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Abstract
Fast and accurate calculation of gravitational effects on a regional or global scalewith complex density environment is a critical
issue in gravitational forward modelling. Most existing significant developments with tessroid-based modelling are limited
to homogeneous density models or polynomial ones of a limited order. Moreover, the total gravitational effects of tesseroids
are often calculated by pure summation in these methods, which makes the calculation extremely time-consuming. A new
efficient and accurate method based on tesseroids with a polynomial density up to an arbitrary order in depth is developed
for 3D large-scale gravitational forward modelling. The method divides the source region into a number of tesseroids, and
the density in each tesseroid is assumed to be a polynomial function of arbitrary degree. To guarantee the computational
accuracy and efficiency, two key points are involved: (1) the volume Newton’s integral is decomposed into a one-dimensional
integral with a polynomial density in the radial direction, for which a simple analytical recursive formula is derived for
efficient calculation, and a surface integral over the horizontal directions evaluated by the Gauss–Legendre quadrature (GLQ)
combined with a 2D adaptive discretization strategy; (2) a fast and flexible discrete convolution algorithm based on 1D fast
Fourier transform (FFT) and a general Toepritz form of weight coefficient matrices is adopted in the longitudinal dimension to
speed up the computation of the cumulative contributions from all tesseroids. Numerical examples show that the gravitational
fields predicted by the new method have a good agreement with the corresponding analytical solutions for spherical shell
models with both polynomial and non-polynomial density variations in depth. Compared with the 3D GLQ methods, the
new algorithm is computationally more accurate and efficient. The calculation time is significantly reduced by 3 orders
of magnitude as compared with the traditional 3D GLQ methods. Application of the new algorithm in the global crustal
CRUST1.0 model further verifies its reliability and practicability in real cases. The proposed method will provide a powerful
numerical tool for large-scale gravity modelling and also an efficient forward engine for inversion and continuation problems.
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1 Introduction

With the advent of satellite gravimetry, high-quality gravity
measurements with global-scale coverage become available
(Soler et al. 2019). To estimate the density distribution from
observed data sets by a regularized inversion, an efficient
and accurate forward engine is of great importance. The
gravitational forwardmodelling primarily focuses on solving
the volumetric integral of Newton’s kernel and its deriva-
tives. A common method for evaluating these integrals is to
firstly decompose the source region into small elementary
mass bodies of various geometrical shapes, such as rectan-
gular prism and polyhedral body in Cartesian coordinates
(e.g. Anderson 1976; Pohanka 1988; Holstein andKetteridge
1996; Tsoulis 2012; D’Urso 2014a; Conway 2015; Wu and
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Chen 2016; Benedek et al. 2018; Zhang and Chen 2018;
Chen and Liu 2019; Wu et al. 2019), and tesseroid (spherical
prism) in spherical coordinates (e.g. Heck and Seitz 2007;
Grombein et al. 2013; Uieda et al. 2016; Zhao et al. 2019,
2021). Then, the overall gravitational effect is calculated by
adding all contributions of each individual element together.
For regional and global applications, the effect of the Earth’s
curvature is significant. Hence, the forward modelling are
often implemented in geocentric spherical coordinates and
use tesseroids, bounded by pairs of latitude, longitude, and
radial surfaces, as building blocks.

Generally, the forward calculation in spherical coordi-
nates consists of two parts: the evaluation of gravitational
effects produced by a single tesseroid and the computation
of cumulative contribution from all elementary cells. In con-
trast to the most common rectangular prism (Nagy et al.
2000; Wild-Pfeiffer 2008), the closed-form solution for a
general tesseroid is not available. Due to the fact that it is an
“elliptical integral”, the volumetric integral for a tesseroid
must be solved numerically or semi-analytically. The litera-
ture offers three main approaches: Taylor series expansion,
Gauss–Legendre quadrature (GLQ), and mixed integration.
The Taylor series expansion approach solves the elliptic inte-
gral using a Taylor series expansion of the triple integral and
a subsequent analytical integration of the expansions (Heck
and Seitz 2007; Grombein et al. 2013; Marotta et al. 2019).
This approach has high accuracy at low latitudes, but exhibits
decreasing accuracy towards the polar as the tesseroid grad-
ually degenerates into an approximately triangular shape
(Uieda et al. 2016). For the GLQ approach, the gravitational
effects of a tesseroid are numerically calculatedby aweighted
sum of the contribution of Gaussian points (Li et al. 2011;
Uieda et al. 2016; Lin and Denker 2019; Soler et al. 2019;
Zhao et al. 2019, 2021; Qiu and Chen 2020). The accuracy of
GLQ is predominantly controlled by the number of Gaussian
nodes (Ku 1977). In general, the more the Gaussian nodes,
the better the accuracy of GLQ, while the lower the computa-
tional efficiency. To reduce the computational cost and retain
satisfactory accuracy at the same time, the idea of adaptive
discretization is proposed. The adaptive discretization strate-
gies, whether 2D (Lin and Denker 2019; Soler et al. 2019) or
3D (Li et al. 2011;Uieda et al. 2016), adopt a similar criterion
that a tesseroid is divided if the distance to the computation
point is smaller than a constant times the size of the tesseroid.
This means that only the tesseroid close to the computation
point requires a greater number of subdivisions, which as a
result significantly shortens the computation time.

As an alternative, the mixed integration approach solves
the volumetric integrals for a tesseroid using a 2D spherical
integration in the horizontal directions and a 1D analytical
integration in the radial dimension. To solve the 2D spherical
integral, various numerical methods can be utilized, such as
Taylor series expansion (e.g. Smith 2002), GLQ (e.g. Wild-

Pfeiffer 2008; Lin and Denker 2019; Zhong et al. 2019), and
double exponential quadrature rule (e.g. Fukushima 2018).
Compared to the former volume integral approaches, this
mixed method using a combination of the numerical calcu-
lation of a surface integral and the analytical integration over
the radial coordinate can generate more accurate solutions
with less computation cost. Another significant advantage
lies in that the mixed method can be naturally extended
to the case of a general tesseroid with a radially varying
density, especially a polynomial one. In fact, most existing
volume integral approaches limit their applications only to
homogeneous mass bodies. However, the constant density
assumption is not realistic for most geological structures. In
realmedia, the subsurface densitymust increasewith increas-
ing depth, due to the compression of the material composing
the crust (Kumagai 1933; Maxant 1980; Rao et al. 1993;
Kennett 1998). Therefore, considering the density variation
with depth is of great practical significance (Chai and Hinze
1988; Holstein 2003; Hamayun et al. 2009; D’Urso 2014b;
Wu and Chen 2016; D’Urso and Trotta 2017; Ren et al. 2017,
2018). Recently, some studies based on tesseroids general-
ize the constant density assumption to the linear (Lin and
Denker 2019) and nonlinear cases (Fukushima 2018; Soler
et al. 2019; Lin et al. 2020) so as to meet the requirements
of depth variable density. However, most of these methods
only consider a polynomial density up to an limited order.

The aforementioned methods provide desired solutions
for the triple integral of an individual tesseroid. Actually,
these solutions are weight coefficients, because the density
term is usually pulled outside of the triple integral. Hence,
the gravitational potential and its derivatives for a tesseroid
can always be expressed as the products of the densities and
the correspondingweight coefficients. Once the gravitational
effects for a tesseroid are obtained, the overall effects of
the whole source region can then be computed as a cumula-
tive contribution of all individual tesseroids in terms of the
principle of superposition. Although this process looks very
simple, the computational cost substantially increases with
the complexity of the model. Therefore, a precise evalua-
tion is extremely time-consuming in practical applications,
especially for the regional and global large-scale forward
modelling.

To speed up the forward calculation, some attempts to
apply the well-known fast Fourier transform (FFT) to grav-
ity problems have been made. Smith (2002) adopted series
expansions and 1DFFT to compute the gravity fields induced
by distant globalmasses. Hemanipulated the integrals for the
gravitational potential and acceleration into convolution inte-
grals in longitude, and used 1D FFT techniques to efficiently
compute the convolutions. Recently, Zhao et al. (2021) com-
bined the 1D FFT into a 3D GLQ-based forward modelling
method. Similar to Smith (2002), they accelerated the mod-
elling by using the FFT techniques in discrete convolution
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Fig. 1 Source region with irregular tesseroids in spherical coordinates
(r , ϕ, λ). �r ′, �ϕ′, and �λ′ denote the mesh interval of a tesseroid
with a polynomial density ρ(r ′). Q(r ′, ϕ′, λ′) is the geometric centre
of the tesseroid. In the proposed method, �λ′ is required to be constant
along the longitudinal direction

along longitude. In themethod ofZhao et al. (2021), however,
the FFT-based fast algorithm is achieved using a square and
symmetric Toeplitz form of the weight coefficient matrices.
This requires that the number and location of the observation
points must be consistent with those of the tesseroids in the
longitudinal direction, which as a result may lead to undesir-
able computation cost andmakes the method not that flexible
in real cases. Moreover, these methods are established under
the assumption of constant density in each tesseroid and
hence face difficulties in practical applications with complex
density environment.

In this work, we propose a new efficient and accurate
method for 3D large-scale forward modelling that can be
applied to the case of a general tesseroid with a polynomial
density up to an arbitrary degree and with variable inter-
vals in latitude and depth (see Fig. 1). Firstly, a combination
of 1D analytical integration in the radial direction and 2D
GLQ with an adaptive discretization in horizontal directions
is introduced to calculate the gravitational effects of an indi-
vidual tesseroid. The radial analytical integration here can be
applicable to a polynomial density up to an arbitrary order by
using a simple recursive relation.Next, a flexible and efficient
discrete convolution algorithm based on 1D FFT and a gen-
eral Toeplitz form of weight coefficient matrices is presented
to compute the overall effects from all combined tesseroids.
Then, the influence of some key parameters are discussed,
and several shell models are established to verify the com-
putational efficiency and accuracy of the proposed method.
Finally, we apply the method to the global crustal model
CRUST1.0 to further verify its flexibility and practicability.

2 Gravitational effects of a tesseroid with a
polynomial density

In this section, a mixed method is presented to evaluate
the gravitational potential, the gravitational vector and the

Fig. 2 A tesseroid in spherical coordinates (r , ϕ, λ). The spheri-
cal coordinates are referred to the geocentric Earth-fixed equatorial
reference system defined by (X , Y , Z). P(r , ϕ, λ) and Q(r ′, ϕ′, λ′)
denote the observation point and the centre of a tesseroid in the source
region, respectively. The topocentric local Cartesian coordinate system
(north/east/up) is represented by (x, y, z)

Marussi tensor for a tesseroidwith a polynomial density func-
tion up to an arbitrary degree.

2.1 Gravitational potential

A tesseroid in geocentric spherical coordinates is defined by
three pairs of boundaries: a pair of concentric spheres (r ′

1 =
constant, r ′

2 = constant), a pair of parallels (ϕ′
1 = const-

ant, ϕ′
2 = constant), and a pair of meridians (λ′

1 = constant,
λ′
2 = constant (see Fig. 2). According to the Newton’s inte-

gral (Heiskanen andMoritz 1967; Grombein et al. 2013), the
gravitational potential of a tesseroid with a radially varying
density ρ(r ′) can be expressed as

V (r , ϕ, λ) = G

λ′
2∫

λ′
1

ϕ′
2∫

ϕ′
1

r ′
2∫

r ′
1

r ′2

�
ρ(r ′)cosϕ′dr ′dϕ′dλ′ (1)

where G is the gravitational constant, ρ the depth-dependent
density, and � the distance between the computation point
P(r , ϕ, λ) and themass point Q(r ′, ϕ′, λ′)with the following
form

� =
√
r2 + r ′2 − 2rr ′ cosψ (2)

cosψ = sin ϕ sin ϕ′ + cosϕ cosϕ′ cos(λ′ − λ) (3)

We assume that the density variation in depth for such a
tesseroid follows an N th-order polynomial function,

ρ(r ′) =
N∑

k=0

lk(r
′)ρk (4)

123



97 Page 4 of 20 F. Ouyang et al.

with

lk(r
′) =

N∑
p=0

Lk
pr

′ p

= (r ′ − r ′
0)(r

′ − r ′
1) · · · (r ′ − r ′

k−1)(r
′ − r ′

k+1) · · · (r ′ − r ′
N )

(r ′
k − r ′

0)(r
′
k − r ′

1) · · · (r ′
k − r ′

k−1)(r
′
k − r ′

k+1) · · · (r ′
k − r ′

N )

(5)

where Lk
p is the polynomial coefficient, and r ′

k and ρk are the
kth node and nodal density along the radial direction in the
tesseroid, respectively.

Using (1), (4), and (5), the gravitational potential over a
tesseroid becomes

V (r , ϕ, λ) =
N∑

k=0

N∑
n=0

Lk
n In+2ρk =

N∑
k=0

wkρk (6)

where

wk =
N∑

n=0

Lk
n In+2 (7)

In+2 = G

λ′
2∫

λ′
1

ϕ′
2∫

ϕ′
1

cosϕ′ (ξn+2|r
′
2
r ′
1

)
dϕ′dλ′ (8)

ξn+2 =
∫

r ′n+2

�
dr ′ (9)

with

ξ0 =
⎧⎨
⎩
sign(r ′ − r) ln |r ′ − r |, cosψ = 1
ln(r ′ + r), cosψ = −1
ln

∣∣� + r ′ − r cosψ
∣∣ , cosψ �= ±1

ξm = 1

m

(
r ′m−1

� + (2m − 1)r cosψξm−1

− (m − 1)r2ξm−2

)

m = 1, 2, ..., n + 2 (10)

where n = 0, 1, ..., N , andwk denotes the weight coefficient
for the gravitational potential. ξn+2 is the radial integration
over r ′, which is solved analytically in a recursive way. By
doing this, the original triple integral in (1) degenerates into
several surface integrals given by In+2, and these double inte-
grals can then be numerically evaluated using the 2D GLQ
integration. Note that in (6), only In+2 = In+2(r , ϕ, λ) is
related to the location of the computation point, while Lk

n
and ρk are constants independent of r , ϕ, λ.

2.2 Gravitational vector fields

According to Wild-Pfeiffer (2008), the gravitational vector
can be obtained using the first-order partial derivatives of the
gravitational potential V by

gx = 1

r
∂ϕV , gy = 1

r cosϕ
∂λV , gz = ∂r V (11)

where ∂ j ( j = ϕ, λ, r) denotes the first-order partial dif-
ferentiation with respect to a spatial variable. Using (6), we
have

∂ j V =
N∑

k=0

N∑
n=0

Lk
n In+2, jρk =

N∑
k=0

w
j
kρk (12)

with

w
j
k =

N∑
n=0

Lk
n In+2, j (13)

In+2, j = G

λ′
2∫

λ′
1

ϕ′
2∫

ϕ′
1

cosϕ′ (∂ jξn+2)
∣∣r ′

2
r ′
1
dϕ′dλ′ (14)

The recursive analytical expressions for ∂ jξn+2 are given in
Appendix A.

2.3 Gravitational gradient tensor

The components of the symmetric Marussi tensor can be
expressed as follows (Tscherning 1976):

Mxx = 1

r

(
∂2ϕϕV

r
+ gz

)

Myy = 1

r

(
∂2λλV

rcos2ϕ
− gx tan ϕ + gz

)

Mzz = ∂2rr V

Mxy = 1

r

(
∂2ϕλV

r cosϕ
+ gy tan ϕ

)

Mxz = 1

r

(
∂2ϕr V − gx

)

Myz = 1

r

(
∂2λr V

cosϕ
− gy

)
(15)

where ∂2i j (i, j = ϕ, λ, r) denotes the second-order partial
differentiation with respect to the spatial variables. Accord-
ing to Eq. (6), we also have
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∂i j V =
N∑

k=0

N∑
n=0

Lk
n In+2,i jρk =

N∑
k=0

w
i j
k ρk (16)

with

w
i j
k =

N∑
n=0

Lk
n In+2,i j (17)

In+2,i j = G

λ′
2∫

λ′
1

ϕ′
2∫

ϕ′
1

cosϕ′ (∂2i jξn+2)

∣∣∣r
′
2

r ′
1

dϕ′dλ′ (18)

The recursive expressions for ∂2i jξn+2 are provided in
Appendix A. Note that in the case of the computation point
being located on the polar axis (ϕ = ±90◦, i.e. cosϕ = 0),
Eqs (11) and (15) will lead to indeterminate values. There-
fore, our method cannot calculate the gravitational effects for
observation points on the polar axis.

2.4 2D GLQ integration

After the analytical integration along the radial direction, the
resultant surface integrals Ip, Ip, j , Ip,i j in the above equa-
tions are then evaluated using the 2DGLQ that approximates
the double integral using a weighted sum of the integration
kernel,

λ′
2∫

λ′
1

ϕ′
2∫

ϕ′
1

f (ϕ′, λ′)dϕ′dλ′

≈ �ϕ′�λ′

4

N̄∑
n=1

M̄∑
m=1

An Am f (ϕ̄′
n, λ̄

′
m) (19)

with

ϕ̄′
n = ϕ′

1 + ϕ′
2

2
+ �ϕ′

2
tn, �ϕ′ = ϕ′

2 − ϕ′
1

λ̄′
m = λ′

1 + λ′
2

2
+ �λ′

2
tm, �λ′ = λ′

2 − λ′
1 (20)

where An, Am and tn, tm are the Gaussian weights and nodes
along the latitudinal and longitudinal directions, respectively.
N̄ , M̄ are the number of Gaussian points.

3 Numerical implementation

Next, we introduce the fast algorithm based on the Toeplitz
structure of the weight coefficient matrix to improve the
computational efficiency and the 2D adaptive discretization

strategy that ensures the accuracy at observation points near
the tesseroids.

3.1 Fast algorithm based on a general Toeplitz

We divide the source region into Nr ′ × Nϕ′ × Nλ′ tesseroids
in the radial, latitudinal and longitudinal directions, respec-
tively. For each tesseroid, its geometric centre is (r ′

E , ϕ′
I , λ

′
J )

with a mesh interval �r ′,�ϕ′,�λ′, respectively. According
to (6), (12), and (16), the gravitational potential V and its
derivatives ∂ j V , ∂i j V produced by all mass tesseroids can
be expressed as

V (r , ϕ, λ)

=
Nr ′∑
E=1

Nϕ′∑
I=1

Nλ′∑
J=1

(
N∑

k=0

wE
k (r , ϕ, ϕ′

I , λ
′
J − λ)ρE

k (ϕ′
I , λ

′
J )

)

∂ j V (r , ϕ, λ)

=
Nr ′∑
E=1

Nϕ′∑
I=1

Nλ′∑
J=1

(
N∑

k=0

w
E, j
k (r , ϕ, ϕ′

I , λ
′
J − λ)ρE

k (ϕ′
I , λ

′
J )

)

∂i j V (r , ϕ, λ)

=
Nr ′∑
E=1

Nϕ′∑
I=1

Nλ′∑
J=1

(
N∑

k=0

w
E,i j
k (r , ϕ, ϕ′

I , λ
′
J − λ)ρE

k (ϕ′
I , λ

′
J )

)

(21)

where ρE
k denotes the kth nodal density in the E th element

along the radial direction.wE
k , w

E, j
k , andw

E,i j
k are theweight

coefficients given by (7), (13), and (17), respectively. As
can be seen, in the longitudinal direction, the gravitational
potential and its derivatives are discrete convolutions of the
weight coefficient and the density. Since the expressions for
V , ∂ j V , ∂i j V have a similar form, we will focus only on
V henceforth for simplicity, and ∂ j V , ∂i j V can finally be

obtained by replacing wE
k with w

E, j
k , w

E,i j
k .

Assume that there are Nλ observation points distributed
along the longitudinal direction at (r , ϕ) = (rO , ϕL) with
an equal mesh interval �λ = �λ′. Then, we have λ′

J =
λ′
0+ J�λ, λP = λ0+P�λ, and λ′

J −λP = λ̂0+(J−P)�λ

where λ̂0 = λ′
0 − λ0, λ′

0, λ0 are the starting points of λ′ and
λ, and J , P are integers. Thus, the gravitational potential in
Eq. (21) can be rewritten as

V(rO , ϕL) =
Nr ′∑
E=1

Nϕ′∑
I=1

N∑
k=0

WE
k (rO , ϕL , ϕ′

I )ρ
E
k (ϕ′

I ) (22)

where V = [V (λ1), . . . , V (λNλ)]T, ρE
k = [ρE

k (λ′
1), . . . ,

ρE
k (λ′

Nλ′ )]T, and
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WE
k =

⎡
⎢⎢⎢⎣

wE
k (λ̂0) wE

k (λ̂0 + �λ) · · · wE
k (λ̂0 + (Nλ′ − 1)�λ)

wE
k (λ̂0 − �λ) wE

k (λ̂0) · · · wE
k (λ̂0 + (Nλ′ − 2)�λ)

...
...

...
...

wE
k (λ̂0 + (1 − Nλ)�λ) wE

k (λ̂0 + (2 − Nλ)�λ) · · · wE
k (λ̂0 + (Nλ′ − Nλ)�λ)

⎤
⎥⎥⎥⎦ (23)

where WE
k is the weight coefficient matrix. According

to Vogel (2002), a matrix in a form of WE
k , which is con-

stant along diagonals, is called Toeplitz. Here, WE
k has a

general Toeplitz form that can be either symmetrical or non-
symmetrical and square or non-square. For such a Toeplitz
matrix, a product likeWE

k ρE
k can be efficiently computed by

FFTs (Sansó and Sampietro 2022):

v = IFFT {FFT[c]. ∗ FFT[s]} (24)

where v, c, and s are matrices with a length of Nλ + N ′
λ, and

c =
[
wE
k (λ̂0), . . . , w

E
k (λ̂0 − (Nλ − 1)�λ), 0,

wE
k (λ̂0 + (Nλ′ − 1)�λ), . . . , wE

k (λ̂0 + �λ)
]T

s =
[
ρE
k (λ′

1), . . . , ρ
E
k (λ′

Nλ′ ), 0, . . . , 0
]T

(25)

By extracting the first Nλ components of v, the results of
WE

k ρE
k are obtained. It is noteworthy that only the elements in

the first row and column ofWE
k are required in implementing

the algorithm, and thus, the computational cost and memory
occupation are significantly reduced as compared to conven-
tional purely summation methods (e.g. Uieda et al. 2016). In
fact, the above fast FFT-based calculation is a general version
of the method of Zhao et al. (2021). More exactly, the weight
coefficient matrix they used is a special case of Eq. (23). In
Zhao et al. (2021)’s algorithm,WE

k is required to be symmet-
rical and square. It means that the number of the observation
points must be equal to that of the tesseroids and their lon-
gitudinal coordinates must coincide with the centres of the
tesseroids, i.e. Nλ = Nλ′ and λ = λ′ (as shown in Fig. 3a). In
practical applications, this may result in undesirable compu-
tation and inflexibility. Here, we extendWE

k to a general form
(see Eq. (23)), which makes the placement of the observation
points independent of the discretization of the source region.
Our fast algorithm only requires�λ = �λ′ and puts no other
constraints on Nλ, Nλ′ andλ,λ′ (see Fig. 3b). Hence, it enjoys
higher flexibility than the method of Zhao et al. (2021).

Also we notice from Eq. (1) that, if the observation points
align with the source points in the longitudinal direction
(λ̂0 = 0 and Nλ = Nλ′ , as shown in Fig. 3a), WE

k degen-
erates to those used by Zhao et al. (2021). In this case,
the forward modelling can be further speeded up by uti-
lizing the parity of the gravitational components, that is,

V , gx , gz, Mxx , Myy, Mzz are even functions of (λ′ − λ),
while gy, Mxy, Myz are odd functions. For even functions,
WE

k in Eq. (23) can be reduced to

WE
k =

⎡
⎢⎢⎢⎢⎢⎣

wE
k (0) wE

k (�λ) · · · wE
k ((Nλ − 1)�λ)

wE
k (�λ) wE

k (0) · · ·
.
.
.

.

.

.
.
.
.

. . . wE
k (�λ)

wE
k ((Nλ − 1)�λ) · · · wE

k (�λ) wE
k (0)

⎤
⎥⎥⎥⎥⎥⎦

(26)

Similarly, for the case of odd functions, we have

WE
k =

⎡
⎢⎢⎢⎢⎢⎣

0 wE
k (�λ) · · · wE

k ((Nλ − 1)�λ)

−wE
k (�λ) 0 · · ·

.

.

.

.

.

.
.
.
.

. . . wE
k (�λ)

−wE
k ((Nλ − 1)�λ) · · · −wE

k (�λ) 0

⎤
⎥⎥⎥⎥⎥⎦

(27)

Fig. 3 Comparison of the observation points and mesh grids in the
longitudinal dimension used by Zhao et al. (2021)’ method (a) and
our method (b). In the method of Zhao et al. (2021), the number of
the observation points is required to be equal to that of the tesseroids
along the longitudinal direction (Nλ = Nλ′ ) and the observation points
should alignwith the centres of the tesseroids in the horizontal directions
(λ = λ′). In our fast algorithm, only �λ = �λ′ is required, and one
can take Nλ �= Nλ′ and λ �= λ′
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Fig. 4 Illustration of the 2D adaptive discretization. (r ′
2, ϕ

′
0, λ

′
0) is the

geometric centre of the top surface of the tesseroid, and Lϕ, Lλ are
the dimensions of the tesseroid in the latitude and longitude. P is the
observation point

As can be seen, only the elements in the first row ofWE
k are

required in this case, which can further reduce the computa-
tional cost.

3.2 2D adaptive discretization

A 2D adaptive discretization strategy based on Uieda et al.
(2016) and Lin and Denker (2019) is also combined in our
algorithm to improve the accuracy at points close to the mass
sources. The 2D adaptive discretization follows a criterion
that a tesseroid is divided along the latitudinal or longitudi-
nal direction when the distance to the computation point is
smaller than a constant (D) times the maximum size of the
tesseroid (see Fig. 4), that is,

�0/max(Lϕ, Lλ) ≥ D (28)

where D is called the distance–size ratio. A larger Dmeans a
finer division of the tesseroid close to the computation point.
�0 is the distance between the computation point P(r , ϕ, λ)

and the geometric centre of the upper horizontal surface of
the tesseroid (r ′

2, ϕ
′
0, λ

′
0):

�0 =
√
r2 + r ′

2
2 − 2rr ′

2 cosψ0

cosψ0 = sin ϕ sin ϕ′
0 + cosϕ cosϕ′

0 cos(λ
′
0 − λ)

ϕ′
0 = (

ϕ′
1 + ϕ′

2

)
/2, λ′

0 = (
λ′
1 + λ′

2

)
/2 (29)

Here the division criterion is slightly different from those
used in Uieda et al. (2016) and Lin and Denker (2019), but
all these adaptive discretizaion strategies work in a similar
way. Lϕ and Lλ are the dimensions of the tesseroid in the
latitude and longitude:

Lϕ = r ′
2

(
ϕ′
2 − ϕ′

1

)
, Lλ = r ′

2 cosϕ1
(
λ′
2 − λ′

1

)
(30)

By checking the inequality given by Eq. (28) for each
tesseroid, the algorithm judges whether the tesseroid needs
to be discreticized. Following the criterion, the tesseroid is
divided in half along the dimension that failed the relation

in a recursive way until Eq. (28) holds for all sub-elements.
However, it should be noted that if the observation point
coincides with the centre of the top surface of the tesseroid,
i.e. �0 = 0, the criterion given by Eq. (28) will lead to a “dead
circulation”. To avoid this problem, we use the following
inequality as the stop condition of the discretizationwhen the
observation point is located on the surface of the tesseroid:

max(Lϕ, Lλ) < max
(
L0

ϕ, L0
λ

)
/α (31)

where L0
ϕ and L0

λ are the dimensions of the original tesseroid
without subdivision, and α is a parameter empirically deter-
mined based on numerical tests. The inequality indicates that
the adaptive discretization will stop once the maximum hor-
izontal dimension of the current tesseroid is less than that of
the original one.

Compared with the 3D adaptive scheme that is imple-
mented along all three dimensions, this 2D adaptive dis-
cretization requires a smaller number of sub-elements due
to the removal of a dimension from the discretizaion (see
Fig. 4). Consequently, it is more computationally efficient.

4 Numerical verification

In this section, we test the performance of the proposed
method and determine the optimal values of some key param-
eters, including the number of GLQ nodes, the distance–size
ratio D, and the parameter α. Several spherical shell models
with different density variations in depth are used to verify
the correctness and accuracy of the proposed method. These
shells have a density model ρ(r ′) and are located on a spher-
ical Earth with inner radius R1 and outer radius R2. The
closed-form expressions of the gravitational effects for shell
models with a polynomial density of arbitrary degree and a
exponential density are provided in Appendix B. The codes
for the new algorithm are freely available at https://github.
com/Yonfou/gravity-modelling-with-polynomial-density.

4.1 Optimal selection of key parameters

The number of GLQ nodes M̄/N̄ , the distance–size ratio D,
and the parameter α are three important parameters that have
a significant influence on the computational accuracy and
efficiency. The number of GLQ nodes controls the accuracy
of the surface integration over a single tessseroid, while D
determines how many times each tesseroid will be divided.
Besides,αworkswhen the observation point is located on the
surface of the tesseroid. It determines the minimum horizon-
tal size of the mesh and hence also indirectly influences the
performance of the method. In order to ensure both accept-
able numerical accuracy and computation efficiency for the
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Fig. 5 Relative errors of V (a–d), gz (e–h), Mzz (i–l), and Myy (m–p) as a function of the latitude at different observation heights. Different
combinations of the Gauss nodes (M̄/N̄ = 1/1, 2/2, 3/3, 4/4) are tested

proposed algorithm, it is necessary to find the optimal values
for these parameters.

We start with a homogeneous shell model with R1 =
6271 km, R2 = 6371 km, and ρ = 1000 kg/m3. In the
numerical experiments, four nonzero independent gravita-
tional components V , gz , Mzz , and Myy are considered to
investigate the influence of the three parameters. The whole
shell is discreticized into 180 × 360 = 64, 800 tesseroids
of size 1◦ × 1◦ along the latitudinal and longitudinal direc-
tions with one layer in depth. The observation points are
located on a spherical surface at a constant height above the
top of the shell, having consistent coordinates (ϕ, λ) with
the centres of the tesseroids. In addition, because the magni-
tudes of the gravitational effects of the spherical shells vary
largely, we use the relative errors to measure the computa-
tional accuracy instead of the absolute errors here.Moreover,
a maximum tolerated relative error of 0.1% is established as

a error threshold in the optimal selection of M̄/N̄ and D
considering the trade-off between accuracy and computation
time.

Figure 5 shows the maximum relative errors between
the numerical and analytical solutions calculated using dif-
ferent combinations of the GLQ nodes (i.e., M̄/N̄ =
1/1, 2/2, 3/3, 4/4) at different observation heights ranging
from 10 m to 250 km. As can be seen, the relative errors of
the gravitational effects generally decrease as the number of
GLQ nodes increases. To achieve an error level of 0.1% for
all gravitational components, M̄/N̄ = 2/2 is the best choice
in terms of accuracy and efficiency. Figure 5 clearly shows
that the latitude of the observation point has an impact on
the numerical results. We can notice that oscillations occur
in the relative errors, especially for the gradient components.
This phenomenon is caused by the inherent singularity of
the integral kernels for the tesseroids near the observation
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Fig. 6 Relative errors of V (a),
gz (b), Mzz (c), and Myy (d) as a
function of the observation
height at different D varying
from 0 (corresponding to the
case of no adaptive division) to
5.5

Fig. 7 Relative errors of gz
varying with mesh intervals for
observation points located on
the shell surface. Different
values of D are used

points and the rounding error for those in the far zone (Lin
andDenker 2019). The gravitational effects of an observation
point are usually calculated by superposing the contributions
of all tesseroids over the source region. The tesseroids at
different latitudes have different geometrical shapes and con-

sequently may give rise to different approximation errors,
causing numerical oscillations.

Next, we select the optimal value for D by investigating
the gravitational effects at different observation heights vary-
ing from 0.01 to 1000 km. Figure 6 presents the maximum
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Fig. 8 Spherical shell model
with radial density variation. a
Density distribution of PREM, b
exponential density. N marked
in a denotes the order of the
polynomial density

difference between the shell and tesseroid fields with differ-
ent D that ranges from 0 (i.e., no adaptive division) to 5.5
at each height. We can observe that the computational accu-
racy improves with increasing observation heights. To be
more specific, the relative errors first decrease slowly with
the increase of the altitude. Then, after reaching a critical
height (denoted as hc), the error curves for D > 0 coin-
cide with the one for D = 0 and exhibit a much more rapid
decline trend. The critical height hc for different D can be
estimated using the adaptive criterion Eq. (28). It means that
the adaptive discretization strategy only works at observa-
tion heights lower than hc. At a fixed observation height, the
relative errors decrease as D increases and then become sta-
ble. Figure 6 shows that the minimum value for D to achieve
a relative error lower than 0.1% is 0 for the gravitational
potential, 1.5 for the gravitational acceleration, and 4 for the
gravitational gradient, respectively. These optimal values of
D are different for different gravitational components due to
the different complexity of their integral kernels.

Besides the number of GLQ nodes and the distance–size
ratio D, the parameter α also plays a role in the forwardmod-
elling when the observation points are located on the surface
of the shell. Here, we take gz as an example to analyse the
influence of α, because it is one of the gravitational com-
ponents continuous on the shell surface. Figure 7 shows the
relative errors of gz as a function of the mesh interval at dif-
ferent α and D. We can see that the relative errors decrease
in general as α goes up. At lower D, the errors decline first
and then remain almost unchanged when α increases to a
value higher than 103. The reason is that the minimum size
of the tesseroid is larger than 1/α times the original dimen-
sion without subdivision, and thus, the stop condition is not
activated in this situation. When D becomes larger, the stop
condition begins to work and the errors exhibit an obvious
decrease with the increase of α. For the case of D=1.5 (the
optimal value for gz), α = 103 is shown to be the best choice
for all mesh intervals ranging from 0.5◦ to 10◦. This value of

α is also the optimal one to achieve an error level of 0.1% at
higher D (see Fig. 7c, d).

4.2 Validation tests

Next, we validate the correctness and capability of the pro-
posed algorithm using the preliminary reference Earthmodel
(PREM) with different polynomial densities in different lay-
ers and a spherical shell model with an exponential density
(see Fig. 8).

4.2.1 Polynomial density model

One significant advantage of the new method is its ability to
deal with density models in a form of a polynomial up to an
arbitrary order along the radial direction. To demonstrate this
capability of the method, we construct a shell model com-
posed by eight layers that have different density variations
and thicknesses in depth using the well-known preliminary
reference Earth model (PREM) developed by Dziewonski
and Anderson (1981). Figure 8a presents the radial density
distribution of the model, in which the influence of the core
is neglected. The total thickness of the eight-layered shell is
2221 km ranging from R1 = 3480 km to R2 = 5701 km
(Dziewonski and Anderson 1981). In each layer, the den-
sity variation follows a polynomial function of N degree, the
value of which is marked in Fig. 8a. In this PREM model,
the mean radius of the Earth is set to be RE = 6371 km.

For polynomial density variations, the proposed algorithm
can achieve radial integration analytically by setting N in
Eq. (4) equal to the order of the real polynomial density, with-
out the requirement of further subdivision along the radial
direction. Therefore, we divide the PREM into 180×360 reg-
ular meshes along the latitudinal and longitudinal directions
with eight layers in the vertical dimension. The observation
surface has the same mesh grids as the shell in horizontal
directions. Its elevation ranges from 0.01 to 1000 km above
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Fig. 9 Relative errors between
the numerical and analytical
solutions for PREM. a Relative
errors varying with the latitude
at a constant height of 1 km. b
Maximum relative errors
varying with the height of
observation. The distance–size
ratio D of 0 is used for V , 1.5
for gz , and 4.0 for Mzz ,
Mxx , Myy . The number of GLQ
nodes is M̄/N̄ = 2/2

Table 1 Statistics of the errors
of V (in m2/s2), gz (in mGal),
Mxx , Myy and Mzz (in E) at a
observation height of 1 km for
the PREM model

Errors V gz Mxx Myy Mzz

Analytical solution 4.22 × 107 −6.63 × 105 −1.04 × 103 −1.04 × 103 2.08 × 103

Maximum AE 347.68 7.55 0.018 0.019 0.026

Minimum AE 232.93 0.43 6.01 × 10−4 1.47 × 10−4 0.012

Mean AE 277.64 5.37 0.0093 0.0088 0.018

RMS 280.86 5.60 0.010 0.010 0.018

RRMS (%)1 6.65 × 10−4 8.44 × 10−4 9.83 × 10−4 9.56 × 10−4 8.59 × 10−4

The RRMS error is defined as RRMS[φ] = RMS[φ − φ̂]/RMS[φ̂] × 100%, where φ and φ̂ refer to the
numerical and analytical solutions, respectively

the top surface of the spherical shell. The optimal values for
the distance–size ratio D and the number of GLQ nodes are
used in the calculation of V , gz , Mxx , Myy and Mzz .

Figure 9 shows the maximum relative errors varying with
the latitude and the height of observation. It can be seen from
the figure that the maximum relative errors of the nonzero
gravitational components are all blow 0.01% at different lat-
itudes and observation heights.We also provide the statistical
properties of the misfits, including the maximum, minimum,
and mean absolute errors (AE), the root-mean-square (RMS)
error, and the relative root-mean-square (RRMS) error (see
Table 1). Obviously, the proposed method works well for
all gravitational components. The RMS errors are approx-
imately 280.86 m2/s2 for V , 5.60 mGal for gz , 0.01E for
Mxx and Myy , and 0.018E for Mzz . The RRMS errors for
the gravitational components are generally less than 0.001%.
These results demonstrate the good accuracy of the proposed
method in the case of polynomial density variations.

4.2.2 Exponential density model

Besides the polynomial density models, the new method is
also well suited to other kinds of density variations. To test
the performance of the algorithm in this aspect, we consider a
spherical shell with an exponential density defined as follows
(Soler et al. 2019):

ρ(r ′) = Ae
−b

r ′−R1
R2−R1 + C (32)

with

A = ρ(R1) − ρ(R2)

1 − e−b
, C = ρ(R1) − A (33)

The thickness of the spherical shell is assumed to be 140 km
ranging from R1 = 6151 to R2 = 6291 km.We set the values
of ρ(R1) = 3300 kg/m3, ρ(R2) = 2700 kg/m3, and b = 7
(see Fig. 8b). The shell model is discretized into 180 × 360
regular meshes in the horizontal directions with Nr ′ layer in
the radial dimension. The observation points are on a regular
grid that aligns with the spherical shell, and its elevation is
1 km.

For such a non-polynomial densitymodel, two approaches
can be utilized to achieve desirable accuracy. The first one
(Method A) is to apply high-degree polynomial functions to
approximate the real density variation and use only one layer
in the radial dimension, i.e.,

ρA(r ′) =
N∑

n=0

anr
′n (34)

where an is the polynomial coefficient and N is the order
of the polynomial function. The second one (Method B) lies
in the combined use of the low-degree polynomial functions
and the radial subdivision.We divide the shell into Nr ′ layers
in the radial direction and describe the density in each layer
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Fig. 10 Maximum relative
errors (a) and computation time
(b) varying with N obtained by
Method A for the spherical shell
model with an exponential
density. The distance–size ratio
D of 0 is used for V , 1.5 for gz ,
and 3.5 for Mzz

Fig. 11 Maximum relative
errors and computation time
varying with Nr ′ obtained by
Method B for the spherical shell
model with an exponential
density. a and b Constant
density assumption in each
layer. c and d Quadratic density
assumption in each layer. The
distance–size ratio D of 0 is
used for V , 1.5 for gz , and 3.5
for Mzz

using a low-order polynomial function, that is,

ρB(r ′) =
Nm∑
n=0

amn r
′n, r ′

1(m) ≤ r ′ ≤ r ′
2(m) (35)

where Nm is the order of the polynomial function in the
mth layer, amn is the corresponding polynomial coefficient,
r ′
1(m) and r ′

2(m) are the radial coordinates of the bottom
and top of the layer, respectively, and m = 1, 2, . . . , Nr ′ .
To investigate the computational accuracy and efficiency of
the two approaches, we choose D equal to a fixed value,
and only explore the errors caused by the radial integration.
Here, the gravitational components V , gz , and Mzz are used
as examples to investigate the performance of the method in
the case of a non-polynomial density.

By applying N th-order polynomial interpolation to the
exponential density,weobtain the relative errors and the com-

putation timeofV , gz , andMzz forMethodA(seeFig. 10).As
can be seen, a low-degree polynomial function with N ≤ 3
is not sufficient to describe the exponential density variation
well, and a polynomial of very high order also results in inac-
curate solutions, due to its oscillation properties. To achieve
an accuracy with a maximum error of 0.1% in this case, a
fourth-order or fifth-order polynomial density assumption is
the best for V and gz , and a fourth-order assumption for Mzz .
It is also shown that the computation time exhibits a linear
increase with increasing N . The calculation of Mzz takes the
longest time, then followed by gz and V . Moreover, the dif-
ference in time consumption for the three gravity components
becomes larger and larger with the increase of N .

Figure 11 shows the relative errors and the computation
time as a function of Nr ′ (the number of layers used in the
radial direction) for Method B based on the same model. By
assuming that the density is constant in each layer, a mini-
mumnumber of Nr ′ = 10 is required to achieve an acceptable
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Fig. 12 Comparison of a the
maximum relative errors at
different observation heights
and b the relative computation
time of gz with different mesh
intervals. The computation time
is normalized by the slowest
calculation time (890,964.72 s)

Table 2 Comparison of the
computation time and the
memory occupation of the
proposed method and the 3D
GLQ algorithms developed by
Uieda et al. (2016), Zhao et al.
(2019), and Zhao et al. (2021)

Methods Computation time (s) Memory occupation (GB)

Uieda et al. (2016) 890,964.72 537.48

Zhao et al. (2019) 16,243.24 0.75

Zhao et al. (2021) 1965.03 0.75

Our method 722.15 0.1

All tests are carried out on a PCwith i7-7700hq CPU and 16GBmemory, but note that thememory occupation
for the method Uieda et al. (2016) is an estimated value by Zhao et al. (2021). In the forward modelling by
the software “Tesseroids” (Uieda et al. 2016), it does not need to store the vast kernel matrix. However, the
storage of the dense kernel matrix is often required in an inversion

accuracy (0.1%) and the corresponding computation time is
93.21 s for V , 119.6 s for gz and 172.4 s for Mzz . For a
quadratic density assumption, however, Nr ′ = 2 is adequate.
In comparison with the constant density model, less calcu-
lation time is required in this case, that is, 32.33 s for V ,
44.84 s for gz and 59.82 s for Mzz . Therefore, the quadratic
density assumption is more appropriate than the constant one
in terms of both accuracy and efficiency for the exponential
density variation considered.

Comparing Method A with Method B, the former is supe-
rior in computational efficiency in this example. It takes
only 22.72 s for V , 31.99 s for gz and 42.72 s for Mzz to
reach an accuracy of 0.1%. However, for highly variable den-
sity variations, Method B will be more beneficial, since the
use of high-degree polynomial functions may cause oscilla-
tion and result in unstable results. On the whole, although
our method considers up only to polynomial density mod-
els, its application to non-polynomial density models is also
straightforward.

4.3 Comparison with the 3D GLQmethods

This section is aimed at comparing the proposed method
with the commonly used tesseroid-based 3D GLQ meth-
ods in terms of accuracy and efficiency. Based on the same
homogeneous shell model used in Sect. 4.1, we calculate the
vertical component of the gravity acceleration gz using the
traditional 3D GLQ method (no adaptive division), Uieda
et al. (2016)’s method, Zhao et al. (2019)’s method, Zhao

et al. (2021)’s method, and the proposed method, respec-
tively. A same distance–size ratio of D = 1.5 is used for the
3D GLQ methods and the proposed method in this compari-
son analysis. The observation surface is located on a regular
grid at an elevation ranging from 1 to 250 km (observation
height of GOCE satellite (Cesare et al. 2010)) above the top
surface of the shell.

Figure 12a compares themaximumrelative errors obtained
by the 3D GLQmethods and the proposed method as a func-
tion of the height of observation. It is observed that the results
obtained by Uieda et al. (2016), Zhao et al. (2019), and Zhao
et al. (2021) are exactly the same. In contrast, the proposed
method achieves better accuracy at the near zone as compared
to the 3DGLQmethods. In the far zone, the relative errors for
all methods are almost the same and less than 0.01%. There-
fore, the advantage of the proposed method in accuracy is
verified.

We also compare the computational efficiency of both
methods for different horizontal mesh intervals ranging from
0.5◦ to 10◦. We divide the spherical shell into 10 layers in
depth, and place the observation surface at a height of 10 km
above the top surface of the shell. The relative computation
time normalized by the slowest calculation varying with the
mesh interval is presented in Fig. 12b. The results show that
at small mesh intervals less than 2◦, the calculation speed
of the proposed algorithm is sped up by 3 orders of magni-
tude compared with Uieda et al. (2016)’s method, 1.5 order
of magnitude compared with Zhao et al. (2019)’s method,
and more than half compared with Zhao et al. (2021)’s
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Fig. 13 CRUST1.0 gloabal crustal model. a Global density distribution at 10 m below mean Earth radius. b Density section along the latitude of
32.5◦ N

improved method. Table 2 lists the computation time and
memory occupation for a discretization size of 360×720×10
with D = 1.5. Compared with the fast algorithm developed
by Zhao et al. (2021), the calculation time of the proposed
method is further decreased by more than half, and the mem-
ory requirement is significantly reduced to 0.1 GB by seven
times.This comparison further demonstrates the capability of
the proposed method in fast calculation.

5 Application

In this section, we apply the new algorithm in the calcu-
lation of gravitational effects of the CRUST1.0, a global
model of Earth crust on a 1 by 1 degree grid (Laske et al.
2013), so as to illustrate the reliability and flexibility of the
method in practice. The CRUST1.0 incorporates the global
sediment thickness and consists of eight-layered crustal pro-
file, includingwater, ice, upper sediments, middle sediments,
lower sediments, upper crust, middle crust, and lower crust.
The model has the latitude ranging from−89.5◦ to 89.5◦ and
the longitude from −179.5◦ to 179.5◦ with an equal inter-
val of 1◦. Its elevation ranges from −74.81 km below mean
Earth radius to 5.41 km abovemeanEarth radius. The density
distribution of the CRUST1.0 global crustal model is shown
in Fig. 13. Note that the influence of the mantle below the
Moho is neglected here.

In order to evaluate the gravitational effects of the
CRUST1.0 model efficiently and accurately, we use differ-
ent mesh grids at different latitudes (Fig. 14). According to
the CRUST1.0 model, the latitude ranges from −89.5◦ to
89.5◦ and the longitude ranges from −179.5◦ to 179.5◦ with
�ϕ′ = �λ′ = 1◦. Therefore, only the radial subdivision
needs to be considered. To exactly describe the density vari-
ation in the radial direction, we obtain the sampling points for
each r−λ plane using the union of the layer boundaries given
by the CRUST1.0model (as shown in Fig. 15a). Note that for
this model, the density is constant within each layer. Because

Fig. 14 Illustration of the model discretization at different latitudes.
Nr ′ denotes the number of elements in the radial direction and varies
with latitudes

the density distribution of the CRUST1.0 model is quite dif-
ferent on different r − λ planes, the number of layers (Nr ′ )
varies with latitudes. Figure 15b shows the Nr ′ we used along
the vertical direction at different latitudes for the CRUST1.0
model. As can be seen, 360 × ∑180

I=1 Nr ′(ϕ′
I ) tesseroids are

required to build up the global crustal model.
The observation points are located at a height of 10 km

above mean Earth radius and align with the geometric cen-
tres of the top horizontal surface of the tesseroids. Figures 16
and 17 show the numerical results for the gravitational vector
fields and the Marussi tensor components calculated by the
proposed method. To verify the correctness of the results,
we also compare our solutions with those obtained by the
3D GLQ method based on a refined regular discretization
of 180 × 360 × 8022 (with a interval of 10m in depth). In
the GLQ method, the distance–size ratio D is set to be 8 for
all gravitational components, and in the proposed algorithm,
D = 4 is used. The statistics of the forward results calcu-
lated by the two methods are listed in Table 3. It is observed
that the maximum RRMS error between the two methods
is 1.3 × 10−5% for V , 0.001% for the gravitational vector,
and 0.022% for the gravitational gradient. This result further
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Fig. 15 Radial discretization for
the CRUST1.0 model. a
Determination of the sampling
points in depth. b Number of
radial elements (Nr ′ ) varying
with latitude

Table 3 Statistics of the forward results of the gravitational potential (in s2/m2), vector (in mGal) and Marussi tensor (in E) for the CRUST1.0
global crustal model

Algorithm Max Min Mean RMS RRMS (%)

V Our method 391,878.52 244,680.49 303,607.65 305,823.68

3D GLQ 391,878.62 244,680.51 303,607.68 305,823.70 1.0 × 10−5

Difference 0.10 0.02 0.03 0.02

gx Our method 4257.028 − 3103.93 165.8723 1101.919

3D-GLQ 4257.034 − 3103.94 165.8723 1101.922 4.8 × 10−4

Difference 0.006 − 0.01 9.4 × 10−6 0.003

gy Our method 5183.82 − 3448.489 −6.9 × 10−14 966.635

3D-GLQ 5183.84 − 3448.495 −8.4 × 10−14 966.636 2.9 × 10−4

Difference 0.02 − 0.006 −1.5 × 10−14 0.001

gz Our method − 2904.31 − 11,066.44 −4915.63 5220.15

3D-GLQ − 2904.32 − 11,066.52 −4915.65 5220.18 5.9 × 10−4

Difference − 0.01 − 0.08 −0.02 0.03

Mxx Our method 166.059 − 158.998 −7.695 23.1688

3D-GLQ 166.057 − 158.997 −7.697 23.1700 0.009

Difference − 0.002 0.001 −0.002 0.0012

Myy Our method 185.859 − 191.534 −8.110 24.107

3D-GLQ 185.857 − 191.539 −8.111 24.108 0.008

Difference − 0.002 − 0.005 −0.001 0.001

Mzz Our method 279.163 − 238.818 15.805 40.5799

3D-GLQ 279.174 − 238.816 15.808 40.5821 0.009

Difference 0.011 0.002 0.003 0.0022

Mxy Our method 65.6905 − 82.498 7.4 × 10−13 9.3633

3D-GLQ 65.6909 − 82.497 −6.5 × 10−13 9.3632 0.002

Difference 0.0004 0.001 −1.4 × 10−12 − 0.0001

Mxz Our method 85.190 − 144.980 0.61124 14.787

3D-GLQ 85.192 − 144.983 0.61125 14.788 0.005

Difference 0.002 − 0.003 1 × 10−5 0.001

Myz Our method 191.9138 − 189.346 −7.7 × 10−13 19.3019

3D-GLQ 191.9142 − 189.345 −1.0 × 10−12 19.3023 0.003

Difference 0.0004 0.001 −2.3 × 10−13 0.0004
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Fig. 16 Gravitational vector calculated by the proposed method for the
CRUST1.0 global crustal model. Since the positive direction of the z
axis is pointing upward, we use −g instead of g

demonstrates the reliability and practicability of the proposed
method.

6 Conclusions

An accurate and efficient method for 3D large-scale grav-
itational forward modelling is developed on the basis of
tesseroids with a polynomial density up to an arbitrary order.
The new method achieves high computational accuracy and
efficiency by taking advantage of the recursive analytical
expressions for the radial integration with a polynomial den-
sity and a fast discrete convolution algorithm based on the

general Toeplitz form of the weight coefficient matrix. The
proposed method first transformed the triple integral into
a surface integral through analytical integration along the
radial direction and then numerically evaluated the surface
integral by GLQ with a 2D adaptive discretization. A stop
condition controlled by a scalar α is introduced into the adap-
tive strategy to avoid it from entering a dead circulation in
the case of observation points located on the surface of the
tesseroid. This also allows more control over errors when too
many divisions are necessary for surface observation points.
Next, the FFT-based fast algorithm is adopted to speed up the
forwardmodelling and to reduce thememory in the computa-
tion of the discrete convolution between the density and the
weight coefficient along the longitudinal dimension. Com-
paring with existing FFT-based convolution methods used in
gravity modelling, this algorithm has a more general form
that can be applicable for symmetric or non-symmetric and
square or non-square weight coefficient matrices. It only
requires �λ = �λ′ and puts no other constraints on the
position and number of observation points, which means that
one can take λ �= λ′ and Nλ �= N ′

λ. However, �λ = �λ′ is
also to some extent a limitation resulting from the fast cal-
culation. Another limitation of the proposed method is that
the explicit forms of the gravitational vector and tensor suffer
from the polar singularity induced by the spherical coordinate
system, and hence, our method cannot calculate the gravita-
tional effects at observation points with ϕ = ±90◦.

In the proposed method, the numerical accuracy and
efficiency are mainly determined by three parameters: the
number of GLQ nodes M̄/N̄ , the distance–size ratio D, and
the parameter α. To guarantee a satisfying accuracy while
maintaining the computational efficiency, we carried out an
optimal selection on M̄/N̄ , D, and α based on a homoge-
neous shell model. The numerical experiments showed that
to achieve a maximum relative error of 0.1%, M̄/N̄ = 2/2
is often sufficient, while the optimal value of D is 0 for the
gravitational potential, 1.5 for the gravitational vector, and 4
for the Marussi tensor. For the parameter α, which controls
the accuracy of surface observation points, 103 is generally
a good choose.

One significant advantage of the proposed method is its
ability to deal with a polynomial density up to an arbitrary
degree. It can obtain accurate results for a tesseroid with a
N th-order polynomial density using only one layer in the
radial direction. Our numerical examples showed that for the
PREMmodel with a polynomial density of different order in
different layers, the proposed method can achieve an accu-
racywith a relative error lower than 0.01% for an observation
height of 1 km. For a shell model with a non-polynomial
exponential density, the method still works well. The results
showed that by using a fourth-order polynomial function to
fit the exponential density, the relative errors between the
numerical and analytical solutions are about 0.05%. It also
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Fig. 17 Gravitational gradient calculated by the proposed method for the CRUST1.0 global crustal model. Since the positive direction of the z axis
is pointing upward, we use −M instead of M

showed that increasing the number of layers in the radial
dimension and using a lower-degree polynomial density in
each layer can also achieve good results, but require more
calculation time. The application to the global CRUST1.0
model with undulating topography further demonstrated the
reliability and applicability of the new method in real cases.
For the CRUST1.0 model, the numerical results obtained
from the proposed method and the 3D GLQ method with a
densemesh are nearly the same and the RRMS error between
the two methods is lower than 0.002%.

The comparison analysis of the proposed method and the
existing tesseroid-based 3D GLQ methods also verified the
good accuracy and efficiency of the new algorithm. The
numerical results showed that the new method has higher
precision than the 3D GLQ methods at the near zone and

exhibits the same accuracy at the far zone. In addition, the
computational efficiency of the proposed algorithm is sig-
nificantly improved by 3 orders of magnitude as compared
to Uieda et al. (2016)’s method, by 1.5 order of magnitude
as compared to Zhao et al. (2019), and by more than half as
compared to Zhao et al. (2021)’s improved method. Further,
the memory occupation for the proposed algorithm is also
substantially decreased by seven times.

In conclusion, the newly developedmethod ismore advan-
tageous over the tesseroid-based 3D GLQ methods in both
accuracy and efficiency, and also in its capability in dealing
with polynomial and non-polynomial densitymodels. There-
fore, we believe that our method could have more potentials
in large-scale gravity forward and inverse problems.
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Appendix A: Analytical expressions for �p,
@j�p, and @2

ij�p

The radial integrals ∂ jξn+2 (n = 0, 1, ..., N , j = ϕ, λ, r)
in Eq. (14) can be analytically expressed as

∂ϕξn+2 = rηn+3∂ϕ cosψ

∂λξn+2 = rηn+3∂λ cosψ

∂rξn+2 = ηn+3 cosψ − ηn+2r (A1)

where

ηk =
∫

r ′k

�3
dr ′, k = 0, 1, . . . , n + 3 (A2)

with

η0 =

⎧⎪⎨
⎪⎩

− sign(r ′−r)
2(r ′−r)2

, cosψ = 1

−0.5(r ′ + r)−2, cosψ = −1
(r ′r−cosψ)

r(1−cos2ψ)�
, cosψ �= ±1

η2 = −r ′

�
+ r cosψ · η1 + ξ0

ηk = 1

k − 2

(
r ′k−1

�
+ (2k − 3)r cosψηk−1

− (k − 1)r2ηk−2

)

k > 0 and k �= 2 (A3)

The radial integrals ∂2i jξn+2 (n = 0, 1, . . . , N , i, j =
ϕ, λ, r) in Eq. (18) have the following analytical form:

∂2ϕϕξn+2 = r∂2ϕϕ cosψηn+3 + 3r2
(
∂ϕ cosψ

)2
ζn+4

∂2λλξn+2 = r∂2λλ cosψηn+3 + 3r2(∂λ cosψ)2ζn+4

∂2rr ξn+2 = 2ηn+2 − 3
(
1 − cos2ψ

)
ζn+4

∂2ϕλξn+2 = r∂2ϕλ cosψηn+3 + 3r2
(
∂ϕ cosψ∂λ cosψ

)
ζn+4

∂2ϕrξn+2 = ∂ϕ cosψ (ηn+3 − 3r(rζn+3 − cosψζn+4))

∂2λrξn+2 = ∂λ cosψ (ηn+3 − 3r(rζn+3 − cosψζn+4))

(A4)

where

ζk =
∫

r ′k

�5
dr ′, k = 0, 1, . . . , n + 4 (A5)

with

ζ0 =

⎧⎪⎪⎨
⎪⎪⎩

− sign(r ′−r)
4(r ′−r)4

, cosψ = 1

−0.25(r ′ + r)−4, cosψ = −1
r ′r−cosψ

3r(1−cos2ψ)

(
1
�3

+ 2
�(1−cos2ψ)r2

)
, cosψ �= ±1

ζ4 = − r ′3

3�3
+ r cosψζ3 + η2

ζk = 1

k − 4

(
r ′k−1

�3
+ (2k − 5)r cosψζk−1

− (k − 1)r2ζk−2

)

k > 0 and k �= 4 (A6)

and

∂ϕ cosψ = cosϕ sin ϕ′ − sin ϕ cosϕ′ cos(λ′ − λ)

∂λ cosψ = cosϕ cosϕ′ sin(λ′ − λ)

∂2ϕϕ cosψ = − cosψ

∂2λλ cosψ = − cosϕ cosϕ′ cos(λ′ − λ)

∂2ϕλ cosψ = − sin ϕ cosϕ′ sin(λ′ − λ) (A7)

AppendixB:Analytical solutions for spherical
shell

For a spherical shell with a radially varying density ρ(r ′),
the analytical expressions for the gravitational potential V ,
vector g, and Marussi tensor M on any point with a radial
distance r above the shell can be expressed as

V = 4πG

�
γ (B8)
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gi = 4πGγ
�i

�3
(B9)

Mi j = 4πGγ

(
3�i� j

�5
− δi j

�3

)
(B10)

with

� =
√

�2
x + �2

y + �2
z

�x = r0 [cosϕ sin ϕ0 − sin ϕ cosϕ0 cos (λ0 − λ)]

�y = r0 cosϕ0 sin (λ0 − λ)

�z = r0 cosψ − r

cosψ = sin ϕ sin ϕ0 + cosϕ cosϕ0 cos (λ0 − λ) (B11)

where i, j = x, y, z, δi j is the Kronecker delta function,
(r0, ϕ0, λ0) is the geometrical centre of the spherical shell,
and

γ =
R2∫

R1

r ′2ρ(r ′)dr ′ (B12)

where R1 and R2 are the inner and outer radius of the shell.
When the geometrical centre of the shell is located at the
origin, i.e. (r0, ϕ0, λ0) = (0, 0, 0), Eqs (B8) to (B10) further
reduce to

V = 4πG

�
γ (B13)

gz = −4πG

�2
γ (B14)

Mxx = Myy = −4πG

�3
γ, Mzz = 8πG

�3
γ (B15)

with gx = gy = 0, and Mxy = Mxz = Myz = 0.
For a polynomial density function of N degree, ρ(r ′) =∑N
n=0 Anr ′n , γ is given by

γ =
N∑

n=0

An

n + 3

(
Rn+3
2 − Rn+3

1

)
(B16)

For a exponential density function ρ(r ′) = Ae−B(r ′−R1)+C ,
γ is as follows:

γ = C

3
(R3

2 − R3
1) + A

B3

[(
R2
1B

2 + 2R1B + 2
)

−
(
R2
2B

2 + 2R2B + 2
)
e−B(R2−R1)

]
(B17)

with

A = ρ(R1) − ρ(R2)

1 − e−b
, B = b

R2 − R1
,

C = ρ(R1) − A (B18)

where R1 is the inner radius of the shell and R2 the outer
radius.

The analytical solutions for the gravitational effects of
PREM are obtained by summing the contributions of the
spherical shells that form it.
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