the drainage basin
where it has values as large as 2.2. The SK decreases steeply
within the basin and attains values around 0.0 in its southern
part in the transition into an undershoot in southwest Green-
land. Another undershoot in the ice drainage basin north of
Basin 4 is as negative as –0.7. For Method I, the SK resem-
bles the region function quite well within the target Basin
4, with values between 1.4 in its center and 0.5 at its edges.
However, it has extreme under- and overshoots outside Basin
4. Three undershoots on the GrIS itself reach values down
to –0.5 to –1.0. In the ocean west and east to Greenland an
overshoot and an undershoot, respectively, have extrema as
large as +3.5 and –2.8.

Global maps of the SKs are shown in Fig. 5. In the far
field they deviate little from 0.0. The different patterns of
these deviations are highlighted by the color scale limited to
± 0.011.

For all three target regions, the SKs for Method IV have
a checkered pattern of global oscillations. The oscillations
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Fig. 3 Mass change time series
from our implementation of four
different methods for a the
Greenland Ice Sheet, b drainage
basin 7 and c drainage basin 4.
Linear trends are given in the
top right panel

have strong amplitudes in the region around Greenland that
decrease to a steady level in the mid- and low-latitudes. The
amplitudes increase again close to Antarctica. For Method
I and II oscillations appear as ringing centered in Green-
land with highest amplitudes in the Basin 4 SK and lowest
amplitudes in the GrIS SK (barely discernible in Fig. 5b). For
Method III, instead, the global deviations from zero adopt a
hemispherical pattern with predominantly positive values on
the hemisphere centered in Greenland and negative values on
the opposite hemisphere. Distinct north–south stripes within
the geographic longitudes of Greenland are another unique
feature of the Method III SKs.

For Method I, glaciated areas around the globe stand out
with values at the adopted C0,0 values (hence they would
be zero if C0,0 was omitted). These are the areas where
Method I co-estimates mass changes. ForMethod II, a region
around Greenland stands out with particularly large SK vari-
ations different from the oscillations elsewhere. This region

(best discernible in Fig. 5b,f) is the sector around Greenland
(the map domain of Fig. 2) where Method II prescribes the
regionally limited mass change patterns (cf. Fig. 2)

Degree amplitudes of the SKs are shown in Fig. 6. For
the GrIS (Fig. 6a), they peak around degree 7 to 10 for all
four methods and decrease quickly for higher degrees. For
Basin 4 and 7 (Fig. 6b, c) they peak at higher degrees and
are overall quite different between the four methods. For
Method IV there is a distinctmaximumaround degree 40. For
Method III the degree amplitudes at high degrees (above 35)
are by far lowest among the four methods.

3.4 Interpretation

Hereafter, we interpret the observed SK properties and their
differences in view of the differences between the underlying
methods of mass change estimates.
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Fig. 4 Sensitivity kernels of our
implementation of four different
methods for the Greenland Ice
Sheet (a–d) and drainage basins
7 (e–h) and 4 (i–l). Contour
lines are shown at increments of
0.1. The sensitivity kernels
contain an empirically derived
C0,0 for illustration purposes
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Fig. 5 Same as Fig. 4 but in a global representation of the sensitivity kernels

All methods build on a set of prescribed patterns of sur-
face mass change. By each pattern, a requirement is imposed
on the SK to avoid leakage from this pattern. We refer to it as
‘leakage requirement’. The tailored SK approach makes this
requirement explicit. The inverse approach likewise ensures
that themass changes associated to the prescribedpatterns are
correctly inferred insofar as it correctly estimates the ampli-
tudes of these patterns. The leakage requirement exclusively
refers to the finite set of prescribed patterns. The way how
this requirement shapes the SK in detail therefore depends
on the prescription of patterns. Methods I and II prescribe
patterns such that each pattern is associated to a specific area
(‘areal pattern’) and has a constant non-zero SMD in this area
and zero SMD outside this area. (Omission of the degree-0
component leads to the subtraction of the globalmean, so that
outside the specific area the patterns attain a slightly non-zero
constant value.) The leakage requirement for such a pattern
means that on average over the area, the SK is 1 (or 0) in
the case that the area is within (or outside, respectively) the
target region of the mass change estimate. From the point of
view of the leakage requirement for areal patterns over- and
undershoots of the SK within the area are harmless as long
as they compensate each other within the area. Methods III

and IV define point mass patterns. The leakage requirement
then requires the SK to be 1 (or 0) at each point mass position
inside (or outside) the target region and does not allow for a
compensation between under- and overshoots.

A second requirement on the SK is to avoid the propa-
gation of GRACE errors on the mass change estimate. We
refer to it as ‘GRACE error requirement’. Roughly speaking,
this requires smoothness of the SK. This may be in conflict
with the leakage requirement. In the tailored SK formal-
ism, this GRACE error requirement is imposed through the
GRACE error covariancematrix (or some imperfect approxi-
mation thereof). In the inverse approaches, the weight matrix
P can be regarded as a way to account for the GRACE
error characteristics. For example, Method I incorporates
the Gaussian filter weights in P (Eq. 46). The resemblance
between the degree dependence of theGaussian filterweights
and the degree dependence of the inverse GRACE error
degree amplitudes makes P a robust approximation of C−1

obs.
A relative weighting between the leakage requirement and

the GRACE error requirement can be done by relative scal-
ing between Cpat and Cobs in the notation of the tailored
SK approach implemented by Method IV, or between P and
R (if present) in the notation of the inverse approach. The
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Fig. 6 Degree amplitudes of sensitivity kernels of our implementation
of four different methods for (a) the Greenland Ice Sheet, (b) drainage
basin 7 and (c) drainage basin 4. The sensitivity kernels contain an
empirically derived C0,0 for illustration purposes

absence of R in Method I can be interpreted as a priority to
the leakage requirement. Method II and III likewise realize
some compromise between the two requirements. However,
it is less accessible from the tailored SK point of view how
this compromise is attained because the elements P and R (if
present) deviate considerably from the conditions imposed in
the proposition of Sect. 2.7.

For the entire GrIS as a target region (Fig. 4a–d), dif-
ferences between the SKs from the four methods appear
primarily in the adjacent ocean domain. We attribute these
differences to the different definition of ocean mass change
patterns made by the different methods. For Method I, there
are no explicitly defined patterns of ocean mass change. The
requirement of reaching zero outside theGrIS is therefore not
reinforced by additional requirements of reaching zero inside
specific areas. This leads to a smooth transition towards zero
outside the GrIS that is accelerated only by nearby patterns
of land ice change in the Canadian Arctic. For Method II,
oceanic mass change patterns are defined as areal patterns
within a sector around Greenland. This requires that the SK
is zero on average over each of the considered ocean areas.
This requirement leads to a steep decrease of the SK from the
GrIS towards the ocean domain and negative values in large

parts of the ocean sub-regions which compensate the posi-
tive values close to the GrIS. For Method III and IV, ocean
patterns are prescribed as point masses so that the leakage
requirement means to bring the SK close to zero at every
individual point mass position. For Method IV, undershoot-
ing occurs anyway in result of the steep decrease of the SK
from 1.0 to 0.0 in conjunction with the smoothness require-
ment. For Method III, the SK decrease is more gentle, partly
because oceanic patterns are not defined close to Greenland
so that non-zero SK values are not penalized there. The fact
that leakage requirements associated to ice sheet patterns are
stronger than leakage requirements associated to oceanic pat-
terns also explains why for the GrIS as a whole (Fig. 4a–d) all
SKs are consistently very close to 1.0 all over the ice sheet.

The SKs for a single basin like Basin 7 (Fig. 4e–h) illus-
trate how the different prescription of ice versus ocean mass
change patterns affect theSKshape. TheSKs tend to decrease
more steeply towards the adjacent ice sheet basins than
towards the ocean because the defined ice sheet patterns
impose stronger leakage requirements than the oceanic pat-
terns. Indeed, for Methods I and III no oceanic patterns are
defined close toGreenland. ForMethod II, positive SKvalues
in the near-Greenland ocean may be compensated by nega-
tive values further away as discussed above. For Method IV,
patterns over the ocean are given a lower weight in Cpat than
patterns over the GrIS.

The peculiarities of Basin 4 SKs (Fig. 4i–l) underline the
potentially strong impact of details of the pattern definitions.
ForMethod I, the parametrization is doneby separate patterns
for the northern and southern part of the basin (cf. Fig. 2a).
Therefore, the SK has to be close to 1.0 on average over the
northern part and southern part separately. In consequence, it
is close to 1.0 all over Basin 4. The tight requirements within
the basin entail the large under- and overshoots elsewhere.
In contrast to Method I, the Method II SK varies extremely
between the north and the south of Basin 4. Even so, its
average over the basin is close to 1.0. Since the two areal
patterns prescribed for this basin (cf. Fig. 2b) stretch over
the north-south range of the basin, the SK still fulfills the
related leakage requirement despite its extreme variations.
For Method III, the offset of the SK apex into the ocean is
enabled by the absence of patterns over the ocean domain in
the 550 km buffer zone, that is, by the absence of any leakage
requirement for this zone. The SK ofMethod IV represents a
compromisewith only small under- and overshoots, a smaller
offset of the apex into the ocean and a closer resemblance to
the region function of the basin.

Large under- and overshoots that appear for single basin
SKs (such as for Basin 4 with Method I) do not appear to the
same degree for theGrIS SK, that is, the sumof the individual
basins’ SKs.The individual basins’ under- andovershoots are
compensated for by similar, but opposite, under- and over-
shoots of other basins’ SKs. For the case of the Method I
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SK for Basin 4, the compensation is mostly by the SK of
Basin 6 (see Fig. S3 in the supplementary material).

Some remarkable differences between Method III and
the other methods seen in the global representation of SKs
(Fig. 5) can be related to the choice of pseudo-observables
and of filtering. We attribute the hemispherical features of
the Method III SKs to the choice of pseudo-observables.
Gravity at orbit height, evaluated regionally, cannot sepa-
rate mass changes in the far field from mass changes in
Greenland itself. Hence, far-field mass changes affect the
Greenland mass change estimates, and this is reflected in
non-zero SK values in the far field. In contrast, Methods I,
II and IV establish a more localized link between the tar-
get quantity and the pseudo-observables, both being some
representation of SMD anomalies. Moreover, the SKs of
Method III are by far the smoothest among the four meth-
ods.We attribute this to the regularization applied to stabilize
the estimation of point masses from the pseudo-observables,
where the pseudo-observables arise from upward continu-
ation, hence smoothing, of the surface mass changes. The
distinct north-south stripes in the SKs of Method III are most
likely a consequence of the involved DDK filtering.

The checkered global pattern of the Method IV SKs
(Fig. 5d, h, l) associated to the degree amplitude maxima
around degree 40 (Fig. 6) can be attributed to the empiri-
cal, and incomplete, GRACE error covariance information
incorporated by this method. By Eq. (44), η is determined as
a compromise between two conflicting requirements: avoid
leakage errors (and hence include high-degree SH compo-
nents) and avoid the propagation of GRACE errors (and
hence dampen high-degree components). Since the require-
ment on GRACE errors becomes effective only between
degree 35 and 55, the spectral content of η peaks in this
band.

The differences seen between the SKs are also reflected
in the mass change time series. The GrIS SKs for the four
methods are very similar over the GrIS itself. They differ
more substantially in the adjacent ocean domain. Since SMD
variations are smaller in the ocean domain than in the GrIS
domain, these SK differences have only small effects on the
mass change time series. For the individual basins, the SKs
show larger differences among the methods and also devi-
ate more substantially from the actual region functions. This
certainly causes leakage effects which are different among
the methods and cause differences between the resulting ice
mass trends. For example, for Basin 4, the Method II SK
amounts to 2.2 in the north of the basin and thereby over-
weights known pronounced mass losses of glaciers in this
region (e.g., Brough et al. 2019; Khan et al. 2020). The same
mass losses are under-weighted by Methods III and IV with
SK values of 0.6–0.7 compared to 2.2 for Method II. This
difference contributes to the Basin 4 trend being more neg-
ative from Method II than from Method III and IV. The

small-scale, large-amplitude features of the Method I SK for
Basin 4 involve substantial amplitudes of SH components up
to nmax = 90 (cf. Fig. 6c). This leads to an increased prop-
agation of GRACE solution errors and hence an increased
noise in the mass change time series. The smoothness of
the SKs for Method III and IV, in contrast, entails lowest
noise levels for the Basin 4 mass change time series from
these methods. However, in the summation of the individual
basins’ time series to the GrIS time series, the noise contents
compensate each other. This corresponds to the compensa-
tion among small-scale under- and overshoots of the SKs as
discussed above.

4 Discussion and conclusions

Mass change estimates fromGRACE SH solutions by differ-
ent studies differ for a number of reasons. The reasons include
not only themethods applied to the SH input datasets but also
the choices related to these input datasets, such as theGRACE
SH solutions, the treatment of low-degree coefficients, or
geophysical corrections like for glacial isostatic adjustment.
This has complicated attempts to compare themethods in iso-
lation and to attribute part of the differences between results
to differences between themethods. Therefore, such attempts
have been limited (e.g., Groh et al. 2019; Bonin and Cham-
bers 2013; Ran et al. 2018). In addition to experiments with
prescribed choices of input GRACE solutions and correc-
tions, the intercomparison study by Groh et al. (2019) also
imposed the participants to apply their processing chain to
synthetic input data in order to specifically assess the leak-
age error. The synthetic input data represented different test
signals in the format of GRACE SH solutions. Differences
between the results and the known synthetic ”truth” revealed
the leakage error associated to the test signals. However, the
number of test signals was limited to 27 to reduce the effort
for the participants to reasonable levels, whichmay have lim-
ited the significance of the derived leakage error statistics.
Even so, the effort for the participating groups was consid-
erable and not all were able to contribute to this part of the
intercomparison.

The availability of SKs as elaborated in this study not
only makes mass change estimates easy to reproduce, but
also boosts opportunities formethod assessments andmethod
intercomparisons. Any scientist can apply a given SK to
any test signal to perform specific leakage assessments by
evaluating Eq. (12). Likewise, the propagation of errors of
the input GRACE solutions can be assessed by evaluating
Eq. (11) for particular error samples or by propagating an
error covariancematrix throughEq. (11). Likewise, the effect
of any change in the SH input datasets (such as input GRACE
solutions or applied corrections for solid-Earth processes)
can be immediately evaluated through Eq. (10). Effects of
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changing the SH input data can be easily separated from
effects of changing the method of analyzing this SH input
data. The former effects correspond to a change of κobs in
Eq. (10), while the latter correspond to a change of η.

The value of SKs applies to any target region and tar-
get signal of surface mass redistribution, beyond the GrIS
example elaborated here. In fact, applications to hydrologi-
cal drainage basins, where the signals in neighboring basins
may differ substantially in the phase of their seasonality or in
other temporal characteristics, may particularly benefit from
a simple access to method comparisons.

These opportunities of method assessment and compar-
ison apply to inverse methods just as they do for direct
methods. In particular, leakage effects have not always been
obvious for inverse methods since such methods may for-
mally attribute GRACE observations to mass redistribution
patterns with precise geographic delineation. The expression
of inverse methods by SKs clarifies that the concept of leak-
age applies anyway. Leakage is unavoidable due to either
the incompleteness of the set of prescribed patterns or the
necessity of regularization.

The design of a specific method of mass change estimates
usually involves many details and intermediate steps, such
as the choice and implementation of prescribed patterns, the
derivation of pseudo-observables, a discretization in the spa-
tial domain, a stabilization of the inversion. Moreover, the
implementation of amethod involves specific algorithms and
software tools. Therefore, a reproduction of such a design
and implementation is laborious or even impossible based on
published information. However, the mathematical essence
of a method is given by the associated SK. Therefore, for
many purposes, assessments and comparisons of methods do
not need to reproduce the whole processing chain but may
start from the associated SKs.

We illustrated the SK concept by presenting and dis-
cussing SKs associated to four different methods. In
Sect. 2.7we showed that theSKs from thedirect approach and
the inverse approach are equal if they rigorously incorporate
the same signal covariance and error covariance information.
For the four implemented methods this condition is not met
since none of them incorporate the same stochastic informa-
tion, i.e., they differ in their explicit or implicit assumption
on signal and error covariances as described in Sect. 3.1.
As a result the presented SKs exhibit remarkable differences
across methods, which are the reason for differences in the
resulting mass change time series. Some of the SK features,
such as the extreme overshoots and undershoots in Fig. 4i, j,
the global patterns in Fig. 5c, g, k, or the distinct global oscil-
lation in Fig. 5d, h, l may be surprising and may be indicative
of unexpected leakage effects. This underlines the value of
making SKs explicit, assessing them and sharing them.

We provide the SKs derived in this article online at http://
dx.doi.org/10.25532/OPARA-196.Wewill also provide SKs
for the CCI GMB products of Greenland and Antarctica
based on the tailored SK method at https://data1.geo.tu-
dresden.de/.

While the four implementations adoptmethods introduced
by previous studies referred to in Sect. 3.1, we did not intend
to precisely reproduce their methods. Therefore, the SKs dis-
cussed here are not identical to their SKs. We also note that
the study by Jacob et al. (2012) underlying our Method I
did not aim at resolving mass changes of individual drainage
basins.

The presented SK framework involves some limiting
assumptions made for simplicity, which may be released
in order to arrive at more general SK frameworks. Three
directions of generalization are worth mentioning. First, we
represent mass variations in terms of SMDs on a sphere.
Chao (2016) andVishwakarma et al. (2022) elaborated on the
caveat that mass redistributions in the Earth’s interior, such
as due to glacial isostatic adjustment, have to be considered
separately and on how a glacial isostatic adjustment correc-
tion should avoid physical inconsistencies. Li et al. (2017)
and Ditmar (2018) proposed to replace the sphere by a refer-
ence ellipsoid as a more accurate representation of the Earth
surface and elaborated the pertinent ellipsoidal corrections.

Second,wehave formulatedSKsas being time-independent.
It is obvious how time dependence can be implemented.
Methods that adapt to time-dependent GRACE error charac-
teristics (e.g., Horvath et al. 2018) may be accommodated in
this way. It is important to note that such error-adaptivemeth-
ods pose additional challenges for leakage assessment.While
leakage effects are usually conceived as effects of someactual
temporal mass changes, time-variable SKs would induce
leakage effects even in the absence of mass changes. This
can be seen in the symmetry between κ and η − ϑ in
Eq. (12).

Third, the SK concept may be generalized to be applica-
ble to data-adaptive methods. Such methods include data-
adaptive filtering (e.g., Schrama et al. 2007) or data-adaptive
leakage correction (e.g., Vishwakarma et al. 2017). In that
case, the expression of the estimator as a linear operator
(Eq. 6) would need to be reconsidered. Similar general-
izations apply if GRACE data is combined with additional
observations, such as satellite altimetry over the ice sheet
(Forsberg et al. 2017; Kappelsberger et al. 2021) or over
the ocean (Rietbroek et al. 2016) or GNSS-based solid-
Earth surface deformations (Kusche and Schrama 2005). In
such cases, the sensitivity of mass change estimates to the
GRACE-based input depends on those additional observa-
tions and the relative weights that arise for the different
observation types. In fact, for inverse problems with mul-
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tiple datasets, assessments of the sensitivity to the individual
input data may be particularly valuable, as it may not be clear
beforehand what information is really provided from which
dataset (e.g., Kusche and Schrama 2005).

In the quest for an optimal GRACE mass estimation
method, tailored SKs are designed to minimize the total error
variance, in line with previous investigations on optimal esti-
mators (Swenson and Wahr 2002; Wu et al. 2009). We have
shown (Sect. 2.7) that the tailored SKmethod is equivalent to
an inversemethod that employs the same covariance informa-
tion on both the mass redistribution signals and the GRACE
errors. Hence, such an inverse method possesses the same
optimality property as the tailored SK method. One may
argue that, in turn, inverse methods that do not incorporate
covariance information this way are not optimal. This argu-
ment, however, can be immediately weakened by noting that
in practice complete covariance information (on both signal
and GRACE error) is not available and therefore none of the
methods presented here can be considered optimal for a sta-
tistical point of view. Estimates that are formally non-optimal
might be more robust against the incompleteness of covari-
ance information employed. The quest for best methods of
GRACE mass change estimates is not concluded by far.
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Appendix A: Tailored sensitivity formalism
with account for unobserved parts of the SH
spectrum

In Sect. 2.6 we have neglected the parts of the SH spectrum
outside {(n,m)}obs when expressing leakage by Eq. (34) and
when approximating relation (17) by Eq. (43).

We now include SH contributions up to an arbitrarily high
level.While the vector κ by definition contains κnm restricted
to {(n,m)}obs, we supplement this vector by a vector κh that
contains the missing κnm up to a sufficiently high level of
degree and order. Likewise, we supplement ϑ by ϑh and A
by Ah.

Instead of approximating the leakage error by Eq. (34),
we now write

δmleak = 4πa2
[

η − ϑ

0 − ϑh

]T [
κ

κh

]
, (A1)

that is, we now include the leakage of signal components
that are outside the spectrum resolved by GRACE. Instead
of Eqs. (35) and (38) we find

Var(δmleak) = (4πa2)2
[
η − ϑ

−ϑh

]T [
A
Ah

]

Cpat

[
A
Ah

]T [
η − ϑ

−ϑh

]
, (A2)
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∂

∂η
Var(εleak) = 2(4πa2)2 ACpatATη − 2(4πa2)2

ACpat

[
A
Ah

]T [
ϑ

ϑh

]
. (A3)

In the last equation, we may do the replacement

4πa2
[
A
Ah

]T [
ϑ

ϑh

]
= m. (A4)

That is, m is defined as the mass change associated to SMD
patterns that are defined in a spatial resolution not restricted to
theGRACE resolution. This definition is now fully consistent
with the definition of m made by Eq. (17) in the context of
the inverse approach.

The minimum condition (37), after insertion of Eqs. (A3)
(A4) and (39), leads to the sameSKexpression (44) as derived
in Sect. 2.6.
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