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Abstract

Water vapour is a highly variable constituent of the troposphere; thus, its high-resolution measurements are of great importance
to weather prediction systems. The Global Navigation Satellite Systems (GNSS) are operationally used in the estimation of the
tropospheric state and assimilation of the results into the weather models. One of the GNSS techniques of troposphere sensing
is tomography which provides 3-D fields of wet refractivity. The tomographic results have been successfully assimilated into
the numerical weather models, showing the great potential of this technique. The GNSS tomography can be based on two
different approaches to the parameterisation of the model’s domain, i.e. block (voxel-based) or grid (node-based) approach.
Regardless of the parameterisation approach, the tomographic domain should be discretised, which is usually performed in a
regular manner, with a grid resolution depending on the mean distance between the GNSS receivers. In this work, we propose
a new parameterisation approach based on the optimisation of the tomographic nodes’ location, taking into account the
non-uniform distribution of the GNSS information in the troposphere. The experiment was performed using a dense network
of 16 low-cost multi-GNSS receivers located in Wroclaw and its suburbs, with a mean distance of 3 km. Cross-validation
of four different parameterisation approaches is presented. The validation is performed based on the Weather Research and
Forecasting model as well as radiosonde observations. The new approach improves the results of wet refractivity estimation
by 0.5-2 ppm in terms of RMSE, especially for altitudes of 0.5-2.0 km.

Keywords GNSS meteorology - GNSS tomography - Tropospheric delay - Tropospheric refractivity - Low-cost GNSS
receivers

1 Introduction

Water vapour strongly contributes to the basic physical and
chemical processes in the atmosphere; thus, its spatial and
temporal variability has a crucial impact on weather patterns
(Turco 1992; Jacob 2001). In the troposphere, water vapour
is a highly variable constituent; its concentration can vary by
several orders of magnitude between locations in a distance
less than 10km (Couvreux et al. 2005). Due to this variability,
high-resolution measurements of the water vapour distribu-
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tion are of great importance to weather prediction (Stensrud
2009). Since the conventional measurements are based on
radiosonde stations, their spatial and temporal resolution is
low (12h, 250 km in Europe; Guerova et al. 2016), compared
to the dynamics of the humidity changes. Recently, another
observing system has been established, based on Global Nav-
igation Satellite System (GNSS) observations (Guerova et al.
2016).

The main purpose of the GNSS is to provide informa-
tion for navigation and positioning (Hofmann-Wellenhof
et al. 2007). However, since the GNSS signals propagate
through the atmosphere, they are affected by atmospheric
components and thus can be utilised in atmospheric mon-
itoring (Tralli and Lichten 1990; Bohm and Schuh 2013).
The GNSS-based troposphere parameters are provided in
all weather conditions, with a temporal resolution of 1h or
less (Tondas$ et al. 2020). This makes the GNSS products
a valuable source of information on the tropospheric state.
The typical density of the GNSS network is on the order
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of tens of kilometres, which far exceeds the spatial resolu-
tion of the conventional radiosonde observations (Pacione
et al. 2017). Recently, the low-cost GNSS receivers, based
on mass-market chipsets capable of logging carrier phase
measurements, were successfully applied in the troposphere
profiling (Barindelli et al. 2018; Bramanto et al. 2018; Kriete-
meyer etal. 2018). Since this approach is much less expensive
than the geodetic-grade receivers, it provides an opportunity
for troposphere monitoring on the kilometre scale by further
densification of the GNSS networks (Marut et al. 2022).

In the GNSS data processing, a tropospheric delay of the
signal is estimated in the zenith direction as a zenith total
delay (ZTD, Dach et al. 2015). Since the ZTD is a function
of temperature, pressure, and humidity, it provides relevant
information for the weather systems (Mendes 1999; Bevis
et al. 1992; Wilgan et al. 2015). ZTD can be converted
into integrated water vapour (IWV) which contains infor-
mation about water vapour in the column above the GNSS
site (Kleijer 2004; Benevides et al. 2019). Currently, GNSS
meteorology is a well-established field in both research and
operation (Bennitt and Jupp 2012; Dousa and Bennitt 2013;
Li et al. 2015; Hadas and Hobiger 2020). The near-real-time
(NRT) tropospheric parameters are operationally provided by
European Meteorological Services Network (EUMETNET)
under the GNSS Water Vapour Programme (E-GVAP; http://
egvap.dmi.dk) as a result of cooperation between meteoro-
logical services and GNSS analysis centres. The studies on
the assimilation of the GNSS ZTD and PWYV observations
into the NWP models show a positive impact on the forecasts,
especially during severe weather events, e.g. heavy precipita-
tion or storm (Cucurull et al. 2004; Yan et al. 2009; Boniface
et al. 2012; Rohm et al. 2019; Giannaros et al. 2020). It was
found by Mahfouf et al. (2015) that although the ZTD obser-
vations represent a small fraction of the data assimilated into
the NWP model (lower than 2%), their impact on the analy-
sis is comparable to other humidity observing systems. The
ZTD observations were assimilated into the numerical mod-
els with a horizontal grid resolution of the order of 10km
(Poli et al. 2007; Benjamin et al. 2010; Shoji et al. 2011)
as well as a single kilometre scale (De Haan 2013; Arriola
et al. 2016). Since the typical resolution of the GNSS net-
work is on the order of tens of kilometres, the ability to detect
small-scale weather events is limited (Stensrud 2009; Mateus
et al. 2018). However, the studies show a link between the
GNSS water vapour data and the development of convective
systems that result in thunderstorms and lightning (Mazany
et al. 2002).

Apart from the observations integrated in the zenith direc-
tion, also slant tropospheric delay (STD) and slant integrated
water vapour (SIWV) can be estimated in the GNSS data
processing using zenith observations and their gradients
(Ka¢marik et al. 2017). Since the observations integrated
along the signal’s path are asymmetrical, they have the
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potential to better describe the state of the troposphere. The
first studies indicate their capability of obtaining informa-
tion about storms (Kawabata and Shoji 2018). Although the
assimilation of the slant observations into the NWP models
is a challenging task, the first results show a positive impact
on the weather forecasts (Zus et al. 2011, 2015).

GNSS tomography is another approach to the utilisation
of the GNSS signal for troposphere monitoring. Using this
technique, a 3-dimensional distribution of humidity in the
troposphere is reconstructed based on the slant observations
of the GNSS signal delay (Flores et al. 2000). Over the last
20 years, research has been conducted on the troposphere
tomography in terms of different inversion strategies, con-
straints imposed on the model, discretisation of the model’s
domain, and parameterisation (Guerova et al. 2016). Also,
an effort has been made to assimilate the tomographic results
into the NWP models. Several studies show a positive impact
on the models in terms of humidity forecasting, especially
during extreme weather events (heavy precipitation; Hanna
etal. 2019; Trzcina and Rohm 2019). Usually, a drying effect
in the model is observed after assimilation (Moller et al.
2015). It was noticed that the tomographic data have a greater
impact on the NWP model than the ZTD observations (Moller
et al. 2015; Trzcina et al. 2020). Recently, an observation
operator for the 3-D wet refractivity fields was introduced
by Trzcina et al. (2020), so the tomography outputs can be
directly assimilated into the Weather Research and Forecast-
ing (WRF) model. The tomography-based vertical profiles
of humidity were also successfully used for the prediction
of storms using a machine learning approach (LoS et al.
2020). These examples of the positive impact of the GNSS
troposphere tomography outputs on weather prediction are
encouraging for further development of this technique.

In order to reconstruct the 3-D humidity field in the
troposphere, the tomographic model’s domain has to be dis-
cretised. Usually, the discretisation is performed in a regular
manner and the resolution of the horizontal grid depends on
the mean distance between the GNSS stations (Bender and
Raabe 2007; Troller et al. 2006). Also, an outer domain with
a lower resolution can be appended in order to easily include
low-elevation rays in the solution (Bosy et al. 2012; Brenot
et al. 2019; Trzcina and Rohm 2019). Regarding the verti-
cal layers, it was found by Manning (2013) that irregular
distribution outperforms equidistant spacing.

There are two main strategies to parameterise the tomo-
graphic domain, i.e. block (voxel-based) parameterisation
and grid (node-based) parameterisation. In the block approach,
the estimated values (i.e. wet refractivity or water vapour
humidity) are assumed to be constant within each small part
of the 3-D tomographic domain (Flores et al. 2000; Moller
2017). On the contrary, in the grid parameterization, the val-
ues are estimated for particular nodes of the tomographic
grid. In this approach, the values are interpolated between the
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grid and the GNSS rays’ paths (Manning 2013; Perler et al.
2011). In the horizontal direction, linear interpolation is usu-
ally applied; in the vertical direction, it is recommended to
use methods that better reflect humidity changes in the tropo-
sphere (e.g. natural splines or scale height of water vapour;
Perler 2011; Ding et al. 2018). The two parameterisation
approaches use different strategies for the modelling of the
GNSS delay along the signal’s path. In the block approach,
the delay is modelled based on the multiplication of wet
refractivity and distance that the ray travels in each voxel
(Hirahara 2000; Rohm 2013). On the contrary, in the grid
approach, the signal’s delay is modelled using numerical inte-
gration techniques (Perler 2011; Zhang et al. 2020a).

The node-based parameterisation gives the opportunity to
introduce new methods of tomographic nodes’ distribution.
Recently, it was proposed by Ding et al. (2018) to adjust the
model’s boundary to the distribution of the GNSS rays and
to define tomographic nodes using meshing techniques; the
results were encouraging since the RMSE of water vapour
density decreased by 30—40% when compared to the stan-
dard method. Also, Zhang et al. (2020b) used a similar
approach to define model boundaries in order to stabilise the
tomographic solution. Although the new methods adjust the
model’s boundary to the geometry of the GNSS observations,
the tomographic grid remains regular. This requirement of a
regular grid is needed for the proper modelling of the GNSS
delay. However, it is also a limitation; since the information
about the tropospheric state comes from the GNSS signals,
the quality of the wet refractivity estimation is not homoge-
neous in space. In this paper, we propose another approach
that aims to identify the optimal location of the tomographic
nodes, taking into account the spatial distribution of the
GNSS rays inside the tomographic model’s domain. In this
new method, node-based parameterisation is applied, includ-
ing both regularly and irregularly distributed points. In our
study, the cross-validation of the different GNSS tomography
parameterisation approaches is performed; the validation is
based on the radiosonde measurements and NWP model.

The structure of this paper is as follows: Sect. 2 presents
principles of the GNSS troposphere tomography technique.
Section 3 describes the data and the tomographic model used
in the performed experiment. Section 4 presents the results of
the tomographic solutions and their validation with external
data sources. The discussion of the results is presented in
Sect. 5. The main conclusions of this work can be found in
Sect. 6.

2 Methodology
2.1 Tropospheric wet delay and wet refractivity

The GNSS troposphere tomography provides a 3-D distribu-
tion of humidity in the troposphere, based on observations

of the GNSS signals’ delays along the slant paths between
the satellites and the receivers (Flores et al. 2000; Hirahara
2000). As the GNSS signal passes through the troposphere,
its propagation is affected by the tropospheric components,
which results in the signal’s bending and delay. This tro-
pospheric delay is related to the temperature, pressure, and
humidity on the signal’s path and can be estimated in the
GNSS data analysis (Kleijer 2004). Usually, the tropospheric
delay is modelled in the zenith direction above the GNSS
receiver as a zenith total delay (ZTD; Dach et al. 2015).
Davis et al. (1985) proposed a separation of two components
of the ZTD, representing, respectively, the hydrostatic and
non-hydrostatic effects of the troposphere on the GNSS sig-
nal. The two components are often referred to as ZHD (zenith
hydrostatic delay) and ZWD (zenith wet delay). The relation
between the ZTD and its two components is as follows:

ZTD = ZHD + ZWD, (1)

where ZTD refers to the total delay values, ZHD is the hydro-
static component, and ZWD is a non-hydrostatic component.
As the GNSS troposphere tomography estimates a distribu-
tion of humidity in the troposphere, it takes advantage of the
wet delay. The ZWD values can be calculated by subtrac-
tion the ZHD from the total delay estimated in the GNSS
data processing. For this purpose, Saastamoinen’s formula is
used (Kleijer 2004):

0.0022768 - p

ZHD =
1 —0.00266 - cos(2¢) — 0.00000028 - H

2

where p is the total air pressure (hPa) at the GNSS station’s
location, ¢ denotes the location’s latitude, and H is the alti-
tude (m). The values of the wet delay in the zenith direction
can be mapped into the directions of the GNSS satellites to
get the values of slant wet delays (SWD) for each pair of
the GNSS receiver and transmitter. The following mapping
formula is applied:

SWD = my(e) - ZWD + cot(e)
[l - cos(a) + GE - sin(a)] 3)

where e is an elevation angle of the tracked satellite, A is
an azimuth, m,, stands for a wet mapping function, Gﬁ and
Gg are tropospheric gradients in the north and east direc-
tions, respectively. In this work, Vienna Mapping Function
(Boehm et al. 2009) was used for m,,. The hydrostatic gra-
dients were estimated based on the horizontal distribution of
surface pressure using the methodology described in Shoji
(2013) and subtracted from the GNSS-derived Gy and Gg;
thus, only the wet parts were used in Eq. 3. In the literature,
there is a method of improving the resulting SWD values
by adding post-fit residuals of the GNSS analysis in order to
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include the unmodelled parts of the signals’ delays (Manning
et al. 2014; Alber et al. 2000; Troller et al. 2006). However,
other studies show that the post-fit residuals play a minor role
in the estimation procedure (Hordyniec et al. 2018); also,
they could contain errors of the GNSS measurements, e.g.
multi-path (Bohm and Schuh 2013). In our work, the post-fit
residuals are not considered.

The resulting slant wet delay (SWD) can be also expressed
as an integral of wet refractivity values N,, along the path s
of the GNSS signal (Mendes 1999):

SWD = 10~ f N, ds. 4)
5

In the GNSS troposphere tomography model, Eq. 4 links the
SWD observations with the estimated parameters N,, (Flo-
res et al. 2000). The estimated wet refractivity is a part of
the total tropospheric refractivity N. N, corresponds to the
non-hydrostatic components of the troposphere, whereas the
hydrostatic refractivity Ny, refers to the hydrostatic compo-
nents (Mendes 1999):

N = Nj, + Ny. 5)

The two parts of N can be expressed based on the tropo-
spheric parameters as follows:

Np=ki-Ra-p (6)
;€ e —1
Ny = (kz? + k3ﬁ> -z )

where R; is a mean specific gas constant for dry air
d kg_1 K1), p is a total air density (kg m~?), e stands for
water vapour partial pressure (hPa), T is temperature (K),
z, lisa compressibility factor of the wet air (—)]; k1, ké, and
k3 are empirically determined refractivity constants (Thayer
1974).

2.2 Tomographic solution

In the GNSS troposphere tomography model, a network of
GNSS receivers is used to determine the wet refractivity dis-
tribution within the model’s domain. The following system
of equations is applied:

SWDg = Ag - Ny, (8)

where SWDg is an observation vector that contains SWD
values for each pair of the GNSS transmitter and receiver
(SWDy, SWDa,..., SWD;); N,, is a vector of estimated N,
parameters (Ny,, Nyy,,..., Nu,,); AG is a projection matrix
that contains derivatives of observations with respect to the
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estimated parameters:

T SWD, N,
| swp — |nN
SWDg = 21, Ny=| M|,
| SWD, Nu,
—JoSWD; 9dSWD; dSWD,
ONw,  ONuy * ONup
3SWD, 3SWD, 3SWD,
Ag = | Mo Wy Wy | ©)
aSWD; ISWD; ISWD;
L 9Nw,  Nw, " 0Ny

In this work, a priori wet refractivity field is used to stabilise
the solution. This information is included in the observation
vector and the projection matrix as follows:

m=[SWDG] Az[AG], (10)
Aapr

Wapr

where elements of the m vector are the a priori values of
wet refractivity; elements of A,y matrix equal O (no apriori
information) or 1 (a priori information is available). The final
system of equations reads as follows:

SWD = A - Ny, (1D

The solution is obtained by inversion of Eq. 1 1. In this paper,
the least squares method with the More-Penrose pseudoin-
verse (1) is used:

N + I
N, = (AT P A) AT . P .SWD, (12)

where P stands for the weighting matrix, i.e. inverse of the
covariance matrix of the SWD observations and a priori data.
Solving the final system of equations leads to the estimation
of the 3-D wet refractivity field in the tomographic model’s
domain.

2.3 Parameterisation of the tomographic domain

The tomographic technique is based on a discretisation of
the model’s domain, i.e. the estimated wet refractivity field is
not continuous in space. Apart from the wet refractivity field,
also the tropospheric wet delay SWD along the GNSS ray’s
propagation path is discretised. Depending on the parame-
terisation approach, it can be divided into segments based
on voxels’ distribution (one segment within each voxel; Flo-
res et al. 2000) or based on horizontal layers of the domain
(one segment between two tomographic layers; Ding et al.
2017). Taking into account a relation between SWD and N,
presented in Eq.4, the SWD in a tomographic model can be
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expressed as follows:

k k
SWD = std,- - 10_6Z/Nwdsi, (13)
i=1 i=1 .

where k is a number of segments, swd; is a value of wet
tropospheric delay for segment i, s; stands for a signal’s
path in a segment i. A single SWD observation is there-
fore modelled as a sum of the integrals of N,, within all
segments along the signal’s path. As these integrals are not
calculated directly, the method of modelling the swd value
within each segment depends on the domain’s parameterisa-
tion approach. In this work, two parameterisation approaches
were applied, i.e. voxel-based and node-based. The former
is based on a simplification stating that the N,, within each
voxel is constant (see Sect.2.3.1). The latter uses interpola-
tion methods to link wet refractivity at the domain’s nodes
with SWD observations (see Sect.2.3.2).

2.3.1 Voxel-based parameterisation

In the voxel-based approach, an assumption is made that wet
refractivity within each voxel is constant (Flores et al. 2000;
Rohm and Bosy 2011; Moller 2017). Therefore, an integral
from Eq. 13 for a voxel i can be represented by multiplication
of wet refractivity N,,, within the voxel by a distance d; that
the GNSS ray travels in this volumetric element. As a result,
the swd; inside of the voxel i is modelled as follows:

SWd,’ = Nw,' . di, (14)

with the following units: swd; (mm), d; (km), N,,;(ppm).
In this approach, the number of estimated parameters equals
the number of voxels in the model’s domain. Each element in
the N, vector (Eq. 11) represents wet refractivity within one
voxel. The projection matrix Ag (Eq. 8) consists of distances
that the GNSS rays travel in particular voxels.

2.3.2 Node-based parameterisation

In the node-based parameterisation approach, wet refractiv-
ity at any point in the tomographic domain (e.g. at the GNSS
signal’s path) can be defined by interpolation of N,, from
tomographic nodes to the point of interest. The integral from
Eq. 13 is resolved by numerical integration. In this work,
Newton-Cotes formula is applied, based on evaluating an
integrand (wet refractivity) at equally spaced points along
the signal’s path (Perler 2011). For each of the points, the
weight of the integrand is calculated using Lagrange poly-
nomials. Finally, the integral is estimated as a sum of the
integrands multiplied by the corresponding weights. In this
study, Lagrange polynomials of range 4 are used (Boole’s

rule), i.e. the path of the ray in segment i is divided into 4
equal parts (sections). Moreover, a composite rule is applied,
which means that the Newton-Cotes formula is also used
inside each section (4 subsections per each section). As a
result, for each segment of the GNSS signal’s path, the inte-
grand (wet refractivity) is evaluated at 17 equidistant points.
Based on these points, the slant wet delay swd; is expressed
as follows:

swd; = 7 (Nw,v,o + Nwi_u()

20s
o (
+ 32 (Nuw;, + Nuy3) + 12Ny, ,
K—1 (15)
+ ) (14N, 4, +32Nuy 4,1,

m=1

+Nwi<4m+3 + 12Nwi,4m+2) )’

where K equals 4 (number of sections); Ny, 0..4k+1 are wet
refractivity values at the signal’s path in segment i, corre-
sponding to the 17 evaluated points; ds is a distance that aray
travels in one subsection. Wetrefractivity values Ny, 0.4k +1
are linked to the N,, values at the tomographic nodes using
interpolation methods. As a result, elements of the projection
matrix Ag (Eq.8) correspond to the weights of the inte-
grands, as well as the interpolation parameters. In this work,
two methods of wet refractivity interpolation are tested, i.e.
trilinear and spline/bilinear.

Trilinear interpolation

In a trilinear interpolation method, it is assumed that a distri-
bution of wet refractivity in the troposphere is characterised
by linear changes in all three directions. As a result, values of
wet refractivity at the GNSS signals’ paths are modelled by
linear interpolation in both horizontal and vertical directions.
An advantage of this approach is its simplicity in application.
However, as wet refractivity in the troposphere usually does
not change linearly with height (B6hm and Schuh 2013),
this method can introduce a systematic error, especially in
a case of sparse distribution of the horizontal tomographic
layers (i.e. large vertical distances between the tomographic
nodes).

Spline/bilinear interpolation

Another approach is to use different interpolation methods
for horizontal and vertical directions to better reflect a real
distribution of wet refractivity in the troposphere. As a result,
wet refractivity values at the signal’s path (N, 0..4x+1 in
Eq.15) are calculated in two steps. First, a vertical inter-
polation is performed, based on tomographic nodes below
(hy) and above (hiy1) the point of interest. In this work,
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Fig. 1 A scheme of the 4-step algorithm (a—d) to find the optimal locations of the tomographic nodes in the model’s domain, based on the 3D

distribution of the GNSS rays

wet refractivity value at height / is expressed using natural
splines, based on the following cubical polynomial given by
Perler (2011):

Ny (h) = ag (h — hy)?

+bi (h = h)* + ek (h — he)® + di, (16)

with:
ao= (N” N ) (17)

6dhk Wk+1 wg ) ?
be = LN 18
k = E wy? ( )
1 dhy

= g (NVoy = Nu) = = (Mo +2N0). a9
di = Ny, (20)

where N, (h) stands for wet refractivity value at a given
height &, hy is the height of the tomographic node located
below the point of interest, dh is a vertical distance between
two tomographic points located below and above the point
of interest. Ny, and N, 41 are wet refractivity values in
the tomographic nodes at heights Ay and A, respectively,
whereas N, and N ., are their second derivatives. As the
wet refractivity at height & is expressed by the natural splines
for the neighbouring tomographic nodes, the second step is
performed, i.e. a bilinear interpolation in a horizontal direc-
tion to the location of the point on the signal’s path.

2.4 Optimisation of the tomographic nodes’
distribution

In the GNSS troposphere tomography, wet refractivity in
the model’s domain is estimated based on the tropospheric
wet delays along the GNSS rays. In a standard tomographic
approach, wet refractivity is evaluated for regularly dis-
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tributed volume elements or nodes. The spatial distribution
of the points of reference (voxels, nodes) is defined based on
the location of the GNSS stations (Bender and Raabe 2007)
or the GNSS rays (Ding et al. 2018) in order to optimise the
geometry of the solution. However, even though the distribu-
tion of the voxels or nodes is adjusted to the geometry of the
GNSS observations, the requirement of regularity is a limita-
tion that does not allow for a flexible selection of the optimal
locations for the estimation of wet refractivity. In this study,
another approach is presented that aims to identify the best
locations of the tomographic nodes.

The algorithm is based on the GNSS rays’ distribution
in the model’s domain (Fig. 1). The algorithm is based on 4
steps, presented on the panels a—d. First (Fig. 1a), the most
useful GNSS rays are selected. In the figure, the GNSS rays
are presented as straight lines. As the performance of the
tomographic model is the most efficient at locations where
multiple GNSS rays are utilised, the algorithm rejects the
signals that do not cross with the others (panel a, red lines).
In consequence, the tomographic nodes will not be located
in spots where very little information can be derived from
the GNSS data.

In the second step (Fig. 1b), the locations of intersections
of the remaining rays are detected (red points in panel b).
Since the GNSS signals contain information about the tro-
pospheric state, the locations with the signals’ crossing are
supposed to have the greatest potential to reflect the actual
values of wet refractivity in the tomographic solution. To find
the intersection points, the path of each signal is sampled
with a distance ds;. At each of the sample points along the
ray, the neighbouring points from the other rays are searched
within a radius d,. If the neighbouring points are detected,
the intersection point is defined as their geometric centre. To
choose the sampling distance ds;, we have tested values in
arange of 2km—10m. The tests indicated that the sampling
resolution higher than 100 m introduced unnatural distribu-
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tion of the intersections, i.e. the resulting intersecting points
were located mainly at the heights corresponding to multi-
ple of dy;). The sampling resolution of 100 m and denser did
not introduce this unnatural distribution; as a result, a 100 m
distance was recognised as optimal. The radius of the neigh-
bourhood for the sampling points from adjacent rays d, was
set based on the mean distance between the GNSS stations.

In the next step (Fig. 1¢), the intersection points defined
in step b are clustered. As the intersecting points from step
b could occur close to each other, the clustering helps to
avoid aggregation of the tomographic nodes in a small area,
with low inter-distances between them. In Fig. 1c there is
an example distribution of the intersection points resulting
from step b; as the result of step c, the points are assigned
to particular clusters (one colour denotes points assigned to
one cluster). In our approach, a density-based algorithm for
spatial applications DBSCAN (Density-Based Spatial Clus-
tering of Applications with Noise) is used (Ester et al. 1996).
The algorithm is based on two parameters, i.e. a radius of the
neighbourhood R and a minimum number of points required
to form a dense region (N). In our approach, the radius R
equals the distance d, used for the identification of the inter-
sections of the GNSS rays (from step b). The number N
is set to 1 in order to take into account all intersections,
even those not grouped with any others. An advantage of the
DBSCAN algorithm is that the number of clusters does not
have to be defined initially; thus, the resulting number of the
tomographic nodes is adjusted to the geometry of the GNSS
observations. The geometric centres of the resultant clusters
are considered the best locations for the GNSS tomography
nodes.

However, as the SWD values cannot be properly modelled
only based on these sparse and irregularly distributed points,
also the regularly distributed part is involved (Fig. 1d). The
regular nodes are distributed as in the standard node-based
tomographic approach; however, only the points in close
vicinity of the GNSS rays are used (those that are employed
for the SWD modelling of at least one GNSS ray). As result,
the GNSS tomography nodes consist of two subsets, i.e. the
irregularly distributed part, with an optimal location for the
estimation of Ny, (red colourin Fig. 1d), and the regularly dis-
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(blue colour in Fig. 1d).

After the 4 steps (Fig.la—d) are performed (i.e. the
location of the tomographic nodes is defined), then the tomo-
graphic solution is run using node-based parameterisation
with spline/bilinear interpolation (Eq. 12).

3 Data
3.1 GNSS troposphere tomography model

The GNSS troposphere tomography was performed using the
TOMO2 model developed at the Wroctaw University and
Environmental and Life Sciences (Rohm and Bosy 2009,
2011; Rohm 2013). The model is based on the tomographic
principles and allows for the estimation of the 3-dimensional
distribution of wet refractivity or water vapour density in the
troposphere. In this research, we reconstructed wet refrac-
tivity fields in the area of Wroctaw for the period of March
15-28, 2021. The main scheme of the conducted research
is presented in Fig.2. The GNSS tomography was per-
formed based on two types of tropospheric estimates: real
(GNSS-based; see Sect. 3.2) and synthetic (ray-traced using
the WRF model; see Sect. 3.3). In both cases, the a priori
wet refractivity fields were derived from the Global Pres-
sure and Temperature 2 (GPT2) model (see Sect. 3.4). The
TOMO2 model was designed for voxel-based parameter-
isation. Within this study, we adjusted the model to use
node-based parameterisation with irregular distribution of
tomographic nodes. The tomography was performed with
four different parameterisation approaches, i.e. (1) regular
grid with voxel-based parameterisation (yellow line); (2)
regular grid with node-based parameterisation and trilinear
interpolation (green line); (3) regular grid with node-based
parameterisation and spline/bilinear interpolation (purple
line); (4) irregular nodes with node-based parameterisation
and spline/bilinear interpolation (red line). The four tomo-
graphic solutions were validated with the radiosonde data
(see Sect. 3.5) and the WRF model (see Sect. 3.3).

Figure 3 presents the spatial domain of this study with the
location of the GNSS receivers, nodes of the WRF model
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Fig. 3 The tomographic model’s domain: a the horizontal grid with a network of the GNSS receivers, RS station, and WRF model nodes; b the

vertical spacing of the tomographic levels

grid, and the RS station. Also, the tomographic grid is pre-
sented. In the regular approach, the tomography was based
on the 4 x 4 voxel structure with a horizontal resolution
of 5km, in 11 irregularly distributed vertical layers ranging
from 150 m to 11,750 m. In the node-based regular approach,
the same grid was used (5 x 5 nodes with 12 vertical lay-
ers). In the node-based irregular approach, the methodology
presented in Sect. 2.4 was applied for optimisation of the
tomographic nodes’ distribution.

3.2 GNSS tropospheric delays

The tropospheric tomography performed in this study was
based on the ZTD observations from the network of 16
low-cost multi-GNSS receivers located in the urban area of
Wroctaw city, Poland, and its suburbs (Fig.3). A detailed
description of the receivers and the GNSS data processing
strategy can be found in Marut et al. (2022). The receivers
are based on the u-blox high-precision GNSS module (ZED-
F9P), microcomputer Raspberry Pi 3B+, and the GSM
modem. The signals from GPS, Galileo, and GLONASS sys-
tems were tracked. The data were processed in two strategies,
i.e. real-time and final (post-processing). In our study, we
used the product based on the CSRS-PPP software and IGS
Final orbits. The GNSS network covers an area of 243 km?
(14km North-South, 24 km East—West); the mean distance
between the receivers is about 3km. In the GNSS data pro-
cessing, the ZTD values and their gradients were estimated.
As the GNSS tomography deals with the wet delays, the
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hydrostatic part was calculated based on the pressure values
from the WRF model (see Sect. 3.3) using the Saastamoinen’s
formula (Eq. 2) and subtracted from the ZTD estimates. Next,
the SWDs were calculated based on the ZWDs and tropo-
spheric gradients using Vienna Mapping Functions (Eq. 3).
The SWD values were provided with a temporal resolution
of 1h.

3.3 WRF model

Apart from the GNSS estimates of the tropospheric delays,
also the synthetic SWDs were derived from the Weather
Research and Forecasting (WRF) model using a raytrac-
ing method (Lasota et al. 2020). The WRF model is a
mesoscale numerical weather prediction system designed
for atmospheric research (Hsiao et al. 2012; Givati et al.
2011; Nasrollahi et al. 2012) and operational weather fore-
casting (Benjamin et al. 2016). The WRF model consists
of two dynamical solvers, i.e. the Advanced Research WRF
(ARW) core (Skamarock et al. 2008) and the Non-hydrostatic
Mesoscale Model (NMM) core (Janjic et al. 2005). The
WRF-ARW is developed and maintained by U.S. NCAR’s
(National Center for Atmospheric Research) Mesoscale and
Microscale Meteorology Laboratory. The code is open to
public use. In this study, we use a WRF-ARW model in
version 3.7 run by the Department of Climatology and Atmo-
sphere Protection at the University of Wroctaw (Kryza et al.
2013). The model is configured with two one-way nested
domains with a spatial resolution of 12km and 4 km, respec-
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tively. In the outer domain, the convection is parameterized,
while in the inner domain it is explicitly resolved. In this
model, 48-hour forecasts are run every 6 h (at 0, 6, 12, and 18
UTC) with aresolution of 1 h. Initial and boundary conditions
are provided by the U.S. National Oceanic and Atmospheric
Administration (NOAA) National Centers for Environmental
Prediction (NCEP) Global Forecast System (GFS), available
every 3h with a spatial resolution of 0.5°. The model con-
sists of 35 terrain-following hydrostatic pressure levels, with
the top fixed at 10 hPa. In this research, the ray-traced SWD
values were used as input into the tomographic model in the
synthetic approach. Also, wet refractivity fields were calcu-
lated based on the WRF forecasts using Eq.7 for validation
of the tomographic outputs.

3.4 GPT2 model

GPT2 (Global Pressure and Temperature 2) is an empirical
model for the determination of slant tropospheric delays, ded-
icated to radio space geodetic techniques (Lagler et al. 2013).
The model is based on monthly mean profiles from ERA-
Interim reanalysis (ECMWF 2011) for the years 2001-2010.
GPT2 provides pressure, temperature, temperature lapse rate,
water vapour pressure, and mapping functions coefficients;
all parameters contain mean, annual, and semi-annual terms.
The model is based on the underlying horizontal resolution
of 5 degrees and the mean ETOPOS (NOAA 1993) heights.
In this study, the GPT2 parameters were used to calculate
values of wet refractivity (Eq. 7) for initialisation and stabili-
sation of the tomographic solution (a priori datain Eq. 10). As
the tomographic model needs a rough approximation of the
tropospheric state to initialise the solution, the GPT2 model
was used in order to provide a mean climatology of the tro-
posphere.

3.5 Meteorological radiosonde station

Radiosonde (RS) data were derived from the NOAA/ESLR
Radiosonde Database managed by the Earth System Research
Laboratory (ESLR) of the National Oceanic and Atmo-
spheric Administration (NOAA: http://www.esrl.noaa.gov/).
In the RS technique, a sensor attached to an automatic radio-
sounding balloon is released and measures meteorological
parameters in the vertical profile. In this research, mea-
surements from the station located in Wroctaw (ID 12374)
were used. The profiles of temperature, dew point tempera-
ture, and wind speed components are provided twice a day
(at noon and midnight) for the pressure levels in a range
of 1000-10 hPa. There are 14 mandatory levels; however,
depending on the meteorological conditions, more data can
be provided. Usually, measurements for 30—40 levels are
available. The radiosonde measurement is the most common

2380
2360
2340

ZTD [mm]

2320
2300

Mar23  Mar25 Mar27

Mar17 Mar19 Mar21

Fig. 4 Time series of mean values (solid line) and standard devia-
tions (shade) of the zenith total delay (ZTD) values estimated from
the measurements of the low-cost receivers (GNSS) and derived from
the Weather Research and Forecasting model (WRF) for the period of
March 15-28, 2021

and accurate technique of troposphere profiling. According
to the E-GVAP-II Product Requirements Document (Offiler
et al. 2010), radiosonde stations are one of the standard data
sources used as a reference in the measurement of the state of
the troposphere. The accuracy of these measurements is 1-2
hPa for pressure, 0.5 °C for temperature, and 5% for relative
humidity (Manning 2013).

3.6 Meteorological conditions

The experiment was conducted for March 15-28, 2021.
Figure4 presents time series of mean values and standard
deviations of the ZTDs estimated for the network of the low-
cost receivers in the given period. Also, ZTD values derived
from the NWP model (WRF) are presented. In general, the
ZTD values in this period are in the range of 2.3-2.4m. The
standard deviations for particular epochs are usually at the
level of 10 mm. For a considerable part of the period, there is
a good agreement between the GNSS estimates and the WRF
model; the discrepancies are in the range of the standard devi-
ations. The only exception is March 25-27 when the two data
sources differ more significantly (by more than 10 mm). In
the first part, the tropospheric delays do not exceed the value
of 2.34 m, whereas in the second part of the experiment (after
March 23) the values are noticeably higher (2.34-2.38 m). In
the middle of the period (March 20-23), sharp changes in the
ZTD values are noticed for both data sources (by more than
40 mm during one day).

According to the Interdisciplinary Centre for Mathemati-
cal and Computational Modelling (ICM) at the University of
Warsaw (UW) service (www.meteo.pl), the weather condi-
tions for March 15-20 were as follows. The North circulation
prevailed, bringing cold air masses from Scandinavia, and
temperature oscillated within 5 to 7°C; low-level clouds,
mild rain, and snow were predicted (which corresponds to
the lower ZTD values in Fig.4). Starting from March 21,
more varying weather occurred with a warm front moving
through the country from northwest to southeast (a spike in
ZTD in Fig.4), bringing more diverse air masses, including
warmer and moist originating from the Norwegian Sea. After

@ Springer


http://www.esrl.noaa.gov/

2 Page100f23

E. Trzcina et al.

a top view
® regular node '
51.3| e irregular node
51.2¢ °
E [ ]
)
e 51.1 T ’
= -
<
- )
51r
50.9r

16.7 16.8 16.9 17 17.1
longitude [?]

b side view
12 ] % os @eecrat, T
10:-.: 4...‘. T |
. B 8__'.. = |
U g S .
) = -
y g 6| AN
[} ik PR 4.
[} = g ]
| 4+ o, C e |
) g . “ )
€] e e
ob8 8 8 8 8|
16.8 17 17.2 0 5 10

longitude [°] F [%)]

Fig. 5 Location of the regularly and irregularly distributed tomographic nodes (for all tomographic epochs) from the top view (a) and side view
(b). The histogram presents the percentage of the irregular nodes at the corresponding heights

the frontal passage, a high-pressure system was introduced
in the Western part of the country (an area of the study),
bringing warm air in the thin inversion layer (970-2000 m)
on March 24. With an increasing wedge of high pressure,
more warm and moist polar air flew towards the Western and
Southern parts of the country (an increase of ZTD); temper-
ature reached 15°C. The end of the period (March 28) is
marked with a cold front passage, overcast conditions, rain,
and a drop in the temperature down to 6—8 °C (drop in ZTD
values past March 27).

4 Results

This section is organised as follows. In the beginning, a short
description of the irregularly distributed nodes is introduced
(4.1). Further, a comparison between the four tomographic
solutions with different parameterisation approaches is pre-
sented. We refer to those approaches in the following
way: (1) constant (voxel-based, regular grid); (2) trilinear
(node-based, regular grid, trilinear interpolation); (3) spline
(node-based, regular grid, bilinear/spline interpolation); (4)
irregular (node-based, irregular grid, bilinear/spline interpo-
lation).

4.1 Distribution of the irregular nodes

The locations of the regularly and irregularly distributed
tomographic nodes are presented in Fig. 5. The plot presents
information about the nodes from all tomographic epochs. In
the horizontal direction, the irregular nodes are distributed
rather uniformly, with the highest density in the centre of the
tomographic area (panel a). A lower density of the irregu-
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larly distributed nodes can be noticed close to the boundary
of the area, especially in the longitude direction. The side
view (panel b) shows the inhomogeneous distribution of the
nodes. Near ground (below 1km) there are almost no irreg-
ular nodes since the GNSS rays do not cross in this altitude
range. The highest density of the irregular nodes is noticed
for the 2-4km; in this range, about 40-50% of all irregu-
lar nodes occur. Above 4 km, the number of irregular nodes
decreases with height.

The irregular distribution of the nodes was also investi-
gated in terms of changes with time. Figure 6 shows a number
of irregular nodes in the whole tomographic domain, for
the particular epochs; the number of nodes is presented as
a function of the hour of the day. In general, the number
of irregularly distributed nodes is within the range of 0-50
points per epoch, with a mean of about 20 points. In the regu-
lar solution, there are 176 voxels in the tomographic domain;
thus, the number of irregular nodes corresponds to 0-28% of
the regular voxels, with a mean of 11%. Some diurnal pat-
terns can be noticed in the number of irregular nodes. At the
midnight, there are usually more than 20 points per epoch,
up to 50. For the hours 2-6 AM this number does not exceed
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Fig.6 Number of the irregularly distributed tomographic nodes (in the
whole tomographic domain) as a function of the hour of the day; the
shades of red indicate days
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Fig.7 The statistics of the SWD values reconstructed using four tomo-
graphic parameterisation approaches (systematic error, top; standard
deviation, bottom) validated based on the ray-traced values from the
WREF model. The statistics are presented for the consecutive epochs of
the analysed period (March 15-28, 2021)

25 points; later, around 8 AM there is another pick, up to
40 points per epoch. In the second part of the day, the num-
ber of the tomographic nodes is in the range of 5-30 nodes,
with a noticeable decrease around 2 PM (not higher than 10
nodes in each day). Since the GPS constellation repeats its
geometry each sidereal day (close to 24 h; Agnew and Lar-
son 2007), the distribution of the GPS rays also follows this
sidereal day pattern. As a consequence, the distribution of
the irregular nodes, designated by the methodology given in
Sect.2.4, is to some extent regular in time. However, since
the repetition time of the GPS satellites’ positions is slightly
shorter than 24 h, the particular graphs in Fig. 6 are shifted in
time (compare, e.g. March 15 and March 28).

4.2 Validation of the reconstructed SWDs

As the parameterisation of the tomographic domain affects
the way how the SWDs are modelled, in the first step we
compare the reconstructed SWD values from the four differ-
ent parameterisation approaches. The SWDs were calculated
based on the wet refractivity fields from the WRF model and
compared to the values provided by the ray-tracing technique.
Figure 7 presents mean bias (/1) and standard deviation (¢) of
SWD in the consecutive epochs. The most common parame-
terisation approach (constant) is indicated by the yellow line.
In this case, the mean bias is in general on the level of 5 mm;
the lowest values are noticed at the beginning of the period
(March 15-19; lower than 5mm) and slightly higher values
are observed at the end of the period (March 23—18; 57 mm).
In the period of March 20-23 (grey rectangle on the plot) the
largest fluctuations of bias are noticed (between — 10 mm
and 7mm). The pattern of the bias fluctuations in the tri-
linear approach is similar to the constant one; however, the

Table 1 The statistics of the SWD values reconstructed using four
tomographic parameterisation approaches, validated based on the ray-
traced values from the WRF model

Constant Trilinear Spline Irregular
ASWD (mm) 2.7 59 —-0.2 —-0.3
6SWD (mm) 4.9 4.7 3.1 3.1
RMSE SWD (mm) 5.6 7.5 3.1 3.1

The statistics are presented for all observations from the analysed period
(March 15-28, 2021)

values are systematically larger by 2—5 mm. The spline and
the irregular solutions are characterised by the lowest bias
from all of the 4 approaches; the values are on the level of
0-2mm at the beginning of the period and — 1 to 3 mm at the
end of the period. These two approaches based on the spline
vertical interpolation (spline and irregular) result in almost
the same values of the reconstructed SWD observations. In
terms of the standard deviation, the constant and trilinear
solutions are similar, on the level of 0—5 mm. The spline and
irregular approaches outperform the other two solutions; their
standard deviation is in general in the range of 0-2 mm with
some peaks up to 2.5-5 mm, especially during March 20-23.

The overall statistics of the reconstructed SWD values val-
idated based on the ray-traced data are presented in Table 1.
The trilinear approach is characterised by the highest values
of errors (mean bias, standard deviation, root-mean-square
error) from all solutions. It is especially noticed in terms of
the systematic error which is 2.7 mm for the constant solution,
5.9 mm for the trilinear one, and almost zero for the spline and
irregular (—0.2mm and — 0.3 mm, respectively). The low-
est standard deviation is reached for the spline and irregular
solutions, i.e. 3.1 mm (decrease by 1.8 mm with respect to the
constant solution). As a consequence, in terms of the root-
mean-square error (RMSE) the quality of the reconstructed
SWDs is the best for the spline and irregular parameterisation
approaches (3.1 mm) and the worst for the trilinear approach
(7.5 mm), while the RMSE of the constant solution equals
5.6mm.

4.3 Validation of the wet refractivity fields:
synthetic solution

The wet refractivity fields from the tomographic solutions
based on the synthetic (ray-traced) SWD data were com-
pared to the wet refractivity fields from the WRF model. The
bias and standard deviation were calculated for each epoch
and are presented in Fig. 8. Also, the statistics of the a pri-
ori fields derived from the GPT2 model were calculated. At
the beginning of the analysed period (March 16 and 17), the
quality of the a priori data was on the level of —4 to —6
ppm in terms of bias and 68 ppm in standard deviation. The
GNSS observations improved the a priori fields and the errors
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Fig. 8 The statistics of the wet refractivity fields estimated using the
four tomographic parameterisation approaches (synthetic solution) and
derived from the GPT2 model (a priori data). The validation was per-
formed based on the WRF model. The statistics are presented for the
consecutive epochs of the analysed period (March 15-28, 2021). The
shaded region corresponds to the period where the SWD values were
poorly reconstructed for all tomographic approaches

decreased to about —2 ppm (bias) and about 4-6 ppm (stan-
dard deviation). In the period of March 18-19, the quality of
the GPT2 model increased; the bias and standard deviation
were on the level of —2 to 1 ppm and 2—4 ppm, respectively.
In this period, the tomographic technique did not improve
the a priori wet refractivity fields for any of the parameterisa-
tion approaches. During the last week of the analysed period
(March 23-28) the quality of the a priori data is lower, i.e.
up to — 10 ppm in bias and 10 ppm in standard deviation; the
GNSS tomography solutions were in general better than the
GPT2 by 4-8 ppm in bias and 1-2 ppm in standard deviation.
The largest discrepancies between the four tomographic solu-
tions are noticed in the case of systematic error. The trilinear
approach introduces the largest bias for the whole analysed
period; it is usually 1-2 ppm larger than in the case of the
constant parameterisation. The bias of the spline method is
usually the same or worse than constant by 0—1 ppm. In the
case of an irregular approach, the bias is the same or better
than in the constant parameterisation (improvement by 0—1
ppm). In terms of the standard deviation, all tomographic
solutions have similar results; the differences are usually not
larger than 1 ppm. The trilinear and spline solutions are in
general characterised by a slightly larger standard deviation

than the constant and irregular approaches (differences not
larger than 1 ppm).

The cumulative statistics of the 3-D wet refractivity fields
derived from the tomographic synthetic solutions and the
GPT2 model, validated based on the WRF model, are pre-
sented in Table 2. The results show that all tomographic runs
improved the a priori (GPT2) fields of the wet refractivity in
terms of bias, standard deviation, and RMSE. In terms of bias,
the largest improvement is noticed for the irregular (—1.7
ppm) and constant (— 1.9 ppm) approaches. The largest bias
was found for the trilinear solution (—2.4 ppm); however,
even in this case, there is an improvement with respect to
the a priori data (— 3.6 ppm, GPT?2). In terms of the standard
deviation, the smallest value was found for the irregular case
(4.8 ppm). The regular approaches (constant, trilinear, spline)
do not differ much from each other and are characterised by
the standard deviation on the level of 5.1— 5.2 ppm. In con-
sequence, the 3-D wet refractivity fields from the irregular
approach have the lowest value of the RMSE (5.0 ppm) from
all 4 tomographic runs.

The tomographic data were validated based on the WRF
model within the particular height ranges (Fig.9). In the
case of the regular solutions (constant, trilinear, spline), the
statistics were calculated for the consecutive tomographic
layers. In the case of the irregular solution, the statistics
were calculated for all observations between the two con-
secutive tomographic levels. The largest improvement of the
a priori fields by the tomographic technique is noticed in
the lower parts of the troposphere, i.e. between 0 and 3km
height. In this range, the GPT2 N,, fields are characterised
by the bias on the level from — 10 to — 1 ppm. The largest
improvement is noticed in the case of the spline and irreg-
ular solutions; the bias is reduced by 5 ppm in the height
range 0.5-1.5km and by 2 ppm in the height range 1.5—
2.5km. From all tomographic parameterisation approaches,
the largest bias is noticed in the trilinear approach (larger
than spline and irregular by 2-3 ppm). In terms of RMSE, the
irregular solution outperforms the other tomography param-
eterisation approaches in the height ranges 0.2-2km. For
the higher altitudes, the irregular and spline solutions are on
the same RMSE level (24 ppm). The constant and trilinear
approaches have RMSE error larger by 1-3 ppm than the two
other tomographic solutions. In general, the RMSE of the a

Table 2 The statistics of the wet

refractivity fields estimated GPT Constant Trilinear Spline Irregular
using the four. tomographic [iN,, (mm) _36 _19 _24 20 _17
parameterisation approaches .

(synthetic solution) and derived 0 Ny (mm) 6.6 5.1 5.2 5.1 4.8
from the GPT2 model (a priori RMSE N,, (mm) 7.5 5.4 5.7 55 5.0

data)

The validation was performed based on the WRF model. The statistics are presented for all observations from
the analysed period (March 15-28, 2021)
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Fig. 9 The statistics of the wet refractivity fields estimated using the
four tomographic parameterisation approaches (synthetic solution) and
derived from the GPT2 model (a priori data). The validation was per-
formed based on the WRF model. The statistics are presented for the
particular height ranges from 0 to 6km

priori GPT?2 field is improved by the tomography solutions
on the level of 1-5 ppm.

The statistics calculated for the particular height ranges are
also presented in Table 3. In the bottom level (150 m for tri-
linear, spline, irregular; 275 m for constant) the improvement
of bias with respect to the a priori Ny, (GPT2) is the largest in
the case of the constant solution (bias reduced by 2.6 ppm).
Since in the voxel-based solution (constant) the bottom layer
is higher than in the node-based solutions (trilinear, spline,
irregular), more GNSS signals are affecting the results in
this part of the troposphere. However, the improvement of
standard deviation in the bottom layer is the largest in the

node-based solutions (5.7-5.8 ppm for trilinear and irregular
while 6.3 for constant). In the lower and middle troposphere
(0.3—4.0km) the largest impact of the tomographic technique
on the a priori N,, fields is noticed. In this height range, both
bias and standard deviation are the lowest for the irregular
parameterisation approach (— 2.3 ppm and 4.8 ppm, respec-
tively). In the middle and upper troposphere (4.0-12.0km)
the impact of the tomographic technique on the a priori data
is negligible (differences of bias and standard deviation on
the level of 0.0-0.2 ppm).

4.4 Validation of the wet refractivity fields: real
solution

In this section, the validation of the wet refractivity fields
from the tomographic solution based on the real GNSS SWD
estimates is presented. The validation is performed for the
four tomographic parameterisation approaches and the a pri-
ori data from the GPT2 model. The comparison is based on
the WRF model (Sect. 4.4.1) and the radiosonde observations
(Sect.4.4.2).

4.4.1 Validation based on the WRF model

The systematic error and the standard deviation of the tomo-
graphic runs and the GPT2 model, calculated based on the
comparison with the WRF model, are presented in Fig. 10.
The pattern of the tomographic statistics changes is similar
to the synthetic solution (Fig.8); however, the discrepan-
cies between the a priori data (GPT2) and the tomographic
estimates are smaller than in the synthetic case. The largest
improvement is noticed for the first two days of the analysed
period (March 15-16) and the last week (March 23-28). Dur-
ing these periods, the tomographic technique improved the
a priori N,, fields by 1-4 ppm in terms of systematic error

Table 3 The statistics of the wet

refractivity fields estimated GPT Constant Trilinear Spline Irregular
using the four tomographic 150m
parameterisation approaches .
(synthetic solution) and derived ANy (ppm) - 10.7 - —96 =95 —94
from the GPT2 model (a priori 6 Ny (ppm) 7.3 - 5.7 6.0 5.8
data) 275m
ANy (ppm) -938 -72 - - _
6 Ny (ppm) 7.1 6.3 - - -
3004000 m
ANy, (ppm) —-5.0 -29 —-33 -25 —-23
6 Ny (ppm) 6.8 5.3 5.2 5.1 4.8
4000-12,000 m
ANy, (ppm) 0.9 1.0 0.8 0.9 0.9
6 Ny (ppm) 1.1 1.0 0.8 0.8 1.3

The validation was performed based on the WRF model. The statistics are presented for the particular height

ranges
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Fig. 10 The statistics of the wet refractivity fields estimated using
the four tomographic parameterisation approaches (real solution) and
derived from the GPT2 model (a priori data). The validation was per-
formed based on the WRF model. The statistics are presented for the
consecutive epochs of the analysed period (March 15-28, 2021). The
shaded region corresponds to the period where the SWD values were
poorly reconstructed for all tomographic approaches

and 1-3 ppm in terms of standard deviation. The differences
in bias between the particular parameterisation approaches
are on the level of 1-2 ppm; the best results are found for
the constant and irregular approaches, while the worst for
the trilinear solution. The standard deviation is similar for all
tomographic runs (differences not larger than 1 ppm). During
March 17-23, no improvement of the a priori data is found;
the tomographic estimates are worse than GPT2 by 1-5 ppm
in bias and 1-6 ppm in standard deviation. The worst results
are noticed for the period where the SWDs were poorly recon-
structed by the tomographic model (March 20-23, indicated
by the grey rectangle; see Fig. 7).

The overall statistics indicate that all four tomographic
solutions improved the a priori data from the GPT2 model
(Table4). The largest improvement is noticed in terms of
bias in the irregular case (an improvement from the —3.6
ppm GPT2 to the —2.6 ppm irregular). The other tomo-
graphic parameterisation approaches result in a bias in the
range from —2.9 ppm (constant) to — 3.4 ppm (trilinear).
The discrepancies in standard deviation are smaller; the best
results are found for the constant and irregular solutions (5.8
ppm). The RMSE is the lowest for the irregular parameteri-
sation approach (6.3 ppm).

[ constant: trilinear: spline: irregular: GPT:
AN [Ny ANy [Ny — 1Ny
Ny ---- 6Ny ---=-6Ny ---- 6Ny, ---=- 6Ny

RMS N, —e—RMS N, —&—RMS N,, —e—RMS N,, —e—RMS N,,

6 " ; T T
| \
5

height [km)]
w IS

N

50 5 10
N, [ppm]

N, [ppm]

Fig. 11 The statistics of the wet refractivity fields estimated using
the four tomographic parameterisation approaches (real solution) and
derived from the GPT2 model (a priori data). The validation was per-
formed based on the WRF model. The statistics are presented for the
particular height ranges from 0 to 6km

The validation of the tomographic results on the particu-
lar height ranges shows that the discrepancies between the
a priori data and the estimated N,, fields are in the range of
0—4 ppm (Fig. 11). The pattern of the statistics changes with
height is similar to the synthetic solution (see Fig.9); how-
ever, the impact of the GNSS observations is smaller than in
the case of the ray-traced observations. The largest improve-
ment of the bias with respect to the a priori data is found for
the irregular solution (by 2-3 ppm in the range of 0.5-1.5 km)
and the worst for the trilinear one (by 0-1 ppm in the same
range). The RMSE is the lowest for the irregular and spline
solution (improvement by 2—-3 ppm with respect to the a pri-
ori data). Above the height of 4 km, the tomographic results
are in general the same as the a priori fields.

In the bottom layer of the tomographic solutions (150 m
for the trilinear, spline, and irregular; 275 m for the constant),
the improvement with respect to the GPT2 data is the most
visible in the case of irregular parameterisation approach
(bias decreased by 0.9 ppm, standard deviation decreased
by 1.1 ppm; Table 5). For the other tomographic solutions,
changes in the statistics in the bottom layer are not larger

Table 4 The statistics of the wet

refractivity fields estimated GPT Constant Trilinear Spline Irregular
using the four. tomographic [iN,, (mm) _36 _29 34 ~30 _26
parameterisation approaches .

(real solution) and derived from 0 Ny (mm) 6.6 5.8 6.1 6.0 5.8

the GPT2 model (a priori data) RMSE N,, (mm) 7.5 6.5 7.0 6.7 6.3

The validation was performed based on the WRF model. The statistics are presented for all observations from
the analysed period (March 15-28, 2021)
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Table 5 The statistics of the wet

refractivity fields estimated GPT Constant Trilinear Spline Irregular
using the four tomographic 150 m
parameterisation approaches R
(real solution) and derived from ANw (ppm) - 107 - —105 —103 —101
the GPT2 model (a priori data) 6 Ny (ppm) 7.3 - 6.6 6.6 6.4
275m
ANy (ppm) -9.38 -93 - - _
6 Ny (ppm) 7.1 6.7 - - -
300-4000 m
ANy, (ppm) -5.0 —45 —4.38 —42 -338
6 Ny (ppm) 6.8 5.8 6.2 6.1 6.1
4000-12,000m
ANy, (ppm) 0.9 1.0 0.8 0.9 0.9
6 Ny (ppm) 1.1 1.0 0.8 0.8 0.8

The validation was performed based on the WRF model. The statistics are presented for the particular height

ranges

than 0.6 ppm. In the lower and middle troposphere (0.3—
4.0km) the lowest value of bias is noticed in the case of an
irregular grid (improvement by 1.2 ppm). The best standard
deviation is found for the constant approach (improvement
by 1.0 ppm); however, differences in this parameter are very
small between the four tomographic solutions (not larger than
0.3 ppm). In the middle and top troposphere (4.0-12.0km)
the discrepancies in the statistics between the GPT2 and the
tomographic solutions are small, not larger than 0.3 ppm.

4.4.2 Validation based on the radiosonde observations

Another validation of the real (GNSS-based) tomographic
solution was performed, using the radiosonde observations.
The tomographic estimates of the wet refractivity from the
whole domain were compared to the measurements from
the one radiosonde station (see Fig.3). Since the location
of the radio-sounding balloon can change during the mea-
surement by tens of kilometres (Wang and Zhang 2008;
Seidel et al. 2011) and the dimensions of the tomographic
area are relatively small (20km), the observations from the
whole tomographic domain were taken into account. The
statistics of the comparison are presented in Fig. 12. The sys-
tematic error was improved with respect to the a priori data
(GPT2) by 3-6 ppm at the beginning of the analysed period
(March 15-17) and during the last week (March 23-28).
The largest improvement of bias is noticed for the irregular
approach (1-2 ppm better than the other tomographic solu-
tions). For March 18-20 the quality of the GPT2 model was
much higher (bias in the range of —2 ppm to 2 ppm) and
the GNSS observations did not improve the a priori fields in
this period. However, also during this period, the irregular
tomographic solution was better than the others (bias —2 to
— 1 ppm). In terms of standard deviation, the tomographic
technique improved the a priori fields by 1-2 ppm at the

trilinear GPT

| constant spline - - - -irregular

/

Marl7 Marl9 Mar2l Mar23 Mar25 Mar27
Year 2021

Fig. 12 The statistics of the wet refractivity fields estimated using
the four tomographic parameterisation approaches (real solution) and
derived from the GPT2 model (a priori data). The validation was
performed based on the radiosonde measurements. The statistics are
presented for the consecutive epochs of the analysed period (March
15-28, 2021). The shaded region corresponds to the period where the
SWD values were poorly reconstructed for all tomographic approaches

beginning and the end of the analysed period. In the epochs
where the standard deviation of the GPT2 model was lower
than 4 ppm (March 17-23), no improvement by the tomog-
raphy was noticed. Almost through the whole period, the
irregular solution had the lowest standard deviation from all
tomographic solutions (lower by 1-2 ppm than constant and
trilinear; lower by 0.5 ppm than spline in selected epochs).
Only on March 26 the standard deviation of the constant
solution was better than irregular (by 1 ppm).

The quality of the wet refractivity fields from the tomo-
graphic solutions and the GPT2 model, compared to the RS
data, is also presented in Table 6. The largest impact of the
GNSS observations on the a priori fields is noticed in terms of
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Table 6 The statistics of the wet

refractivity fields estimated GPT Constant Trilinear Spline Irregular
using the four. tomographic [iN,, (mm) _27 _24 _22 _18 _14
parameterisation approaches R

(real solution) and derived from 0 Ny (mm) 6.4 5.9 5.9 5.7 5.6

the GPT2 model (a priori data) RMSE N, (mm) 6.9 6.4 6.3 6.0 5.8

The validation was performed based on the radiosonde measurements. The statistics are presented for all
observations from the analysed period (March 15-28, 2021)

constant: trilinear: spline: irregular: GPT:

ANy AN AN ANy —ilNo
6N, ---- 6Ny ---- 6Ny ---- 6Ny ---=- 6Ny
RMS N, —e—RMS N, ——RMS N,, —e—RMS N,, —e—RMS N,,

6

~

height [km]
w

N

.15 -10 -5 0 50 5 10
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Fig. 13 The statistics of the wet refractivity fields estimated using
the four tomographic parameterisation approaches (real solution) and
derived from the GPT2 model (a priori data). The validation was
performed based on the radiosonde measurements. The statistics are
presented for the particular height ranges from 0 to 6km

bias in the irregular solution (improvement by 1.3 ppm, while
for other tomographic solutions it is 0.3—-0.9 ppm). The stan-
dard deviation was only slightly improved (by 0.8-0.5 ppm);
the lowest value is found for the irregular solution (5.6 ppm);
however, the differences between tomographic solutions are
small (on the level of 0.1-0.3 ppm). In terms of RMSE, the
best tomographic solution is the irregular one (5.8 ppm).

In terms of bias, the irregular solution is the best from all
tomographic runs, for the whole vertical profile (Fig. 13). In
this parameterisation approach, the improvement of the bias
with respect to the GPT2 model is on the level of 3.0-0.5 ppm
in the height ranges of 0-3 km. The largest bias is noticed for
the trilinear solution, in the whole vertical profile (improve-
ment only by 0.0—1.0 ppm with respect to GPT2). However,
in terms of RMSE, in the lowest parts of the troposphere
(0—1.5km) the constant solution is slightly better than the
irregular (by 0.5 ppm), while in the higher parts (1.5—4.0km)
the irregular and spline solutions have the lowest RMSE.

In the bottom layer of the tomographic domain, the con-
stant solution improved the GPT2 model only slightly in
terms of bias (0.8 ppm) and did not change the standard
deviation (Table 7). In the case of node-based approaches,
the first tomographic layer is below the lowest radiosonde

@ Springer

measurement; thus, there is no comparison for these cases.
In the lower and middle troposphere (0.3—4.0km) the bias
was improved by 1.5 ppm for the irregular approach and
by 0.4-1.3 ppm for the other tomographic runs. In terms of
standard deviation, the constant solution was the best in this
height range (6.1 ppm), while the node-based solutions did
not differ much from each other (6.6-6.7 ppm). Above the
4 km altitude, no significant improvement of the GPT2 model
was noticed (changes by 0.0-0.1 ppm).

In order to check whether the distance from the radiosonde
station might impact the resulting statistics, another compar-
ison was performed—based on the tomographic nodes not
further than 4 km from the RS station. The results are similar
to those presented in this chapter; the standard deviations and
bias of the tomographic solutions are slightly lower than in
the current comparison, however, with the same patterns of
changes with time and height. The results can be found in
Appendix A (Figures 15, 16 and Tables 8§, 9).

4.4.3 Profiles of wet refractivity

The tomographic results were also examined for individual
wet refractivity profiles in the vertical direction (Fig.14).
Three various cases were selected based on the characteris-
tics of the RS wet refractivity profiles: a calm profile (panel a),
a profile with several inversions (panel b), and a profile with
one inversion (panel c). The first case presents wet refrac-
tivity data that reach 35 ppm near the ground and decrease
regularly with height. In this case, the GPT2 model (a priori
for the tomographic solution) indicates values of refractivity
lower than 20 ppm near the ground, with a gradual decrease
with height. The regular tomographic solutions outperform
the GPT2 model by 10-15 ppm at 1 km altitude. In the case
of the irregular solution, the irregular nodes occur at altitudes
of 2.5-10km; the wet refractivity values at these points do
not differ significantly from the regular solutions (discrepan-
cies by 1-2 ppm). In the second case (panel b.), the general
shape of the wet refractivity profile is similar to the previ-
ous one, but with several inversions at altitudes 2—4 km. The
GNSS observations improved the a priori fields; however,
the inversions were not detected by any of the tomographic
solutions. The last example (panel c.) presents a wet refrac-
tivity profile starting from 25 ppm near the ground, reaching
2—4 ppm at altitudes 2.5-3.5km and 10 ppm at altitude 4 km.
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Table 7 The statistics of the wet

refractivity fields estimated GPT Constant Trilinear Spline Irregular
using the four tomographic 275m
parameterisation approaches R
(real solution) and derived from ANy (ppm) - 10.8 —10.0 - - -
the GPT2 model (a priori data) 6 Ny (ppm) 6.4 6.4 - - -
300-4000m
ANy, (ppm) —4.5 —-3.6 —4.1 —-34 -3.0
6 Ny (ppm) 7.0 6.1 6.7 6.6 6.6
4000-12,000 m
ANy, (ppm) 1.1 1.2 1.1 1.1 1.1
6 Ny (ppm) 0.9 1.0 0.9 0.9 0.9

The validation was performed based on the radiosonde measurements. The statistics are presented for the

particular height ranges

122 2021-03-21 12:00 b 2021-03-24 00:00 ¢ 2021-03-28 12:00
constant ——RS constant ——RS | constant ——RS
trilinear - WRF trilinear - ‘WRF trilinear WRF
10 f pline ——GPT |] pline ——GPT spline ——GPT
e irregular e irregular e irregular

height [km)]

N, [ppm]

Fig. 14 Vertical profiles of wet refractivity derived from the tomo-
graphic solutions, radiosonde observations (RS), WRF model, and the
GPT2 model. The following cases were presented: calm profile (a),

In the lower troposphere, the best results are noticed for the
spline tomographic approach, for which the wet refractivity
reaches 25-27 ppm. The trilinear solution was slightly worse
(22-23 ppm near the ground), whereas the constant approach
did not change the a priori fields significantly (discrepancies
between the constant solution and GPT2 model are not larger
than 1-2 ppm). In the middle part of the profile, all regular
tomographic solutions do not differ significantly from the a
priori GPT?2 data. In the case of the irregular solution, the wet
refractivity estimated in the tomographic nodes is closer to
the RS profile than the GPT2 model for the altitudes 2-3 km;
although the values do not reach those from the RS data, they
are the most successful from the all tomographic solutions.

5 Discussion

The conducted experiment was a base to analyse the tomo-
graphic results in the context of (1) the impact of the
voxel-based or node-based parameterisation approach; (2)
the impact of the interpolation method in the node-based

N, [ppm]

30 40 40

N, [ppm]

profile with several inversions (b), and profile with one inversion (c).
The red dots correspond to the irregular nodes from the irregular tomo-
graphic solution

approach; (3) the optimisation of the tomographic nodes’
distribution; (4) use of the tropospheric estimates from a net-
work of low-cost GNSS receivers.

The impact of the voxel-based or the node-based param-
eterisation approach is clearly visible in the results of both
SWD reconstruction (Sect.4.2) and wet refractivity estima-
tion (Sects. 4.3, 4.4). In the case of the SWD reconstruction,
a positive bias of about 2.7mm is introduced by the voxel-
based approach, while for the node-based it is —0.2mm
(spline interpolation). The positive bias might be a result of
the choice of the representative point within the voxel in order
to model the SWD value (here, a central point of the voxel).
As the wet refractivity in general (in calm weather con-
ditions) decreases exponentially with height (Boehm et al.
2009), the choice of the central point within a voxel as a
representative one might introduce a systematic error. This
impact is also noticed in the final tomographic estimations
of N,, where a systematic error is about 1-2 ppm larger in
the voxel-based than in the node-based (bilinear) approach.
Similar results can be found in the work of Perler et al. (2011)
where the voxel-based and the node-based estimations were
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compared. In that experiment, a systematic error of the voxel-
based approach was more than two times larger than in the
node-based (0.010 ppm and 0.004 ppm, respectively) for the
synthetic solution. In the same work, a comparison based on
a real GNSS network gave mixed results, i.e. lower bias in
the voxel-based solution for the radiosonde measurements
at midnight (0 UTC) but higher at noon (12 UTC). How-
ever, the experiment was conducted based on two validation
epochs only. It is worth noticing that in our study not only
the systematic errors but also the standard deviations of the
reconstructed SWDs are smaller in the case of the node-based
tomographic approach.

In the node-based approach, the wet refractivity values
are estimated in the nodes of the tomographic grid. On the
contrary, in the voxel-based approach, the wet refractivity
values are estimated for the whole 3-D blocks in the tomo-
graphic domain. As a result, in the voxel-based approach,
the N, fields have to be transformed from the block form
into the grid form in order to validate them with external
data sources. At the validation step, it introduces represen-
tation error of the tomographic data which might impact the
assessment of their quality. Besides the validation issues, the
same problem occurs in the assimilation step of the tomo-
graphic data. Usually, when the voxel-based tomographic
results are assimilated into the NWP models, the N,, within
the voxel is assigned to the central point and then assimilated
into the grid-based NWP model (Hanna et al. 2019; Trzcina
and Rohm 2019; Trzcina et al. 2020). Since the represen-
tation error impacts the results of the voxel-based approach
more than the node-based one, it would be reasonable to use
the latter in the data assimilation applications.

Although the errors of the node-based parameterisation
approach are lower than in the voxel-based solution, it is
only in the case of the spline vertical interpolation. The
linear vertical interpolation (i.e. trilinear solution in this
study) introduces positive systematic error in the SWD
reconstruction (5.9mm) and negative in the N, estima-
tion (—2.4mm synthetic solution, — 3.4 mm real solution).
Also, the standard deviation of the trilinear approach (SWDs
reconstruction, N,, estimation) was the highest from the all
solutions. To some extent, the results correspond well with
the conclusions of Perler (2011) who found that the spline
vertical interpolation gives better results than the trilinear.
On the other hand, in the same work, the trilinear approach
overperformed the voxel-based one, which is contrary to our
results. However, in that research, the wet refractivity values
were validated based on 1441 points distributed along one
vertical profile in the centre of the tomographic domain. As
a result, in the work of Perler (2011), the wet refractivity
value estimated for one voxel is taken into account several
times at the validation step, although it is constant for the
whole voxel. In our case, we compared the estimated values
at the heights of the tomographic layers (11 for the voxel-
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based and 12 for the node-based approach; see Fig. 3), for the
whole domain, in all epochs. Thus, the differences between
those results might be caused by the validation method. The
results that we obtained correspond well with the physics of
the troposphere where the humidity in general changes expo-
nentially with height. If the linear interpolation is applied in
the vertical direction, a positive bias should occur; since the
tomography involves an inversion process, the final estima-
tions are negatively biased.

In this work, we introduced a method of optimising the
distribution of the tomographic nodes based on the distribu-
tion of the GNSS rays within the tomographic domain. In
the literature, there are no works considering the irregular
distribution of the tomographic nodes. However, there are
works of Ding et al. (2017, 2018) and Zhang et al. (2020b)
who propose to adjust the domain’s boundaries to the distri-
bution of the GNSS rays’ location and then apply meshing
techniques to define tomographic nodes. In our case, intro-
ducing the additional irregularly distributed nodes resulted
in a decrease in the systematic error and standard devia-
tion of the tomographic solution, for both synthetic and real
data. The improvement was not high (up to 0.5 ppm when
compared to the regular spline solution); however, it was
consistent for all comparisons (synthetic and real data val-
idated by the WRF model, and real data validated by the
RS observations). Also, the detection of the inverse in the
wet refractivity vertical profile was the most successful in
the case of the irregular approach. In the other works con-
cerning moving away from the regular cuboid grid in the
GNSS troposphere tomography (Ding et al. 2017, 2018;
Zhang et al. 2020b) the improvement was similar to our
results, on the level of 30-40% (0.1-0.5 g m_3), mainly due
to modifications in the lower troposphere (where regular
cuboid grid introduces problems in the proper wet refrac-
tivity estimation). The mentioned works were focused on the
adjustment of the domain’s boundaries into the GNSS rays
distribution, while our approach introduces additional irreg-
ularly distributed nodes, in the optimal location (close to the
intersecting GNSS rays); thus, these two approaches are com-
plementary and could be combined in future research. Also,
the new method would be even more effective if observations
from a number of different receivers (with different geome-
try) were added, e.g. mobile GNSS receivers, signals from
the LEO satellites crossing the troposphere, and observations
from High Altitude Platform Station (HAPS).

The GNSS troposphere tomography experiment was per-
formed based on observations from a dense network of low-
cost multi-GNSS receivers located in the area of Wroctaw
and its suburbs, with a mean distance between the receivers
equal to 3km. The presented work shows that using low-cost
GNSS receivers for the 3-D reconstruction of wet refractiv-
ity gives positive results. The initial wet refractivity fields
derived from the GPT2 model were improved by the GNSS
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observations in all presented cases (validation based on the
WRF model and the RS observations). The best improvement
(up to 4 ppm) was noticed in the altitude range of 0.2-3.0km,
contrary to the works based on the geodetic-grade GNSS sta-
tions, where the largest improvement is noticed for a range
of 2.0-6.0km (Moller 2017; Hanna et al. 2019) or even up
to 8.0km (Brenot et al. 2019). This discrepancy in altitude
range comes from different characteristics of the GNSS rays’
geometry within the tomographic domains based on the dense
network (3km) and the standard GNSS networks (tens of
kilometres). In our case, the network of 16 receivers on an
area of 14 x 24 km provides dense observations in the lower
parts of the troposphere (signals’ intersections are present
mostly at the 0.2-3.0km altitude) that enable to reconstruct
wet refractivity on the height levels that are problematic in
the sparse GNSS networks, i.e. below 2 km. The small inter-
station distance results in low variability of the water vapour
content between the stations at altitudes higher than 3km
which might be the reason for a limited impact above this
threshold. Also, the topography of Wroctaw city is rather
flat which results in similar altitudes of all GNSS receivers
within the network (maximum height difference between the
stations equal to 25m); it is a limiting factor in the tomo-
graphic reconstruction of the wet refractivity fields (Rohm
and Bosy 2009, 2011). In the paper by Marut et al. (2022)
it was proven that the low-cost GNSS receivers are able
to provide 2-D information about water vapour distribution
in the troposphere on the level of 1.0-1.5 kg m™2 IWV. It
shows the ability of the low-cost receivers to provide water
vapour distribution on the city scale, which was also shown in
our research. The low-cost receivers could be used in future
tomographic studies to densify the geodetic-grade GNSS net-
works in order to improve the solution in the lower parts of
the troposphere (below 2.0km altitude).

6 Conclusion

The GNSS tropospheric tomography provides 3-D fields
of wet refractivity or water vapour density which are of
great importance for weather prediction systems. The first
results of the assimilation of the tomographic outputs into the
NWP models are encouraging for the further development of
this technique. Recently, several studies were conducted on
the parameterisation of the tomographic domain, introduc-
ing two main approaches, i.e. voxel-based and node-based.
Also, experiments with adjustment of the domain’s bound-
aries to the distribution of the GNSS rays in space have been
presented. However, all of these approaches are based on
the regular distribution of the tomographic nodes within the
domain. Since the distribution of the GNSS rays in the tro-
posphere is not regular, we propose a new parameterisation
approach with optimisation of the tomographic nodes’ loca-

tion. In this work, a cross-comparison of four tomographic
solutions is performed in order to analyse them in the con-
text of parameterisation. The experiment is conducted using a
dense network of low-cost multi-GNSS receivers in Wroctaw
and its suburbs, for the 2-week period including calm weather
and heavy precipitation event.

The GNSS troposphere tomography performed based on
the dense network of the low-cost receivers improved the
initial GPT2 model wet refractivity fields by up to 4.0 ppm.
The best results were achieved for the altitudes of 0.2-3.0km.
The GNSS ray’s geometry within the dense low-cost network
(most intersections of the rays on the altitudes 0.2-3.0km)
enables the reconstruction of wet refractivity on the height
levels below 2 km, which is usually not possible using sparse
geodetic-grade networks. Future studies could be focused on
the densification of the geodetic-grade GNSS networks by
the low-cost receivers in order to better resolve lower parts
of the troposphere.

The new approach of the GNSS troposphere tomography
parameterisation with an optimisation of the tomographic
nodes’ distribution gave the best results from the all presented
approaches. The improvement was noticed with respect to
both voxel-based and regular node-based approaches by 0.5—
2.0 ppm in terms of wet refractivity RMSE, especially for
the altitudes 0.5-2.0km. The new proposed approach shows
potential for further use with a larger number of observations
from various sensors, characterised by different geometries
(e.g. signals from the LEO satellites) which could make an
even larger impact on the optimal distribution of the tomo-
graphic nodes. Also, the new method could be combined with
the approach based on the optimisation of the tomographic
domain’s boundaries. The experiment shows the potential of
the node-based tomographic parameterisation which should
be used in the context of assimilation of the tomographic
results into the NWP models.
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Appendix A: Tomographic data validation
based on the radiosonde measurements:
nodes from the distance of 4 km from the RS
station

See Figures 15, 16 and Tables 8, 9.
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Fig. 15 The statistics of the wet refractivity fields estimated using
the four tomographic parameterisation approaches (real solution) and
derived from the GPT2 model (a priori data). The validation was
performed based on the radiosonde measurements. The statistics are
presented for the consecutive epochs of the analysed period (March 15—
28,2021), for the nodes located not more than 4 km from the radiosonde
station. The shaded region corresponds to the period where the SWD
values were poorly reconstructed for all tomographic approaches
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Fig. 16 The statistics of the wet refractivity fields estimated using
the four tomographic parameterisation approaches (real solution) and
derived from the GPT2 model (a priori data). The validation was
performed based on the radiosonde measurements. The statistics are
presented for the particular height ranges from 0 to 6 km, for the nodes
located not more than 4 km from the radiosonde station
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Table 8 The statistics of the wet

refractivity fields estimated GPT Constant Trilinear Spline Irregular
using the four. tomographic /iN, (mm) _27 _21 _25 —21 13
parameterisation approaches R

(real solution) and derived from 0 Ny (mm) 6.4 5.9 6.5 6.2 5.3

the GPT2 model (a priori data) RMSE N,, (mm) 7.0 6.3 7.0 6.5 5.5

The validation was performed based on the radiosonde measurements. The statistics are presented for all
observations from the analysed period (March 15-28, 2021), for the nodes located not more than 4 km from

the radiosonde station

Table9 The statistics of the wet

refractivity fields estimated GPT Constant Trilinear Spline Irregular
using the four tomographic 275m
parameterisation approaches .
(real solution) and derived from ANw (ppm) —10.8 =70 - - -
the GPT2 model (a priori data) o Ny (ppm) 6.5 9.0 - - -
300-4000 m
ANy, (ppm) —4.5 —-3.5 —4.6 —-3.8 —-2.8
0 Ny (ppm) 7.0 6.1 7.4 7.2 6.3
4000-12,000 m
ANy (ppm) 1.1 1.2 1.0 1.1 1.1
6 Ny (ppm) 0.9 1.0 0.8 0.8 1.0

The validation was performed based on the radiosonde measurements. The statistics are presented for the
particular height ranges, for the nodes located not more than 4km from the radiosonde station

References

Agnew DC, Larson KM (2007) Finding the repeat times of the GPS
constellation. GPS Solut 11(1):71-76

Alber C, Ware R, Rocken C et al (2000) Obtaining single path
phase delays from GPS double differences. Geophys Res Lett
27(17):2661-2664

Arriola JS, Lindskog M, Thorsteinsson S et al (2016) Variational bias
correction of GNSS ZTD in the HARMONIE modeling system.
J Appl Meteorol Climatol 55(5):1259-1276. https://doi.org/10.
1175/JAMC-D-15-0137.1

Barindelli S, Realini E, Venuti G et al (2018) Detection of water
vapor time variations associated with heavy rain in northern Italy
by geodetic and low-cost GNSS receivers. Earth Planets Space
70(1):1-18. https://doi.org/10.1186/s40623-018-0795-7

Bender M, Raabe A (2007) Preconditions to ground based GPS water
vapour tomography. In: Annales geophysicae. Copernicus GmbH,
pp 1727-1734. https://doi.org/10.5194/angeo-25-1727-2007

Benevides P, Catalao J, Nico G (2019) Neural network approach to fore-
cast hourly intense rainfall using GNSS precipitable water vapor
and meteorological sensors. Remote Sens 11(8):966. https://doi.
org/10.3390/rs11080966

Benjamin SG, Jamison BD, Moninger WR et al (2010) Relative short-
range forecast impact from aircraft, profiler, radiosonde, VAD,
GPS-PW, METAR, and mesonet observations via the RUC hourly
assimilation cycle. Mon Weather Rev 138(4):1319-1343. https://
doi.org/10.1175/2009OMWR3097.1

Benjamin SG, Weygandt SS, Brown JM et al (2016) A North Amer-
ican hourly assimilation and model forecast cycle: the Rapid
Refresh. Mon Weather Rev 144(4):1669-1694. https://doi.org/10.
1175/MWR-D-15-0242.1

Bennitt GV, Jupp A (2012) Operational assimilation of GPS zenith
total delay observations into the Met Office numerical weather
prediction models. Mon Weather Rev 140(8):2706-2719. https://
doi.org/10.1175/MWR-D-11-00156.1

Bevis M, Businger S, Herring TA et al (1992) GPS meteorology: remote
sensing of atmospheric water vapor using the global positioning
system. J Geophys Res Atmos 97(D14):15,787-15,801. https://
doi.org/10.1029/92JD01517

Boehm J, Kouba J, Schuh H (2009) Forecast Vienna Mapping Functions
1 for real-time analysis of space geodetic observations. J. Geod.
83(5):397-401. https://doi.org/10.1007/s00190-008-0216-y

Bohm J, Schuh H (2013) Atmospheric effects in space geodesy, vol 5.
Springer, Berlin. https://doi.org/10.1007/978-3-642-36932-2

Boniface K, Champollion C, Chery J et al (2012) Potential of ship-
borne GPS atmospheric delay data for prediction of Mediterranean
intense weather events. Atmos. Sci. Lett. 13(4):250-256. https:/
doi.org/10.1002/as1.391

Bosy J, Kaplon J, Rohm W et al (2012) Near real-time estimation of
water vapour in the troposphere using ground GNSS and the mete-
orological data. Ann. Geophys. 30(9):1379-1391. https://doi.org/
10.5194/angeo-30-1379-2012

Bramanto B, Gumilar I, Sidiq TP et al (2018) Sensing of the atmo-
spheric variation using low cost GNSS receiver. In: IOP conference
series: earth and environmental science. IOP Publishing, p 012073.
https://doi.org/10.1088/1755-1315/149/1/012073

Brenot H, Rohm W, Ka¢maiik M et al (2019) Cross-comparison and
methodological improvement in GPS tomography. Remote Sens
12(1):30. https://doi.org/10.3390/rs12010030

Couvreux F, Guichard F, Redelsperger JL et al (2005) Water-vapour
variability within a convective boundary-layer assessed by large-
Eddy simulations and IHOP_2002 observations. Q J R Meteorol
Soc A J Atmos Sci Appl Meteorol Phys Oceanogr 131(611):2665—
2693. https://doi.org/10.1256/qj.04.167

Cucurull L, Vandenberghe F, Barker D et al (2004) Three-
dimensional variational data assimilation of ground-based GPS
ZTD and meteorological observations during the 14 Decem-
ber 2001 storm event over the western Mediterranean Sea.
Mon Weather Rev 132(3):749-763. https://doi.org/10.1175/1520-
0493(2004)132<0749:TVDAOG>2.0.CO;2

@ Springer


https://doi.org/10.1175/JAMC-D-15-0137.1
https://doi.org/10.1175/JAMC-D-15-0137.1
https://doi.org/10.1186/s40623-018-0795-7
https://doi.org/10.5194/angeo-25-1727-2007
https://doi.org/10.3390/rs11080966
https://doi.org/10.3390/rs11080966
https://doi.org/10.1175/2009MWR3097.1
https://doi.org/10.1175/2009MWR3097.1
https://doi.org/10.1175/MWR-D-15-0242.1
https://doi.org/10.1175/MWR-D-15-0242.1
https://doi.org/10.1175/MWR-D-11-00156.1
https://doi.org/10.1175/MWR-D-11-00156.1
https://doi.org/10.1029/92JD01517
https://doi.org/10.1029/92JD01517
https://doi.org/10.1007/s00190-008-0216-y
https://doi.org/10.1007/978-3-642-36932-2
https://doi.org/10.1002/asl.391
https://doi.org/10.1002/asl.391
https://doi.org/10.5194/angeo-30-1379-2012
https://doi.org/10.5194/angeo-30-1379-2012
https://doi.org/10.1088/1755-1315/149/1/012073
https://doi.org/10.3390/rs12010030
https://doi.org/10.1256/qj.04.167
https://doi.org/10.1175/1520-0493(2004)132<0749:TVDAOG>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<0749:TVDAOG>2.0.CO;2

2 Page22o0f23

E. Trzcina et al.

Dach R, Arnold D, Baumann C, et al (2015) Bernese GNSS software.
Technical report, Swiss Geodetic Commission. https://doi.org/10.
7892/boris.72297

Davis J, Herring T, Shapiro I et al (1985) Geodesy by radio interfer-
ometry: effects of atmospheric modeling errors on estimates of
baseline length. Radio Sci 20(6):1593-1607. https://doi.org/10.
1029/RS020i006p01593

De Haan S (2013) Assimilation of GNSS ZTD and radar radial velocity
for the benefit of very-short-range regional weather forecasts. Q J
R Meteorol Soc 139(677):2097-2107. https://doi.org/10.1002/qj.
2087

Ding N, Zhang S, Zhang Q (2017) New parameterized model for GPS
water vapor tomography. Ann Geophys 35(2):311-323. https:/
doi.org/10.5194/angeo-35-311-2017

Ding N, Zhang S, Wu S et al (2018) Adaptive node parameterization for
dynamic determination of boundaries and nodes of GNSS tomo-
graphic models. J Geophys Res Atmos 123(4):1990-2003. https://
doi.org/10.1002/2017JD027748

Dousa J, Bennitt GV (2013) Estimation and evaluation of hourly
updated global GPS Zenith Total Delays over ten months. GPS
Solut 17(4):453-464. https://doi.org/10.1007/s10291-012-0291-
7

ECMWEF (2011) The ERA-Interim reanalysis dataset, Copernicus cli-
mate change service (C3S). https://www.ecmwf.int/en/forecasts/
datasets/archive-datasets/reanalysis-datasets/era-interim

Ester M, Kriegel HP, Sander J, et al (1996) A density-based algorithm
for discovering clusters in large spatial databases with noise. In:
kdd, pp 226-231

Flores A, Ruffini G, Rius A (2000) 4D tropospheric tomography using
GPS slant wet delays. Ann Geophys 18(2):223-234. https://doi.
org/10.1007/s00585-000-0223-7

Giannaros C, Kotroni V, Lagouvardos K et al (2020) Assessing the
impact of GNSS ZTD data assimilation into the WRF modeling
system during high-impact rainfall events over Greece. Remote
Sens 12(3):383. https://doi.org/10.3390/rs12030383

Givati A, Lynn B, Liu Y et al (2011) Using the WRF model in an
operational streamflow forecast system for the Jordan River. J
Appl Meteorol Climatol 51(2):285-299. https://doi.org/10.1175/
JAMC-D-11-082.1

Guerova G, Jones J, Dousa J et al (2016) Review of the state of the art
and future prospects of the ground-based GNSS meteorology in
Europe. Atmos Meas Tech 9(11):5385-5406. https://doi.org/10.
5194/amt-9-5385-2016

Hadas T, Hobiger T (2020) Benefits of using Galileo for real-time GNSS
meteorology. IEEE Geosci Remote Sens Lett 18(10):1756-1760.
https://doi.org/10.1109/LGRS.2020.3007138

Hanna N, Trzcina E, Moller G et al (2019) Assimilation of GNSS
tomography products into the Weather Research and Forecast-
ing model using radio occultation data assimilation operator.
Atmos Meas Tech 12(9):4829-4848. https://doi.org/10.5194/amt-
12-4829-2019

Hirahara K (2000) Local GPS tropospheric tomography. Earth Planets
Space 52(11):935-939. https://doi.org/10.1186/BF03352308

Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2007) GNSS-global
navigation satellite systems: GPS, GLONASS, Galileo, and more.
Springer, Berlin. https://doi.org/10.1007/978-3-211-73017- 1

Hordyniec P, Kapton J, Rohm W et al (2018) Residuals of tropospheric
delays from GNSS data and ray-tracing as a potential indicator of
rain and clouds. Remote Sens 10(12):1917

Hsiao LF, Chen DS, Kuo YH et al (2012) Application of WRF3DVAR to
operational typhoon prediction in Taiwan: impact of outer loop and
partial cycling approaches. Weather Forecast 27(5):1249-1263.
https://doi.org/10.1175/WAF-D-11-00131.1

Jacob D (2001) The role of water vapour in the atmosphere: A short
overview from a climate modeller’s point of view. Phys Chem

@ Springer

Earth Part A Solid Earth Geod 26(6-8):523-527. https://doi.org/
10.1016/S1464-1895(01)00094- 1

Janjic Z, Black T, Pyle M, et al (2005) The NCEP WRF NMM core. In
preprints, 2005 WRF/MMS user’s workshop, pp 27-30

Ka¢maiik M, Dousa J, Dick G et al (2017) Inter-technique validation
of tropospheric slant total delays. Atmos Meas Tech 10(6):2183—
2208. https://doi.org/10.5194/amt-10-2183-2017

Kawabata T, Shoji Y (2018). Applications of GNSS slant path delay
data on meteorology at storm scales. https://doi.org/10.5772/
intechopen.75101

Kleijer F (2004) Troposphere modeling and filtering for precise GPS
leveling. PhD thesis, TU Delft, Delft University of Technology.
https://doi.org/10.26491/mhwm/65146

Krietemeyer A, Mc Ten Veldhuis, Van der Marel H et al (2018) Poten-
tial of cost-efficient single frequency GNSS receivers for water
vapor monitoring. Remote Sens 10(9):1493. https://doi.org/10.
3390/rs10091493

Kryza M, Werner M, Watszek K et al (2013) Application and evaluation
of the WRF model for high-resolution forecasting of rainfall-a case
study of SW Poland. Meteorol Z 22(5):595-601. https://doi.org/
10.1127/0941-2948/2013/0444

Lagler K, Schindelegger M, Bohm J et al (2013) GPT2: empirical slant
delay model for radio space geodetic techniques. Geophys Res
Lett 40(6):1069-1073. https://doi.org/10.1002/grl.50288

Lasota E, Rohm W, Guerova G et al (2020) A comparison between ray-
traced GFS/WRF/ERA and GNSS Slant Path Delays in tropical
cyclone Meranti. IEEE Trans Geosci Remote Sens 58(1):421-435.
https://doi.org/10.1109/TGRS.2019.2936785

Li X, Dick G, Lu C et al (2015) Multi-GNSS meteorology:
real-time retrieving of atmospheric water vapor from BeiDou,
Galileo, GLONASS, and GPS observations. IEEE Trans Geosci
Remote Sens 53(12):6385-6393. https://doi.org/10.1109/TGRS.
2015.2438395

t.os M, Smolak K, Guerova G et al (2020) GNSS-based machine learn-
ing storm nowcasting. Remote Sens 12(16):2536. https://doi.org/
10.3390/r512162536

Mahfouf JF, Ahmed F, Moll P et al (2015) Assimilation of zenith
total delays in the AROME France convective scale model: a
recent assessment. Tellus A Dyn Meteorol Oceanogr 67(1):26,106.
https://doi.org/10.3402/tellusa.v67.26106

Manning T (2013) Sensing the dynamics of severe weather using 4D
GPS tomography in the Australian region. PhD thesis, RMIT Uni-
versity

Manning T, Rohm W, Zhang K et al (2014) Determining the 4D dynam-
ics of wet refractivity using GPS tomography in the Australian
region. In: Rizos C, Willis P (eds) Earth on the edge: science for a
sustainable planet. Springer, Berlin, p 41-49

Marut G, Hadas T, Kaplon J, Trzcina E, Rohm W (2022) Monitoring
the water vapor content at high spatio-temporal resolution using
a network of low-cost multi-GNSS receivers. IEEE Trans Geosci
Remote Sens. https://doi.org/10.1109/TGRS.2022.3226631

Mateus P, Miranda PM, Nico G et al (2018) Assimilating InSAR maps of
water vapor to improve heavy rainfall forecasts: a case study with
two successive storms. J Geophys Res Atmos 123(7):3341-3355.
https://doi.org/10.1002/2017JD027472

Mazany RA, Businger S, Gutman SI et al (2002) A lightning pre-
diction index that utilizes GPS integrated precipitable water
vapor. Weather Forecast 17(5):1034—1047. https://doi.org/10.
1175/1520-0434(2002)017<1034:ALPITU>2.0.CO;2

Mendes V (1999) Modeling the neutral-atmospheric propagation
delay in radiometric space techniques. PhD thesis, Department
of Geodesy and Geomatics Engineering, Technical Report No.
199, 353 pp., University of New Brunswick, Fredericton, New
Brunswick, Canada

Moller G (2017) Reconstruction of 3D wet refractivity fields in the
lower atmosphere along bended GNSS signal paths. PhD the-


https://doi.org/10.7892/boris.72297
https://doi.org/10.7892/boris.72297
https://doi.org/10.1029/RS020i006p01593
https://doi.org/10.1029/RS020i006p01593
https://doi.org/10.1002/qj.2087
https://doi.org/10.1002/qj.2087
https://doi.org/10.5194/angeo-35-311-2017
https://doi.org/10.5194/angeo-35-311-2017
https://doi.org/10.1002/2017JD027748
https://doi.org/10.1002/2017JD027748
https://doi.org/10.1007/s10291-012-0291-7
https://doi.org/10.1007/s10291-012-0291-7
https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim
https://doi.org/10.1007/s00585-000-0223-7
https://doi.org/10.1007/s00585-000-0223-7
https://doi.org/10.3390/rs12030383
https://doi.org/10.1175/JAMC-D-11-082.1
https://doi.org/10.1175/JAMC-D-11-082.1
https://doi.org/10.5194/amt-9-5385-2016
https://doi.org/10.5194/amt-9-5385-2016
https://doi.org/10.1109/LGRS.2020.3007138
https://doi.org/10.5194/amt-12-4829-2019
https://doi.org/10.5194/amt-12-4829-2019
https://doi.org/10.1186/BF03352308
https://doi.org/10.1007/978-3-211-73017-1
https://doi.org/10.1175/WAF-D-11-00131.1
https://doi.org/10.1016/S1464-1895(01)00094-1
https://doi.org/10.1016/S1464-1895(01)00094-1
https://doi.org/10.5194/amt-10-2183-2017
https://doi.org/10.5772/intechopen.75101
https://doi.org/10.5772/intechopen.75101
https://doi.org/10.26491/mhwm/65146
https://doi.org/10.3390/rs10091493
https://doi.org/10.3390/rs10091493
https://doi.org/10.1127/0941-2948/2013/0444
https://doi.org/10.1127/0941-2948/2013/0444
https://doi.org/10.1002/grl.50288
https://doi.org/10.1109/TGRS.2019.2936785
https://doi.org/10.1109/TGRS.2015.2438395
https://doi.org/10.1109/TGRS.2015.2438395
https://doi.org/10.3390/rs12162536
https://doi.org/10.3390/rs12162536
https://doi.org/10.3402/tellusa.v67.26106
https://doi.org/10.1109/TGRS.2022.3226631
https://doi.org/10.1002/2017JD027472
https://doi.org/10.1175/1520-0434(2002)017<1034:ALPITU>2.0.CO;2
https://doi.org/10.1175/1520-0434(2002)017<1034:ALPITU>2.0.CO;2

Parameterisation of the GNSS troposphere tomography domain with optimisation of the nodes...

Page230f23 2

sis, TU Wien, Vienna University of Technology, Department of
Geodesy and Geoinformation. https://doi.org/10.34726/hss.2017.
21443

Moller G, Wittmann C, Yan X et al (2015) 3D ground based GNSS
atmospheric tomography. Final report, FFG project GNSS-ATom
(ID:840098)

Nasrollahi N, Aghakouchak A, Li J et al (2012) Assessing the
impacts of different WRF precipitation physics in hurricane sim-
ulations. Weather Forecast 27(4):1003-1016. https://doi.org/10.
1175/WAE-D-10-05000.1

Ngdc NOAA (1993) 5-minute Gridded Global Relief Data (ETOPOS).
https://doi.org/10.7289/V5D798BF

Offiler D, Jones J, Bennitt G et al (2010) EIG EUMETNET GNSS Water
Vapour Programme (E-GVAP-II) Product Requirements Docu-
ment. Technical report, EIG EUMETNET

Pacione R, Araszkiewicz A, Brockmann E et al (2017) EPN-Repro2:
a reference GNSS tropospheric data set over Europe. Atmos
Meas Tech 10(5):1689-1705. https://doi.org/10.5194/amt-10-
1689-2017

Perler D (2011) Water vapor tomography using global navigation satel-
lite systems. PhD thesis, ETH Zurich, Swiss Federal Institute of
Technology in Ziirich. https://doi.org/10.3929/ethz-a-006875504

Perler D, Geiger A, Hurter F (2011) 4D GPS water vapor tomography:
new parameterized approaches. J Geod 85(8):539-550. https://doi.
org/10.1007/s00190-011-0454-2

Poli P, Moll P, Rabier F et al (2007) Forecast impact studies of zenith
total delay data from European near real-time GPS stations in
Météo France 4DVAR. J Geophys Res Atmos. https://doi.org/10.
1029/2006JD007430

Rohm W (2013) The ground GNSS tomography-unconstrained
approach. Adv Space Res 51(3):501-513. https://doi.org/10.1016/
j-asr.2012.09.021

Rohm W, Bosy J (2009) Local tomography troposphere model over
mountains area. Atmos Res 93(4):777-783. https://doi.org/10.
1016/j.atmosres.2009.03.013

Rohm W, Bosy J (2011) The verification of GNSS tropospheric tomog-
raphy model in a mountainous area. Adv Space Res 47(10):1721—
1730. https://doi.org/10.1016/j.asr.2010.04.017

Rohm W, Guzikowski J, Wilgan K et al (2019) 4DVAR assimilation of
GNSS zenith path delays and precipitable water into a numerical
weather prediction model WRE. Atmos Meas Tech 12(1):345-361.
https://doi.org/10.5194/amt-12-345-2019

Seidel DJ, Sun B, Pettey M et al (2011) Global radiosonde balloon
drift statistics. J Geophys Res Atmos. https://doi.org/10.1029/
2010JD014891

Shoji Y (2013) Retrieval of water vapor inhomogeneity using the
Japanese nationwide GPS array and its potential for prediction of
convective precipitation. J Meteorol Soc Jpn Ser II 91(1):43-62.
https://doi.org/10.2151/jms;j.2013-103

Shoji Y, Kunii M, Saito K (2011) Mesoscale data assimilation of
Myanmar cyclone Nargis Part II: assimilation of GPS-derived
precipitable water vapor. J] Meteorol Soc Jpn Ser II 89(1):67-88.
https://doi.org/10.2151/jmsj.2011-105

Skamarock W, Klemp J, Dudhia J, et al (2008) A description of the
advanced research WRF version 3. NCAR Tech Note NCAR/TN-
475+STR:113. https://doi.org/10.5065/D68S4MVH

Stensrud DJ (2009) Parameterization schemes: keys to understand-
ing numerical weather prediction models. Cambridge University
Press, Cambridge

Thayer GD (1974) An improved equation for the radio refractive
index of air. Radio Sci 9(10):803-807. https://doi.org/10.1029/
RS0091010p00803

Tonda§ D, Kapton J, Rohm W (2020) Ultra-fast near real-time
estimation of troposphere parameters and coordinates from
GPS data. Measurement 162(107):849. https://doi.org/10.1016/j.
measurement.2020.107849

Tralli DM, Lichten SM (1990) Stochastic estimation of tropospheric
path delays in global positioning system geodetic measure-
ments. Bulletin géodésique 64(2):127-159. https://doi.org/10.
1007/BF02520642

Troller M, Geiger A, Brockmann E et al (2006) Tomographic deter-
mination of the spatial distribution of water vapor using GPS
observations. Adv Space Res 37(12):2211-2217. https://doi.org/
10.1016/j.asr.2005.07.002

Trzcina E, Rohm W (2019) Estimation of 3D wet refractivity by
tomography, combining GNSS and NWP data: first results from
assimilation of wet refractivity into NWP. Q J R Meteorol Soc
145(720):1034—1051. https://doi.org/10.1002/qj.3475

Trzcina E, Hanna N, Kryza M et al (2020) TOMOREF operator
for assimilation of GNSS tomography wet refractivity fields in
WRF DA system. J Geophys Res Atmos 125(17):€2020JD032451.
https://doi.org/10.1029/2020JD032451

Turco R (1992) Atmospheric Chemistry. Climate System Modeling.
Cambridge University Press, New York, pp 234-235

Wang J, Zhang L (2008) Systematic errors in global radiosonde pre-
cipitable water data from comparisons with ground-based GPS
measurements. J Clim 21(10):2218-2238

Wilgan K, Rohm W, Bosy J (2015) Multi-observation meteorological
and GNSS data comparison with Numerical Weather Prediction
model. Atmos Res 156:29-42. https://doi.org/10.1016/j.atmosres.
2014.12.011

Yan X, Ducrocq V, Poli P et al (2009) Impact of GPS zenith delay assimi-
lation on convective-scale prediction of Mediterranean heavy rain-
fall. J Geophys Res Atmos. https://doi.org/10.1029/2008JD01103

Zhang W, Lou Y, Liu W et al (2020a) Rapid troposphere tomography
using adaptive simultaneous iterative reconstruction technique. J
Geod 94(8):1-12. https://doi.org/10.1007/s00190-020-01386-4

Zhang W, Zhang S, Ding N, et al (2020b) An improved tropospheric
tomography method based on the dynamic node parametrized
algorithm. Acta Geodyn Geomater 17:191-206. https://doi.org/
10.13168/AGG.2020.0014

Zus F, Wickert J, Bauer HS et al (2011) Experiments of GPS slant
path data assimilation with an advanced MMS5 4DVAR system.
Meteorologische Zeitschrift (Berlin) 20. https://doi.org/10.1127/
0941-2948/2011/0232

Zus F, Dick G, Heise S et al (2015) A forward operator and its adjoint
for GPS slant total delays. Radio Sci 50(5):393-405. https://doi.
org/10.1002/2014RS005584

@ Springer


https://doi.org/10.34726/hss.2017.21443
https://doi.org/10.34726/hss.2017.21443
https://doi.org/10.1175/WAF-D-10-05000.1
https://doi.org/10.1175/WAF-D-10-05000.1
https://doi.org/10.7289/V5D798BF
https://doi.org/10.5194/amt-10-1689-2017
https://doi.org/10.5194/amt-10-1689-2017
https://doi.org/10.3929/ethz-a-006875504
https://doi.org/10.1007/s00190-011-0454-2
https://doi.org/10.1007/s00190-011-0454-2
https://doi.org/10.1029/2006JD007430
https://doi.org/10.1029/2006JD007430
https://doi.org/10.1016/j.asr.2012.09.021
https://doi.org/10.1016/j.asr.2012.09.021
https://doi.org/10.1016/j.atmosres.2009.03.013
https://doi.org/10.1016/j.atmosres.2009.03.013
https://doi.org/10.1016/j.asr.2010.04.017
https://doi.org/10.5194/amt-12-345-2019
https://doi.org/10.1029/2010JD014891
https://doi.org/10.1029/2010JD014891
https://doi.org/10.2151/jmsj.2013-103
https://doi.org/10.2151/jmsj.2011-105
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.1029/RS009i010p00803
https://doi.org/10.1029/RS009i010p00803
https://doi.org/10.1016/j.measurement.2020.107849
https://doi.org/10.1016/j.measurement.2020.107849
https://doi.org/10.1007/BF02520642
https://doi.org/10.1007/BF02520642
https://doi.org/10.1016/j.asr.2005.07.002
https://doi.org/10.1016/j.asr.2005.07.002
https://doi.org/10.1002/qj.3475
https://doi.org/10.1029/2020JD032451
https://doi.org/10.1016/j.atmosres.2014.12.011
https://doi.org/10.1016/j.atmosres.2014.12.011
https://doi.org/10.1029/2008JD01103
https://doi.org/10.1007/s00190-020-01386-4
https://doi.org/10.13168/AGG.2020.0014
https://doi.org/10.13168/AGG.2020.0014
https://doi.org/10.1127/0941-2948/2011/0232
https://doi.org/10.1127/0941-2948/2011/0232
https://doi.org/10.1002/2014RS005584
https://doi.org/10.1002/2014RS005584

	Parameterisation of the GNSS troposphere tomography domain with optimisation of the nodes' distribution
	Abstract
	1 Introduction
	2 Methodology
	2.1 Tropospheric wet delay and wet refractivity
	2.2 Tomographic solution
	2.3 Parameterisation of the tomographic domain
	2.3.1 Voxel-based parameterisation
	2.3.2 Node-based parameterisation
	Trilinear interpolation
	Spline/bilinear interpolation

	2.4 Optimisation of the tomographic nodes' distribution

	3 Data
	3.1 GNSS troposphere tomography model
	3.2 GNSS tropospheric delays
	3.3 WRF model
	3.4 GPT2 model
	3.5 Meteorological radiosonde station
	3.6 Meteorological conditions

	4 Results
	4.1 Distribution of the irregular nodes
	4.2 Validation of the reconstructed SWDs
	4.3 Validation of the wet refractivity fields: synthetic solution
	4.4 Validation of the wet refractivity fields: real solution
	4.4.1 Validation based on the WRF model
	4.4.2 Validation based on the radiosonde observations
	4.4.3 Profiles of wet refractivity


	5 Discussion
	6 Conclusion
	Acknowledgements
	Appendix A: Tomographic data validation based on the radiosonde measurements: nodes from the distance of 4km from the RS station
	References




