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Abstract
Msplit estimation is amethod that enables the estimation ofmutually competing versions of parameters in functional observation
models. In the presented study, the classical functional models found in it are replaced by errors-in-variables (EIV) models.
Similar to theweighted total least-squares (WTLS)method, the random components of thesemodels were assigned covariance
matrix models. Thus, the proposed method, named Total Msplit (TMsplit) estimation, corresponds to the basic rules of WTLS.
TMsplit estimation objective function is constructed using the components of squared Msplit and WTLS estimation objective
functions. The TMsplit estimation algorithm is based on the Gauss–Newtonmethod that is applied using a linear approximation
of EIVmodels. The basic properties of themethod are presented using examples of the estimation of regression line parameters
and the estimation of parameters in a two-dimensional affine transformation.

Keywords Geodetic errors-in-variables · Weighted total least-squares · Msplit estimation

1 Introduction

Wiśniewski (2009) proposed a method for estimating param-
eters in split functional models of geodetic observations.
Such a split occurs when two functional models that differ
from each other in terms of mutually competing versions of
the same parameter can correspond to a single observation.
For example, in a network deformation analysis carried out
based on an aggregate set of observations obtained during
two measurement epochs, any given observation from this
set corresponds to one of the following models: a functional
model of observations from the first measurement epoch or
a functional model of observations obtained during the sec-
ond measurement epoch. Another example concerns the sets
containing outliers. In that case, any given observation from
this set can be a “good” observation or a wrong observation
with a functional model appropriate for it.

The proposed method called Msplit estimation assumes
that if a particular observation already occurs, it brings two
mutually competing pieces of f -information (Jones and Jones
2000) determined in relation to two versions of the same
parameter (Wiśniewski 2009, 2010). Msplit estimators of
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these versions are the quantities that minimise the aggre-
gate informationbeing the product of competing information.
Similar assumptions are also adopted in the maximum like-
lihood method (ML-method) (e.g. Rao 1973; Wiśniewski
2017). However, this method does not allow the existence
of several versions of the parameters in a functional model
relating to the same observation. From this perspective,Msplit

estimation can be regarded as a particular kind of develop-
ment of theMLmethod. In the absence of competing versions
of the parameter, Msplit estimators become ML-estimators.
Since the study conducted by Huber (1964), a generalisa-
tion of the ML-method has been very popular, known as
M-estimation, in which f -information is replaced by cer-
tain arbitrary functions. A similar substitution can also be
observed in Msplit estimation. Msplit estimation based on L1
norm condition was developed to take advantage of this pos-
sibility (Wyszkowska and Duchnowski 2019).

The general theory of Msplit estimation was developed
without detailed assumptions about probabilistic observation
models, which enables the creation of Msplit estimation vari-
eties corresponding to specific models of this nature. The
most commonly accepted probabilistic model of geodetic
observations is the normal distribution. The family of normal
distributions corresponds to the basic variant ofMsplit estima-
tion called “squared Msplit estimation”. This variant of Msplit

estimation can be regarded as a particular type of expan-
sion of the least-squares (LS) method (Wiśniewski 2009). In
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the absence of competing parameter versions, squared Msplit

estimators become LS-estimators. Whenever Msplit estima-
tion is mentioned further on, this will indicate this particular
variant.

Msplit estimation was applied inter alia in the analysis of
geodetic network deformation (Duchnowski andWiśniewski
2012, 2014; Zienkiewicz 2014; Zienkiewicz et al. 2017;
Wiśniewski and Zienkiewicz 2016). In these problems,
Msplit estimation is particularly effective in identifying stable
potential reference points (PRPs) (Nowel 2019). Janowski
and Rapiński (2013) applied Msplit estimation in 3D mod-
elling, primarily for the detection of surface structures (e.g.
roof planes) of engineering structures. The modelling was
carried out based on laser scanning data. A similar prob-
lem is also analysed in a study by Janicka et al. (2020),
where Msplit estimation was proposed as a means of detect-
ing and determining the displacements of adjacent planes.
Laser scanning data also provided the basis for determining
the terrain profiles using Msplit estimation (Błaszczak-Bąk
et al. 2015; Wyszkowska et al. 2021).

Msplit estimation can provide an alternative to M-
estimation which is robust to gross errors. The possibility
of such applications was indicated in the following studies
(Wiśniewski 2009, 2010; Yang et al. 2010; Ge et al. 2013;
Janicka and Rapinski 2013; Amiri-Simkooei et al. 2017).
Wiśniewski and Zienkiewicz (2021a, b) demonstrated that
with properly established, competitive functionalmodels, the
robustness ofMsplit estimators to gross errors is their inherent
feature. The robustness of these estimators in a wider con-
text (e.g. to poorly chosen models) was analysed in detail by
Duchnowski and Wiśniewski (2019, 2020).

In both the traditional models and split functional models
constructed on their basis (inMsplit estimation), it is assumed
that only observations are affected by random errors. Cur-
rently, an errors-in-variables (EIV) model, in which design
matrix elements are also affected by randomerrors, is applied
in many geodetic problems. For example, this model was
applied in geodetic datum transformation (Teunissen 1988;
Davis 1999; Acar et al. 2006; Akyilmaz 2007; Schaffrin and
Felus 2008; Mahboub 2012; Fang 2015; Aydin et al. 2018;
Mercan et al. 2018)) as well as in remote sensing (Felus
and Schaffrin 2005), in a function approximation (Wang
and Zhao 2019), in linear regression (Schaffrin and Wieser
2008;Amiri-Simkooei and Jazaeri 2012; Zeng et al. 2018; Lv
and Sui 2020) and in the least-squares collocation (Schaffrin
2020;Wiśniewski andKamiński 2020). The effect of the ran-
dom design matrix on the weighted LS estimate is presented
in Xu et al. (2014). This paper also proposed a bias-corrected
weighted LS estimate for the EIV model. A developed EIV
stochastic model and an estimation of the model’s compo-
nents (using, inter alia, the MINQUE method) are presented
in Xu and Liu (2014).

The estimation of parameters in functional models
extended to the EIV form ismost commonly carried out using
the total least-squares (TLS) method. The optimisation prob-
lemof thismethod aswell as its solution based on the singular
value decomposition (SVD) was presented by Golub and
Loan (1980). TLS using the SVD procedure was developed
and adapted to geodetic purposes as well (e.g. Felus 2004;
Akyilmaz 2007; Schaffrin and Felus 2008). Another way to
solve the TLS optimisation problem, based on a nonlinear
Lagrange function, is proposed in Schaffrin et al. (2006).

In the practical applications of the TLS method, besides
having effective algorithms at one’s disposal, the possibil-
ity for taking into account random weights of EIV model
components is also very important. The basic solutions in
this regard were presented by van Huffel and Vandewalle
(1991), who established the generalised total least-squares
(GTLS) method. On the other hand, Schaffrin and Wieser
(2008) proposed an expansion of the TLS method, in which
weights were derived from the adopted covariance matrix
models (stochastic models). In the method proposed in the
cited study, called “the weighted total least-squares (WTLS)
method”, stochastic models can apply to both observation
vectors and the vectors created from random errors affecting
the design matrix.

WTLS is still developed and analysed. For example,
Fang (2013) analysed necessary and sufficient conditions
for WTLS optimality. Amiri-Simkooei (2017, 2018) pre-
sented the theory behind the constrained weighted total
least-squares (CWTLS) method. The WTLS optimisation
problem was also formulated and solved using a second-
order approximation function (Wang and Zhao 2019). Due to
their nonlinear nature, theWTLS estimators are biased. Bias-
corrected versions of these estimators are presented in studies
by (Xu et al. 2012; Tong et al. 2015). Moreover, an important
problem in WTLS theory and practice is the assessment of
the accuracy of the determined estimators. What might be
helpful in this regard are the strategies for determining the
covariancematrix ofWTLS estimates (Amiri-Simkooei et al.
2016) and methods for estimating the variance components
in EIV models (Xu and Liu 2014).

In the optimisation problemof theWTLSmethodbased on
the Lagrange approach, the objective function is minimised
with the conditions defined by the nonlinear EIV model. An
iterative algorithm to solve this problem was proposed in
(Schaffrin and Wieser 2008). Shen et al. (2011), based on
Newton–Gauss algorithm of nonlinear LS adjustment (Pope
1974), proposed another iterative method for solving WTLS
problems, which is easier in practical applications. In this
model, a nonlinear EIV model is replaced with a linear
approximation, which significantly facilitates the organisa-
tion of a corresponding computational algorithm.

The origin of TLS or WTLS estimation is the LS-method
which is neutral for all observations. The WTLS estimators’
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lack of robustness to gross errors is, therefore, an inherent
feature, which may restrict the scope of the practical applica-
tion of these estimators. Therefore, a robust estimation ofEIV
model parameters is of interest to many authors. For exam-
ple, Wang et al. (2016) proposed a robust total least-squares
(RTLS) method in which the robustness ofWTLS estimators
was obtained bymeans of the application of weight functions
adopted in robust M-estimation. Another proposal, based on
the least trimmed squares (LTS)method,was presented byLv
and Sui (2020). In that method, the authors used the inherent
robustness of estimators minimising the sum of the squared
orthogonal errors. They called the LTS version adjusted to
EIV models “total least trimmed squares” (TLTS).

The current study will apply the EIV model in a basic
Msplit estimation variant. When referring to the WTLS
method, models of covariance matrices of random compo-
nents of thismodelwill also be taken into account. According
to the basic principles ofMsplit estimation, it will be assumed
that the parameters in EIV model will have two mutually
competing versions (which consequently leads to the split of
this model). The objective function of the proposed method,
called the “Total Msplit (TMsplit) estimation”, will be created
through the application of the Lagrange approach (Schaffrin
and Wieser 2008) using the approach adopted in (Shen et al.
2011), i.e. the split EIV models will be replaced with their
linear approximations.

The paper is organised as follows.As the proposedmethod
is an expansion ofMsplit estimation, which takes into account
the basic assumptions used in the WTLS method, it appears
necessary to review the theoretical foundations of both these
methods. These foundations, set in the context relevant to this
study, are provided in Sect. 2. The theory behind TMsplit esti-
mation and its algorithm are provided in Sect. 3. In Sect. 4,
examples of the method application will be provided. TMsplit

estimation will be applied to estimate parameters in com-
peting bias models (Sect. 4.1). The obtained results will
be compared with classical Msplit estimators calculated in
Wiśniewski (2010). In Sect. 4.2, the data provided in Neri
et al. (1989) and also used, inter alia, in studies by Schaf-
frin and Wieser (2008), Shen et al. (2011) and Mahboub
(2012), will be used to determine TMsplit estimators of linear
regression parameters. It will be assumed that the basic set
of “good” observations is disturbed by “strange” observa-
tions for which a corresponding regression line also exists.
Moreover, in this Chapter, the behaviour of TMsplit estima-
tors will be checked in the event that the set contains one
observation affected by gross error with different values.
The determined TMsplit estimators will be compared with
the WTLS estimators published in the cited studies. TMsplit

estimators’ robustness to gross errors is additionally analysed
using an example of a two-dimensional affine transformation
(Sect. 4.3). The data for this example are derived from (Lv
and Sui 2020). The RTLS and TLTS estimators showed in

the cited paper will be comparedwith TMsplit estimators. The
paper concludes with a summary.

2 Review of Msplit andWTLS estimation

2.1 Msplit estimation

Let y = AX+v be a functional model of y = [y1, . . . , yn]T
observation vector, where A is the n × m coefficient matrix
(rank(A) = m),X is them-vector of unknown parameters to
be estimated, and v is n-vector of random observation errors.
In Msplit estimation, this model is split into two models:

y = AXα + vα and y = AXβ + vβ (1)

where Xα and Xβ are mutually competing versions of
the same vector of parameters X. The vectors vα ,vβ are
respective versions of the vector v, which result from the
observation errors and the errors of the functional models.

Msplit estimators of parameters Xα and Xβ are quanti-
ties that minimise the following general objective function
(Wiśniewski 2009).

ϕ(Xα , Xβ) =
n∑

i=1

ρα(viα)ρβ(viβ) (2)

where ρα and ρβ are arbitrary functions. In the context of
cross-weighting that is natural in Msplit estimation, function
(2) can also be expressed in the following form:

ϕ(Xα , Xβ) =
n∑

i=1

ρα(viα)wα(viβ) =
n∑

i=1

ρβ(viβ)wβ(viα)

(3)

where wα(viβ) = ρβ(viβ) and wβ(viα) = ρα(viα) are now
regarded as a special type of weight function. The specific
character of weighting is that the contribution of function
ρα(viα) to the optimisation problem is enhanced (or weak-
ened) by the weight function whose argument is quantity viβ
competing in relation to viα (and vice versa). The weight
functions are not like those in M-estimation, which are mod-
ified to make the estimator robust. Mutual “cross weighting”
functions wα(viβ) and wβ(viα) are applied to determine
mutually competitive estimates related to the same observa-
tion set (Wiśniewski 2009). In the case of Msplit estimation,
one supposes that the observation set might be a mixture of
realisations of two different randomvariables that differ from
each other in the parameters of the functional models. One
of those variables might be regarded as a “strange” one and
its realisations as outliers in a particular case. Then results
of Msplit estimation are estimates of the parameters of the
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“good” variable (like in robust M-estimation) but also esti-
mates of the parameters of the “strange” variable.

This studywill use the basic variant ofMsplit estimation, in
which ρ(vα) = v2iαq

−1
i and ρ(vβ) = v2iβq

−1
i . The quantities

qi are diagonal elements of theQy cofactor matrix occurring
in the Cy = σ 2

0Qy covariance matrix model (σ 2
0—unknown

variance component). The adopted functions can be associ-
ated (although this is not necessary)with normal distributions
as probabilistic observation models. Taking these functions
into account, based on Eqs. (2) and (3), the following will be
recorded (Wiśniewski 2009; Zienkiewicz 2018a, 2018b)

ϕ(Xα , Xβ) =
n∑

i=1

ρα(viα)ρβ(viβ) =
n∑

i=1

v2iαv2iβq
−2
i

=
n∑

i=1

v2iαwα(viβ) =
n∑

i=1

v2iβwβ(viα)

= vTαWα(vβ)vα = vTβ Wβ(vα)vβ (4)

where

wα(viβ) = v2iβq
−2
i , wβ(viα) = v2iαq

−2
i

Wα(vβ) = Diag
(
wα(v1β), . . . , wα(vnβ)

)
,

Wβ(vα) = Diag
(
wβ(v1α), . . . , wβ(vnα)

)
(5)

The solution to the optimisation problem ϕ(Xα , Xβ) →
min includes such quantities X̂α and X̂β (Msplit estimators)
for which the following is true:

1

2

∂ϕ(Xα , Xβ )

∂Xα

∣∣∣∣
Xα=X̂α ,Xβ=X̂β

= ATWα(ṽβ)ṽα = ATWα(ṽβ)(y − AX̂α) = 0

1

2

∂ϕ(Xα , Xβ )

∂Xβ

∣∣∣∣
Xα=X̂α ,Xβ=X̂β

= ATWβ(ṽα)ṽβ = ATWβ (ṽα)(y − AX̂β ) = 0

(6)

where ṽα = y − AX̂α and ṽβ = y − AX̂β are residual vec-
tors. The above equations are solved by means of iteration.
The iterative procedure can be organised in such a manner
that in the steps l = 1, . . . , s, the following quantities are
determined (Wiśniewski and Zienkiewicz 2021a, 2021b):

Xα(l+1) =
(
ATWα(vβ(l))A

)−1
ATWα(vβ(l))y, vα(l+1) = y − AX̂α(l+1)

Xβ(l+1) =
(
ATWβ (vα(l))A

)−1
ATWβ(vα(l))y, vβ(l+1) = y − AX̂β(l+1) (7)

(the iterative procedure using gradients and Hessians of the
function ϕ(Xα , Xβ) is presented inWiśniewski 2009, 2010).
The iterative process defined by Eq. (7) is convergent and
ends for such l = s that Xα(s) = Xα(s−1) and Xβ(s) =
Xβ(s−1). Then, X̂α = Xα(s) and X̂β = Xβ(s).

In Msplit estimation, the stochastic model Cv = Cy =
σ 2
0Qy, similar to the functional model, is split. The split

results in covariance matrices Cvα = σ 2
0αQy and Cvβ =

σ 2
0βQy, which are two versions of the covariance matrix

Cv (Wiśniewski and Zienkiewicz 2021b). The invariant and
unbiased estimators of variance coefficients σ 2

0α and σ 2
0β

are the following quantities (Wiśniewski and Zienkiewicz,
2021a, b):

σ̂ 2
0α = ṽTαQ

−1
vα

QyQ
−1
vα

ṽα

Tr(NT
αNα)

and

σ̂ 2
0β = ṽTβ Q

−1
vβ

QyQ
−1
vβ

ṽα

Tr(NT
βNβ)

(8)

where

Nα = QyQ
−1
vα

Mα , Nβ = QyQ
−1
vβ

Mβ

Mα = In − A(ATQ
−1
vα

A)−1ATQ
−1
vα

,

Mβ = In − A(ATQ
−1
vβ

A)−1ATQ
−1
vβ

(9)

and Qvα
= [Wα(vβ)]−1Qy, Qvβ

= [Wβ(vα)]−1Qy, In
denotes an n × n identity matrix (Tr-matrix trace).

2.2 Weighted TLSmethod

The total least-squares method is applied where the classical
model y = AX + v is replaced by the EIV model of the
following form:

y = (A − E)X + υ = AX + υ − EX (10)

where E is an n × m random matrix corresponding to the
matrix A being observed. The random vector corresponding
to observation vector y in the EIV model was denoted as υ.
If we assume that v = y − AX is the error vector in the
classical functional model, then υ = v + EX. It should be
considered that EX = (XT ⊗ In)e, where e = vec(E) is a
vector formed from successive columns of matrixE (⊗—the
Kronecker product, In—an identitymatrix of dimensions n×
n).Moreover, in order to simplify further notation, additional
designationsX⊗ = X⊗ In = (XT ⊗ In)T ,XT⊗ = XT ⊗ In =
(X⊗ In)T are introduced. Model (10) can then be expressed
in the following form:

y = AX + υ − EX = AX + υ − (XT ⊗ In)e = AX + υ − XT⊗e
(11)

In the WTLS method, in addition to the stochastic model of
the observation vector Cy = σ 2

0Qy, a stochastic model of e
vector is also adopted. In the simplest case, it can be assumed
that such a model is the expression Ce = σ 2

0Qe, where Qe

is the known cofactor matrix. However, there are examples
in which not all columns of matrixA are affected by random
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disturbances (e.g. in the linear regression analysis). In that
case, matrixQe can be subject to appropriate decomposition
Qe = Q0 ⊗ Qx, where Qx denotes a nonnegative definite
diagonal matrix of size n × n (Schaffrin and Wieser 2008;
Shen et al. 2011).

In the Lagrange approach applied in Schaffrin andWieser
(2008) and Lv and Sui (2020), the WTLS method is based
on the following objective function:

ϕ(υ, e, λ, X) = υTQ−1
y υ + eTQ+

e e − 2λT (y − AX − υ + XT⊗e)
(12)

where λ denotes an n × 1 vector of “Lagrange multipliers”.
MatrixQ+

e is theMoore–Penrose inverse ofQe. For example,
when Q0 = Diag(0, 1), hence Qe = Diag(0, Qx), and Qx

is regular, then Q+
e = Diag(0, Q−1

x )(e.g. Rao 1973; Felus
2004).The iteration procedures that solve the optimisation
problem ϕ(υ, e, λ, X) → min with the nonlinear conditions
y − AX − υ + XT⊗e = 0 are, in general, complicated. The
application of a similar objective function inMsplit estimation
will generate numerical procedures and computational algo-
rithms of even greater complexity. From the perspective of
computational process optimisation, however, the approach
adopted in Shen et al. (2011), also applied in Wang et al.
(2016), is particularly interesting for the purposes of the
study. The iterative method proposed in the study is based
on the Newton–Gauss algorithm of nonlinear LS adjustment,
proposed by Pope (1974). In this method, the EIVmodel (11)
is replaced, in the j-the iteration, by a linear approximation
of the following form:

y = AX + υ − EX

= AX j + A jδX + υ − EX j

= AX j + A jδX + υ − (X j
⊗)T e (13)

whereA j = A−Ẽ j ,X = X j+δX andX j
⊗ = X j⊗In . Ẽ j are

residual matrices built on the basis of the residual vector ẽ j

determined in the j-th iteration. Vector δX is a small quantity
to be solved in the iteration. After taking into account the
condition y − AX j − A jδX − υ + (X j

⊗)T e = 0 resulting
frommodel (13), the objective function (12) can be rewritten
in the following form (Shen et al. 2011).

ϕ(υ, e, λ, δX) = υTQ−1
y υ + eTQ+

e e − 2λT
(
y − AX j − A j δX − υ + (X j

⊗)T e
)

(14)

The minimum of this function is obtained through satisfying
the following Euler–Lagrange necessary conditions (Shen
et al. 2011)

1

2

∂ϕ

∂υ

∣∣∣∣
υ=υ̃, e=ẽ, δX=δX̂,λ=λ̂

= Q−1
y υ̃ + λ̂ = 0

1

2

∂ϕ

∂e

∣∣∣∣
υ=υ̃, e=ẽ, δX=δX̂,λ=λ̂

= Q+
e ẽ − X j

⊗λ̂ = 0

1

2

∂ϕ

∂δX

∣∣∣∣
υ=υ̃, e=ẽ, δX=δX̂,λ=λ̂

= (A j )T λ̂ = 0

1

2

∂ϕ

∂λ

∣∣∣∣
υ=υ̃, e=ẽ, δX=δX̂,λ=λ̂

= y − AX j − A j δX̂ − υ̃ + (X j
⊗)T e = 0

(15)

The solution to the equations contained in Eq. (15) are the
following quantities:

λ̂ = −(Q j
l )

−1(y − AX j − A jδX̂)

δX̂ j+1 =
[
(A j )T (Q j

l )
−1A j

]−1
(A j )T (Q j

l )
−1(y − AX j )

X j+1 = X̂ j + δX̂ j+1

=
[
(A j )T (Q j

l )
−1A j

]−1
(A j )T (Q j

l )
−1(y − E jX j )

(16)

and

υ̃ j+1 = −Qy(Q
j
l )

−1(y − AX̂ j − A jδX̂ j+1)

ẽ = QeX
j
⊗(Q j

l )
−1(y − AX̂ j − A jδX̂ j+1) (17)

where

Q j
l = Qy + (X j

⊗)TQeX
j
⊗ (18)

(υ̃—residual vector corresponding to the observation vec-
tor y). Shen et al. (2011) also apply the iterative process on the
assumption thatE jδX is a negligible quantity. Then,A jδX =
(A − E j )δX = AδX and y = AX j + AδX + υ − EX j .

The estimation of variance coefficient σ 2
0 , common to

stochastic models Cy = σ 2
0Qy and Ce = σ 2

0Qe, is also of
interest in WTLS. Schaffrin and Wieser (2008) proposed a
biased estimator in the following form:

σ̂ 2
0 = (y − AX̂)TQ−1

l (y − AX̂)/(n − m) (19)

A correction of the estimator (19) by means of introducing
a bias term δb to it was presented by Shen et al. (2011).
More complex EIV stochastic models are also being under
consideration. For example, Xu and Liu (2014) introduced a
model containing variance components and proposed a way
to estimate these components.

3 Total Msplit estimation

3.1 Theoretical foundations

Let it be assumed that according to theMsplit estimation rules,
the EIV model (10) is split into two mutually competing
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models

y = (A − E)Xα + υα = AXα + υα − EXα

y = (A − E)Xβ + υβ = AXβ + υβ − EXβ (20)

By applying the approach used in Shen et al. (2011) and
Wang et al. (2016), see Eq. (13), the above models in the j-th
iteration will be replaced with the following linear approxi-
mations:

y = AX j
α + A jδXα + υα − EX j

α

= AX j
α + A jδXα + υα − (X j

⊗α)T e

y = AX j
β + A jδXβ + υβ − EX j

β

= AX j
β + A jδXβ + υβ − (X j

⊗β)T e (21)

whereXα = X j
α+δXα ,Xβ = X j

β+δXβ andX
j
⊗α = X j

α⊗In ,

X j
⊗β = X j

β ⊗In . After determining the quantitiesE j ,X j
α and

X j
β , the models that are valid in the j-th iteration, contained

in Eq. (20), take the following forms:

y = (A − E j )X j
α + υ j

α = A jX j
α + υ j

α

y = (A − E j )X j
β + υ

j
β = A jX j

β + υ
j
β (22)

Total Msplit estimators of parameters Xα and Xβ are quan-
tities X̂α and X̂β which minimise the following objective
function:

ϕ(Xα , Xβ) = υT
αWα(υβ)υα + eTQ+

e e = υT
βWβ(υα)vβ + eTQ+

e e
(23)

This function [lake functions Eqs. (3) and (4)] is not designed
tomake themethod robust and also does not “predict” outliers
among observations of elements of matrix A. In view of the
following conditions resulting from Eq. (21)

y − AX j
α − A jδXα − υα + (X j

⊗α)T e = 0

y − AX j
β − A jδXβ − υβ + (X j

⊗β)T e = 0 (24)

the original objective function (23) will be supplemented to
the following form:

ϕ(υα , υβ , e, Xα , Xβ , λα , λβ)

= υT
αWα(υβ)vα + eTQ+

e e

− 2λT
α

(
y − AX j

α − A jδXα − υα + (X j
⊗α)T e

)

− 2λT
β

(
y − AX j

β − A jδXβ − υβ + (X j
⊗β)T e

)

= υT
βWβ(υα)vβ + eTQ+

e e

− 2λT
α

(
y − AX j

α − A jδXα − υα + (X j
⊗α)T e

)

− 2λT
β

(
y − AX j

β − A jδXβ − υβ + (X j
⊗β)T e

)
(25)

where λα and λβ are Lagrange multiplier vectors cor-
responding to conditions (24). It is established that the
Euler–Lagrange necessary conditions have the following
forms in the optimisation problem ϕ(υα , υβ , e, Xα , Xβ ,
λα , λβ) → min:

1

2

∂ϕ

∂υα

∣∣∣∣
	

= Wα(υ̃β)υ̃α + λ̂α = 0 (26a)

1

2

∂ϕ

∂υβ

∣∣∣∣
	

= Wβ(υ̃α)υ̃β + λ̂β = 0 (26b)

1

2

∂ϕ

∂e

∣∣∣∣
	

= Q+
e ẽ − X j

⊗αλ̂α − X j
⊗β λ̂β = 0 (26c)

1

2

∂ϕ

∂δXα

∣∣∣∣
	

= (A j )T λ̂α = 0 (26d)

1

2

∂ϕ

∂δXβ

∣∣∣∣
	

= (A j )T λ̂β = 0 (26e)

1

2

∂ϕ

∂λα

∣∣∣∣
	

= y − AX j
α − A jδX̂α − υ̃α + (X j

⊗α)T ẽ = 0

(26f)

1

2

∂ϕ

∂λβ

∣∣∣∣
	

= y − AX j
β − A jδX̂β − υ̃β + (X j

⊗β)T ẽ = 0

(26g)

The set of simultaneous substitutions: υα = υ̃α , υβ = υ̃β ,
e = ẽ, δXα = δX̂α , δXβ = δX̂β , λα = λ̂α , λβ = λ̂β , intro-
duced to simplify the notation, was denoted as 	. Based on
Eqs. (26a)–(26c), the following residual vectors are deter-
mined:

υ̃α = −W−1
α (υ̃β)λ̂α

υ̃β = −W−1
β (υ̃α)λ̂β

ẽ = Qe(X
j
⊗αλ̂α + X j

⊗β λ̂β) (27)

By substituting the quantities obtained above to Eqs. (26f)
and (26g), a system of normal equations relating to vectors
λ̂α and λ̂β is obtained. The system has the following form:

� j
αλ̂α + �

j
αβ λ̂β = −(y − AX j

α − A jδX̂α)

�
j
βαλ̂α + �

j
β λ̂β = −(y − AX j

β − A jδX̂β) (28)

where

�
j
α = W−1

α (υ̃β ) + (X j
⊗α)TQeX

j
⊗α , �

j
α,β = (X j

⊗α)TQeX
j
⊗β

�
j
βα

= (�
j
αβ

)T = (X j
⊗β

)TQeX
j
⊗α , �

j
β

= W−1
β

(ṽα) + (X j
⊗β

)TQeX
j
⊗β

(29)
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After introducing block matrices

� j =
[

�
j
α �

j
αβ

�
j
βα �

j
β

]
,




A = I2 ⊗ A =
[
A 0
0 A

]
,



y = 12 ⊗ y =

[
y
y

]
(30)

(12 = [1, 1]T ) and after including the mutually competing
quantities being determined in combined vectors, i.e. having
introduced vectors

λ =
[
λT

α , λT
β

]T
, δX =

[
δXT

α , δXT
β

]T
,

X =
[
XT

α , XT
β

]T
(31)

system of Eqs. (28) can also be expressed as follows:

� j λ̂ = −(


y − 


AX j − 


A jδX̂) (32)

The solution to Eq. (32) is the combined Lagrange multiplier
vector of the following form:

λ̂ =
[

λ̂α

λ̂β

]
= −(� j )−1(



y − 


AX j − 


A jδX̂) (33)

After substituting Eq. (33) to conditions (26d) and (26e),
jointly recorded as

(A j )T λ̂α = 0
(A j )T λ̂β = 0

}
⇔ (




A j )T λ̂ = 0 (34)

the following normal equation is obtained:

(



A j )T (� j )−1(


y − 


y X j − 


A jδX̂) = 0 (35)

The solution to this equation is vector

δX̂ j+1 =
[

δX̂ j+1
α

δX̂ j+1
β

]
=

(
(



A j )T (� j )−1 


A j
)−1

(


y − 


AX j )

(36)

which represents an evaluation of the combined vector of δX
increments in the ( j + 1) iteration. In order to determine the
combined vector X = X j + δX that is valid in this iteration,
it will be taken into account that A = A j + E j , and thus,



A = 


A j + 

e j , where




E j = I2 ⊗ E j . Equation (35) then
takes the following form:

(



A j )T (� j )−1(


y − 


A jX j − 


E jX j − 


A jδX̂) = 0 (37)

which yields the following:

X̂ j+1 =
[
X̂ j+1

α

X̂ j+1
β

]
= X̂ j + δX̂ j+1

=
(

(



A
j
)T (� j )−1


A
j)−1

(



A
j
)T (� j )−1(



y − 


E
j
X j )

(38)

Based on Eqs. (26a) and (26b), jointly recorded as

υ̃α = −W−1
α (ṽβ)λ̂α

υ̃β = −W−1
β (ṽα)λ̂β

}
⇔ υ̃ = − 


W
−1

λ̂ (39)

the combined residual vector that is valid in the ( j + 1) iter-
ation can be determined:

υ̃ j+1 =
[

υ̃
j+1
α

υ̃
j+1
β

]
= 


W
−1

(υ̃
j
α , υ̃

j
β
)(� j )−1(



y − 


A X̂ j − 

A

j
δX̂ j+1) (40)

where




W
−1

(υ̃ j
α , υ̃

j
β) = Diag

(
W−1

α (υ̃
j
β), W−1

β (υ̃ j
α)

)
(41)

On the other hand, based on Eq. (26c), expressed in the fol-
lowing form:

ẽ = Qe(X
j
⊗αλ̂α + X j

⊗β λ̂β) = QeX
j
⊗λ̂ (42)

the following residual vector is determined:

ẽ j+1 = −QeX
j
⊗(� j )−1(



y − 


A X̂ j − 


A
j
δX̂ j+1) (43)

where X j
⊗ =

[
(X j

⊗α)T , (X j
⊗β)T

]T
. Taking that vector, we

can obtain Ẽ j+1, and hence, the matrix A j+1 = A − Ẽ j+1.
Variance coefficient estimators in TMsplit estimation

should be derived by referring to the split EIVmodels (e.g. by
applying the theorypresented inWiśniewski andZienkiewicz
(2021b). However, this problem that requires additional,
detailed theoretical and empirical analyses is beyond the
scope of this paper. With minor random disturbances of
matrix A, variance coefficient estimators appropriate for
Msplit estimation can also be recommended here. Then, in
Eq. (8), the vectors ṽα and ṽβ should be replaced by the vec-
tors υ̃α = y− (A− Ẽ)X̂α and υ̃β = y− (A− Ẽ)X̂β . These
estimators of variance coefficients stay unbiased; however,
they loose their invariance according to growing values of
ẼX̂α and ẼX̂β .
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3.2 Algorithm

TotalMsplit estimation algorithm contains the following basic
elements: Step 0—a starting step, Step 1—iterative calcula-
tion of Msplit estimators for valid split EIV models (with
internal iterations l = 0, . . . , s), Step 2—updating the EIV
models’ parameters, and return to Step 1 (until the adopted
criterion for stopping the iterative process, j = 0, . . . , k),
Step 3—adopting the final values of Total Msplit estimators.
Each of these steps is described in more detail below.

Step 0: Similar to Msplit estimation, the iterative process
can also be initiated here using the following classical least-
squares (LS) estimators

X̂LS = (ATWA)−1ATWy and ṽLS = y − AX̂LS (44)

whereW = Q−1
y is the weight matrix. Therefore, the follow-

ing are adopted: X0
α(0) = X̂LS , X0

β(0) = X̂LS , υ0
α(0) = ṽLS ,

υ0
β(0) = ṽLS . Moreover, E0 = 0, A0 = A and δX̂0 = 0.

Step 1: Calculate Msplit estimators X̂ j
α and X̂ j

β :

step 1(1): Based on the valid vector υ
j
β(l), the following

weight matrix is constructed

Wα(υ
j
β(l)) = Diag

((
υ
j
1β(l)

)2
q−2
1 , . . . ,

(
υ
j
nβ(l)

)2
q−2
n

)

(45)

and the following is calculated:

X j
α(l+1) =

(
ATWα(υ

j
β(l))A

)−1
ATWα(υ

j
β(l))y

υ
j
α(l+1) = y − A jX j

α(l+1) (46)

step 1(2): Based on the vector υ
j
α(l+1), the following

weight matrix is constructed

Wβ (υ
j
α(l+1)) = Diag

((
υ
j
1α(l+1)

)2
q−2
1 , . . . ,

(
υ
j
nα(l+1)

)2
q−2
n

)
(47)

and the following is calculated:

X j
β(l+1) =

(
ATWβ(υ

j
α(l+1))A

)−1
ATWβ(υ

j
α(l+1))y

υ
j
β(l+1) = y − A jX j

β(l+1) (48)

step 1(3): Repeat steps 1(1) and 1(2) until

∥∥∥X j
α(l+1) − X j

α(l)

∥∥∥ < ε0 and
∥∥∥X j

β(l+1) − X j
β(l)

∥∥∥ < ε0 (for a given ε0)

(49)

Once criterion (49) has been satisfied, the following Msplit

estimators in the j-th iteration:

X̂ j
α = X j

α(l+1), X̂
j
β = X j

β(l+1) (50)

and residual vectors

υ̃ j
α = y − A j X̂ j

α , υ̃
j
β = y − A j X̂ j

β (51)

are adopted.
Step 2: For the determined iterative Msplit estimators X̂ j

α ,

X̂ j
β , and residual vectors υ̃ j

α , υ̃
j
β , weight matrices that are

valid in the j-th iteration are determined:

Wα(υ̃
j
β) = Diag

((
υ̃
j
1β

)2
q−2
1 , . . . ,

(
υ̃
j
nβ

)2
q−2
n

)

Wβ(υ̃ j
α) = Diag

((
υ̃
j
1α

)2
q−2
1 , . . . ,

(
υ̃ j
nα

)2
q−2
n

)
(52)

Based on these matrices and taking X̂ j
⊗α = X̂ j

α ⊗ In , X̂
j
⊗β =

X̂ j
β ⊗ In , we can determine matrix � j , Eq. (30); then, the

combined vector of increments is calculated:

δX̂ j+1 =
(

(



A − 


E
j
)T (� j )−1(




A − 


E
j
)

)−1

(


y − 


A X̂ j )

(53)

This vector enables the calculation of Lagrange multiplier
vector that is valid in the ( j + 1) iteration

λ̂
j+1 = −(� j )−1

(


y − 


A X̂ j − (



A − 


E
j
)δX̂ j+1

)
(54)

and then the calculation of combined residual vectors

υ̃ j+1 = 

W

−1
(υ̃

j
α , υ̃

j
β
)(� j )−1

(


y − 


A X̂ j − (


A − E j )δX̂ j+1

)
(55)

and

ẽ j+1 = −QeX̂
j
⊗(� j )−1

(


y − 


AX̂ j − (



A − E j )δX̂ j+1
)

(56)

Based on vector ẽ j+1, it is necessary to build a matrix of
disturbances Ẽ j+1 and to calculate the vector of the following
parameters which are valid in the ( j + 1) iteration:

X̂ j+1 =
(

(


A − 


E
j
)T (� j )−1(



A − E j )

)−1
(


A − 


E
j
)T (� j )−1(



y − 


E
j
X̂ j )

(57)

Step 3: Repeat Step 1 and Step 2 until

∥∥∥X̂ j+1 − X̂ j
∥∥∥ < ε0 (58)
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Once criterion (58) has been satisfied, it is assumed
that TMsplit estimator of the combined vector of X =[
XT

α , XT
β

]T
parameters is vector X̂ = X̂ j+1. The blocks of

this vector are TMsplit estimators X̂α and X̂β , the “removal”
of which from vector X̂ may be facilitated by relationships

X̂α = DXα X̂ and X̂β = DXβ X̂ (59)

where DXα = [
Im , 0m,m

]
and DXβ =[

0m,m , Im
]
(0m,m—zero matrix with dimensions ofm×m).

Once the iterative process is complete, the final residual
vectors υ̃ = υ̃k and ẽ = ẽk are also determined. Based on
vector υ̃ = [υ̃T

α , υ̃T
β ]T , two versions of the residual vector

corresponding to the observation vector y, i.e.

υ̃α = Dυα υ̃ and υ̃β = Dυβ υ̃ (60)

where Dυα = [
In , 0n, n

]
and Dυβ = [

0n, n , In
]
, are

obtained. On the other hand, vector ẽ provides the basis for
the construction of residualmatrix Ẽ corresponding tomatrix
A, hence also Ã = A − Ẽ.

The given above process of iterative determination of
TMsplit estimates is also described by the flowchart presented
in Fig. 1

4 Examples

4.1 Example 1: competitive models of systematic
errors

In one of the examples provided in a study by Wiśniewski
(2010), it was assumed that yi , i = 1, . . . , n were observa-
tions of a certain value of Y disturbed not only with random
errors vi but also with systematic errors si = s(ti ) = a + bti
(e.g. Wiśniewski 1985; Kubáčková and Kubáček 1991; Yang
and Zhang 2005). The problem, however, is that two ver-
sions of this model can be used: sα(ti ) = aα + bαti and
sβ(ti ) = aβ + bβ ti , whereas it is not known which of them
concerns specific observation yi . For this reason, in Msplit

estimation, the classical observation model

yi = Y + s(ti ) + vi = (Y + a) + bti + vi = X + bti + vi
(61)

is split into the following models:

yi = (Y + aα) + bαti + viα = Xα + bαti + viα

yi = (Y + aβ) + bβ ti + viβ = Xβ + bβ ti + viβ (62)

where X = Y + a. In these models, two mutually compet-
ing versions of the parameters occur, namely Xα = Y + aα ,

Xβ = Y+aβ . Observationswere simulatedwith the assump-
tion of theoretical values of the parameters Xα , bα and Xβ ,
bβ . Theoretical observations yi , i = 1, . . . , 10,were affected
byGaussian errors with the expected value of 0, and standard
deviation of σy . For theoretical values Xα = 6.0, bα = 0.5,
Xβ = 3.0, bβ = 1.0, and standard deviation σy = 0.14, the
set of observations presented in Table 1 was obtained. The
table also presents Msplit estimates, namely X̂α , b̂α , X̂β , b̂β ,
the mutual competitive residuals v̂iα ,v̂iβ and weights related
to such residualswα(v̂iβ) = v̂2iβq

−2
i ,wβ(v̂iα) = v̂2iαq

−2
i (for

q−2
i = σ−4

y ). A graphical illustration of the set of observa-
tions, and a graphical interpretation of the obtained results
(as compared toLS-estimators determinedusingmodel (61)),
are shown in Fig. 2. For the sake of clarity, the figure shows
the competitive residuals only of the observation y10. In this
figure, the mutually competing results of Msplit estimation
are conventionally denoted as Msplit(α) and Msplit(β) (when it
is convenient, these notations will also be used further on in
this paper).

The models contained in Eq. (62) will now be replaced
with EIV models of the following form:

yi = Xα + bα(ti − eti ) + υiα

yi = Xβ + bβ(ti − eti ) + υiβ (63)

where eti is a random error affected to the variable ti . For n
observations, based on Eq. (63), models y = (A−E)Xα+υα

and y = (A − E)Xβ + υβ are constructed, where

A =
⎡

⎢⎣
11 t1
...

...

1n tn

⎤

⎥⎦,

E =
⎡

⎢⎣
01 et1
...

...

0n etn

⎤

⎥⎦ = [0n , et ],

Xα =
[
Xα

bα

]
, Xβ =

[
Xβ

bβ

]
(64)

(the first column of matrix A is not random). Vector e =
vec(E), built frommatrixE columns, has the following form:

e = [
01, . . . , 0n , et1 , . . . , etn

]T =
[
0Tn , eTt

]T
(65)

In view of the structure of this vector, Qe cofactor matrix,
similarly as in Schaffrin and Wieser (2008) and Shen et al.
(2011), will be expressed in the following form:

Qe = Q0 ⊗ Qx = Q0 ⊗ Qet with Q0 =
[
0 0
0 1

]
(66)

123



82 Page 10 of 23 Z. Wísniewski

Fig. 1 Flochart of the Total Msplit
estimation

where Qet is the cofactor matrix of vector et . Note that
here Qet is regular, but Q0 is not; thus, Qe is not regular
too (the similar situation is in the example given by Schaf-
frin and Wieser 2008). Random errors eti are simulated as
Gaussian quantities with the expected value of 0, and stan-
dard deviation of σe. Msplit and TMsplit estimators of model
(63) parameters will be determined for four values of stan-
dard deviation: σe = 0 (variant I), σe = 0.13 (variant II),
σe = 0.28(variant III), σe = 0.37(variant IV). In each of
these variants, observations yi , i = 1, . . . , 10, are as in the
example cited above (Table 1). The data adopted for the cal-
culations are listed in Table 2, while the Msplit and TMsplit

estimators obtained for these data are presented in Table 3.
Additionally, the residuals ẽti are presented in Table 4. Table
5 shows the competitive residuals and the respective weights
for variant III.

In variant I, since matrix A is not disturbed by random
disturbances, TMsplit estimators are equal to Msplit estima-
tors. With an increase in the σe standard deviation value, the
differences between these estimators increase, with TMsplit

estimators remaining close to the theoretical values (as do
Msplit estimators for the variant without random errors of
matrixA, σe = 0). This is well illustrated by the norm values
of the vector of differences between the vector of theoretical
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Table 1 Observed data and
results of Msplit estimation
(Wiśniewski 2010)

True value and observations Results of Msplit estimate

i yi vi yi = yi + vi v̂iα wα(v̂iβ) v̂iβ wβ(v̂iα)

1 4.0 0.1 4.1 − 2.55 9.37 0.06 16,989.77

2 7.0 0.2 7.2 0.05 12,484.64 2.19 5.94

3 6.0 − 0.2 5.8 − 1.85 89.74 − 0.18 8906.32

4 8.0 0.0 8.0 − 0.15 2813.93 1.04 56.40

5 8.0 0.1 8.1 − 0.54 70.95 0.16 772.26

6 9.0 − 0.1 8.9 − 0.24 0.23 0.00 152.64

7 10.0 0.2 10.2 0.56 259.73 0.32 817.40

8 10.0 − 0.1 9.9 − 0.24 2392.68 − 0.96 146.35

9 12.0 − 0.1 11.9 1.26 11.56 0.07 4168.21

10 11.0 0.2 11.2 0.07 6730.35 − 1.61 12.01

Xα = 6.0,
Xβ = 3.0

bα = 0.5
bβ = 1.0

X̂α = 6.16,

X̂β = 3.06

b̂α = 0.50

b̂β =
0.97

Fig. 2 Set of observations and results of Msplit estimation (as compared to the results of LS-estimation). The example competitive residuals v̂10,α
and v̂10,β for the observation y10 = 11.2

parameters X = [XT
α , X

T
β ]T and the vector of obtained esti-

mators X̂ = [X̂T
α , X̂

T
β ]T , provided in the last row of Table

3.
In general, the iterative process involved in the determina-

tion ofTMsplit estimators ended after 4 to 6 steps of “external”
iteration. In each of these steps, 6 to 7 “internal” iterations
were carried out resulting in Msplit estimators that are valid
for this step. The course of the iterative process in TotalMsplit

estimation, based on the example of variant II, is presented
in Fig. 3.

The given examples apply one observation set, respec-
tively. The additional analyses will be based on Monte Carlo
(MC) simulations. The main objective is to determine the

empirical accuracy of Total Msplit estimation and the mea-
sures of its efficacy.

The accuracy of Msplit estimation can be determined
by applying asymptotical covariance matrices proposed in
Wiśniewski andZienkiewicz (2021b). The diagonal elements
allow us to compute the estimated standard deviation σX̂α

,
σb̂α

, σX̂β
, σb̂β

of the respectiveMsplit estimates. To apply such
an approach to Total Msplit estimation, one should develop
the theory presented in the papermentioned, which is beyond
the scope of the present paper. Based on simulated observa-
tion sets, an empirical way could be an alternative for the
analytical assessment in question. Total Msplit estimates X̂ k

α ,
b̂kα ,X̂

k
β , b̂

k
β are computed for each k = 1, . . . , N simulation,
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Table 2 Observed data for Total Msplit estimation (variant I, II, III, IV)

i Observations yi (Wiśniewski 2010) True value t i Errors eti Observations ti

I II III IV I II III IV

1 4.1 1.0 0 0.1 0.2 − 0.4 0 1.1 1.2 0.6

2 7.2 2.0 0 − 0.1 − 0.3 0.3 0 1.9 1.7 2.3

3 5.8 3.0 0 − 0.2 − 0.2 0.4 0 2.8 2.8 3.4

4 8.0 4.0 0 0.1 0.4 − 0.5 0 4.1 4.4 3.5

5 8.1 5.0 0 0.0 − 0.1 − 0.3 0 5.0 4.9 4.7

6 8.9 6.0 0 0.2 0.4 − 0.4 0 6.2 6.4 5.6

7 10.2 7.0 0 − 0.1 − 0.2 0.3 0 6.9 6.8 7.3

8 9.9 8.0 0 − 0.2 0.3 0.3 0 7.8 8.3 8.3

9 11.9 9.0 0 0.0 − 0.4 0.5 0 9.0 8.6 9.5

10 11.2 10.0 0 0.2 − 0.1 − 0.2 0 10.2 9.9 9.8

Table 3 Results of Msplit and Total Msplit estimation (variant I, II, III, IV)

Parameter True value Estimate

Variant

I (σe = 0) II (σe = 0.13) III (σe = 0.28) IV (σe = 0.37)

Msplit TMsplit Msplit TMsplit Msplit TMsplit Msplit TMsplit

Xα 6.0 6.16 6.16 6.25 6.13 6.36 6.07 5.66 6.07

bα 0.5 0.50 0.50 0.48 0.49 0.47 0.49 0.63 0.50

Xβ 3.0 3.06 3.06 3.02 3.01 2.87 2.89 3.48 3.13

bβ 1.0 0.97 0.97 0.99 1.00 1.04 1.06 0.77 0.92

σ0α – 0.731 0.731 0.510 0.360 2.023 0.549 2.372 0.608

σ0β – 1.403 1.403 0.334 0.155 0.619 0.229 1.655 0.745
∥∥∥∥




X− 


X

∥̂∥∥∥
0.173 0.173 0.251 0.131 0.386 0.144 0.649 0.168

Table 4 Residuals ẽt column of A

Variant ẽt

I 0 0 0 0 0 0 0 0 0 0

II 0.02 − 0.27 0.02 0.27 − 0.07 0.20 − 0.25 0.10 0.13 − 0.14

III 0.02 − 0.59 0.03 0.48 − 0.04 0.05 − 0.11 0.54 0.10 − 0.48

IV − 0.27 0.06 0.69 − 0.32 − 0.49 − 0.01 − 0.16 0.67 0.19 − 0.36

which is a base for determining the following MC-estimates
of the parameters Xα , bα ,Xβ , bβ :

X̂ MC
α = 1

N

N∑

k=1

X̂ k
α , b̂MC

α = 1

N

N∑

k=1

b̂kα ,

X̂ MC
β = 1

N

N∑

k=1

X̂ k
β , b̂MC

β = 1

N

N∑

k=1

b̂kβ

(67)

TheMonte Carlo estimators of the parameter standard devia-
tions can be computed in the following way (e.g. Koch 2013;
Nowel 2016; Lv and Sui 2020).

σ̂ MC
X̂α

=
√√√√ 1

N

N∑

k=1

(X̂ k
α − X̂ MC

α )2,
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Table 5 Residuals and weights in
Msplit and Total Msplit estimations
(variant III, σe = 0.28)

i Msplit TMsplit

v̂iα wα(v̂iβ) v̂iβ wβ(v̂iα) v̂iα wα(v̂iβ) v̂iβ wβ(v̂iα)

1 − 2.66 1.5 · 10−6 0.00 1.5 · 106 − 2.82 0.72 − 0.02 2.1 · 104
2 0.00 8.0 · 103 2.11 4.6 · 10−2 0.05 1.7 · 104 2.56 6.16

3 − 1.77 3.4 · 10−5 0.00 6.4 · 103 − 1.87 1.01 0.02 9.1 · 103
4 − 0.01 2.1 · 103 1.04 4.6 · 10−2 − 0.42 8.0 · 102 0.56 4.5 · 102
5 − 0.43 1.7 · 10−2 0.00 4.0 · 102 − 0.55 48.34 0.14 7.8 · 102
6 − 0.34 3.66 − 0.81 5.9 · 10−3 − 0.45 1.0 · 103 − 0.62 5.3 · 102
7 0.75 6.6 · 10−3 0.00 1.2 · 103 0.66 1.8 · 102 0.26 1.1 · 103
8 0.00 3.1 · 103 − 1.34 3.3 · 10−2 − 0.34 6.6 · 103 − 1.60 3.0 · 102
9 1.70 2.3 · 10−4 0.00 6.3 · 103 1.52 20.72 0.09 6.0 · 103
10 0.00 1.6 · 104 − 2.91 9.2 · 10−4 0.21 1.0 · 104 − 1.96 1.1 · 102

Fig. 3 Iterative process resulting
in TMsplit estimators of
parameters Xα , bα and
parameters Xβ , bβ competing in
relation to them (j—the number
of “external” iterations, l—the
number of “internal” iterations)

σ̂ MC
b̂α

=
√√√√ 1

N

N∑

k=1

(b̂kα − b̂MC
α )2

σ̂ MC
X̂β

=
√√√√ 1

N

N∑

k=1

(X̂ k
β − X̂ MC

β )2,

σ̂ MC
b̂β

=
√√√√ 1

N

N∑

k=1

(b̂kβ − b̂MC
β )2 (68)

Such quantities determine the accuracy of the estimates
obtained. They can also be used to compare the stability of
Msplit and Total Msplit estimators.

Msplit estimation and its several developments (including
Total Msplit estimation) focus on optimal fitting the compet-
itive functional models in the observation set. The efficacy
of Msplit estimation, like the efficacy of other methods, can
be described by the differences between the parameter esti-
mates obtained and the actual parameter values. Considering
N simulations, the efficacy is usually measured by the root
mean squared error (RMSE) (e.g. Kargoll et al. 2018; Lv and
Sui 2020).Here, the efficacy ofMsplit or TotalMsplit estimates
is determined by following RMSEs

RMSEX̂α
=

√√√√ 1

N

N∑

k=1

(X̂ k
α − Xα)2,
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RMSEb̂α
=

√√√√ 1

N

N∑

k=1

(b̂kα − bα)2

RMSEX̂β
=

√√√√ 1

N

N∑

k=1

(X̂ k
β − Xβ)2,

RMSEb̂β
=

√√√√ 1

N

N∑

k=1

(b̂kβ − bβ)2 (69)

Additionally, the global root mean squared error, concerning
the whole parameter vector, is determined (e.g. Wiśniewski
2014)

RMSEX̂ =
√√√√ 1

N

N∑

k=1

(X̂k − X)T (X̂k − X)/r (70)

where r is the number of estimated parameters (here r = 4).
The simulated errors vki , e

k
t , i , i = 1, . . . , 10 (for each

k = 1, . . . , N ) affect the theoretical observations yi or the
elements ai , 2 of the second column of the matrix A (the the-
oretical observations and the theoretical matrix A stay the
same). The simulations are performed by applying the Gaus-
sian random generators of the MatLab system, σyrandn(n,
1) or σerandn(n, 1), respectively.

First, let us examine the efficacy of Msplit estimates,
which apply the models of (62). Since matrix A is constant,
only observation errors are simulated. The computations are
determined in several variants of the observation standard
deviation, i.e. σy = 0.05, 0.1, 0.2, 0.3. Table 6 presents
results obtained for N = 3000 and the theoretical parameter
values X = [Xα , bα , Xβ , bβ ]T = [6.0, 0.5, 3.0, 1.0]T .
Figure 4 shows Msplit estimates obtained in each simulation
and MC estimates (for σy = 0.1).

The accuracy and efficacy of the estimates b̂α and b̂β are
the most satisfying. The values of σ̂ MC

b̂α
, σ̂ MC

b̂β
and RMSEb̂α

,

RMSEb̂β
are relatively small for all values of the observation

standard deviations. The values obtained for the estimates
X̂α , X̂β are higher; however, they are still acceptable.

Let us now use the models (63) to examine how random
disturbances of matrix A might influence the accuracy and
efficacy of the estimates. The observation errors are simu-
lated assuming the constant standard deviation σy = 0.1,
whereas the errors et , i in several variants, in which σe = 0,
0.05, 0.1, 0.2, 0.3. Table 7 presents the results for
N = 3000.

Both accuracy and efficacy of Msplit estimates decrease
when the coefficient matrix is disturbed with random errors.
That effect can be reduced by using Total Msplit estimation,
for which the measures in questions are smaller. As in the
previous case, TMsplit estimates of the parameters bα and bβ

have the most satisfying accuracy and efficacy. The efficacy

of Total Msplit estimation is confirmed by the parameter esti-
mates obtained in each simulation. The example estimates
and the MC estimates are presented in Fig. 5 (for σe = 0.2).

4.2 Example 2: linear regression

Schaffrin and Wieser (2008) as well as Shen et al. (2011)
and Mahboub (2012) applied WTLS for the estimation of
the intercept ξ1 and slope ξ2 of the regression line

yi = ξ1 + (xi − ei )ξ2 − υi (71)

Let it now be assumed that the set of observations not only
contains observations concerning model (71) but also obser-
vations for which the regression line differs in parameters
ξ1 and ξ2 (in Total Msplit estimation, these will be param-
eters ξ1β and ξ2β ). These observations will hereinafter be
referred to conventionally as outliers. In contrast to the clas-
sical approach, the deviation here is of a different nature, and
is not necessarily related to the existence of gross errors. If
the assignment of observation yi to its respective regression
line is not known, then this observation may correspond to
both the following model

yi = ξ1 + (xi − ei )ξ2 − υi = ξ1α + (xi − ei )ξ2α − υiα
(72)

and to the model that is competing in relation to it, namely:

yi = ξ1β + (xi − ei )ξ2β − υiβ (73)

For the estimation of parameters in models (72) and (73),
Total Msplit estimation will be applied. The calculations will
be carried out using the data provided in (Neri et al. 1989) and
also used in (Schaffrin and Wieser 2008; Shen et al. 2011;
Mahboub 2012). These data will be supplemented with two
variants of bias. In the first of these variants, regression line
(73) with theoretical parameters ξ1β = 2.0, ξ2β = 0.75 is
adopted,while in the secondvariant, ξ1β = 4.5, ξ2β = −0.70
is adopted. For the outliers, weights Wxi were determined
based on the information on the weights of coordinates xi
concerning the group of original observations (where nec-
essary, also using interpolation). Moreover, the outliers are
assigned equal weights Wyi = 50, which corresponds to the
standard deviation σy = 0.14. The values of these weights
are very important to the success of Total Msplit estimation.
Too high accuracy (high weights) of the added observations
may cause the original observations to be “ignored”, while
too low accuracy (low weights) may cause the added obser-
vations to be “ignored”. In the presented example, satisfying
results that were not much different from each other were
obtained for 40 < Wyi < 80. Original observations (i = 1,
. . . , 10) (Neri et al. 1989), outliers (i = 11, 12, 13), and the
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Table 6 Msplit estimates and their
accuracy and efficacy (for sets
without random disturbances in
coefficients in the functional
models)

X̂ MC
α b̂MC

α X̂ MC
β b̂MC

β RMSEX̂

σ̂ MC
X̂α

σ̂ MC
b̂α

σ̂ MC
X̂β

σ̂ MC
b̂β

RMSEX̂α
RMSEb̂α

RMSEX̂β
RMSEb̂β

σy = 0.05 5.93 0.52 3.05 0.97 0.08

0.20 0.06 0.14 0.07

0.21 0.07 0.15 0.07

σy = 0.1 5.95 0.52 3.04 0.99 0.09

0.25 0.06 0.17 0.05

0.26 0.06 0.17 0.06

σy = 0.2 5.79 0.57 3.14 0.93 0.25

0.42 0.11 0.31 0.11

0.47 0.13 0.34 0.13

σy = 0.3 5.77 0.58 3.15 0.91 0.32

0.52 0.12 0.39 0.12

0.56 0.15 0.42 0.15

Fig. 4 Msplit estimates obtained in each simulation k = 1, . . . , 3000 (for σy = 0.1 and the theoretical values of parameters Xα = 6.0, bα =
0.5,Xβ = 3.0, bβ = 1.0)

weights Wxi and Wyi , corresponding to these observations,
are listed in Table 8. The results ofmodel (71) parameter esti-
mation using WTLS for original observations, transcribed
from Shen et al. (2011), are provided in columns 2 and 3 of
Table 9 [the estimate σ̂0 is computed by applying Eq. (19)].
Based on original observations and using models (72) and

(73), TMsplit estimators of the parameters occurring there
were calculated (column 4, Table 9). A graphical interpre-
tation of the original set of observations and the location of
regression lines (determined based on theWTLS and TMsplit

estimators) in this set are shown in Fig. 6. On the other hand,
the WTLS and TMsplit estimators determined for the sets
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Table 7 Msplit estimates and their accuracy and efficacy (for sets with random disturbances in coefficients in the functional models)

Msplit TMsplit

X̂ MC
α b̂MC

α X̂ MC
β b̂MC

β RMSX̂ X̂ MC
α b̂MC

α X̂ MC
β b̂MC

β RMSX̂

σ̂ MC
X̂α

σ̂ MC
b̂α

σ̂ MC
X̂β

σ̂ MC
b̂β

σ̂ MC
X̂α

σ̂ MC
b̂α

σ̂ MC
X̂β

σ̂ MC
b̂β

RMSEX̂α
RMSEb̂α

RMSEX̂β
RMSEb̂β

RMSEX̂α
RMSEb̂α

RMSEX̂β
RMSEb̂β

σe = 0 5.95 0.52 3.04 0.99 0.09 5.95 0.52 3.04 0.99 0.09

0.25 0.06 0.17 0.05 0.25 0.06 0.17 0.05

0.26 0.06 0.17 0.06 0.26 0.06 0.17 0.06

σe = 0.05 5.83 0.56 3.12 0.94 0.17 5.97 0.51 3.01 0.99 0.08

0.31 0.09 0.22 0.09 0.20 0.04 0.14 0.04

0.36 0.11 0.25 0.11 0.20 0.04 0.14 0.04

σe = 0.1 5.79 0.57 3.15 0.92 0.20 5.97 0.51 3.01 0.99 0.09

0.33 0.09 0.24 0.10 0.21 0.04 0.15 0.04

0.39 0.12 0.28 0.12 0.21 0.04 0.15 0.04

σe = 0.2 5.76 0.58 3.16 0.92 0.24 5.93 0.51 3.01 0.99 0.15

0.38 0.10 0.31 0.23 0.32 0.06 0.24 0.06

0.45 0.13 0.35 0.13 0.33 0.07 0.24 0.06

σe = 0.3 5.75 0.58 3.14 0.92 0.29 5.88 0.53 3.03 0.99 0.21

0.44 0.11 0.39 0.12 0.41 0.08 0.35 0.09

0.50 0.14 0.42 0.14 0.43 0.09 0.35 0.09

Fig. 5 TMsplit estimates obtained in each simulation k = 1, . . . , 3000 (for σy = 0.1,σe = 0.2 and the theoretical values of parameters Xα = 6.0,
bα = 0.5,Xβ = 3.0 bβ = 1.0)
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Table 8 Observed data and
corresponding weights i xi Wxi yi Wyi

Original data (Neri et al. 1989)

1 0.0 1000.0 5.9 1.0

2 0.9 1000.0 5.4 1.8

3 1.8 500.0 4.4 4.0

4 2.6 800.0 4.6 8.0

5 3.3 200.0 3.5 20.0

6 4.4 80.0 3.7 20.0

7 5.2 60.0 2.8 70.0

8 6.1 20.0 2.8 70.0

9 6.5 1.8 2.4 100.0

10 7.4 1.0 1.5 500.0

Outliers variant I

11 1.0 550.0 2.8 60.0

12 4.0 120.0 5.3 60.0

13 5.5 50.0 6.3 60.0

Outliers variant II

11 1.8 500.0 3.2 60.0

12 3.3 200.0 2.2 60.0

13 5.2 80.0 1.4 60.0

Table 9 WTLS and Total Msplit estimation results for the sets containing biases (additional regression line) (for TMsplit: ξ1 := ξ1α , ξ2 := ξ2α)

Parameter Estimate

Original data With outliers

Variant I Variant II

Exact solution (Neri et al.) WTLS (Shen et al.) TMsplit WTLS TMsplit WTLS TMsplit

ξ1 5.4799 5.4799 5.9436 4.9393 5.4604 3.7366 5.8531

ξ2 − 0.4805 − 0.4805 − 0.5213 − 0.2870 − 0.5009 − 0.2412 − 0.5696

ξ̂1β – – 4.8702 – 2.0222 – 4.1870

ξ2β – – − 0.4012 – 0.7753 – − 0.5566

σ0, Eq. (19) – 0.2039 – 0.3987 – 0.8180 –

σ0α – – 0.1662 – 0.2744 – 0. 5041

σ0β – – 0.4758 – 0.7663 – 0.8274

extended to include outliers are provided in other columns
of Table 9. These sets and the corresponding regression lines
are shown in Fig. 7.

The TMsplit estimators determined for the original set
of observations may appear not wholly satisfactory (col-
umn 4, Table 9). Due to the lack of outliers, Total Msplit

estimation, predicting the existence of two mutually com-
peting regression lines, forces two regression lines to fit
into the set of observations (see Fig. 6). It should be noted
that the regression line established by WTLS estimators lies

between these lines. The average values of TMsplit esti-
mators ξ̂1Msplit = (ξ̂1α + ξ̂β)/2 = 5.4069 and ξ̂2Msplit =
(ξ̂2α + ξ̂2β)/2 = −0.4612, as compared toWTLS estimators
ξ̂1 = 5.4799 and ξ̂2 = −0.4805, can already be considered
satisfactory. For both sets containing outliers, TMsplit esti-
mators ξ̂1α and ξ̂2α are close to the corresponding WTLS
estimators obtained for the original set of observations. On
the other hand, estimators ξ̂1β and ξ̂2β are close to the true
values of parameters ξ1β = 2.0, ξ2β = 0.75(Variant I) and
ξ1β = 4.5, ξ2β = −0.70(Variant II). In such cases, WTLS
estimators yielded no good answers. This is particularly true
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Fig. 6 A set of original observations (Shen et al. 2011) and the regression line position were determined based on WTLS and TMsplit estimators

for Variant II for which the relevant comparisons are partic-
ularly unfavourable. The results obtained using WTLS are
not surprising, as the lack of WTLS estimators’ robustness
to observations is their inherent feature.

The example presented above concerned a situationwhere
outliers can be assigned a regression line that is appropriate
for them. In practice, however, the outlying of observations
may relate to single observations and result from, for exam-
ple, the effect of gross errors. In order to check the response
of TMsplit and WTLS estimators to such errors, one of the
observations from the original set will be affected by gross
errorwith a fewvalue versions. For example, let it be assumed
that such an observation is y5 = 3.5 (x5 = 3.3) with weights
Wx5 = 200 andWy5 = 20 (Table 8). This observation will be
affected by gross error with values of g = 1, g = 2, g = 5,
g = 10, respectively. The data adopted for the calculations
are provided in Table 10. On the other hand, the TMsplit and
WTLS estimators of parameters ξ1 and ξ2 are provided in
Table 11.

TMsplit estimators ξ̂1α and ξ̂2α for each accepted gross
error value are satisfactory, especially in comparison with
WTLS estimators being obtained, which are unacceptable
even for small gross errors. The quantities ξ̂1β and ξ̂2β are
competing in relation to ξ̂1α and ξ̂2α . These are estimators
of the parameters of the y5 = ξ1β + ξ2βx5 regression line
on which the observation affected by gross error should lie.
By using the equation ỹ5 = ξ̂1β + ξ̂2βx5, it is possible to
calculate the prediction of observation y5 affected by gross
error. The prediction of this observation for the adopted gross
error values, as compared to its simulated values, is presented
in Table 12. A graphical interpretation of the obtained results
is provided in Fig. 8.

4.3 Example 3: Two-dimensional affine
transformation

The estimators of parameters in the EIV model, which are
robust to gross errors, include inter alia robust total least-
squares (RTLS) and total least trimmed squares (TLTS)
estimators (Wang et al. 2016; Lv and Sui 2020). One of
the examples provided in Lv and Sui (2020) concerns a
two-dimensional affine transformation carried out based on
observations affected by gross errors. In that case, the authors
applied the following transformation model:

[
ut
υt

]
=

[
us υs 1 0 0 0
0 0 0 us υs 1

]

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a1
b1
c1
a2
b2
c2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(74)

where us , υs and ut , υt are the coordinates of the com-
mon points in the start and target coordinate systems, while
a1, b1, c1, a2,b2, c2 are the parameters being determined.
Table 13 presents 15 observation points simulated in the
start and target coordinate systems (Lv and Sui 2020). Some
of these observations (highlighted in bold) are affected by
gross errors. For these data, Lv and Sui (2020) applied TLTS
estimation (using two different algorithms yielding the same
results) as well as TLTS with RTLS as a starting point (here-
after denoted as TLTS/RTLS). The authors compared the
obtained estimators withWTLS and RTLS estimators. These
results may now be supplemented with TMsplit estimators
(the seventh column of Table 14). TMsplit estimators will
also be calculated for the data without gross errors. All the
cited and calculated estimators are provided in Table 14.
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Fig. 7 Sets containing outliers (green) and the regression line position determined based on WTLS and TMsplit estimators

Table 14 shows that TMsplit(α) estimates are generally the
closest to TLTS estimates. However, in the case of param-
eters a1, b1, c1 and b2, TMsplit(α) estimators are closest to
TLTS/RTLS estimators and thus to the true parameter values.
The interpretation of TMsplit(β) estimators is similar to that in
the previous example, i.e. these are estimators of the param-
eters of the model for observations affected by gross errors.
It is worth noting here that in the absence of gross errors,
both versions of TMsplit estimators differ slightly from each
other.

5 Summary

By using Msplit estimation, it is possible to determine the
estimators of mutually competing parameters in classical
functionalmodels. However, there are cases in geodetic prac-
tice in which classical models need to be replaced with EIV
models. The method proposed in this paper, called “Total
Msplit estimation”, is an development ofMsplit estimation that
accepts such models. The Total Msplit estimation objective
functionwas determined by applying the Lagrange approach,
as in the case of WTLS method. The mutually competing
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Table 10 Observations and
weights corresponding to them
(observation y5, highlighted in
bold, is affected by gross error
g with different values)

i xi Wxi yi Wyi

g = 0 g = 1 g = 2 g = 5 g = 10

1 0.0 1000.0 5.9 5.9 5.9 5.9 5.9 1.0

2 0.9 1000.0 5.4 5.4 5.4 5.4 5.4 1.8

3 1.8 500.0 4.4 4.4 4.4 4.4 4.4 4.0

4 2.6 800.0 4.6 4.6 4.6 4.6 4.6 8.0

5 3.3 200.0 3.5 4.5 5.5 8.5 13.5 20.0

6 4.4 80.0 3.7 3.7 3.7 3.7 3.7 20.0

7 5.2 60.0 2.8 2.8 2.8 2.8 2.8 70.0

8 6.1 20.0 2.8 2.8 2.8 2.8 2.8 70.0

9 6.5 1.8 2.4 2.4 2.4 2.4 2.4 100.0

10 7.4 1.0 1.5 1.5 1.5 1.5 1.5 500.0

Table 11 TMsplit and WTLS estimators determined for the set containing an observation affected by gross error (for TMsplit:ξ1 := ξ1α , ξ2 := ξ2α)

Parameter Estimate

g = 0 g = 1 g = 2 g = 5 g = 10

TMsplit WTLS TMsplit WTLS TMsplit WTLS TMsplit WTLS TMsplit WTLS

ξ1 5.94 5.48 5.53 6.13 5.57 6.84 5.80 9.21 5.83 13.76

ξ2 − 0.52 − 0.48 − 0.53 − 0.59 − 0.45 − 0.71 − 0.52 1.11 − 0.54 − 1.97

ξ1β 4.87 – 6.42 – 9.44 – 11.85 – 19.25 –

ξ2β − 0.40 – − 0.60 – − 1.24 – − 1.04 – − 1.80 –

Table 12 Prediction of an observation affected by gross error

Gross error Prediction of an observation Simulated
observation

g = 1 ỹ5 = ξ̂1β + ξ̂2β x5 =
6.42 − 0.60 · 3.3 = 4.44

y5 = 4.5

g = 2 ỹ5 = ξ̂1β + ξ̂2β x5 =
9.44 − 1.24 · 3.3 = 5.34

y5 = 5.5

g = 5 ỹ5 = ξ̂1β + ξ̂2β x5 =
11.85 − 1.04 · 3.3 = 8.41

y5 = 8.5

g = 10 ỹ5 = ξ̂1β + ξ̂2β x5 =
19.25 − 1.80 · 3.3 = 13.31

y5 = 13.5

EIV models occurring in this function were replaced with
their linear approximations. This enabled the construction
of a relatively simple yet efficient algorithm for determining
TMsplit estimators. The basis of this algorithm is the iterative
updating of EIV models (external iterations) based on Msplit

estimators (internal iterations) obtained in the previous iter-
ative step. The proposed algorithm is efficient in all cases
presented in the paper. It concerns both results and the flow
of the iterative process. The problems with the convergence
of the external iterations might occur because of the linear

approximation of EIVmodels applied. It is especially evident
when the errors disturbing the matrix A are too big.

The examples presented in the paper showed that the prop-
erties of TMsplit estimators are, in general, similar to the
properties of Msplit estimators. If the elements of matrix A
are not affected by random errors, then TMsplit and Msplit

estimators are equal to each other. The possibility of deter-
mining estimators of competing parameters is of particular
importance when the sets of observations are a mixture
of the realisations of two random variables with mutually
competing positional parameters. Such a situation occurs
in Examples 1 and 2, where each observation group can
be assigned a corresponding regression line. The problem,
however, is that it is not known which of these lines is the
best for a particular observation. TMsplit estimators, similarly
like Msplit estimators for classical models, yield satisfactory
results here. Due to their theoretical origin (neutral LS-
method), WTLS estimators are not robust to gross errors.
Where the sets are realisations of only a single random
variable, Total Msplit estimation further offers two mutually
competing solutions. These are forced solutions, yet so close
to each other that even in such a situation, it is possible to
evaluate the functional model parameters (e.g. after the cal-
culation of average values of respective estimators).
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Fig. 8 Regression lines determined using Total Msplit estimation based
on the set containing a single observation affected by gross error g with
different values

Total Msplit estimation can also be applied for the estima-
tion of EIV model parameters in the case where the outlying
of observations results from their being affected by gross

errors. From the perspective of the Msplit and TMsplit esti-
mation theory, such a case is not significantly different from
that discussed earlier. In the second part of Example 2, it
was shown that the determined TMsplit estimators enabled
the determination of not only the regression line appropriate
for “good” observations (TMsplit(α) solution), but also of the
regression line on which the observation affected by gross
error lies (TMsplit(β) solution).

In EIV models, it is assumed that matrix A is observed as
well. Therefore, its elements can also be affected by gross
errors arising from various reasons. Such a situation is the
case in Example 3, in which certain coordinates are affected
by gross errors, both in the start and target systems in two-
dimensional affine transformation. In this example, TMsplit

estimators are close to robustTLTSestimators and, for certain
transformation parameters, they are also close to the results
of TLTS estimation with RTLS estimation as a starting step.

The estimates’ accuracy is an important issue (especially
in comparing the estimation methods). The accuracy of
Msplit estimation can be determined by applying asymptoti-
cal covariance matrices. To apply such an approach to Total
Msplit estimation, one should develop the theory, which is
beyond the scope of the present paper. Section 4.1 presents
the assessments of the Msplit and Total Msplit estimates accu-
racy (empirical standard deviations) obtained from theMonte
Carlo simulations. Generally, the accuracy ofMsplit estimates
decreases with the growing standard deviation of errors dis-
turbing the matrix A. Total Msplit estimates have smaller
standard deviations than respective Msplit estimates in such a
context. Similar relations concern the measures of efficacy,

Table 13 Observed points with
outliers in the start and target
coordinate systems (Lv and Sui
2020). Boldface numbers
indicate outliers

Point No Start system Target system

us vs ut vt

1 99.893 − 0.106 319.940 − 29.856

2 99.899 125.022 − 55.206 94.918

3 99.951 249.936 − 430.084 219.994

4 200.134 − 0.015 519.953 − 129.895

5 200.019 125.103 144.887 − 4.903

6 200.104 250.013 − 230.107 120.036+1

7 299.999 0.084 719.965 − 230.037

8 299.944 125.050+7 345.088 − 104.950

9 299.973 249.996 − 30.266 19.973−0.6

10 150.111 62.520 232.425 − 17.450

11 150.090 187.393 − 142.441 107.521

12 249.999 62.435 432.673 − 117.527

13 249.915 187.558 57.729 7.494

14 300.127−9 187.435 157.599 − 42.344

15 150.170+2 249.887 − 330.273 170.002
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Table 14 A comparison of the estimated parameters from different methods (for TMsplit: a1 := a1α , b1 := b1α , c1 := c1α , a2 := a2α , b2 := b2α ,
c2α := c2)

Parameter True
value

Estimate

WTLS (Lv and
Sui)

RTLS (Lv and
Sui)

TLTS (Lv and
Sui)

TLTS/RTLS (Lv
and Sui)

TMsplit TMsplit Without
gross errors

a1 2 2.05035 2.04090 2.00333 2.00097 2.00160 2.00184

b1 − 3 − 2.99938 − 3.00236 − 2.99890 − 3.00062 − 3.00001 − 3.00062

c1 120 111.90862 113.66743 119.21405 119.78826 119.60660 119.5534

a2 − 1 − 1.02106 − 1.02431 − 1.00141 − 1.00015 − 1.00166 − 0.99783

b2 1 0.99935 1.00091 0.99935 0.99998 1.00006 1.00108

c2 70 73.52109 73.81469 70.39.033 70.08370 70.38717 69.47631

a1β – – – – – 2.14284 2.00340

b1β – – – – – − 3.08044 − 3.00194

c1β – – – – – 104.32632 119.49778

a2β – – – – – − 1.09872 − 1.00161

b2β – – – – – 0.95548 1.00004

c2β – – – – – 98.43220 70.38461

namely values of RMSEs. Thus, when the competitive func-
tional models are supplemented with EIVmodels, thenMsplit

estimation should be replaced by Total Msplit estimation. It
is especially advisable when disturbances of matrix A have
large standard deviations (here, the application of TotalMsplit

estimation is justified for σe = σy).
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