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Abstract
An accurate method with conditional split, double exponential quadrature rule, and numerical differentiation has been pro-
posed in the paper “Accurate computation of gravitational field of a tesseroid” (Fukushima in J Geod 92(12):1371–1386,
https://doi.org/10.1007/s00190-018-1126-2, 2018) to compute the gravitational field (i.e. gravitational potential, gravitational
acceleration vector, and gravity gradient tensor) of a tesseroid. This study presents the corrections for some formulas in the
main paper and electronic supplementary material of Fukushima (J Geod 92(12):1371–1386, https://doi.org/10.1007/s00190-
018-1126-2, 2018). Moreover, the FORTRAN subroutines gtess (or qgtess) and ggtess (or qggtess) in the original
codes xtess.txt (or xqtess.txt) in double (or quadrature) precision provided by Fukushima (J Geod 92(12):1371–
1386, https://doi.org/10.1007/s00190-018-1126-2, 2018) are revised. The revised parts have impacts on the calculation of
these components of the gravitational acceleration vector (gΦ and gΛ) and gravity gradient tensor (ΓΦΦ , ΓΦΛ, ΓΦH , ΓΛΛ,
ΓΛH , and ΓHH ). The revised FORTRAN codes xtess.f90 and xqtess.f90 in double and quadrature precision are
presented at the GitHub website https://github.com/xiaoledeng/xtess-xqtess. These revised FORTRAN codes can accurately
compute the gravitational field of a tesseroid in double and quadrature precision no matter the computation point is located
outside, near the surface of, on the surface of, or inside the tesseroid. They can be applied to calculate the gravitational field
of the different layers (e.g. atmosphere, topography, crust, and mantle) of the Earth or other celestial bodies, which helps
investigate the various geoscience applications, e.g. geoid determination in geodesy and gravity interpretation in geophysics.
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1 Introduction

In the paper “Accurate computation of gravitational field of
a tesseroid” (Fukushima 2018), an accurate method with
conditional split, double exponential quadrature rule, and
numerical differentiation has been presented for calculating
the gravitational potential, gravitational acceleration vec-
tor, and gravity gradient tensor of a tesseroid, whereas the
expressions for the ΓΦΛ and ΓΛH components of the gravity
gradient tensor in Fukushima (2018) contain formal errors
and need to be corrected. Meanwhile, some typos of the neg-
ative sign need to be corrected. The two FORTRAN codes
xtess.txt and xqtess.txt provided by Fukushima
(2018) to calculate the gravitational acceleration vector and
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gravity gradient tensor of a tesseroid need to be revised in
double and quadruple precision.

This study presents the corrections for some formulas and
two FORTRAN codes in Fukushima (2018). Furthermore,
a numerical experiment is performed to reveal the conse-
quences of the modified formulas and FORTRAN codes.

This study is organized as follows. Sections 2 and 3
present the corrections to some formulas and FORTRAN
codes in Fukushima (2018), respectively. The corrected
formulas and FORTRAN codes are numerically investi-
gated against analytical solutions for a spherical shell in
Sect. 4. Section 5 offers the revised FORTRAN codes
xtess.f90 and xqtess.f90. Conclusions and conse-
quences for Fukushima (2018) are summarized in Sect. 6.
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2 Corrections to some formulas in
Fukushima (2018)

Regarding the expressions of the diagonal component
(∂2V /∂H2)Φ,Λ of the second-order partial derivatives in

Fukushima (2018), the + (Δ2H)2

12

(
∂4V
∂H4

)
term in Eq. (25)

should be replaced by − (Δ2H)2

12

(
∂4V
∂H4

)
, where the sign is

wrong, and it is a typo. Equation (25) should be changed to:

(
∂2V

∂H2

)

Φ,Λ

=
V (Φ,Λ, H + Δ2H) − 2V (Φ,Λ, H)

+V (Φ,Λ, H − Δ2H)

(Δ2H)2

− (Δ2H)2

12

(
∂4V

∂H4

)
− (Δ2H)4

360

(
∂6V

∂H6

)
− · · · (1)

Similarly, for the expressions of the non-diagonal compo-
nent [∂2V /(∂Φ∂Λ)]H of the second-order partial derivatives

in Eq. (26) of Fukushima (2018), the+ (Δ2Φ)(Δ2Λ)
36

(
∂4V

∂Φ2∂Λ2

)

term is wrong. It should be replaced by the − (Δ2Φ)2(Δ2Λ)2

36(
∂6V

∂Φ3∂Λ3

)
, and it is a typo. Meanwhile, two terms − (Δ2Φ)2

6(
∂4V

∂Φ3∂Λ

)
and − (Δ2Λ)2

6

(
∂4V

∂Φ∂Λ3

)
are missing. Equation (26)

should be changed to:

(
∂2V

∂Φ∂Λ

)

H
= [

V (Φ + Δ2Φ,Λ + Δ2Λ, H)

− V (Φ + Δ2Φ,Λ − Δ2Λ, H)

− V (Φ − Δ2Φ,Λ + Δ2Λ, H)

+ V (Φ − Δ2Φ,Λ − Δ2Λ, H)
]
/
[
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∂4V
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)

− (Δ2Φ)2(Δ2Λ)2

36

(
∂6V

∂Φ3∂Λ3

)
− · · ·

(2)

Regarding the expressions for the ΓΦΛ component of the
gravity gradient tensor in Eq. (31) of Fukushima (2018),
the + gΦ tanΦ

R2 cosΦ
term is wrong and should be corrected to the

+ tanΦ
R gΛ term. Equation (31) should be changed to:

ΓΦΛ = ΓΛΦ = 1

R2 cosΦ

(
∂2V

∂Φ∂Λ

)

H
+ tanΦ

R
gΛ (3)

Similarly, for the formula of the ΓΛH component of the
gravity gradient tensor in Fukushima (2018), the − gH

R2 cosΦ

term in Eq. (33) is wrong and should be changed to the − gΛ

R

term. Then, Eq. (33) should be changed to:

ΓΛH = ΓHΛ = 1

R cosΦ

(
∂2V

∂Λ∂H

)

Φ

− gΛ

R
(4)

where the expressions in Eqs. (31) and (33) belong to the
incorrect derivation. The correct derivation of the formulas
in Eqs. (3) and (4) is provided in “Appendix 1”.

In the formula of the radial–radial component of the grav-
ity gradient tensor ΓHH of the spherical shell when the
computation point is located inside the spherical shell (HB <

H < HT ) in Fukushima (2018), the (4πGρ/3)(1+2R3
B/R3)

term in Eq. (48) should be replaced by −(4πGρ/3)(1 +
2R3

B/R3), i.e. the negative sign ‘−’ should be added, and it
is a typo. Then, Eq. (48) should be changed to (Lin et al.
2020, Eq. (15c)):

ΓHH ,analytical

=

⎧
⎪⎨
⎪⎩

0 (H < HB)

−(4πGρ/3)
(
1 + 2R3

B/R3
)

(HB < H < HT )

2GM/R3 (HT < H)

(5)

Regarding the expression for the relative error of the
second-order central difference formula in Eq. (77), the

−
(

f (4)(t)
12 f ′′(t)

)
(Δt)2 termshouldbe changed to

(
f (4)(t)
12 f ′′(t)

)
(Δt)2,

i.e. the negative sign ‘−’ should be removed, and it is a typo.
Then, Eq. (77) should be changed to:

δh0(t) ≡ h0(t) − f ′′(t)
f ′′(t)

≈
(

f (4)(t)

12 f ′′(t)

)
(Δt)2 (6)

3 Corrections to FORTRAN codes of
Fukushima (2018)

The two FORTRAN subroutines qgtess and qggtess
to calculate the gravitational acceleration vector (gΦ and
gΛ) and gravity gradient tensor (ΓΦΦ , ΓΦΛ, ΓΦH , ΓΛΛ,
ΓΛH , and ΓHH ) of the tesseroid in the code xqtess.txt
in Tables 7–11 of the electronic supplementary material of
Fukushima (2018) need to be revised in quadruple preci-
sion. The corrected subroutines qgtess and qggtess are
presented in Tables 7–11 of this paper’s electronic supple-
mentary material, where the revised parts are in bold fonts.
The same parts in the code xtess.txt should be revised in
double precision. Note that the FORTRAN function vtess
is revised to qvtess in the subroutine qggtess, which is
not in bold font. Based on the revised contents in Tables 7–
11 of this paper’s electronic supplementary material, these
revised codes will affect the evaluation of these components
gΦ , gΛ, ΓΦΦ , ΓΦΛ, ΓΦH , ΓΛΛ, ΓΛH , and ΓHH , where the
calculation of the gH will not be affected.
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4 Numerical investigations

In this section, a simple numerical experiment is performed
to reveal the magnitude of the error one makes when using
the original codes of Fukushima (2018). The numerical
experiment is carried out in a double-precision environment
considering the computational efficiency, because quadruple
precision generally requires more time than double preci-
sion. For instance, the ratio of quadruple precision to double
precision is about 50.463/0.089≈ 567 per computation point
with a single tesseroid on a desktop computer with an Intel
i5-10400 CPU at 2.9 GHz and single-threaded operation in
Sect. 5. Specifically, the values of the gravitational acceler-
ation vector (gΦ and gΛ) and gravity gradient tensor (ΓΦΦ ,
ΓΦΛ, ΓΦH , ΓΛΛ, ΓΛH , and ΓHH ) of a spherical shell are
served as the analytical reference values for the calculated
values of the discretized tesseroids forming the whole spher-
ical shell with the original codes provided by Fukushima
(2018) and revised codes.

Regarding the gravitational acceleration vector (gΦ and
gΛ) and gravity gradient tensor (ΓΦΛ, ΓΦH and ΓΛH ) of
a spherical shell, their reference values are equal to zero.
The three components of the gravity gradient tensor (ΓΦΦ ,
ΓΛΛ, andΓHH ) satisfy Laplace’s equation outside the spher-
ical shell and Poisson’s equation inside the spherical shell as
MacMillan (1930), Kellogg (1967), Blakely (1995):

ΓΦΦ,analytical + ΓΛΛ,analytical + ΓHH ,analytical

= 0 (H < HB or HT < H) (7)

ΓΦΦ,analytical + ΓΛΛ,analytical + ΓHH ,analytical

= −4πGρ (HB < H < HT ) (8)

When the computation point is located inside or outside
the spherical shell, ΓΦΦ,analytical = ΓΛΛ,analytical (Makhloof
and Ilk 2008; Wild-Pfeiffer 2008). Substituting Eq. (5) into
Eqs. (7) and (8) yields:

ΓΦΦ,analytical = ΓΛΛ,analytical

=

⎧⎪⎨
⎪⎩

0 (H < HB)

(4πGρ/3)(R3
B/R3 − 1) (HB < H < HT )

−GM/R3 (HT < H)

(9)

The detailed numerical settings are similar to those in
Sect. 3.1 of Fukushima (2018). Gρ = 1 and the radius of
the reference sphere is R0 = 6380 km. The top and bot-
tom heights of the spherical shell are HT = +10 km and
HB = −40 km. The spherical latitude and longitude of the
computation point are Φ = 0◦ and Λ = 180◦. The height of
the computation point varies from−100 to+100 kmwith an
interval of 1 km. The error tolerance to calculate the gravita-
tional potential is set as δ = 10−16 in double precision. The

computation points located on the surfaces of the spherical
shell, i.e. H = HB or H = HT , are shifted slightly inside
the spherical shell as H = (1+εD)HB or H = (1−εD)HT ,
where εD = 2−53 ≈ 1.11 × 10−16 is the double-precision
machine epsilon (see Table 1 of Fukushima (2012)).

For other components gΦ , gΛ, ΓΦΛ, ΓΦH , and ΓΛH , the
absolute errors in log10 scale are presented as:

δF = log10
∣∣∑ F

∣∣ (10)

where F means the gΦ , gΛ, ΓΦΛ, ΓΦH , or ΓΛH . When the
computation point is located below (H < HB) the spherical
shell for the components ΓΦΦ , ΓΛΛ, and ΓHH , the absolute
errors in log10 scale are applied.

Regarding the componentsΓΦΦ ,ΓΛΛ, andΓHH when the
computation point is located inside (HB < H < HT ) and
above (HT < H ) the spherical shell, their relative errors in
log10 scale are presented as:

δF = log10
∣∣∑ F/Fanalytical − 1

∣∣ (11)

where F = ΓΦΦ ,ΓΛΛ, orΓHH .
∑

means the sum of the cal-
culated values of the discretized tesseroids forming thewhole
spherical shell. Fanalytical represents the analytical reference
values of the spherical shell.

The absolute errors and relative errors in log10 scale of
the components gΦ , gΛ, ΓΦΦ , ΓΦΛ, ΓΦH , ΓΛΛ, ΓΛH , and
ΓHH are shown in Fig. 1 using the revised FORTRAN codes
and in Fig. 2 using the original FORTRAN codes provided
by Fukushima (2018). The factors and units of the absolute
errors of the gravitational acceleration vector (δgΦ and δgΛ)
and gravity gradient tensor (δΓΦΦ , δΓΦΛ, δΓΦH , δΓΛΛ,
δΓΛH , and δΓHH ) are m−1 and m−2, respectively. When
evaluating the practical results of the gravitational accelera-
tion vector and gravity gradient tensor using the original or
revised FORTRAN codes, the term GρR2

0 (i.e. the units of
G, ρ, and R0 are m3 kg−1 s−2, kg m−3, and m) should be
multiplied.

In Fig. 1a, the ranges of the absolute errors in log10 scale of
δΓΦΦ , δΓΛΛ, and δΓHH are about [−18,−14] in the interval
of [−100 km, −40 km) and the relative errors in log10 scale
are about [−10, −6] in the interval of [−40 km, +100 km].
In any case, Fig. 1a approximately confirms the following
equation:

|δF | ≈ log10
(√

δ
)

= log10
(√

10−16
)

= −8 (12)

excepting for the values of the δΓΦΦ , δΓΛΛ, and δΓHH at
HB = −40 km and HT = +10 km, i.e. the bottom and top
boundaries of the spherical shell. In Eq. (12), δF = δΓΦΦ ,
δΓΛΛ, or δΓHH . The reason for this behavior in Eq. (12)
is the error propagation when deriving higher-order gravita-
tional field components by numerical differentiation of the

123



8 Page 4 of 7 X.-L. Deng

(a) (b)

Fig. 1 a Illustration of the absolute errors and relative errors in log10
scale of the δΓΦΦ with blue circle points, δΓΛΛ with red star points,
and δΓHH with green square points with the influence of the height H
from −100 to +100 km with an interval of 1 km in double precision,
where the absolute errors are in the range of [−100 km, −40 km] and
the relative errors are in the range of [−40 km,+100 km]; b the absolute

errors in log10 scale of the δgΦ with blue circle points, δgΛ with red star
points, δΓΦΛ with purple pentagon points, δΓΦH with black inverted
triangle points, and δΓΛH with green square points. The two solid ver-
tical lines at HB = −40 km and HT = +10 km mean the bottom and
top boundaries of the spherical shell. These values are calculated using
the revised codes

(a) (b)

Fig. 2 Using the original codes provided by Fukushima (2018), other parameters are the same as in Fig. 1
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gravitational potential. Specifically, the relative accuracy of
the partially differentiated quantities is

√
δ for the gravity

gradient tensor (Fukushima 2018), where δ is the error toler-
ance to compute the gravitational potential.

In Fig. 1b, the absolute errors in log10 scale of the δgΦ ,
δgΛ, δΓΦΛ, δΓΦH , and δΓΛH are mostly less than or equal
to 10−16, which are the random errors in double precision.
Specifically, the ranges of the absolute errors in log10 scale
are about [−23, −21] for the δgΦ , [−21, −16] for the δgΛ,
[−27, −25] for the δΓΦΛ, [−27, −25] for the δΓΦH , and
[−22, −16] for the δΓΛH .

By comparing the numerical results of Figs. 1a and 2a,
it can be found that the absolute errors and relative errors
in log10 scale of the δΓHH are almost the same with each
other. In Fig. 2a, the ranges of the absolute errors in log10
scale of the δΓΦΦ and δΓΛΛ are about [−21, −18] in the
range of [−100 km, −40 km) and their relative errors in
log10 scale are about [−14, −8] in the range of [−40 km,
+100 km]. In Fig. 2b, the absolute errors in log10 scale
of the δΓΛH are in the ranges of [−25,−22] in the inter-
val of [−100 km, −40 km) and [−14, −12] in the interval
of [−40 km, +100 km]. Regarding the absolute errors in
log10 scale of the δgΦ , δgΛ, δΓΦΛ, and δΓΦH , there are no
numerical values shown in Fig. 2b, excepting that the abso-
lute errors of the δΓΦH are about −16 at HB = −40 km and
HT = +10 km.

Finally, numerical results reveal that the evaluation of the
absolute errors and relative errors in log10 scale of the δΓHH

does not be affected by using the original codes, because
one of the conditional splits (i.e. if ΦS ≤ Φ ≤ ΦN and
ΛW ≤ Λ ≤ ΛE and either HB − Δ2H < H < HB or
HT − Δ2H < H < HT) in the revised code of the ΓHH is
not triggered. When using the original codes for the δΓΦΦ

and δΓΛΛ, their absolute and relative errors in log10 scale
were incorrectly improved by about 2–4 orders of magni-
tude. Regarding the δΓΛH , the precision of its absolute errors
in log10 scale by using the original codes is erroneously
improved by approximately 3–6 orders of magnitude in the
range of [−100 km, −40 km) and reduced by about 4–8
orders of magnitude in the range of [−40 km,+100 km]. The
precision of the absolute errors in log10 scale of the δΓΦH

is reduced by about 9–11 orders of magnitude by using the
original codes. Notably, the absolute errors in log10 scale of
the δgΦ , δgΛ, δΓΦΛ and the majority of δΓΦH are not pre-
sented in Fig. 2b because of no numerical values. This is due
to the fact that these values equal negative infinity. In other
words, the calculated values of the δgΦ , δgΛ, δΓΦΛ and the
most of δΓΦH when using the original codes in Fukushima
(2018) are equal to zero and their absolute errors in log10
scale are log10 0 = −∞.

5 Computer programs of the xtess.f90
and xqtess.f90

To make better use of the revised FORTRAN codes,
the xtess.f90 and xqtess.f90 are presented at the
GitHub website https://github.com/xiaoledeng/xtess-xqtess.
The total CPU time of the xtess.f90 and xqtess.f90
to calculate all 10 components of the V , gΦ , gΛ, gH , ΓΦΦ ,
ΓΦΛ, ΓΦH , ΓΛΛ, ΓΛH , and ΓHH is 3.568/40 s≈ 0.089 s per
computation point when δ = 10−16 in double precision and
50.463 s per computation point when δ = 10−33 in quadra-
ture precisionwith a single tesseroidmass body. These values
are obtained on a desktop computer with an Intel i5-10400
CPU at 2.9 GHz using the single-threaded operation.

When applying the gravitational potential, gravitational
acceleration vector, and gravity gradient tensor using these
FORTRAN codes in the practical applications, the term
GρR2

0 should be multiplied with the output numerical val-
ues to obtain the units m2 s−2 for the gravitational potential,
m s−2 for the gravitational acceleration vector, and s−2 for
the gravity gradient tensor, where the units of G, ρ, and R0

are m3 kg−1 s−2, kg m−3, and m, respectively.

6 Conclusions and consequences for
Fukushima (2018)

Theoretically, the revised parts in the original codes
xtess.txt and xqtess.txt have impacts on the calcu-
lation of these components of the gravitational acceleration
vector (i.e. gΦ and gΛ) and gravity gradient tensor (i.e. ΓΦΦ ,
ΓΦΛ, ΓΦH , ΓΛΛ, ΓΛH , and ΓHH ). Regarding the ΓHH ,
the influence on the calculation results only occurs when
one of the conditional splits (i.e. if ΦS ≤ Φ ≤ ΦN and
ΛW ≤ Λ ≤ ΛE and either HB − Δ2H < H < HB or
HT − Δ2H < H < HT) is performed. The evaluation of
the gravitational potential V and the radial component of
the gravitational acceleration vector gH in the original codes
xtess.txt and xqtess.txt will not be affected.

Numerical results reveal that the absolute errors obtained
by using the corrected codes are at a lower precision level
by 2–4 orders of magnitude for the δΓΦΦ and δΓΛΛ com-
ponents of the gravity gradient tensor. Regarding the δΓΛH

component of the gravity gradient tensor, the precision level
of the absolute errors by using the corrected codes is reduced
by 3–6 orders of magnitude when the computation point is
located below the spherical shell and improved by 4–8 orders
of magnitude when the computation point is located in and
above the spherical shell. When the computation point is
located on the bottom and top boundaries of the spherical
shell, the precision level of the absolute errors for the δΓΦH

component of the gravity gradient tensor by using the cor-
rected codes is improved by 9–11 orders of magnitude. If
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using the original codes for the gΦ and gΛ components of
the gravitational acceleration vector and the δΓΦΛ and most
of the δΓΦH components of the gravity gradient tensor, their
calculated values of the tesseroids are equal to zero. When
using the revised codes for these components, their absolute
errors in log10 scale are in ranges of about [−23, −21] for
the δgΦ , [−21, −16] for the δgΛ, [−27, −25] for the δΓΦΛ,
and [−27, −25] for the δΓΦH .

The previous study that quoted the original FORTRAN
codes provided by Fukushima (2018) to calculate the gravi-
tational field of a tesseroid should be carefully considered
based on the above potential impacts. For example, Lin
et al. (2020) calculated the gravitational potential V , radial
component Vz of the gravitational acceleration vector, and
radial–radial component Vzz of the gravity gradient tensor in
Sect. 3.7 based on the use of the original FORTRAN codes
in Fukushima (2018). Fortunately, these three components
V , Vz , and Vzz are not affected, although the FORTRAN
code of the Vzz needs to be modified, whereas in Sect. 4.2
gravitational acceleration vector of tesseroid, Sect. 4.3 grav-
ity gradient tensor of tesseroid, Sect. 4.4 polar tesseroid,
and Sect. 4.5 polar cap slab of the electronic supplement
material of Fukushima (2018), the evaluation of the grav-
ity field quantities (e.g. the total gravitational acceleration

g =
√
g2Φ + g2Λ + g2H , magnitude of the vector representing

the deflection of the vertical referred to the normal vector

of the reference sphere θ = tan−1

(√
g2Φ+g2Λ
gH

)
, azimuthal

angle of the vector representing the deflection of the vertical

A = tan−1(gΦ/gΛ), ΔA = tan−1
(

(ΦC−Φ)gΛ−(ΛC−Λ)gΦ

(ΦC−Φ)gΦ+(ΛC−Λ)gΛ

)
,

and these components ΓΦΦ , ΓΦΛ, ΓΦH , ΓΛΛ, and ΓΛH of
the gravity gradient tensor) may be wrong and needs to be
carefully investigated especially when these components of
the gravitational acceleration vector (i.e. gΦ and gΛ) and
gravity gradient tensor (i.e.ΓΦΦ ,ΓΦΛ,ΓΦH ,ΓΛΛ, andΓΛH )
are included.

Regarding the impacts of replacing the revised codes in
this study with the original codes in Fukushima (2018) when
considering practical applications for modeling the gravi-
tational signals of mass distributions of the Earth or other
planetary bodies, further empirical research is required to
explore these in the future.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00190-022-01673-
2.
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intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix 1: Derivation of the 083 and 03H
components of the gravity gradient tensor

In this part, the detailed derivation of the ΓΦΛ and ΓΛH

components of the gravity gradient tensor is presented to
confirm the correctness of the formulas of the ΓΦΛ and ΓΛH

in Eqs. (3) and (4).
Based on Eqs. (6) and (38) of Casotto and Fantino (2009),

the general formula of the gravitational acceleration vector
is obtained as:

V ∗
,p = 1

h p

∂V

∂u p
(13)

h1 = R cosΦ, h2 = R, h3 = 1 (14)

where p = 1, 2, 3. u1 = Λ, u2 = Φ, and u3 = R are the
spherical longitude, latitude, and geocentric distance of the
computation point. V is the gravitational potential and ∂V

∂u p

are its first-order derivatives. Note that u3 = R is denoted as
H in Fukushima (2018).

The gΛ component of the gravitational acceleration vector
is obtained with p = 1 in Eq. (13) as:

gΛ = V ∗
,1 = 1

R cosΦ

∂V

∂Λ
(15)

Combining Eqs. (13) and (14) of Casotto and Fantino
(2009) yields the general formula of the gravity gradient ten-
sor as:
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V ∗
;pq = 1

h phq

(
∂2V

∂u p∂uq
− Γ s

qp
∂V

∂us

)

= 1

h phq

(
∂2V

∂u p∂uq
−

3∑
s=1

Γ s
qp

∂V

∂us

) (16)

where p, q, s = 1, 2, 3. Note that the Einstein summation
convention has been applied in Eq. (16). Γ s

qp is the Christof-
fel’s symbol of the second kind, which can be referred to in
Eqs. (39)–(41) of Casotto and Fantino (2009) and Table 2 of
Deng and Ran (2021).

The ΓΦΛ component of the gravity gradient tensor is
obtained with p = 2 and q = 1 in Eq. (16) as:

ΓΦΛ = V ∗
;21 = 1

h2h1

[
∂2V

∂u2∂u1

−
(
Γ 1
12

∂V

∂u1
+ Γ 2

12
∂V

∂u2
+ Γ 3

12
∂V

∂u3

)]

= 1

R2 cosΦ

(
∂2V

∂Φ∂Λ
+ tanΦ

∂V

∂Λ

)

= 1

R2 cosΦ

(
∂2V

∂Φ∂Λ

)
+ tanΦ

R
gΛ

(17)

where Γ 1
12 = − tanΦ and Γ 2

12 = Γ 3
12 = 0 are referred to in

Table 2 of Deng and Ran (2021). The equation 1
R cosΦ

∂V
∂Λ

=
gΛ in Eq. (15) is applied. Similarly, the expression for the
ΓΛΦ can be obtained with p = 1 and q = 2 in Eq. (16) and
is the same as the ΓΦΛ.

Furthermore, the ΓΛH component of the gravity gradient
tensor is obtained with p = 1 and q = 3 in Eq. (16) as:

ΓΛH = V ∗
;13 = 1

h1h3

[
∂2V

∂u1∂u3

−
(
Γ 1
31

∂V

∂u1
+ Γ 2

31
∂V

∂u2
+ Γ 3

31
∂V

∂u3

)]

= 1

R cosΦ

(
∂2V

∂Λ∂H
− 1

R

∂V

∂Λ

)

= 1

R cosΦ

(
∂2V

∂Λ∂H

)
− gΛ

R

(18)

where Γ 1
31 = 1/R and Γ 2

31 = Γ 3
31 = 0 are referred to in

Table 2 of Deng and Ran (2021). The equation 1
R cosΦ

∂V
∂Λ

=
gΛ in Eq. (15) is applied. Analogously, the expression for the
ΓHΛ can be obtained with p = 3 and q = 1 in Eq. (16) and
is the same as the ΓΛH .

Note that when the subscripts H and Φ are added for the
first terms in Eqs. (17) and (18), Eqs. (17) and (18) are the
same as Eqs. (3) and (4).
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