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Abstract
In this contribution, we generalize PPP–RTK theory by allowing the transmitters to transmit on different frequencies. The
generalization is based on the integer-estimability theory of Teunissen (A new GLONASS FDMA model. GPS Solutions,
2019). As the theory and associated algorithms provided are generally applicable, they apply to satellite-based carrier-phase
positioning as well as to terrestrial interferometric sensory networks. Based on an identification of the constraints imposed
on the admissible ambiguity transformations by PPP–RTK, a fundamental network+user condition is found that determines
whether PPP–RTK is possible or not. The discriminating contributions of both the network and user observation equations to
this PPP–RTK condition are analysed, followed by a description of PPP–RTK enabling classes of measurement scenarios.

Keywords Precise point positioning–Real time kinematic (PPP–RTK) · Global navigation satellite systems (GNSS) ·
GLONASS Frequency division multiple access (FDMA) · Interferometric sensor network · Cellular long term evolution
(LTE) Carrier-phase · Integer-estimability · Rank-defect mixed-integer model

1 Introduction

PPP–RTK is integer carrier-phase ambiguity resolution-
enabled precise point positioning (PPP) (Wubbena et al 2005;
Mervart et al 2008; Teunissen et al 2010; GSA 2019). With
PPP, precise transmitter positions and clocks are provided
to enable single-receiver users to compute their receiver
positions with a high, decimeter or centimeter, accuracy
(Zumberge et al 1997; Kouba and Heroux 2001; Kouba
et al 2017; Teunissen 2020). PPP–RTK extends the PPP
concept by providing single-receiver users, next to the trans-
mitter positions and clocks, also information about the
transmitter phase biases. This information, when properly
provided, enables recovery of the integerness of the user
ambiguities, thus enabling single-receiver integer ambiguity
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resolution with an associated reduction in convergence times
to centimeter-level positioning accuracy (Ge et al 2008;Geng
and Bock 2013; Teunissen and Khodabandeh 2015; Zhang
et al 2019).

Current PPP–RTK theory has been developed for constel-
lations where all transmitters transmit signals on the same
frequency, such as in case of CDMA (code-division multi-
ple access)-based GNSS constellations. In this contribution
we generalize the theory so as to include constellations with
varying transmitter frequencies as well. This is a nontrivial
generalization of which will be shown that the added com-
plexities need a careful handling to enable integer recovery
of the estimable user ambiguities. For single-baseline RTK
such theory was first developed in Teunissen (2019), with
its applications demonstrated in Zaminpardaz et al (2021);
Brack et al (2020). In this contribution, the theorywill be gen-
eralized from single-baseline RTK to network PPP–RTK.

Although PPP–RTK has originally been developed for
GNSS positioning, the concept is not restricted per se to the
GNSS domain. In fact, there are several fields of application,
terrestrial as well as space-based, for which the concept is of
interest as well. Such examples are interferometric wireless
sensor networks (Szilvasi et al 2012;Wang et al 2014), terres-
trial cellular LTE signals (Shamaei 2020; Khalife et al 2018),
and potentially also the carrier-phase signals fromLEO satel-
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lites (Khalife et al 2020). As with GLONASS FDMA, these
applications often work with carrier-phase signals of which
the frequencies are also transmitter dependent.

This contribution is organized as follows. Section 2 gives
the needed review of integer-estimability theory based on
(Teunissen 2019). It provides the algorithmic means of con-
structing integer-estimable functions, thereby transforming
rank-defect mixed-integer models into ones of full rank.
With the two building blocks of PPP–RTK being the net-
work and user systems of equations, Sect. 3 deals with the
network, while Sect. 4 with the network+user equations. In
Sect. 3 it is shown how an integer-estimable decomposition
of the network’s frequency-transformed reduced incidence
matrix provides the means of formulating the undifferenced
network equations in full rank. With the addition of the
user equations, it is shown in Sect. 4 that PPP–RTK only
allows network+user ambiguity transformations that are of
block-triangular form. Based on this constrained class of
transformations, we then determine a fundamental condition
that the network+user system needs to satisfy for PPP–RTK
to be possible. We identify the network and user contributing
factors and show that the PPP–RTK condition is not always
satisfied (GLONASS FDMA included). We then describe
and analyse all-in-view PPP–RTK in Sect. 5 and show that it
does satisfy the PPP–RTK condition. For the non all-in-view
case, we focus in Sect. 6 on the discriminating contribu-
tions to the PPP–RTK condition of network and user. It is
shown that the existence of an integer left inverse of the
frequency-transformed reduced incidence matrix of the net-
work is sufficient to satisfy the PPP–RTK condition. An easy
way to demonstrate this is provided, as well as two measure-
ment scenarios that make PPP–RTK possible. For the case
the required integer left inverse does not exist, it is shown
that PPP–RTK becomes possible if the frequency ratios of
the commonly tracked transmitters by network and user can
be absorbed by the user equations. A summary with con-
clusions is provided in Sect. 7, while the longer proofs of
Lemma and Theorems are given in Appendix.

We use the following notation: E(.) denotes themathemat-
ical expectation operator,R(A) the range space of matrix A,
R(A)⊥ its orthogonal complement, N (A) the null space of
A, Rm and Zm , the m-dimensional spaces of real and integer
numbers, andRm×n andZm×n the sets ofm×nmatrices hav-
ing real and integer entries, respectively. Matrix M⊥ denotes
a basis matrix of the orthogonal complement ofR(M), M+
denotes a left inverse of a full column-rank matrix M , (.)T is
the transpose of a vector or matrix (.), and ⊗ the Kronecker
product. Matrices and vectors that appear frequently are the
identity matrix of order m, Im , the m-vector of ones, em ,
the differencing matrix DT

m = [−em−1, Im−1] ∈ Z
(m−1)×m ,

CT
m = [0, Im−1] ∈ Z

(m−1)×m and the unit vector c1 =
[1, 0, . . . , 0]T , the dimension of which will be clear from
the context.

2 Brief review of integer-estimability theory

2.1 Rank-defect mixed-integer model

Much of estimation theory that we use today is based on
the concept of estimability (Koch 1999; Muller and Stewart
2006). For a linear model E(y) = Ax , a linear function FT x
is estimable if and only if there is a linear function of the
rows of A that is equal to FT . This linear-model concept of
estimability is not sufficient however to cover the estimation
requirements of mixed-integer linear models, i.e. models in
which the observation equations contain both real-valued and
integer-valued unknown parameters.

In vector-matrix form the rank-defectmixed-integermodel
is given as

E(y) = Az + Bb , y ∈ R
m, z ∈ Z

n, b ∈ R
p (1)

in which y is the random vector of observables, [A, B] the
given designmatrix of rank q < n+ p and [zT , bT ]T the vec-
tor of unknown parameters. A prime example of (1) is given
by the linearized model of undifferenced GNSS observation
equations, with y containing the carrier-phase and pseu-
dorange observables, z the unknown integer carrier-phase
ambiguities, and b the unknown real-valued parameters, such
as position coordinates, atmosphere parameters, receiver and
satellite clock parameters, and instrumental biases (Strang
and Borre 1997; Leick et al 2015; Odijk et al 2015).

With the design matrix [A, B] of (1) being rank defect, a
careful reparametrization is required to turn the model into
one of full rank with clearly defined estimable parameters.
The first such analysis was given in Teunissen (1996). As is
the case in GNSS, we assume the rank defect to involve the
integer ambiguity vector z. This implies, so as to retain the
integer nature of the ambiguities, that only admissible ambi-
guity transformations are permitted when reparametrizing,
i.e. transformations z = Z z̃ for which both Z and its inverse
Z−1 are integer (Teunissen 1995). With this class of uni-
modular transformations in mind, the following theorem of
Teunissen (2019) provides the necessary and sufficient con-
ditions for a linear function FT z to be integer estimable.

Theorem 1 (Integer estimability) For model (1), the nec-
essary and sufficient conditions for r linearly independent
functions z̃ = FT z to be estimable or integer estimable are:

1. z̃ = FT z is estimable if and only if F = AT B⊥X for
some X, where B⊥ is a basis matrix of the orthogonal
complement of the range space of B.

2. z̃ = FT z is integer estimable if and only if F = AT B⊥X
for some X and FT Z = [Ir , 0] for some admissible
ambiguity transformation Z ∈ Z

n×n. �
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Note that functions that are integer (i.e. FT ∈ Z
r×n) and

estimable (i.e. 1st condition of the above theorem is satisfied)
are not necessarily integer estimable. Estimable functions
are only integer estimable if they are rows of an admissible
ambiguity transformation.

In the following, we assume rank(B) = p, i.e. that any
linear dependency between the real-valued parameters has
already been taken care of using standard means of S-system
theory (Odijk et al 2015). As a result we have that the
maximum number of linear independent integer-estimable
functions is given by rank(B⊥T A) = q − p. The follow-
ing theorem, taken from (Teunissen 2019), shows how an
admissible transformation driven decomposition of B⊥T A
provides the means of establishing an integer-estimable
parametrization of the rank-defect mixed-integer model (1).

Theorem 2 (Integer-Estimable Parametrization) Consider
the mixed-integer model (1), with rank(B) = p, rank[A, B]
= q < n + p, and let the admissible transformation
Z = [Z1, Z2] provide the decomposition

B⊥T A[Z1, Z2] = [L, 0], rank(B⊥T A) = rank(L) (2)

Then the reparametrization

[
z
b

]
=

[ [
Z1, Z2

]
0[

0 ,−B+AZ2
]
Ip

] [
z̃
b̃

]
(3)

with B+ a left inverse of B, establishes the full-rank integer-
estimable parametrization

Az + Bb = AZ1 z̃1 + Bb̃ (4)

in which, with Z̃ T = Z−1, the estimable parameters are
given as

z̃1 = Z̃ T
1 z ∈ Z

q−p and b̃ = b + B+AZ2 z̃2 ∈ R
p (5)

and the inestimable parameters as z̃2= Z̃ T
2 z∈Z

n+p−q . ��

Note, when the rank deficiency of [A, B] is confined to A,
that AZ2 = 0 and b̃ = b. An example of such case where
the rank deficiency is confined to A, is the short-baseline,
double-differenced (DD) GLONASS FDMA model when
parametrized in linear combinations of between-receiver
integer ambiguities (Teunissen 2019). In general however,
the rank deficiency involves both A and B, as a result of
which the reparametrization affects the interpretation of the
to-be-estimated real-valued parameters, i.e. b̃ �= b. Such is,
for instance, the case in the undifferenced forms of GNSS
models (Odijk et al 2015).

2.2 Obtaining Z through integer sweeping

To be able to realize (2), we now describe a simple integer-
sweeping algorithm (Teunissen 2019) for constructing an
admissible Z = [Z1, Z2] that brings an arbitrary integer
m × n matrix M of rank(M) = q into the desired form,

MZ = [MZ1, 0],with q = rank(M) = rank(MZ1) (6)

The required operations to do so consist of adding or sub-
tracting integer multiples of a column to another column and
of reordering or sign-changing columns.

Let M be partitioned as M = [MT
1 , MT

2 ]T , with M1 ∈
Z
q×n being of full row-rank q (such can always be found

by a proper reordering of the rows of M). Then an admis-
sible Z ′ ∈ Z

n×n can be found that brings the first row of
M1, (M1)1 = (m11,m12, . . . ,m1n), in the form (M1)1Z ′ =
(m′

11, 0, . . . , 0). The steps to achieve this are as follows: (1)
assume that m11 is the in absolute value smallest non-zero
entry of the row vector. If it is not, one can always re-order
such that this becomes the case. Such re-ordering amounts to
post-multiplying with a permutation matrix, which is admis-
sible; (2) now subtract integer multiples of m11 from each of
the other row entriesm1i (i > 1) such that the remaining part
is in absolute value less than |m11|. Each of these subtractions
is again achieved by post-multiplying with an admissible
transformation; (3) the result of this integer sweeping is that
either all entries, except the first, are zero, and thus the result
is in the sought form, or there will be a non-zero entry that is
smaller in absolute value than m11; (4) in the latter case, we
continue by first bringing the in absolute value smallest entry
to the first slot and then repeating with the integer sweeping.
By repeating this process we finally obtain an admissible Z ′
that transforms M1 as:

M1 =

⎡
⎢⎢⎢⎣
m11 m12 . . . m1n

m21 m22 . . . m2n
...

...
...

...

mq1 mq2 . . . mqn

⎤
⎥⎥⎥⎦ ⇒ M1Z ′ =

⎡
⎢⎢⎢⎣
m′

11 0 . . . 0
m′

21 m′
22 . . . m′

2n
...

...
...

...

m′
q1 m′

q2 . . . m′
qn

⎤
⎥⎥⎥⎦

The same process of integer sweeping can now be applied to
the entries (m′

22, . . . ,m
′
2n) of the second row of M1Z ′. With

the so obtained Z ′′, M1Z ′ transforms to

M1Z ′Z ′′ =

⎡
⎢⎢⎢⎢⎢⎣

m′
11 0 0 . . . 0

m′
21 m′′

22 0 . . . 0
m′

31 m′′
32 m′′

33 . . . m′′
3n

...
...

...
...

...

m′
q1 m′′

q2 m′′
q3 . . . m′′

qn

⎤
⎥⎥⎥⎥⎥⎦

By executing this process q-times, an admissible transfor-
mation Z = Z ′Z ′′ . . .Zq is found that transforms M1

into M1Z = [L1, 0], with q × q full rank integer matrix
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M1Z1 = L1 and M1Z2 = 0. As M1 is of full row-rank,
the rows of M2 are linear combinations of those of M1, i.e.
M2 = XM1 for some matrix X . Hence, since M1Z2 = 0,
we also have M2Z2 = 0, and therefore MZ is brought in the
required form MZ = [L, 0], with L = [LT

1 , (M2Z1)
T ]T .

Note that the above constructedmatrix L1 is lower-triangular.
Hence, its determinant det(L1) is equal to the product of
its diagonal entries. This property will be used in Sect. 6.
One can also show that the above row wise integer sweeping
produces on the diagonal of L1, plus or minus, the greatest
common divisors (GCDs) of the row entries that undergo the
integer sweeping. Thus m′

11 is ±GCD of m11, . . . ,m1n and
m′′

22 is ±GCD of m′
22, . . . ,m

′
2n , etc. Also this property will

be used in Sect. 6.
Also note, while Z of (6) is constructed by the above

integer sweeping operations, one can also immediately, in
parallel, construct its inverse Z−1 = Z̃ T very easily. This can
beuseful in various instances. In the context ofTheorem2, for
instance, it allows one to quickly determine the interpretation
of the integer-estimable parameters z̃1 and b̃ of (5). It is also
useful when a particular dual formulation of Theorem 2 is
used.

Corollary 1 (Dual formulation) Let admissible transforma-
tion Z̃ = [Z̃1, Z̃2] provide the decomposition

BT A−T [Z̃1, Z̃2] = [0, L̃], rank(BT A−T ) = rank(L̃) (7)

and let Z = [Z1, Z2] = Z̃−T . Then

Az + Bb = AZ1 z̃1 + Bb̃ (8)

is a full-rank reparametrization in the integer-estimable
parameters z̃1 = Z̃ T

1 z and b̃ = b + B+AZ2 z̃2, with
z̃2 = Z̃ T

2 z. ��

Proof From (7) follows that Z̃1 is an integer basis matrix of
R(AT B⊥) and that Z2 = A−1BL̃−1. Hence, z̃1 = Z̃ T

1 z is
integer estimable and Az + Bb = AZ z̃ + Bb = AZ1 z̃1 +
B(b+ L̃−1 z̃2) = AZ1 z̃1+B(b+B+AZ2 z̃2) = AZ1 z̃1+Bb̃.

��
The potential advantage of this dual formulation is, if A−1

exists and is easy to obtain, that one can directly work with
B instead of with B⊥. Although one does not obtain the
design matrix Z1 of z̃1 directly with (7), as is the case with
(2), the construction of Z = Z̃−T is easily accommodated
by means of the integer sweeping operations that produce
Z̃ from (7). Note that the so constructed Z is generally not
identical to the one constructed from (2). This is due to the
inherent non-uniqueness that is present in decompositions
like (2) and (7), e.g. post-multiplying (2) with an arbitrary,
but properly dimensioned, lower-block diagonal admissible

transformation will not change the form of the decomposi-
tion.

A MATLAB pseudocode of the integer-sweeping algo-
rithm is presented in Fig. 1. This pseudocode identifies the
rank of the input matrixM ∈ Z

m×n without interchanging its
rows, and delivers the admissible transformations Z ∈ Z

n×n

and Z̃ = Z−T so as to satisfy (6). To reparametrize the rank-
defect mixed-integer model (1) to its full-rank version (8),
the input matrix may take the form of either M = B⊥T A or
M = BT A−T . Depending on which form is taken, the roles
of the output matrices Z and Z̃ are interchanged. To see the
integer sweeping algorithm at work, a few GNSS examples
are numerically worked out in Appendix.

Finally we mention that there are also other, more strin-
gent, decompositions than (6) that can be used. As (6)
is not unique (i.e. postmultiplication with any admissible
Z gives the same form, but with a different MZ1), these
alternative more stringent decompositions impose additional
constraints so as to come up with a unique form. Two such
decompositions are the Hermite normal form (HNF) and the
Smith normal form (SNF) (Nemhauser and Wolsey 1988;
Schrijver 1998). For a matrix M with full row rank q, its
HNF is given as MZH = [H , 0], where H is the unique
lower triangular matrix, having integer entries satisfying
0 ≤ Hi j < Hii if j < i . Further structure can be imposed on
the decomposition if, next to the post-multiplication, also
a pre-multiplication with an admissible transformation is
applied. So one can obtain the SNF of an integer matrix M
of rank q as ZT

S1
MZS2 = [S, 0], where S = [D, 0]T , with

the unique q × q diagonal matrix D having integer entries
Dii = di (M)/di+1(M), where di (M) is the GCD of the
determinants of all i × i minors of matrix M and d0(M) = 1.
Thefirst use of theHNF for solving rank-defect ILSproblems
was given in Teunissen and Odijk (2003). Later use of the
HNF can be found in Khodabandeh and Teunissen (2019);
Tagliaferro (2021).

3 Network integer-estimable
parametrization

The two building blocks of PPP–RTK are the observation
equations of the network and those of the user. The structure
of their undifferenced carrier-phase and pseudorange equa-
tions for a receiver r tracking transmitter s on its frequency
j , is given as Leick et al (2015)

E(φs
r , j ) = λsj z

s
r , j + (δr , j − δsj ) − ιsr , j + ρs

r

E(psr , j ) = (dr , j − dsj ) + ιsr , j + ρs
r

(9)

with φs
r , j and psr , j the phase and pseudorange (code) observ-

able, λsj the known transmitter-dependent wavelength of
frequency f sj = c/λsj (with c the speed of light in vac-
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Algorithm: Integer Sweeping

1: input: Integer matrix M ∈ Zm×n

2: output: Matrices Z = [Z1, Z2] ∈ Zn×n, Z̃ = Z−T = [Z̃1, Z̃2] ∈ Zn×n, L ∈ Zm×q , and q = rank(M)

3: NOTE 1: � subscript [i :k, j] indicates the rows starting from i to k on the jth-column

4: NOTE 2: � subscript [j, i :k] indicates the columns starting from i to k on the jth-row

5: function [Z1, Z2, Z̃1, Z̃2, L, q] ← IntSweeping(M)
6: [m, n] ← size(M);
7: Z ← eye(n), Z̃ ← Z; � initialized by an identity matrix of size n

8: q ← 0; � initialize the to-be-computed rank of M
9: qo ← min(m, n), io ← 0, i ← 0;
10: while io < qo + 1 do
11: io ← io + 1, i ← i + 1, repeat← true;
12: while repeat & (i < m + 1) do � find a new independent row of M

13: p ← M[i,io:n];
14: if p �= 0 then
15: q ← q + 1, repeat← false; � update the rank of M

16: else
17: i ← i + 1;
18: end if
19: end while
20: while p[2:n−io+1] �= 0 do

21: j ← argminp �=0(abs(p)); � identify the smallest nonzero entry in absolute value
22: g ← p[j];
23: j ← j + io − 1;
24: v ← M[1:m,io], M[1:m,io] ← M[1:m,j], M[1:m,j] ← v; � column-permutation

25: v ← Z[1:n,io], Z[1:n,io] ← Z[1:n,j], Z[1:n,j] ← v;

26: v ← Z̃[1:n,io], Z̃[1:n,io] ← Z̃[1:n,j], Z̃[1:n,j] ← v;

27: r ← floor( 1
g
M[i,io+1:n]);

28: M[1:m,io+1:n] ← M[1:m,io+1:n] − M[1:m,io] r; � subtraction

29: Z[1:n,io+1:n] ← Z[1:n,io+1:n] − Z[1:n,io] r;

30: Z̃[1:n,io] ← Z̃[1:n,io] + Z̃[1:n,io+1:n]transpose(r);

31: p ← M[i,io:n]; � update the p-vector
32: end while
33: end while
34: Z1 ← Z[1:n,1:q]; Z2 ← Z[1:n,q+1:n];
35: Z̃1 ← Z̃[1:n,1:q]; Z̃2 ← Z̃[1:n,q+1:n];
36: L ← M[1:m,1:q];

37: end function

Fig. 1 MATLABpseudocode for computing admissible integer transformations Z and Z̃ = Z−T , satisfyingMZ = [L, 0]with rank(L) = rank(M)

uum), zsr , j the unknown integer carrier-phase ambiguity,
δr , j , dr , j and δsj , d

s
j the unknown receiver and transmitter

phase and code delays, ιsr , j , when applicable, the unknown
frequency dependent ionospheric delay, and ρs

r the unknown
non-dispersive delays, constituting the receiver-transmitter
range, the receiver and transmitter clock terms, and when

applicable, the tropospheric delay. Here and in the following,
potential code-specific mismodelled effects such as inter-
channel biases are assumed absent or a-priori calibrated (see
e.g. (Wanninger andWallstab-Freitag 2007; Sleewaegen et al
2012; Banville et al 2018)).
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The purpose of the network is to provide network-
estimated transmitter phase biases to the user so as to enable
the user to perform integer ambiguity resolution. As both
the network and the user systems of undifferenced obser-
vation equations are rank defect, a careful integer-estimable
parametrization of both is required, together with a proper
understanding of their interplay. In this section, we start with
the network first and apply the theory of the previous sec-
tion to the network equations as given in (9). To establish its
integer-estimable parametrization, we only need to consider
a part of the observation equations, namely the part that con-
tains the undifferenced integer ambiguities and the receiver-
and transmitter phase delays,

αs
r , j = λsj z

s
r , j + (δr , j − δs, j ) (10)

The reason why this is permitted follows from Theorem 1,
which implies that integer-estimable functions of a more
relaxed model can always be written as linear combinations
of the integer-estimable functions of the constrained model.
To see this, consider E(y) = Az + B1b1 + B2b2 as the
relaxed model and E(y) = Az + B1b1 as the constrained
model. For z̃ = FT z now to be estimable, we must have
F = AT (B1, B2)

⊥Y for some Y . Since the column vectors
of basis matrix (B1, B2)

⊥ can be written as linear combina-
tions of those of basis matrix B⊥

1 , i.e. (B1, B2)
⊥ = B⊥

1 V for
somematrix V , it follows that F = AT B⊥

1 VY , which indeed
are combinations of the estimable functions under the con-
strained version E(y) = Az + B1b1. Due to this property we
can confine our attention to (10). A further recovery of inte-
ger estimability would then only be needed if an addition of
parameters would result in a change of the design matrix null
space involving the integer ambiguities, see also Theorem 4
of Teunissen (2019) and its examples how to do so. This
would be needed for instance, when in case of an absence of
pseudoranges, phase-only estimation is conducted over long
baselines due to the presence of the ionospheric delays.

As we will be working per frequency band, we suppress
the frequency-index j from now on and with asr = αs

r /λ
s

and f s = c/λs , express (10) in cycles as

asr = zsr + f s(δr/c − δs/c) (11)

We assume the transmitter frequencies f s , s = 1, . . . , S, to
be integer multiples of a reference frequency f0,

f s = rs f0, rs ∈ Z, s = 1, . . . ,S (12)

Note, in case the ratios rs would be rational numbers that an
appropriate scaling of f0 and the rs’s will recover a relation
like (12) again. A prime example of (12) is the set of frequen-
cies under which GLONASS FDMA operates, the ratios of
which are currently given by

rs = 2848 + κs, κs ∈ [−7,+6] (13)

with f0 = 9/16MHz and f0 = 7/16MHz for the L1 and L2
bands, respectively (Revnivykh et al 2017; Teunissen 2019).
Substitution of (12) into (11) gives

asr = zsr + rs(δ̄r − δ̄s) (14)

with δ̄r = f0δr/c and δ̄s = f0δs/c. This is the parametr-
ization that will be predominantly used in the following.
Occasionally however, in particular in the examples and
in some of the proofs, we will parametrize the transmit-
ter phase delays as ¯̄δs = rs δ̄s , so as to have the entries
of the corresponding design matrix consist of only 0 and
−1. Then we will also assume, with Ωr being the index-set
of the transmitters tracked by receiver r , that the greatest
common divisor (GCD) of the receiver-specific ratios rs ,
s ∈ Ωr ⊂ {1, . . . ,S}, is equal to 1 for every receiver. This
is achieved by dividing the ratios with their GCDs and using
the GCD-scaled receiver phase bias as the reparametrized
receiver phase bias.

Having a network of R receivers (r = 1, . . . ,R) and S

transmitters (s = 1, . . . , S), one can bring (14) in vector-
matrix form as

a = z + RP̄ ′d̄ (15)

with z the vector of undifferenced integer ambiguities, R
the diagonal matrix containing the rs’s, P̄ ′ the matrix of 0’s
and ±1’s describing the connectivity of receivers and trans-
mitters, and d̄ = [d̄TR , d̄ST ]T with d̄R = [δ̄1, . . . , δ̄R]T and
d̄S = [δ̄1, . . . , δ̄S]T .

Matrix P̄ ′ is known as the incidence matrix of the tracking
network (Khodabandeh and Teunissen 2019). In the special
case that all receivers track all transmitters, the incidence
matrix is given as

P̄ ′ = [IR ⊗ eS,−eR ⊗ IS] (16)

and the R-matrix as R = IR ⊗ RS, with RS = diag(r1, . . . ,
r S), thus giving RP̄ ′ = [IR ⊗ RSeS,−eR ⊗ RS].

As the incidencematrix P̄ ′ of a connected graph has a rank
defect of 1 (all its columns add up to zero), we eliminate this
single rank deficiency by lumping the first receiver phase
delay δ̄1 with all other phase delays, thus giving P̄ ′d̄ = P ′d,
with d = [dTR , dST ]T , dR = [δ̄2 − δ̄1, . . . , δ̄R − δ̄1]T , dS =
[δ̄1 − δ̄1, . . . , δ̄

S − δ̄1]T . Matrix P ′ is known as a reduced
incidence matrix and it follows from the incidence matrix by
eliminating one of its columns (in the present case its first
column).

As an incidence matrix has different reduced incidence
matrices, depending on which column is eliminated, it is rel-
evant to know how the reduced incidencematrices transform.
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Lemma 1 (Reduced incidence transformation) Let P̄ ′ ∈
Z
m×n be an incidence matrix and let P ′

(i) be the reduced inci-

dencematrix obtained by eliminating the i th column from P̄ ′.
Then transformation T of P ′

( j) = P ′
(i)T and its inverse are

given as

T = V T
i S j ∈ Z

(n−1)×(n−1)

T −1 = V T
j Si ∈ Z

(n−1)×(n−1) (17)

where

V T
i

(n−1)×n
=

[
Ii−1 −ei−1 0
0 −en−i In−i

]
, and

STj
(n−1)×n

=
[
I j−1 0 0
0 0 In− j

] (18)

��

Proof For proof, see Appendix.
As both T and its inverse are integer, we have det(T ) = ±1
(Teunissen 1995). This property will be used in Sect. 6. In
the following we will refrain from indicating which column
has been eliminated and simply write P ′ for the reduced
incidence matrix.
Using the reduced incidence matrix, (15) can be written as

a = z + Pd, with P = RP ′ (19)

in which the integer matrix P is of full column rank,
rank(P) = R+S − 1. With (19), we are now in a position
to directly apply Theorem 2 and Corollary 1, thereby letting
the identity matrix play the role of A and P the role of B.
The results are summarized below.

Corollary 2 (Network integer estimability) Let P = RP ′ ∈
Z
n×(R+S−1) (n ≤ RS), with P ′ the network’s reduced inci-

dence matrix and R the diagonal matrix of integers rs =
f s/ f0, s = 1, . . . , S. Then a full-rank integer-estimable
parametrization of a = z + Pd is

a = Z1 z̃1 + Pd̃ (20)

with Z1 either computed from

[Z2, Z1] = [Z̃2, Z̃1]−T

PT [Z̃2, Z̃1] = [L̃, 0], rank(L̃) = R + S − 1
(21)

or from

P⊥T [Z1, Z2] = [L, 0], rank(L) = (R − 1)(S − 1)
P⊥T = [P ′

2(P
′
1)

−1,−I(R−1)(S−1)]ζ R−1 (22)

with ζ = ∏
S
s=1 r

s and P ′ = [P ′T
1 , P

′T
2 ]T . The estimable

parameters are

z̃1 = Z̃ T
1 z and d̃ = d + P+Z2 z̃2 (23)

with z̃2 = Z̃ T
2 z. ��

Note that matrix P⊥ of (22) is by construction indeed an
integer basis matrix ofR(P)⊥. The scalar ζ ensures the inte-
gerness of ζ R−1 and since P ′ is a reduced incidence matrix,
also the integerness of P ′

2(P
′
1)

−1 is ensured. The latter is
a consequence of the fact that any invertible submatrix of a
reduced incidencematrix is integer (Wilson 1996).With (22),
one thus only has to order the rows of the reduced incidence
matrix such that the first R+S−1 are independent. As shown
in Khodabandeh and Teunissen (2019) this is equivalent to
identifying the edges of a spanning tree of the network’s
ambiguity graph.

Also note, when (19) is premultiplied with Z̃ T , we obtain,
with z̃1 = Z̃ T

1 z, Z̃
T
1 P = 0 and Z̃ T

2 P = L̃T (cf. 21),

Z̃ T a =
[

z̃1
z̃2 + L̃T d

]
(24)

thus clearly showing that one cannot estimate z̃2 and d sep-
arately, but only in the lumped form z̃2 + L̃T d.

Finally we remark, when the integer sweeping algorithm
of Sect. 2.2 would be applied to PT (i.e.M = PT ), a decom-
position of the form PT [Z̃2, Z̃1] = [L̃, 0] is obtained.Hence,
to then obtain the decomposition of (21), still the first R+S−1
columns need to be swapped with the last (R − 1)(S − 1)
columns.
The following two examples show Corollary 2 at work using
the integer sweeping algorithm of Fig. 1.

Example 1 (GLONASS FDMA integer estimability): Con-
sider the receiver-transmitter configurationofFig. 2,whereby
two GNSS receivers r = 1, 2 track three GLONASS
FDMA satellites s = 1, 2, 3. The corresponding transmitter-

Fig. 2 An ambiguity graph in which two receivers (triangles) track
three satellites (squares). Each solid line indicates whether transmitter
s is tracked by receiver r . The dashed line indicates that receiver r = 1
does not track transmitter s = 3
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dependent frequencies f s = rs f0 are characterized as

rs = 2848 + κs, κs ∈ [−7,+6] (25)

where f0 = 9/16MHz and f0 = 7/16MHz for L1 and L2
bands, respectively (Teunissen 2019). In this example, the
frequency channel numbers of transmitters s = 1, 2, 3 are
assumed to be κ1 = +1, κ2 = −4 and κ3 = −7. Thus for
(19) we get

⎡
⎢⎢⎢⎢⎣

a11
a21
a12
a22
a32

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
a

=

⎡
⎢⎢⎢⎢⎣

z11
z21
z12
z22
z32

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
z

+

⎡
⎢⎢⎢⎢⎣

0 −1 0 0
0 0 −1 0

+2849 −1 0 0
+2844 0 −1 0
+2841 0 0 −1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
P

⎡
⎢⎢⎣

δ̄2 − δ̄1
2849(δ̄1 − δ̄1)

2844(δ̄2 − δ̄1)

2841(δ̄3 − δ̄1)

⎤
⎥⎥⎦

︸ ︷︷ ︸
d

(26)

Inserting M = PT as input, the integer-sweeping algorithm
(Fig. 1) returns the sought-for admissible transformations Z
and Z̃ as follows

PT

⎡
⎢⎢⎢⎢⎣

0 +1 0 +1137 −2844
0 0 +1 −1138 +2849

−1 0 0 −1137 +2844
+3 0 0 +1138 −2849
−2 0 0 +1 0

⎤
⎥⎥⎥⎥⎦

Z̃2 Z̃1

=

⎡
⎢⎢⎣

+1 0 0 0 0
+1 −1 0 0 0
−3 0 −1 0 0
+2 0 0 −1 0

⎤
⎥⎥⎦

L̃

(27)

with

⎡
⎢⎢⎢⎢⎣

0 +1 0 0 0
0 0 +1 0 0

+2849 +2850 −8547 +5698 +2279
+2844 +2844 −8531 +5688 +2275
+2841 +2841 −8523 +5683 +2273

⎤
⎥⎥⎥⎥⎦

Z2 Z1

Substitution into (20) gives the full-rank integer-estimable
parametrization a = Z1 z̃1 + Pd̃ , with

Z1 = [0, 0, 2279, 2275, 2273]T (28)

for which the interpretation of the estimable parameters fol-
lows from (5) (role of b replaced by d) as

z̃1 = +2844z112 − 2849z212,⎡
⎢⎢⎣

δ̃2

δ̃1

δ̃2

δ̃3

⎤
⎥⎥⎦

︸ ︷︷ ︸
d̃

=

⎡
⎢⎢⎣

δ̄2 − δ̄1
δ̄1 − δ̄1
δ̄2 − δ̄1
δ̄3 − δ̄1

⎤
⎥⎥⎦

︸ ︷︷ ︸
d

+D

⎡
⎢⎢⎣

2279z212 − 2275z112
z11
z21

z32 − 1137z112 + 1138z212

⎤
⎥⎥⎦

︸ ︷︷ ︸
P+Z2 z̃2

(29)

with D = diag(1, −1
2849 ,

−1
2844 ,

−1
2841 ) and in which use is

made of the between-receiver difference notation (·)12 =
(·)2−(·)1. Note that the first expression of (29) shows that the

integer-estimable function of the GLONASS FDMA ambi-
guities is not of the usual double-differenced form one is so
familiar with from CDMA-GNSS.

When matrix M of the integer sweeping algorithm is cho-
sen as M = P⊥T , with

P⊥T =[−2844, 2849, 2844,−2849, 0], (30)

the algorithm identifies, apart from a change in sign, the
same integer-estimable function z̃1, but with a different
parametrized model. This follows from the corresponding
output admissible transformations Z and Z̃ :

P⊥T

⎡
⎢⎢⎢⎢⎣

−570 +2849 1 0 0
−1 +5 0 −1 0
0 0 +1 0 0

+568 −2839 0 −1 0
0 0 0 0 +1

⎤
⎥⎥⎥⎥⎦

Z1 Z2

= [ −1 0 0 0 0
]

L

with

⎡
⎢⎢⎢⎢⎣

+2844 +569 0 +1 0
−2849 −570 0 −2 0
−2844 −569 +1 −1 0
+2849 +570 0 +1 0

0 0 0 0 +1

⎤
⎥⎥⎥⎥⎦

Z̃1 Z̃2 ��

Example 2 (LTE network): As with the GLONASS FDMA
case, the cellular long-term evolution (LTE) nodes also trans-
mit frequency-varying carrier-phase signals (Shamaei and
Kassas 2019). In this example,we showhowone can form the
integer-estimable functions of such carrier-phase measure-
ments. Figure 3 shows the configuration of an LTE network

2145MHz

1955MHz

2125MHz

739MHz

Fig. 3 The ambiguity graph of an LTE network in which three receivers
(triangles) track four transmitter (squares). Each solid line indicates
whether transmitter s is tracked by receiver r . The dashed lines indicate
missing connections
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having three receivers r = 1, 2, 3 and four transmitters
s = 1, 2, 3, 4. As shown in the figure, not all the receiver-
transmitter connections are established. The transmitters’
frequencies are related as f s = rs f0, where f0 = 1MHz,
r1 = 2145, r2 = 739, r3 = 2125 and r4 = 1955. Consider-
ing the connectivity of the network, the ambiguity equations
(19) are

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11
a21
a31
a32
a42
a13
a33
a43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
a

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11
z21
z31
z32
z42
z13
z33
z43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
z

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0

+2125 0 0 0 −1 0
+1955 0 0 0 0 −1

0 +2145 −1 0 0 0
0 +2125 0 0 −1 0
0 +1955 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
P

⎡
⎢⎢⎢⎢⎢⎢⎣

δ̄2 − δ̄1
δ̄3 − δ̄1

2145(δ̄1 − δ̄1)

739(δ̄2 − δ̄1)

2125(δ̄3 − δ̄1)

1955(δ̄4 − δ̄1)

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
d

(31)

While one can use the first form M = PT to obtain the
required admissible transformations, here we use the second
form M = P⊥T with

P⊥T =
[−9775 0 9867 0 0 9775 −9867 0

−9775 0 9867 −9867 10725 9775 0 −10725

]

(32)

as in this case the input matrix to the integer sweeping
algorithm has only two rows. The corresponding admissi-
ble transformations are computed as

P⊥T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+107 0 −429 0 0 +1 0 0
0 0 0 +1 0 0 0 0

+1 0 −4 0 0 0 −1 0
0 +12 +421 0 −25 0 −1 0
0 +1 0 0 −2 0 0 −1
0 0 0 0 0 +1 0 0

−105 0 +421 0 0 0 −1 0
0 −10 0 0 +21 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Z1 Z2

=
[ −23 0 0 0 0 0 0 0

−1036058 −429 0 0 0 0 0 0

]

L

with

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+425 −1026375 +106 0 −490875 0 +1 −44625
0 0 0 +1 0 0 0 0

−429 +1036035 −107 0 +495495 0 −2 +45045
0 +23 0 0 +11 0 0 +1
0 −25 0 0 −12 0 0 −2

−425 +1026375 −106 0 +490875 +1 −1 +44625
+429 −1036058 +107 0 −495506 0 +1 −45046
0 +25 0 0 +12 0 0 +1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Z̃1 Z̃2

Substitution into (20) gives the full-rank integer-estimable
reparametrization a = Z1 z̃1 + Pd̃ . The corresponding
integer-estimable ambiguity vector follows from z̃1 = Z̃ T

1 z
as

z̃1 =
[ −425z113 + 429z313

+1026375z113 − 1036035z313 + 25z423 + 23z32

]
(33)

inwhich use ismade of the between-receiver difference nota-
tion (·)12 = (·)2 − (·)1. Likewise, the interpretation of the
estimable biases follows from d̃ = d + P+Z2 Z̃ T

2 z.
Although integer-estimable functions of the LTE phase

ambiguities can be formed, one should note that successful
resolution of the corresponding float solutions depends on
the underlying measurements’ precision. For instance, the
rather large coefficients in (33) indicate that the precision of
the float solution ˆ̃z1 can be six orders of magnitude worse
than that of the LTE phase measurements. Assuming that the
model’s undifferenced phase measurements are independent
and equally precise and that no other than the phase ambi-
guities and biases are present in the model as unknown, the
LAMBDA-transformed version of (33) reads

ZT z̃1 =
[−425z113 + 100z423 + 337z313 + 92z312

−23z323 + 25z423

]
(34)

with the decorrelating transformation

ZT =
[
9661 4
2415 1

]
(35)

While the float solution of the first entry in (34) is still not
at the precision level to successfully realize full ambiguity
resolution, the second entry is just an order of magnitude less
precise than the phase measurements, meaning that partial
ambiguity resolution can be possible as with the GLONASS-
FDMA scenario (Teunissen and Khodabandeh 2019). ��

4 PPP–RTK: network + user

In the previous section, we have seen how for a general net-
work with varying transmitter frequencies its rank-defect
carrier-phase system of equations could be reparametrized
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into a full-rank system with integer-estimable parameters. In
the current section, we extend this analysis to the PPP–RTK
network + user scenario. Therefore, instead of starting from
(19), we start from the network + user system

[
a
au

]
=

[
z
zu

]
+

[
P 0
Pu Qu

]
︸ ︷︷ ︸

P

[
d
du

]
(36)

with zu ∈ Z
u the user integer ambiguity vector, Pu ∈ Z

u×p

(p = R+S − 1) the user-network connectivity matrix, struc-
tured as Pu = [0, PS

u], since the user has no receiver
parameters in common with the network, and matrix Qu ∈
Z
u×q establishing the user-unique connectivity to the phase

delays. Ordinarily, as a single receiver user will have a single
receiver phase delay, q will be equal to one and du,R given by
the single scalar du,R = δ̄u − δ̄1, with Qu = Rueu , in which
eu is the u-vector of ones and Ru is the diagonal matrix that
has the user frequency ratios rs = f s/ f0 on its diagonal.
However, for reasons that will become clear in Sect. 6, we
will keep the option open for q to be larger than one as well.

4.1 Admissible network + userZ-transformations

Recognizing that (36) represents an enlarged network sys-
tem, with matrix P ∈ Z

(n+u)×(p+q) (n ≤ RS) playing the
role that P played in the reference network, one may per-
haps think in first instance to apply Corollary 2 directly so as
to achieve integer estimability in all its parameters. This is
however not warranted in the context of PPP–RTK. To make
PPP–RTKwork, one has to let go of the freedom that the only
conditions the admissible ambiguity transformations have to
fulfill are the integerness of the transformations and their
inverses. For PPP–RTK to work, two additional conditions
need to be fulfilled.

Firstly, when reparametrizing the network + user ambi-
guities, the network ambiguities cannot become functions of
the reparametrized user ambiguities. Thus to avoid that the
network equations become dependent on user parameters, z
cannot be made dependent on the reparametrized user ambi-
guity vector z̃u . This condition implies that the ambiguity
reparametrization of (36) can only be done by means of a
lower block-diagonalmatrix. Secondly, the user ambiguities
should not become functions of the integer-estimable net-
work ambiguities. Thus to avoid that the user, next to the
integer-estimable network-determined phase delays, would
also need network-determined ambiguities, zu should not be
made dependent on the integer-estimable network ambiguity
vector z̃1. This second condition implies a special structure
for the lower block in the ambiguity transformation.

It follows, when taking the above two conditions together,
that the reparametrizing transformation of the network + user
ambiguities has to be of the form

[
z
zu

]
=

[
Z 0[

0, Xu
]

Zu

] [
z̃
z̃u

]
(37)

This required structure thus puts a constraint on the class
of admissible ambiguity transformations that one can use to
establish integer-estimability for the network + user system
(36).As shown inTeunissen (1995), the lower block-diagonal
transformation (37) is admissible if and only if both Z and Zu

are admissible, and the u × p matrix Xu is integer. We will
refer to transformations of type (37) as the class of admissible
PPP–RTK ambiguity transformations.

4.2 The PPP–RTK integer-estimability conditions

We will now investigate whether the structure of (37) puts
any constraints on the entries of the integer matrixP of (36).
For that purpose, we use Z = [Z1, Z2] and Zu = [Zu1, Zu2],
to write (37) as

[
z
zu

]
=

[
Z1 0
0 Zu1

]
︸ ︷︷ ︸

Z1

[
z̃1
z̃u1

]
+

[
Z2 0
Xu Zu2

]
︸ ︷︷ ︸

Z2

[
z̃2
z̃u2

]
(38)

in which Z = [Z1,Z2] has been partitioned to accomodate
the integer-estimable ambiguity vector [z̃T1 , z̃Tu1]T and the
integer-inestimable ambiguity vector [z̃T2 , z̃Tu2]T . The condi-
tions that the entries ofZ have to obey will then follow from
an equivalent decomposition to (22), namely

P⊥T [Z1,Z2] = [L, 0], rank(L) = (n + u) − (p + q)

(39)

in which P⊥ is an integer basis matrix ofR(P)⊥. Based on
the theory of Sect. 2, we know that one can always find an
admissible Z that satisfies (39). The question is now how-
ever whether this is still the case for admissible Z that are
constrained to the form given by (38). As we will see, this is
not necessarily so.

To work condition (39) out, we need an expression for the
integer matrix P⊥. As P is itself integer, such matrix can
always be found, a representation of which is given by

P⊥ =
[

P⊥T 0
−Q⊥T

u Pu P+ Q⊥T
u

]T

Ω (40)

with P⊥T , Q⊥T
u , and Pu all integer, but P+ not necessarily

integer, and invertible Ω such that P⊥ is integer.
As the crucial part of (39) is the need of Z2 to form an

integer basismatrix of the null space ofP⊥T , it is the require-
ment P⊥TZ2 = 0 that needs checking. From (38), (39) and
(40) it follows, when P⊥TZ2 = 0 is written out, that
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1. P⊥T Z2 = 0
2. Q⊥T

u Zu2 = 0
3. Q⊥T

u [Xu − Pu P+Z2] = 0
(41)

These are the conditions that the entries of the admissible
Z = [Z1,Z2] have to fulfill in order for it to be an admissible
PPP–RTK ambiguity transformation. The first two condi-
tions of (41) can always be met by constructing admissible
Z = [Z1, Z2] and Zu = [Zu1, Zu2] satisfying

P⊥T [Z1, Z2] = [L, 0], rank(L) = n − p
Q⊥T

u [Zu1, Zu2] = [Lu, 0], rank(Lu) = u − q
(42)

The construction of such Z is in fact the one conducted
for the reference network to achieve its integer-estimable
reparametrization (cf. Corollary 2). On the user side, the
construction of Zu goes in a similar way. From the user
observation equations, the user applies the integer sweep-
ing algorithm to Q⊥

u to obtain Zu (or alternatively, the user
may use Qu , when (21) of Corollary 2 is applied).

The challenge of (41) lies not in the first two conditions,
but rather in its third condition. This condition states that
the range space of Xu − Pu P+Z2 should be a subset of the
range space of Qu .We therefore have the following important
result.

Theorem 3 (PPP–RTKrealizability)Thenetwork+user sys-
tem (36) admits an integer-estimable reparametrization from
the class of admissible PPP–RTK transformations (37) if and
only if

Xu = Pu P
+Z2 + QuX2 ∈ Z

u×p (43)

or equivalenty

Z̃ T
u1(Pu P

+)Z2 ∈ Z
(u−q)×p (44)

for Z2 ∈ Z
n×p from some [Z1, Z2] that satisfies the first

equation of (42), Z̃u1 ∈ Z
u×(u−q) from some [Zu1, Zu2] =

[Z̃u1, Z̃u2]−T that satisfies the second equation of (42) and
some X2 ∈ R

q×p. ��
Proof Condition (43) follows directly from the third con-
dition of (41). The equivalence of (43) and (44) is shown
as follows: (⇒) As Z̃u = [Z̃u1, Z̃u2] = [Zu1, Zu2]−T and
R(Qu) = R(Zu2), premultiplication of (43) with Z̃ T

u1 gives
(44), since Z̃ T

u1Qu = 0. (⇐) Let Z̃ T
u1Pu P

+Z2 = U ∈
Z

(u−q)×u . Then Pu P+Z2 = Zu1U + Zu2V for some V ∈
R
q×p, showing, with V = −X2, that Pu P+Z2 + Zu2X2 =

Zu1U is indeed integer. ��
We note, although a left inverse of P is not unique, that the
above two equivalent conditions are not affected by this lack
of uniqueness. This can be seen as follows: Let P+

1 and P+
2

be two different left inverses of P . Then P+
1 = P+

2 PP+
1 and

PP+
1 Z2 = Z2, from which it follows that P+

1 Z2 = P+
2 Z2.

Condition (43) is useful when one wants to find an explicit
expression for the complete ambiguity transformation (37).
However, when Z̃u1 and Z2 are available (e.g. determined
from using the integer sweeping algorithm on (42)), condi-
tion (44) is usually numerically easier to verify. In case of
a single receiver phase bias at the user side, i.e. when Qu

is a single vector and q = 1, the construction of Z̃u1 can
also be done directly by means of the algorithm provided in
Teunissen (2019) of which the following is an example.

Example 3 (Integer-estimable receiver phase bias elimina-
tion) Let Qu = [r1, . . . , r i ]T and gi = GCD(r1, . . . , r i )
(GCD = greatest common divisor). Then for i = 2, we have

Z̃ T
u1

1×2
= [−(r2/g2), (g1/g2)] (45)

and for i = 3,

Z̃ T
u1

2×3
=

[ −(r2/g2) (g1/g2) 0
−α(r3/g3) −β(r3/g3) (g2/g3)

]
(46)

with the integers α and β satisfying αr1 + βr2 = g2. Note
that g1 = r1. It is not difficult to verify that in both cases
Z̃ T
u1Qu = 0. ��

The above theorem shows, since the matrices Pu , Qu , Z̃u1

and Z2 are all integer, that conditions (43) and (44) are
easily fulfilled when also matrix P+ is integer. However,
when P+ is not integer, then it depends very much on the
transmitter-system and the measurement-schemes used by
network provider and user, whether or not conditions (43) or
(44) can be satisfied. We will come back to this in Sect. 6.

4.3 Network + user integer-estimable
parametrization

We will now assume that condition (43) holds true and that
therefore an integer-estimable parametrizationof thenetwork
+ user system (36) is possible by means of the PPP–RTK
enabling ambiguity transformation (37). We first determine
the full-rank integer-estimable network + user system and
then discuss the interpretation that needs to be given to the
estimable parameters.
Full-rank network + user system: By substituting (38) into
(36), thereby recognizing, since P⊥TZ2 = 0, that the
columns of matrix Z2 are linear dependent on those of P ,
the full-rank network + user system follows as

[
a
au

]
=

[
Z1 0
0 Zu1

]
︸ ︷︷ ︸

Z1

[
z̃1
z̃u1

]
+

[
P 0
Pu Qu

]
︸ ︷︷ ︸

P

[
d̃
d̃u

]
(47)
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in which [z̃T1 , z̃Tu1]T contains the integer-estimable net-
work and user ambiguities and [d̃T , d̃Tu ]T the corresponding
estimable network and user phase delays. Note that the first
n equations of (47),

a = Z1 z̃1 + Pd̃ (48)

are indeed the full-rank integer-estimable network equations
that were determined earlier (cf. 20 of Corollary 2), while
the last u equations of (47), when written as

au − Pud̃ = Zu1 z̃u1 + Qud̃u (49)

are the full-rank integer-estimable user equations after the
user-data is PPP–RTK corrected with the appropriate selec-
tion of network-determined phase delays, Pud̃ . Note, if (49)
is pre-multipliedwithQ⊥T

u , one obtains,withQ⊥T
u Zu1 = Lu

(cf. 42),

Q⊥T
u (au − Pud̃) = Lu z̃u1 (50)

Hence, matrix Lu is the user design matrix of the integer-
estimable user ambiguities in case the user decides to
formulate the user observations equations free from the user
phase delays. Thismatrix becomes the identitymatrix in case
Q⊥

u is replaced by Z̃u1.
Reparametrized integer ambiguities: To determine the inter-
pretation of the reparametrized integer ambiguities, we
obtain from inverting the lower-block diagonal system (37),
using Z−1 = Z̃ T , Z−1

u = Z̃ T
u , that

{
z̃ = Z̃ T z
z̃u = Z̃ T

u (zu − Xu z̃2)
(51)

This shows how the reparametrized user ambiguities have
been made dependent on the network ambiguities. It is
through the dependence on the integer-inestimable network
ambiguity vector z̃2 that the user ambiguity vector z̃u1 of
(49) is made integer estimable. Note, since Z̃ T

u1Zu2 = 0, that
the integer-estimable user ambiguities are independent of the
choice made for X2 in (43): z̃u1 = Z̃ T

u1(zu − Pu P+Z2 z̃2).
Reparametrized phase delays: To determine the interpreta-
tion of the reparametrized phase delays, we have in analogy
with (5),

[
d̃
d̃u

]
=

[
d
du

]
+ P+Z2

[
z̃2
z̃u2

]
(52)

This can be worked out, with the use of condition (43), Z2

of (38) and

P+ =
[

P+ 0
−Q+

u Pu P+ Q+
u

]
(53)

as left inverse of P , to give

{
d̃ = d + P+Z2 z̃2
d̃u = du + Q+

u Zu2(z̃u2 + X2 z̃2)
(54)

This shows how the estimable phase delays are made
dependent on the integer-inestimable network and user ambi-
guities.

5 All-in-view PPP–RTK

In this section, we present and discuss ’all-in-view PPP–
RTK’, i.e. the case when all network and user receivers track
the same transmitters. This case enables analytical solutions
and it provides insight in how the theory of the previous
section works out. Next to its didactic relevance, the ’all-in-
view’ case is also practically relevant as it applies to GNSS
tracking networks with limited spatial extent and to networks
with terrestrial transmitters.

5.1 Network + user and the PPP–RTK condition

When all network and user receivers track the same S trans-
mitters, the network and user equations can be written as

network : a = z + [CR ⊗ RSeS,−eR ⊗ RS][dTR , dST ]T
user : au = zu + [1 ⊗ RSeS,−1 ⊗ RS][du, dST ]T

(55)

with CR = [0, IR−1]T , RS = diag(r1, . . . , r S), and eR, eS the
R- and S-dimensional vectors of all ones. The matrix entries
of matrix P of (36) are in this case thus given as

P = [CR ⊗ RSeS,−eR ⊗ RS] ∈ Z
RS×(R+S−1)

Pu = [0,−1 ⊗ RS] ∈ Z
S×(R+S−1)

Qu = 1 ⊗ RSeS ∈ Z
S

(56)

Matrices P and Pu can now be used to verify whether the
PPP–RTK condition (43) is satisfied or not. With Pu =
[0,−1 ⊗ Rs] and the non-integer left inverse of P ,

P+ =
[
DT

R ⊗ cT1 R
−1
S

−cT1 ⊗ R−1
S

]
(57)

it follows that

Pu P
+ = cT1 ⊗ IS ∈ Z

S×RS (58)

The conclusion reads therefore that all-in-view PPP–RTK is
indeed possible when the transmitters vary in frequencies.
As the PPP–RTK condition (43) is fulfilled for X2 = 0, this
choice is also taken in the following.
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5.2 Reparametrized network + user equations

To determine the full-rank integer-estimable network and
user Eqs. (48) and (49), we need to determine the ambi-
guity design matrices Z1 and Zu1. They follow from the
two decompositions of (42), for which P⊥T and Q⊥T

u are
required. In our present case, integer representations of these
two matrices are given as

P⊥T = DT
R ⊗ FT ∈ Z

(R−1)(S−1)×RS

Q⊥T
u = 1 ⊗ FT ∈ Z

(S−1)×S (59)

with

FT = [−r (1), r1 IS−1] , r (1) = [r2, . . . , r S]T (60)

Theorem 2 of Teunissen (2019) provides the following
decomposition in analytical form,

FT [ZF1, ZF2] = [LF , 0] (61)

with admissible ZF = [ZF1, ZF2] and LF given as Eqs
(33-35) of (ibid). For ease of their computation, a MATLAB
routine is given in Teunissen and Khodabandeh (2019).

With (59), (60) and (61), we can now establish the two
decompositions

P⊥T [Z1, Z2] = [L, 0]
Q⊥T

u [Zu1, Zu2] = [Lu, 0] (62)

where

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Z = [ CR ⊗ ZF1︸ ︷︷ ︸
Z1∈ZRS×(R−1)(S−1)

,CR ⊗ ZF2, eR ⊗ IS︸ ︷︷ ︸
Z2∈ZRS×(R+S−1)

]

Zu = [ 1 ⊗ ZF1︸ ︷︷ ︸
Zu1∈ZS×(S−1)

, 1 ⊗ ZF2︸ ︷︷ ︸
Zu2∈ZS×1

]

L = IR−1 ⊗ LF , Lu = 1 ⊗ LF

(63)

Hence, the full-rank integer-estimable reparametrized net-
work + user Eqs. (48) and (49), follow for the present case
as

a = Z1 z̃ + Pd̃,with Z1 = CR ⊗ ZF1

au − Pud̃ = Zu1 z̃u + Qud̃u,with Zu1 = 1 ⊗ ZF1
(64)

The ambiguity design matrices of both the network and
user, Z1 and Zu1, can thus be constructed directly from
the analytical expressions available for ZF1. Instead of the
undifferenced formulation (64), one can also opt for a dif-
ferencing formulation in which all phase delays, both for the
network and user, have been eliminated. This is achieved by
pre-multiplying the network and user equations of (64) with

P⊥T = DT
R ⊗ FT and Q⊥T

u = FT , respectively, thus giving
the ’double-differenced’ equations

(DT
R ⊗ FT )a = (IR−1 ⊗ LF )z̃

FT (au − Pud̃) = LF z̃u
(65)

Thus now the ambiguity design matrices are determined by
LF .

5.3 Reparametrized network + user ambiguities

To provide an interpretation of the reparametrized network
and user ambiguities, we need Z̃ = Z−T and Z̃u = Z−T

u .
They are given for the present case as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z̃ = [ DR ⊗ Z̃ F1︸ ︷︷ ︸
Z̃1∈ZRS×(R−1)(S−1)

, DR ⊗ Z̃ F2, c1 ⊗ IS︸ ︷︷ ︸
Z̃2∈Z RS×(R+S−1)

]

Z̃u = [ 1 ⊗ Z̃ F1︸ ︷︷ ︸
Z̃u1∈ZS×(S−1)

, 1 ⊗ Z̃ F2︸ ︷︷ ︸
Z̃u2∈ZS×1

] (66)

with Z̃ F = [Z̃ F1, Z̃ F2] = Z−T
F , an analytical expression of

which is given in Corollary 3 of Teunissen (2019). Hence,
the reparametrized network ambiguities are given as

z̃1 = Z̃ T
1 z = (DT

R ⊗ Z̃ T
F1)z (integer − estimable)

z̃2 = Z̃ T
2 z =

{
(DT

R ⊗ Z̃ T
F2)z

(cT1 ⊗ IS)z
(integer − inestimable)

(67)

while those of the user follow, with (58), (63) and (67), from
z̃u = Z̃ T

u [zu − Pu P+Z2 z̃2] (cf. 51), as z̃u = Z̃ T
u [zu − (cT1 ⊗

IS)z], thus giving

z̃u1 = Z̃ T
F1(zu − z1) (integer − estimable)

z̃u2 = Z̃ T
F2(zu − z1) (integer − inestimable)

(68)

in which z1 ∈ Z
S is the integer ambiguity vector of the first

reference network receiver.

5.4 Reparametrized network + user phase delays

To determine the reparametrized network phase delays, we
work d̃ = d + P+Z2 z̃2 (cf. 54) out, which, with the aid of
(57), (63) and (67), gives

d̃R = dR + (DT
R ⊗ cT1 R

−1
S ZF2 Z̃ T

F2)z
d̃S = dS − (cT1 ⊗ R−1

S )z
(69)

This shows the interpretation of the user-applied PPP–RTK
correction (64) as

− Pud̃ = (1 ⊗ RS)d̃
S = RSd

S − z1 (70)
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It is thus the presence in the PPP–RTK correction of the ines-
timable integer ambiguity vector z1 that enables the integer
estimability of the user ambiguity vector z̃u1.

To determine the reparametrized user phase delays, we
need to work d̃u = du + Q+

u Zu2 z̃u2 (cf. 54) out. With Qu =
RSeS = [r1, . . . , r S]T and Zu2 = [r1,...,rS]T

GCD(r1,...,rS)
(see Theorem

2 of Teunissen (2019)), we get, with (68), as interpretation
of the estimable user phase delays,

d̃u = du + 1
GCD(r1,...,rS)

Z̃ T
F2[zu − z1] (71)

where ‘GCD’ stands for greatest common divisor.

5.5 GNSS CDMA and FDMA compared

The above results allow us to get a better understanding of
the impact of having varying transmitter frequencies and
therefore also of the differences between GNSS CDMA
and GNSS FDMA. These differences are driven, through
RS = diag(r1, . . . , r S) �= IS, by matrix FT of (60) and
the decomposition of (61). If all transmitters would have the
same frequency, and thus RS = IS, then FT of (60), ZF and
LF of (61), and Z̃ F = Z−T

F simplify to

FT = DT
S

ZF = [CS, eS]
Z̃ F = [DS, c1]
LF = IS−1

(72)

As a consequence, the integer-estimable network and user
ambiguities of (67) and (68) are then given as

z̃1 = (DT
R ⊗ DT

S )z
z̃u1 = DT

S (zu − z1)
(73)

which we recognize, both for the network and user, as the
familiar double-differenced (DD) ambiguities well-known
from GNSS CDMA. A similar simplification is reached for
the network and user phase delays, (69) and (71),

d̃R = dR + (DT
R ⊗ cT1 )z

d̃S = dS − z1
d̃u = du + cT1 (zu − z1)

(74)

6 On the PPP–RTK realizability condition

In the previous section, we have shown that all-in-view PPP–
RTK is possible when the transmitters vary in frequencies.
Although this result is of importance in its own right, it is
admittedly only a special case. We will therefore generalize
our treatment in this section and in particular now focus on the

discriminating contributions of network and user to the PPP–
RTK condition (43) of Theorem 3. First we determine and
discuss the condition under which an integer left inverse of
the networks reduced incidence matrix P exists and then we
discuss how the possible absence of such integer left inverse
can be compensated by the user observation equations, i.e.
by Pu and Qu .

6.1 A sufficient network condition for PPP–RTK

According to condition (43), the existence of an integer left
inverse of P is sufficient for Xu to be integer and therefore
sufficient for PPP–RTK to be possible, irrespective of the
measurement scheme of the user and thus irrespective of the
integer entries of Pu and Qu .

6.1.1 The constant frequency case

First we consider the case where all transmitters transmit
on the same frequency: f s = f0. This case applies for
instance to all global and regional navigation satellite sys-
tems that operate on the CDMA-principle, i.e. GPS, BDS,
Galileo, NavIC and QZSS. The constant frequency case is
the simplest case and also one for which it is not difficult
to show that an integer left inverse of P always exists. If
f s = f0, then R = In and therefore P = P ′. By partition-
ing P ′ = [(P ′

1)
T , (P ′

2)
T ]T , such that P ′

1 is invertible (such
is always possible through proper ordering of the network
equations), a left inverse of P ′ is

(P ′)+ = [(P ′
1)

−1, 0] ∈ Z
u×n (75)

This inverse is integer, since (P ′
1)

−1 is integer, as the inverse
of any invertible submatrix of a reduced incidence matrix is
always integer (Wilson 1996). This result thus confirms that
PPP–RTK is indeed always possible in case the transmitters
transmit on the same frequency.

In the constant frequency case the single-receiver user
equations, (49) or (50), take a particular simple form. As
Ru = Iu , we have Qu = eu , from which it follows that
the differencing matrix DT

u = [−eu−1, Iu−1] is a proper
representationofQ⊥T

u .A Zu-matrix that provides the decom-
position Q⊥T

u [Zu1, Zu2] = [Lu, 0] is then readily found as
Zu = [Cu, eu], with Cu = [0, Iu−1]T . Thus

Q⊥T
u [Zu1, Zu2] = DT

u [Cu, eu] = [Iu−1, 0] (76)

from which it follows that the undifferenced user Eq. (49)
takes the form

au − Pud̃ = Cu z̃u1 + eud̃u (77)
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Fig. 4 Network+User: network with two receivers (r = 1 and r = 2),
five transmitters s = 1, . . . , 5, and one user receiver u

while that of (50) becomes

DT
u (au − Pud̃) = z̃u1 (78)

This latter form is the one usedwhen the user decides to work
with between-satellite differenced observables.

6.1.2 The varying frequency case

As the existence of an integer left inverse of P is a sufficient
condition for PPP–RTK to be possible, we first start with an
example showing how the values of the frequency ratios may
negate or may determine the existence of such inverse.

Example 4 (Integer left inverse of P) Consider the network
of Fig. 4, showing 2 network receivers (1 and 2), 5 transmit-
ters and 1 user receiver u. The frequency ratios of the five
transmitted signals are rs , s = 1, . . . , 5. In this example we
are only concerned with the network observation equations.
By ordering the observation equations such that we take the
observations from receivers 1 and 2 to transmitter 1 first and
the two observations from receiver 1 to transmitter 4 and
receiver 2 to transmitter 2 last, we get, with p1 = [r2, r3]T
and p2 = [r4, r5]T ,

P̄
8×7

=

⎡
⎢⎢⎢⎢⎢⎢⎣

r1 0 −1 0 0
0 r1 −1 0 0
p1 0 0 −I2 0
0 p2 0 0 −I2
r4 0 0 0

[−1 0
]

0 r2 0
[−1 0

]
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒ P
8×6

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0
r1 −1 0 0
0 0 −I2 0
p2 0 0 −I2
0 0 0

[−1 0
]

r2 0
[−1 0

]
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(79)

whereby P is obtained from the rank-defect P̄ by eliminating
its first column. As P is of order 8 × 6, the network has 2

integer-estimable ambiguities and 6 estimable phase biases
of which 5 are transmitter phase biases.

Theorderingof the observation equationswas chosen such
that the 6 × 6 matrix P1 of P = [PT

1 , PT
2 ]T is invertible,

P−1
1

6×6
=

⎡
⎢⎢⎣

− 1
r1

1
r1

0 0
−1 0 0 0
0 0 −I2 0

− p2
r1

p2
r1

0 −I2

⎤
⎥⎥⎦ (80)

Hence, the matrix P+ = [P−1
1 , 0] is a left inverse of P . This

matrix is however not integer in general. It is integer if all
frequency signals are equal to the reference frequency f0,
i.e. the constant frequency case, and it is integer if the first
frequency ratio equals one, r1 = 1. This latter case is thus an
example where not all frequency ratios are the same, while
the network still guarantees, due to the existence of an integer
left inverse of P , that PPP–RTK is possible for any user. ��

We will now determine, an easily verifiable, necessary and
sufficient condition that guarantees the existence of the
required integer left inverse.

Theorem 4 (PPP–RTK network condition) Let P = RP ′ ∈
Z
n×p, with P ′ the network’s reduced incidence matrix and

R the diagonal matrix of frequency ratios. Then an integer
left inverse of P exists if and only if the determinant of the
integer matrix L̃ in the decomposition PT [Z̃2, Z̃1] = [L̃, 0]
(cf. Corollary 2, 21) equals plus or minus one,

det(L̃) = ±1 (81)

or equivalently,

(L̃)i i = ±1 for i = 1, . . . , p (82)

when L̃ is triangular. ��

Proof For proof, see Appendix.
It is important to remark that condition (81) is independent

ofwhich column is eliminatedwhen constructing the reduced
incidence matrix. As the integer transformation from one
reduced incidence matrix to another has determinant ±1 (cf.
Lemma 1), the determinant of L̃ in (81) will not change under
such transformation.

An example where det(L̃) = ±1 is Example 1 (cf. 27).
The following is a GLONASS example where this is not the
case.

Example 5 (GLONASS FDMA) Consider matrix P of (79)
with the used GLONASS frequency ratios given as r1 =
2841, p1 = [2844, 2849]T , p2 = [2853, 2854]T . Then the
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integer sweeping operation provides the decomposition

PT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 +1 0 0 −3 +10 +3 −948
+3 0 0 0 +3 −10 −3 +948
0 0 +1 0 +4 −13 −4 +947
0 0 0 +1 0 0 0 0
0 0 0 0 +1 0 −1 0

+1 0 0 0 0 −3 0 0
0 0 0 0 0 0 +1 0
−4 0 0 0 −4 +13 +4 −947

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Z̃2 Z̃1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

+1 0 0 0 0 0 0 0
−3 −1 0 0 0 0 0 0
+4 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
−1 0 0 0 0 +3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

L̃

(83)

Thus showing that P has no integer left inverse, since
det(L̃) �= ±1. Would one interchange the frequency ratios
2841 and 2849, then det(L̃) = −1, and P has an integer
left inverse. This shows how this property can change with a
change in measurement scheme. ��
Note, as L̃ is integer, that condition (81) is equivalent to say-
ing that L̃−1 is integer. Hence, with condition (81) satisfied,
one may rewrite (24) also as

˜̃ZT a =
[

z̃1
˜̃z2 + d

]
(84)

with ˜̃z2 = L̃−1 z̃2 and the admissible ambiguity transforma-
tion

˜̃Z =
[
In−p 0
0 L̃−1

]
Z̃ (85)

This shows that one may state Theorem 4 alternatively as: an
integer left inverse of P exists if and only if an admissible
ambiguity transformation can be found such that (84) holds
true. All the linear functions FT z, with FT = L̃−1PT , will
then be integer estimable (cf. Theorem 1).
We remarked earlier that condition (81) is easily verified.
This is particularly true when the decomposition of PT is
constructed by means of the integer sweeping algorithm of
Section 2.2. Then L̃ is lower-triangular and its row-by-row
construction gives then a quick assessment of whether or
not condition (82) is satisfied. The moment a diagonal entry
(L̃) j j �= ±1 is obtained, one knows that no integer left
inverse of P exists. In fact one only needs to check the last S
diagonal entries, since the first R − 1 entries can be made 1
by design, as the following shows.

The first R − 1 diagonal entries of the lower-triangular L̃
will always be equal to 1 if, for every network receiver, the
receiver phase biases have been so defined that the GCDs
of their frequency ratios equal 1. This can be explained as
follows. As the first set of rows of PT (i.e. the rows that
correspond with the receiver phase biases) are formed per
row by the frequency ratios of the same receiver, while the
columns of these rows contain at the most one nonzero entry,
it follows from an application of the integer sweeping algo-
rithm that the first R − 1 diagonal entries of L̃ will consist
of the GCDs of the receiver frequency ratios and thus be 1.
Such is the case in Example 1 for instance. There we have
GCD(2849, 2844, 2841) = 1 and thus indeed 1 as the first
diagonal entry of L̃ in (27).

There where Theorem 4 provides a general PPP–RTK suf-
ficiency condition for the network, the next theorem provides
two such specific conditions.

Theorem 5 (Sufficient network conditions) An integer left
inverse of P exists

1. if one of the network receivers tracks all transmitters, or
2. if all network receivers track the same transmitter on f0.

Proof For proof, see Appendix.
Note that the tracking configuration of Example 1 is an illus-
tration of the theorem’s first case. All transmitters are tracked
by the second receiver and all diagonal entries of L̃ in (27)
are equal to ±1. The tracking configuration of Example 4,
with r1 = 1, is an illustration of the theorem’s second case.

��

6.2 A sufficient user condition for PPP–RTK

If no integer left inverse of P can be found, then it
depends very much on the transmitted frequencies and the
measurement-schemeof the userwhether or not the condition
of Theorem 3 can be satisfied. The following two examples
make this clear.

Example 6 (Continuation of Example 5):With the user track-
ing all 5 transmitters, we have Pu = [0,−I5] and Qu =
[2841, 2844, 2849, 2853, 2854]T . Through integer sweep-
ing we find Pu P+Z2 from Pu and P as

Pu P
+Z2

5×6
=

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 − 1

3

⎤
⎥⎥⎥⎥⎦ (86)
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and Z̃ T
u1 from Qu as

Z̃ T
u1

4×5
=

⎡
⎢⎢⎣

948 −947 0 0 0
−5 6 1 0 −2
3 −4 0 1 0

−10 13 0 0 −3

⎤
⎥⎥⎦ (87)

thereby showing that condition (44) is not satisfied as
Z̃ T
u1(Pu P

+)Z2 is not integer. ��

This is thus an example for which GLONASS PPP–RTK
is not possible, this in contrast to the GLONASS case of
Example 1. The following example illustrates what is possi-
ble when one varies the measurement scenario.

Example 7 (Continuation of Example 4): Consider the mea-
surement scenario of Fig. 4. Then Pu = [0,−I5] ∈ Z

5×6,
which gives, with P+ = [P−1

1 , 0] ∈ R
6×8 and P−1

1 of (80),

Pu P
+Z2

5×6
=

⎡
⎢⎢⎣

⎡
⎣ −1 0 0 0

0 0 −I2 0
− p2

r1
p2
r1

0 −I2

⎤
⎦

5×6

0

⎤
⎥⎥⎦ Z2

8×6
(88)

With the design matrix of the user receiver phase bias given
as Qu = [r1, pT1 , pT2 ]T ∈ Z

5, it follows that no matrix
X2 ∈ R

1×6 can be found such that QuX2 would be able
to compensate for the non-integer entries of (88) and thus
satisfy condition (43). The conclusion is therefore that the
measurement scenario of Fig. 4 does not allow PPP–RTK
when r1 �= 1. Thus when r1 = 1, the matrix of (88) is
integer and the user can form 5 − 1 = 4 integer-estimable
ambiguities, while for r1 �= 1 the user cannot form such
integer-estimable ambiguities.

We now show that a modified measurement scenario
would permit PPP–RTK. Assume that the user only tracks
the first three transmitters. Then Pu = [0,−I3, 0] ∈ Z

3×6,
thus giving

Pu P
+Z2

3×6
=

⎡
⎣

[−1 0 0 0
0 0 −I2 0

]

3×6

0

⎤
⎦ Z2

8×6
(89)

As this matrix is integer, PPP–RTK is possible. Thus now
3−1 = 2 user integer-estimable ambiguities can be formed.

Based on the argument of symmetry, one would also
expect PPP–RTK to be possible if the user only tracks the
transmitters 1, 4 and 5. For this measurement scenario, we
have

Pu
3×6

=
[
0

[−1 0 0
0 0 0

] [
0

−I2

]]
(90)

thus giving

Pu P
+Z2

3×6
=

⎡
⎣

[
1 0 0 0

− p2
r1

p2
r1

0 −I2

]

3×6

0

⎤
⎦ Z2

8×6
(91)

which is however not integer. Based on the argument of
symmetry, one should be able to compensate the noninte-
gerness of this matrix with QuX2, or equivalently, be able
to demonstrate that condition (44) of Theorem 3 is fulfilled.
And indeed this is the case, as can be verified when (91) is
premultiplied with Z̃ T

u1 of (46). ��
In the above example, PPP–RTK turns out to be possible if
the user tracked transmitters constitute a subset of the trans-
mitters tracked by one of the network receivers. This can be
shown to be true in general and is in fact a special case of the
following result.

Theorem 6 (Sufficient user condition) Consider the network
+ user system (36), with the partitionings P = [P1, P2],
P1 ∈ Z

n×(R−1), P2 ∈ Z
n×S and Pu = [0, Pu2], Pu2 ∈ Z

u×S.
Let Pu2 = Su P2 for some selection matrix Su ∈ Z

u×n. Then
PPP–RTK is possible if

Su P1 = QuX for some X ∈ R
q×(R−1) (92)

i.e. if frequency ratios of network-user commonly tracked
transmitters can be absorbed by the user equations.

Proof From Pu2 = Su P2 follows that Pu = Su P −
[Su P1, 0] and therefore, after postmultiplicationwith P+Z2,
Pu P+Z2 = Su Z2 − Su P1[I R−1, 0]P+Z2, since PP+Z2 =
Z2. As Su Z2 is integer, condition (44) of Theorem 3 is sat-
isfied if Z̃ T

u1Su P1 = 0 and thus if Su P1 = QuX for some
X ∈ R

q×( R−1). ��
Note that an integer selection matrix Su , satisfying Pu2 =
Su P2, always exists when the transmitter set tracked by the
user is a subset of the transmitters tracked by the network.

From the above result, we can now draw several conclu-
sions. Firstly, note that PPP–RTK will always be possible
when Su P1 = 0. This shows that it is the network receiver
phase biases that are hindering PPP–RTK. Would the net-
work receivers be free from phase biases, P1 would vanish
and PPP–RTKwould be possible. Secondly, (92) implies that
PPP–RTK is possible when the user tracks the same transmit-
ters as one of the network receivers. To see this, let the user
tracked transmitters be a subset of the transmitters tracked
by one of the network receivers, say receiver k. Then Su can
be chosen such that Su P1 = 0 for k = 1 (i.e. the network
reference receiver) and Su P1 = QucTk−1 for k �= 1, in which
Qu = [r1, . . . , ru]T is the user design matrix for the single
user receiver phase bias. Hence, condition (92) is satisfied in
this case and PPP–RTK is thus possible.

123



84 Page 18 of 24 P. J. G. Teunissen, A. Khodabandeh

Now consider the case that the user tracked transmitters
are a subset of the transmitters tracked by two different net-
work receivers, say receivers k and l. Then the frequency
ratios of the tracked transmitters will not anymore be con-
fined to a single column vector of Su P1, but instead be
distributed over two columns: Su P1 = Qu1c

T
k−1 + Qu2c

T
l−1,

with Qu1 + Qu2 = [r1, . . . , ru]T . Hence, in this case (as in
the aboveExample 4)PPP–RTKwill not be possible anymore
for all tracked transmitters if the user observation equations
would be working with only a single receiver phase bias, i.e.
if Qu = [r1, . . . , ru]T . The above theorem shows however,
how one can thenmodify the user observation equations such
that PPP–RTK for all transmitters becomes possible again.
By defining Qu = [Qu1, Qu2 ] and X = [ck−l , cl−1]T , we
have Su P1 = QuX and therefore agreement again with the
PPP–RTK condition (92). The following example illustrates
these different cases.

Example 8 (Continuation of Example 7) First we consider
the two cases where the user either tracks the transmitters
1, 2 and 3, or the transmitters 1, 4 and 5. In the first case,
Pu2 = Su P2 holds true for the choice

Su
3×8

=
[
1 0 0 0 0
0 0 I2 0 0

]
(93)

As this gives Su P1 = 0, PPP–RTK is possible. For the second
case, Pu2 = Su P2 holds true for the choice

Su
3×8

=
[
0 1 0 0 0
0 0 0 I2 0

]
(94)

As this gives Su P1 = [r1, pT2 ]T , PPP–RTK is again possible.
Nowconsider the casewhere the user tracks all 5 transmitters.
Then Pu2 = Su P2 holds true for the choice

Su
5×8

=
⎡
⎣ 1 0 0 0 0 0
0 0 I2 0 0 0
0 0 0 I2 0 0

⎤
⎦ (95)

In this case we get

Su P1 =
⎡
⎣ 0

0
p2

⎤
⎦ =

⎡
⎣ r1 0
p1 0
0 p2

⎤
⎦

︸ ︷︷ ︸
Qu

[
0
1

]
︸︷︷︸
X

(96)

thus showing that to make PPP–RTK possible, the user now
requires a (q = 2)-dimensional bias parametrization instead
of the traditional single user receiver phase bias. ��
The relevance of the above theorem is thus that it shows how
users canuse information about the transmitter trackingof the
network to realize PPP–RTK, irrespective of the frequency

variations of the transmitters. The column dimension q of
Qu should then be chosen as the smallest number of network
receivers that track the same transmitters as the user.

7 Summary and conclusions

In this contribution we generalized PPP–RTK theory by
allowing the transmitters to transmit on different frequen-
cies. The theory is generally applicable and not restricted to
satellite positioning. Next to GLONASS FDMA and LEO
satellite signals for instance, it is also applicable to terres-
trial interferometric sensor networks. Our generalization is
based on the integer-estimability theory of Teunissen (2019),
with the needed results summarized in Theorems 1 and
2, and Corollary 1. They provide the algorithmic means
of reparametrizing a rank-defect mixed-integer model to
full rank, together with the necessary interpretation of the
estimable parameters so obtained.

The purpose of PPP–RTK is to have a tracking network
provide network-estimated transmitter phase biases to users
so as to enable the user to benefit from the high-precision
local phase data by means of integer ambiguity resolution.
As the two building blocks of PPP–RTK are the observation
equations of the network and those of the user, our analysis
commenced with the undifferenced network equations, fol-
lowed by an identification of the constraints imposed on the
network+user admissible ambiguity transformations, from
which a fundamental PPP–RTK realizability condition (The-
orem 3) was derived and applied. Our condition shows when
PPP–RTK is possible and when it is not, with several exam-
ples of both cases given.

The main results of this contribution can be summarized
as follows:

• Network: It was shown how the frequency-transformed
reduced incidence matrix P of the network drives the
integer estimability of the network parameters. Two
approaches were provided for determining the integer
estimable parameters, one based on P , the other on an
integer basis matrix of the orthogonal complement of P’s
range space (Corollary 2).

• Network+user: It was shown how the PPP–RTK con-
cept imposes additional constraints on the ambiguity
transformations that can be used. Next to being inte-
ger with an integer inverse, they now also need to be
of a block-triangular form. This follows from the need
to avoid that the reparametrized network ambiguities
become functions of the reparametrized user ambigui-
ties. Furthermore, the transformations should also avoid
that the user ambiguities become functions of the integer-
estimable network ambiguities.
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• Fundamental PPP–RTK condition: It was shown how the
additional constraints imposed on the admissible ambi-
guity transformations result in a fundamental condition
that needs to be satisfied for PPP–RTK to be possible
(Theorem 3). Stated compactly, PPP–RTK is possible if
and only if

Z̃ T
u1(Pu P

+)Z2 is integer (97)

in which Z̃u1 defines the user’s integer-estimability
space, Pu is the user transmitter connectivity matrix, P+
is a left inverse of P , and Z2 defines the network’s integer-
inestimable ambiguity space.

• All-in-view PPP–RTK: It was shown that condition (97)
is always satisfied when all transmitters are tracked by
the network and user receivers. A detailed description of
the associated interpretation of the parameters was also
provided. Although the ’all-in-view’ case is not gener-
ally applicable, it is still practically relevant, for instance
for GNSS tracking networks with limited spatial extent
and for networks with terrestrial transmitters. With (97)
showing how the network (P and Z2) and the user (Pu
and Z̃u1) contribute to thePPP–RTKcondition, bothwere
analysed.

• Network sufficiency conditions: As Z̃u1, Pu and Z2 in
(97) are all integer, the existence of an integer left inverse
P+ is sufficient for PPP–RTK to be possible. It was
shown that such integer left inverse exists if and only
if P could play the role of Z2 and thus be extendable
to an admissible ambiguity transformation. An easy way
to numerically demonstrate this was also given (Theo-
rem 4). Furthermore, it was shown that an integer left
inverse of P exists if one of the network receivers tracks
all transmitters, or if all network receivers track the same
transmitter on the reference frequency f0 (Theorem 5).

• User sufficiency condition: If no integer left inverse of P
exists, PPP–RTK may still be possible for certain mea-
surement andmodelling set ups of the user, i.e. certain Pu
and Z̃u1. It was shown that PPP–RTK becomes possible
when the frequency ratios of network-user commonly
tracked transmitters can be absorbed by the user equa-
tions (Theorem 6). This is, for instance, always the case
when the user tracked transmitters constitute a subset of
the transmitters tracked by one of the network receivers.
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8 Appendix

8.1 Proofs of Lemma and Theorems

Proof of Lemma 1 (Reduced incidence transformation) Let
P̄ ′ be the m × n incidence matrix. Then

P̄ ′en = 0 (98)

with en the n-dimensional vector of ones. A basis matrix of
R(en)⊥ = R(P̄ ′T ) is then the n × (n − 1) matrix Vi defined
as

V T
i =

[
Ii−1 −ei−1 0
0 −en−i In−i

]
(99)

Let P ′
( j) denote the reduced incidence matrix obtained by

eliminating the j th column from P̄ ′. Then

P ′
( j) = P ′S( j) (100)

with n × (n − 1) matrix

S j =
⎡
⎣ I j−1 0

0 0
0 In− j

⎤
⎦ (101)

We will now determine the relation between two differ-
ent reduced incidence matrices, i.e. the (n − 1) × (n − 1)
transformation T of P ′

( j) = P ′
(i)T . Let P̄ ′ = UΛV T

be the Singular Value Decomposition (SVD) of P̄ ′. Then
UΛV T S j = UΛV T SiT , from which it follows that

V T S j = V T SiT (102)
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As both V and Vi are basis matrices of the same subspace, we
have V = ViY for some invertible matrix Y , and therefore
(102) may also be written as

V T
i S j = V T

i SiT (103)

From using the fact that V T
i Si = In−1 (this can be verified

with the above given definitions), we haveT = V T
i S j , which

is an integer matrix. We now show that the integer matrix
V T
j Si is the inverse of T :

T V T
j Si = V T

i S j V T
j Si

= V T
i [S j (V T

j S j )
−1V T

j ]Si
= V T

i [In − V⊥
j (S⊥T

j V⊥
j )−1S⊥T

j ]Si
= V T

i Si = In−1

(104)

since V T
i V⊥

j = 0. This concludes the proof of (17). ��
Proof of Theorem 4 (PPP–RTK network condition) From
PT [Z̃1, Z̃2] = [0, L̃] and Z = Z̃−T , it follows that P can
be represented as

P = Z

[
0
L̃T

]
(105)

thus showing that any of its left inverses can be written as
P+ = [X , L̃−T ]Z−1 for some X ∈ R

p×(n−p). Hence, P+
is integer if and only if matrix [X , L̃−T ] is integer. As X can
be chosen freely for P+ to be a left inverse of P , it follows
that the integerness of L̃−T is a necessary and sufficient con-
dition for the existence of an integer left inverse of P . As the
combined property of L̃ and its inverse being integer is equiv-
alent to L̃ being integer and det(L̃) = ±1, see (Teunissen
1995), the result (81) follows.

The equivalence of conditions (82) and (81) follows from
the integerness and triangularity of L̃ . If L̃ is triangular, its
determinant is equal to the product of its diagonal entries.
As the diagonal entries are integer having a product equal to
±1, each of the diagonal entries has to be ±1. ��
Proof of Theorem 5 (Sufficient network conditions) We first
prove 1. To ease the proof, we assume that the network
receiver phase biases have been parametrized such that the
GCDs of the entries of their design-vectors are 1. Further-
more, we start by assuming that it is the first network receiver
that tracks all transmitters. By taking its equations as the first
S equations of the network system, we have

P =
[

0 −IS
P21

(n−S)×(R−1)
P22

(n−S)×S

]
, P21 =

⎡
⎢⎣
p2

. . .

pR

⎤
⎥⎦ (106)

with the R − 1 vectors pi having the frequency ratios of
receiver i as entries, and matrix P22 having 0 and −1 as

entries. As left inverse of P , we take

P+ =
[
P+
21P22 P+

21
−IS 0

]
(107)

in which P+
21 is a left inverse of the full column-rank matrix

P21. Note, since P22 is integer, that P+ is integer, when P+
21

is integer. For P+
21, we take

P+
21 =

⎡
⎢⎣
p+
2

. . .

p+
R

⎤
⎥⎦ (108)

in which p+
i is a left inverse of pi . As the GCD of the entries

of pi is equal to 1, it follows, with reference to Theorem
4, that the left inverse p+

i can be chosen to be integer. This
shows that P+ is integer and thus that PPP–RTK is possi-
ble as the conditions of Theorem 3 are satisfied. So far the
proof only holds true for the case that the first column of the
incidence matrix is eliminated. However, as the transforma-
tion from one reduced incidence matrix to another, as well
as its inverse transformation, are always integer (cf. Lemma
1), one will always be able to find an integer left inverse of
P , irrespective of which column of the incidence matrix was
chosen for elimination. This concludes the proof of the first
part of Theorem 5.

To prove the second part of Theorem 5, we number the
transmitter that transmits on f0 as the first and order the
network equations such that the first R equations are those
that correspond with the tracking of the first transmitter, then
P̄ is structured as

P̄
n×(p+1)

=
[
IR −eR 0
M 0 N

]
(p = R + S − 1) (109)

with

M =
⎡
⎢⎣
r1

. . .

rR

⎤
⎥⎦ (110)

where the entries of vector ri contain the remaining frequency
ratios of the signals received by receiver i . Aswe assume here
a parametrization in ¯̄δs = rs δ̄s , the entries of matrix N are 0
or−1, implying that matrix M is the only submatrix of (109)
that has a dependency on the frequency ratios.

If we eliminate the single rank defect of P̄ by eliminating
its first column, we obtain the full column rank matrix

P
u×p

=
[ [

CR −eR

]
0[

MR 0
]

N

]
(111)
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in which CT
R = [0, IR−1] and MR consists of the last R − 1

columns of M . Note as both P and [CR,−eR] are of full
column rank, also N is of full column rank. This implies,
if we may assume that the first S − 1 rows of N are linear
independent (such can always be achieved through a proper
ordering of the network equations), and matrices [MR, 0]1
and N1 are formed from the first S − 1 rows of [MR, 0] and
N , respectively, that the square matrix

P1 =
[ [

CR −eR

]
0[

MR 0
]
1 N1

]
(112)

is invertible, having the inverse

P−1
1 =

[[
CR −eR

]−1
0

−N−1
1

[
MR 0

]
1

[
CR −eR

]−1
N−1
1

]
(113)

Note if all frequency ratios would be equal to 1, then P of
(111)would be a reduced incidencematrix and P−1

1 would be
integer (as the inverse of any invertible submatrix of a reduced
incidence matrix is always integer). This implies, as MR in
(113) is the only matrix that depends on the frequency ratios
unequal to 1, that both [CR,−eR]−1 and N−1

1 are integer, and
therefore that P−1

1 is also integer when the frequency ratios
in MR are not equal to 1. As P−1

1 is integer, it thus indeed
follows that an integer left inverse of P = [PT

1 , PT
2 ]T exists,

namely P+ = [P−1
1 , 0]. ��

8.2 Integer estimability through integer sweeping

The below three examples show some different features of
the integer-sweeping algorithm (Fig. 1) at work.

Example A1 (DD ambiguities as integer estimables): Con-
sider two GNSS receivers r = 1, 2 tracking three CDMA
satellites s = 1, 2, 3 (Fig. 2). Since the CDMA signals are
transmitted on identical frequencies (i.e. λsj = λ1j , s = 2, 3
in 9), the corresponding carrier phases φs

r , j are linked to the

integer ambiguities zsr , j as E(φ
s
r , j ) = zsr , j + δ̄r , j − δ̄s, j , where

δ̄r , j = (1/λ1j )δr , j and δ̄s, j = (1/λ1j )δ
s
, j (here it is assumed

for simplicity that all other model parameters are assumed
known). Thus

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

φ1
1, j

φ2
1, j

φ1
2, j

φ2
2, j

φ3
2, j

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= I5︸︷︷︸
A

⎡
⎢⎢⎢⎢⎢⎣

z11, j
z21, j
z12, j
z22, j
z32, j

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
z

+

⎡
⎢⎢⎢⎢⎣

0 −1 0 0
0 0 −1 0

+1 −1 0 0
+1 0 −1 0
+1 0 0 −1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

⎡
⎢⎢⎣

δ̄2, j − δ̄1, j
δ̄1, j − δ̄1, j

δ̄2, j − δ̄1, j

δ̄3, j − δ̄1, j

⎤
⎥⎥⎦

︸ ︷︷ ︸
b

(114)

in which the equation corresponding to φ3
1, j is missing as

receiver r = 1 does not track transmitter s = 3. The above

system of equations is underdetermined as all the five equa-
tions are fully reserved for the unknown integer vector z. To
make (114) full-rank, we now employ the integer-sweeping
algorithm and identify the integer-estimable functions of z.
Although the inputmatrixM = B⊥T A can also be used, here
we opt for the dual formulation M = BT A−T (cf. Corollary
1) as the inverse of the identity matrix A = I5 trivially exists
(A−1 = I5). Inserting M = BT as input, the algorithm
returns the sought-for admissible transformations Z and Z̃
satisfying

⎡
⎢⎢⎢⎣

0 0 1 1 1

−1 0 −1 0 0

0 −1 0 −1 0

0 0 0 0 −1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
BT

⎡
⎢⎢⎢⎢⎣

0 +1 0 +1 + 1
0 0 +1 0 − 1

+1 0 0 −1 − 1
0 0 0 0 + 1
0 0 0 +1 0

⎤
⎥⎥⎥⎥⎦

Z̃2 Z̃1

=

⎡
⎢⎢⎣

+1 0 0 0 0
−1 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0

⎤
⎥⎥⎦

L̃

with

⎡
⎢⎢⎢⎢⎣

0 +1 0 0 0
0 0 +1 0 0

+1 0 0 0 0
+1 −1 +1 0 +1
+1 −1 0 +1 0

⎤
⎥⎥⎥⎥⎦

Z2 Z1

Substitution into (8) gives the full-rank version of (114) as

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

φ1
1, j

φ2
1, j

φ1
2, j

φ2
2, j

φ3
2, j

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎣

0
0
0
1
0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
AZ1

z̃1 +

⎡
⎢⎢⎢⎢⎣

0 −1 0 0
0 0 −1 0

+1 −1 0 0
+1 0 −1 0
+1 0 0 −1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

⎡
⎢⎢⎢⎣

δ̃2, j

δ̃1, j
δ̃2, j
δ̃3, j

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
b̃

(115)

where the interpretation of the estimable parameters follows
from (5) as

z̃1 = z22, j − z21, j − z12, j + z11, j ,⎡
⎢⎢⎢⎣

δ̃2, j

δ̃1, j
δ̃2, j
δ̃3, j

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

δ̄2, j − δ̄1, j
δ̄1, j − δ̄1, j

δ̄2, j − δ̄1, j

δ̄3, j − δ̄1, j

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

z12, j − z11, j
−z11, j
−z21, j

−z11, j + z12, j − z32, j

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
B+AZ2 z̃2

(116)

The first expression of (116) reveals, for this example, that
the integer-estimable function of the ambiguities z is of the
well-known double-differenced (DD) form. ��
Example A2 (Rising and setting satellites) Consider the
receiver-transmitter configuration in Example A1. We
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assume that both the receivers r = 1, 2 do not track transmit-
ters s = 1, 2 anymore, and that the connection of receiver
r = 2 to transmitter s = 3 is lost. But now, the receiver
r = 1 has started tracking transmitter s = 3, i.e. now φ3

1, j
is available. Thanks to the data of the previous epochs, the
solutions of the estimable parameters z̃1 and δ̃3, j , say

ˆ̃z1 and
ˆ̃
δ3, j , are also assumed given. The task is to identify a new set
of integer-estimable functions of the ambiguities using the
integer-sweeping algorithm. From the first and last expres-
sions of (116), together with E(φ3

1, j ) = z31, j − (δ̄3, j − δ̄1, j ),
follows that

E

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎣

ˆ̃
δ3, jˆ̃z1
φ3
1, j

⎤
⎥⎦

︸ ︷︷ ︸
y

⎞
⎟⎟⎟⎟⎟⎟⎠

=
⎡
⎣−1 0 +1 0 −1 0

+1 −1 −1 +1 0 0
0 0 0 0 0 +1

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z11, j
z21, j
z12, j
z22, j
z32, j
z31, j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
z

+
⎡
⎣+1

0
−1

⎤
⎦

︸ ︷︷ ︸
B

(δ̄3, j − δ̄1, j )︸ ︷︷ ︸
b

(117)

In contrast to the mixed-integer model (114), the A-matrix
of the above model does not have a regular inverse. Thus,
the form M = BT A−T cannot be used for this case. We
therefore make use of the first form M = B⊥T A, with

B⊥T =
[
0 1 0
1 0 1

]
⇒ M= B⊥TA =

[+1 −1 −1 +1 0 0
−1 0 +1 0 −1 +1

]

Inserting M as input, the algorithm returns the sought-for
admissible transformations Z and Z̃ satisfying

[
+1 −1 −1 +1 0 0

−1 0 +1 0 −1 +1

]

︸ ︷︷ ︸
M

⎡
⎢⎢⎢⎢⎢⎢⎣

+1 +1 +1 0 −1 +1
0 +1 0 +1 −1 +1
0 0 +1 0 0 0
0 0 0 +1 0 0
0 0 0 0 +1 0
0 0 0 0 0 +1

⎤
⎥⎥⎥⎥⎥⎥⎦

Z1 Z2

=
[ +1 0 0 0 0 0

−1 −1 0 0 0 0

]

MZ1

with
⎡
⎢⎢⎢⎢⎢⎢⎣

+1 0 0 0 0 0
−1 +1 0 0 0 0
−1 0 +1 0 0 0
+1 −1 0 +1 0 0
0 +1 0 0 +1 0
0 −1 0 0 0 +1

⎤
⎥⎥⎥⎥⎥⎥⎦

Z̃1 Z̃2

Substitution into (8) gives the full-rank version of (117) as

E

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎣

ˆ̃
δ3, jˆ̃z1
φ3
1, j

⎤
⎥⎦

︸ ︷︷ ︸
y

⎞
⎟⎟⎟⎟⎟⎟⎠

=
⎡
⎣−1 −1

+1 0
0 0

⎤
⎦

︸ ︷︷ ︸
AZ1

z̃1 +
⎡
⎣+1

0
−1

⎤
⎦

︸ ︷︷ ︸
B

b̃ (118)

The interpretation of the estimable parameters follows from
(5) as

z̃1 =
[
z22, j − z21, j − z12, j + z11, j
z21, j − z22, j + z32, j − z31, j

]
,

b̃ = (δ̄3, j − δ̄1, j )︸ ︷︷ ︸
b

−z31, j︸ ︷︷ ︸
B+AZ2 z̃2

(119)

As with the previous example, the integer-estimable ambi-
guities are of double-differenced form. ��
Example A3 (Inter-frequency ambiguities): So far we have
worked per frequency band. Now consider the case where
single- or multi-system carrier phase data on multiple fre-
quencies j = 1, . . . , f , are used. The system of ambiguity
equations (19) is then extended as f decoupled sets of equa-
tions a, j = z, j + P, j d, j ( j = 1, . . . , f ), meaning that
integer-sweeping operations can be separately applied to
each set per frequency to deliver the sought-for integer-
estimable parametrization. However, would an assumption
be placed on the phase-bias vectors d, j , integer-sweeping
operations have to be applied to the whole system.

For instance, with the receiver- and satellite-specific par-
titioning d, j = [dT

R, j , d
T
S, j ]T , one might assume that the

widelane receiver phase biases dR, j = dR, j −dR,1 ( j �= 1) are
absent or a-priori calibrated. Upon this assumption and with
P, j = [PR, j , PS, j ], the corresponding system of ambiguity
equations takes the following form

⎡
⎢⎣
a,1
...

a, f

⎤
⎥⎦

︸ ︷︷ ︸
a

=
⎡
⎢⎣
z,1
...

z, f

⎤
⎥⎦

︸ ︷︷ ︸
z

+
⎡
⎢⎣

PR,1 PS,1
...

. . .

PR, f PS, f

⎤
⎥⎦

︸ ︷︷ ︸
P

⎡
⎢⎢⎢⎣
dR,1

dS,1
...

dS, f

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
d

(120)

The decrease in the number of unknownphase biases, i.e. dR, j

( j �= 1), leads to extra integer-estimable ambiguities (Khoda-
bandeh andTeunissen 2019). Togain somenumerical insight,
consider a pair of receivers tracking dual-frequency L1/L2
CDMA signals of a pair of satellites. The L1 and L2 fre-
quencies are related as f, j = r, j f0 ( j = 1, 2), where

123



PPP–RTK theory for varying transmitter frequencies… Page 23 of 24 84

f0 = 20.46MHz, r,1 = 77 and r,2 = 60. Thus, the sys-
tem of equations (120) is specified as

PS,1 = PS,2 =

⎡
⎢⎢⎣

−1 0
0 −1

−1 0
0 −1

⎤
⎥⎥⎦ , PR, j = r, j

⎡
⎢⎢⎣
0
0
1
1

⎤
⎥⎥⎦ , j = 1, 2

(121)

With M = PT as input, the integer-sweeping algorithm
gives

PT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 +1 0
0 0 +1 0 0 −60 −1 0

−7 −1 0 0 0 0 −1 0
0 +1 0 0 0 +60 +1 0
0 0 0 +1 0 +77 0 +1
0 0 0 0 +1 0 0 −1

+9 0 0 0 0 −77 0 −1
0 0 0 0 0 0 0 +1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Z̃2 Z̃1

=

⎡
⎢⎢⎢⎢⎣

+1 0 0 0 0 0 0 0
+7 +1 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0

−9 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0

⎤
⎥⎥⎥⎥⎦

L̃

(122)

Accordingly, the integer-estimable functions of the ambigu-
ities follow from z̃1 = Z̃ T

1 z as

z̃1 =
⎡
⎣ 60z212,1 − 77z112,2

z1212,1
z1212,2

⎤
⎦ (123)

While the last two entries of (123) are the well-known DD
ambiguities z1212, j ( j = 1, 2), the assumption dR,2 = dR,1

results in the extra integer-estimable ambiguity (60z212,1 −
77z112,2) that is of an inter-frequency type. ��
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