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Abstract
Themeasurement noise of a terrestrial laser scanner (TLS) is correlated. Neglecting those correlations affects the dispersion of
the parameters when the TLS point clouds are mathematically modelled: statistical tests for the detection of outliers or defor-
mation become misleading. The account for correlations is, thus, mandatory to avoid unfavourable decisions. Unfortunately,
fully populated variance covariance matrices (VCM) are often associated with computational burden. To face that challenge,
one answer is to rescale a diagonal VCM with a simple und physically justifiable variance inflation factor (VIF). Originally
developed for a short-range correlation model, we extend the VIF to account for long-range dependence coming from, for
example, atmospheric turbulent effects. The validation of the VIF is performed for the congruency test for deformation with
Monte Carlo simulations. Our real application uses data from a bridge under load.

Keywords Terrestrial laser scanner · Long-range dependence · Correlations · Variance inflation factor · Mahalanobis
distance · Congruency test · Effective sample size

1 Introduction

The noise of geodetic sensors exhibits temporal correlations:
the value recorded at a given time depends on its tempo-
ral neighbours. The causes are multiple, from the influence
of the medium travelled, to cables and electronic compo-
nents (Hooge 1994; Buchanan 1996; Wheelon 2001), to cite
but a few. The correlations can be (i) short-term, decreas-
ing exponentially to zero from the origin with increasing
time, or (ii) long-term, decreasing rapidly from the origin
but staying close to a constant value after a few time lags,
and for a long time (Karagiannis et al. 2004). Various models
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have been proposed to describe temporal correlations;we cite
the autoregressive (AR) process and all its variations (Box
et al. 2016), the generalMatérn function or rational quadratic
covariance functions (Rasmussen and Williams 2006; Lilly
et al. 2017), exemplarily.

Within a geodetic context, the description of the tempo-
rally correlated noise from the global navigation satellite
system (GNSS) or terrestrial laser scanner (TLS) observa-
tions has been the topic of various publications (Li et al. 2008;
Kermarrec and Schön 2014 for GNSS; Holst and Kuhlmann
2016; Jurek et al. 2017; Kermarrec et al. 2021b for TLS). The
growing data rate of those sensors is often linked to the idea
that the observations may have more “in common”, which is
often associatedwith an exponential decayof the autocorrela-
tion function (ACF) as the time lag increases. Unfortunately,
the description based on the empirical ACF has strong limi-
tations: the decrease of the correlation function at the origin
and the level of correlations remaining after a given time lag
have a strong impact on the inverse of the variance covari-
ance matrix (VCM), but are difficult to catch from empirical
fitting (Beran 1994; Stein 1999; Karagiannis et al. 2004). To
face that challenge, a modelization of the noise correlations
should be preferred, rather than an estimation of its ACF.
A model has the advantage that no iteration or a posteriori
computation is needed, unlike variance covariance estima-
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tion (Teunissen and Amiri-Simkooei 2008). It is physically
traceable, which is expected to increase acceptance and use.
In this contribution, we will restrict ourselves to the noise
correlations of a TLS. We will use the results of Kermarrec
et al. (2021b) andKermarrec andHartmann (2021), who pro-
posed a description of the temporal long-range dependence
of the range and angles noises from a TLS. Unlike Schmitz
et al. (2021), we will model the correlations as being tem-
poral. This assumption will be discussed in Appendix 2, as
well as the concept of atmospheric correlations in Appendix
3. The description of the variance of the noise is taken from
Wujanz et al. (2017) for a phase TLS (see also Schmitz et al.
2019, and the references within; Kermarrec et al. 2018 for a
simplification).

In statistical hypothesis tests, an incorrect stochastic
model arises, e.g., when correlations are neglected. This
simplification leads to a sensitive, distorted and not true
to expectations quantity in its quality as quadratic form
(Koch 2000; Jäger et al. 2005, p. 195; Teunissen 2000).
Koch (2000) proposed using an additional covariance matrix
through pseudo-observations to circumvent the problem of
unrealistic stochastic description, in addition to applying a
Bayes statistical test procedure. While the parameters esti-
mated do not change with this method, the sensitivity of the
test could be controlled by the additional covariance matrix.
Unfortunately, Koch (2000) left the way open to determine
this covariance matrix. Our proposal, called the variance
inflation factor or VIF, aims to fill this gap and propose an
intuitive, yet, easy-to-understand way to account indirectly
for correlations. Correlations are known to act to decrease the
number of available observations. In the literature, this can be
found under various terminologies like “effective number of
independent data”, “effective degree of freedom” or “effec-
tive sample size” (Taubenheim 1974; Thiébaux and Zwiers
1984; Kirkup and Frenkel 2006; Holst and Kuhlmann 2016).
Alternatively, the term “autocorrelation time”, abbreviated as
AT, is employed (Thompson 2010). One of the most popular
method to evaluate the AT is the initial sequence estimator, as
derived in Straatsma et al. (1986). This formulationwas used,
for example, inWang (2022) to derive the confidence interval
of GNSS-derived site velocities, for GPS positioning (Jans-
son and Persson 2013), or in meteorology and climatology
(Dickinson 1985;Kamenkovich et al. 2011), see alsoVallejos
and Acosta (2021) for an application to soil contamination
formultivariate data. TheAT formula links the variance of the
mean with the variance itself and depends on the empirical
ACF. Another possibility to estimate the AT is to model the
time series as an autoregressive process (AR) of a given order
p following Wei (2006). All these methods involve the com-
putation of the empirical ACF. Here we introduce the VIF,
which is based on the inverse of the covariance matrix of the
AR process (Wise 1955), to avoid the estimation of the ACF.
Weapply theVIF for the congruency test (Mahalanobis 1936;

Pelzer 1971; Kargoll 2012; Manly 2005), and we place our-
selves within the framework of deformation analysis without
lack of generality regarding other likelihood ratio (LR) test
statistics, such as an outlier test.

Our main intentions can be summarized as follows:

• Point out the impact of correlations on the congruency test
in deformation analysis by providing an intuitive under-
standing of how correlations act,

• Propose a strategy to account for correlations based on an
inflation factor and compare with more usual strategies to
estimate the AT. We introduce the VIF of high order to
account for long-range dependence and extend the previ-
ous derivation of Kermarrec and Schön (2016),

• Show how the results from simulations can be transferred
to real cases for testing of deformation.

We make use of simulated point clouds from a plane, and
consider a rigid deformation of the object as, for example, a
variation of the range between two epochs. The real observa-
tions are taken from a bridge under load (Schacht et al. 2017).

In the first part of this contribution,wewill briefly describe
the models for temporal correlations of the TLS range and
angle noises. We will introduce the AT and its different for-
mulations, and derive the VIF. A second section will be
devoted toMonteCarlo (MC) simulations for the congruency
test for a plane adjustment. The last part of this article presents
the results for testing of deformation using a real data set. We
conclude this contribution with some recommendations.

2 Mathematical background

The AT or effective sample size is as a way to account for
correlations by reweighting the variance of the sample mean.
In this section, we introduce the VIF and propose a model
for the correlated measurement noise of a TLS.

2.1 The autocorrelation time AT

The autocorrelation time τ measures the convergence rate of
the sample mean of a stationary Markov chain with bounded
variance and is defined as the value so that

√
n

τ

Xn − μ

σ
→ N(0, 1). (1)

where Xn is the sample mean of (X1, X2, ..., Xn) with
{Xi }ni�1 the n values of a scalar function of the states of
a Markov chain with E({Xi }) � μ and var({Xi }) � σ 2,
the mean and the variance, respectively. The variance of the
sample mean is called σ 2

X
� σ 2

/
n. The AT is sometimes

introduced as an “effective sample size”, which is similar as
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searching a corrected variance of the mean (Thiébaux and
Zwiers 1984; Zieba 2010).

In the following, we present two ways of estimating the
AT and introduce an alternative based on the inverse of the
VCM of an AR process.

2.1.1 The initial sequence estimator

Following early publications from Bartels (1935) or
Straatsma et al. (1986), see also chapter 2.1.5 of Box et al.
(2016), the AT τAT can be expressed as:

τAT � 1 + 2
∞∑
k�1

ρk, (2)

with ρk being the ACF of the series at lag k. Equation (2)
comes from expressing the variance of the sample mean
as the sum of all elements of the covariance matrix and
is based on the infinite sum of all elements of the auto-
correlation matrix of the process under consideration. Here
the main challenge is to approximate empirically the ACF.
This can be done, for example, by expressing ρk as ρ̂k �
1

nσ̂ 2

∑n−k
i�1

(
Xi − Xn

)(
Xi+k − Xn

)
for small lags, with σ̂ 2

the (estimated) sample variance of {Xi }ni�1 and .̂ stating
for “estimated” quantities. Here the corresponding τAT is
called τ̂AT as it is estimated from ρ̂k . Unfortunately, the par-
tial sum of ρ̂k does not have a variance that goes to zero
as n grows to infinity. To overcome that challenge, Geyer
(1992) proposed to truncate the sum when the sum of adja-
cent sample ACF values is negative, see also Thiébaux and
Zwiers (1984). Alternative forms of (2) are called the initial
monotone sequence estimator or the initial convex sequence
estimator and are described in Thompson (2010).

2.1.2 The AT and the autoregressive process

A second approach to estimate the AT is to model the time
series: the AR process as introduced in Box et al. (2016) is
a prominent example of modelling, see Kargoll et al. (2020)
and the references inside for applications in geodesy. In that
case, a value from a time series is regressed on previous
values from that same time series, i.e. we suppose a model
of order p such as:

(3)

Xt � μ+a1Xt−1+· · ·+apXt−p+ut with ut ∼ N
(
0, σ 2

u

)
.

Xt−p is the lag value of the process at t − p. The values
a1:p � [

a1, ..., ap
]
are called theARcoefficients; they can be

estimatedwith theYule–Walkermethod (Box et al. 2016, Ch.
2) or by minimizing the standard sum of squared forward-
prediction errors. We further call ρ̂1:p � [

ρ̂1, ..., ρ̂p
]
the

vector of estimated autocorrelations for the AR process.

Estimating the order of the process The order p of the pro-
cess can be chosen by an information criterion (IC), such
as the Akaike or the Bayesian IC, abbreviated as AIC and
BIC, respectively (Burnham and Anderson 2002; Montillet
and Bos 2020 for applications within a geodetic context). In
this contribution, we restrict ourselves to the AIC defined as

AIC � n ln
(
σ̂ 2

ε

)
+ 2p. (4)

We call σ̂ 2
ε the estimated variance of the model residu-

als. The first term of the AIC in (4) measures the difference
between the log-likelihood of the fitted model and the log-
likelihood of themodel under consideration. The second term
penalizes models with a high number of parameters to avoid
overfitting. Aminimumof theAIC is searched by varying the
order p, so that the best model provides both a high goodness
of fit and an optimum number of parameters.

The AIC does not penalize excessively models with many
parameters, as the BIC would do. This important property of
the AIC seems preferable for modelling long-range depen-
dence with the aim not to underestimate the number of
coefficients, and, per extension the VIF.

Estimating the AT for AR processes The approach to estimate
the AT for an AR process is related to its power spec-
trum (Thiébaux and Zwiers 1984). Here we start from the
approximation for the sample mean variance σ 2

X
defined

in (1) and given by σ 2
X

≈ 2π SXX (0)
/
n, with SXX (0)

the power spectral density (psd) function of the observed
time series at the origin. For an AR process, we follow
Wei (2006) and express the moment estimator of σ 2

u as
σ̂ 2
u � σ 2

(
1 − â1ρ̂1 − · · · − âpρ̂p

)
with ρ̂1:p estimated by

solving the Yule–Walker system of equations. Because the
process under consideration is modelled as being AR, we

have SXX (ω) � σ 2
u

2π
1

|1−a1e−iω−···−ape−iω|2 . Correspondingly,
the AT can be estimated here as

τ̂AT/AR � 1 − ρ̂T
1:pâ1:p(

1 − 1T1:pâ1:p
)2 . (5)

where .T denotes matrix transpose. The formula (5) is based
on empirical values and, thus, is an approximation.

2.2 TheVIF: starting from the inverse of the VCM

To avoid the computation of empirical ACF, we derive the
τVIF as an alternative form of (5) for the AT of anAR process.
This formulation relies on the close expression of the inverse
of the VCM of an AR of order p, seeWise (1955) or Shaman
(1973), and is not based on the variance of the sample mean
directly. As (5), the derivation starts from the spectral density
of the process.
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To that aim, we define the n × n auxiliary identity matrix
U as

U �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 ... 0
0 0 1 0 ... 0
0 0 0 1 ... 0
...

. . .
...

0 0 0 0 ... 1
0 0 0 0 ... 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The AR process (3) can be expressed in a matrix form as

(
I − a1U1 − · · · − apUp

)
X � u.

It follows from the definition of the autocovariance matrix
E

(
XXT) � � that

�−1 � 1

σ 2
u

(
I − a1UT1 − · · · − apUTp

) (
I − a1U1 − · · · − apUp

)
.

(6)

2.2.1 The VIF for an AR(1)

To illustrate how�−1 is filled, we take the example of an AR
process of order 1. In that case, the inverse will have a band
Toeplitz structure—except for the first and last row—(see
Rao and Toutenburg 1999), i.e.

�−1
AR(1) � 1

σ 2
(
1 − a21

)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −a1 0 ... 0 0

−a1 1 + a21 −a1
. . . 0 0

0 −a1 1 + a21
. . . 0 0

...
. . .

. . .
. . .

. . . 0

0 0 0
. . . 1 + a21 −a1

0 0 0 ... −a1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

The AT for an AR(1) process can be estimated from (7) as

τ̂VIF/AR(1) � (1+â1)
(1−â1)

. This is similar to summing the terms of

one line of the inverse VCM from the second one in (7), and
having taken the inverse to be homogeneous with a variance,

i.e. τ̂AR(1) �
((−2â1+1+â21

)
(
1−â21

)
)−1

.

We define the variance inflation factor for the AR(1)
process based on the inverse of the VCM as VIFAR(1) �
σ 2τ̂VIF/AR(1). Calling I the identity matrix, the simplified
form �AR(1)_equi � VIFAR(1) I leads to an identical VCM
of the least-squares (LS) estimates as the fully populated
�AR(1) (Luati andProietti 2009;Kermarrec andSchön 2016).
As aforementioned, this simplification can be considered as
a rescaling of the variance to account for correlations. Here

we follow Thiébaux and Zwiers (1984) and avoid using the
term “equivalent number of degrees of freedom” as proposed
in Livezey and Chen (1983): the degrees of freedom will not
change in case of correlations, only the effective number of
observations, or better said the effective sample size has to
be adapted.

2.2.2 The VIF for an AR(p)

Analogically to the AR(1) process, we extend the derivation
of the VIFAR(1) for an AR model of order p as follows:

VIFAR(p) � σ 2
1 − âT1:pâ1:p(
1 − 1T1:pâ1:p

)2 � σ 2τ̂VIF/AP(p). (8)

We illustrate how the VIFAR(p) can be computed by con-
sidering the AR(2) process with two coefficients a1, a2.
Using (6), the exact inverse of the VCM is given in its closed
form by

�−1
AR(2) � 1

σ 2
(
1 − a21 − a22

)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −a1 −a2 ... 0 0 0
−a1 1 + a21 −a1 − a2 ... 0 0 0

−a2 −a1 − a2 1 + a21 + a22
. . . 0 0 0

...
. . .

. . .
. . .

. . .
...

...

0 0 0
. . . 1 + a21 + a22 −a1 − a2 −a2

0 0 0 0 −a1 − a2 1 + a21 −a1
0 0 0 0 −a2 −a1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We define, similarly to the AR(1) process, VIFAR(2) �
σ 2

(
1−â21−â22

)
(1−â1−â2)

2 � σ 2τ̂VIF/AR(2).

There is a strong analogy between (5) and (7): ρ̂1:p is
replaced by the estimated AR coefficients â1:p. However, the
derivation of (7) is not based on the definition of the sample
mean but on the inverse of the VCM. It is not exactly an AT
per se: the strength of the VIFAR(p) is that it can be used in
an LS adjustment when �−1 is involved; it is a simplifica-
tion of the fully populated VCM of the estimated parameters
by a weighted identity matrix. There is no need to solve the
Yule–Walker equations to compute the autocorrelation coef-
ficients: an additional approximation is here avoided, but the
derivation is still based on the AR assumption.

Hereafter, we will skip the subscript AR(p) and explain
how the VIF can be used within the context of stochastic
modelling for TLS observations.

2.3 The stochastic model of TLSmeasurements

ATLS acquires a point cloud by emitting laser pulses toward
points on the surface scanned (Vosselman and Maas 2010).
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Themeasurements recorded are a slant range and two associ-
ated polar angles in the horizontal and vertical planes passing
through the centre of the instrument. The rangemeasurement
is a measure of time and can bemade either by pulse ranging,
phase difference or a mixed form combining both methods
(Rüeger 1996). In this contribution, we will focus only on the
measurements from a phase scanner. This choice does not
affect the generality of our results regarding, e.g., the atmo-
spheric correlations and the congruency test; the numerical
values of the VIF may have to be adapted accordingly, as
developed in Sect. 2.3.3 and Appendix 3.

2.3.1 Temporal correlations and the fGn

Due to the high scanning rate of the instrument, we presume
that the correlated noise of the TLS polar observations has a
long-range dependence and corresponds to a stationary frac-
tional Gaussian noise (fGn, see, e.g. Molz et al. 1997 for
an example). This noise has the particularity that the degree
of dependence between the observations will stay strong as
the time lag τ increases. The corresponding temporal ACF
CH (τ ) is said to be fat-tailed and is given by

CH (τ ) � 1

2

(
|τ + 1|2H − 2|τ |2H + |τ − 1|2H

)
, (9)

where H is the so-called Hurst exponent (Mandelbrot and
Van Ness 1968). The fGn has a power law spectrum, i.e.
SfGn( f ) ∝ 1

/
f β , with f , β being the frequency and the

power law of the process, respectively, and H � (β + 1)
/
2.

This model is used for various kinds of physical processes,
particularly atmospheric ones (Vyushin et al. 2009). Its use
is well-founded to model correlations of the range noise,
which are expected to depend on the random variation of the
refractivity index of the atmosphere, similar to GNSS phase
observations (Kermarrec and Schön 2020; Wheelon 2001).
In that case, H � 5

/
6, i.e. β � 2

/
3 (refer to Appendix 3

for more details). We mention that the flicker noise corre-
sponds to the limit as H → 1 (β � 1) and the white noise
(WN) to H � 1

/
2 (β � 0). A combination of fGn with

different Hurst parameters can approximate various physical
processes, i.e. the noise due to atmospheric effects and due
to electronic instruments (mostly flicker and WN).

2.3.2 Temporal correlations versus spatial correlations
for TLS measurements

In this contribution, we model the correlations of the TLS
as being temporal. This section aims to justify our choice.
The link with what is called “spatial” correlations is further
described in Appendix 2.

Range correlations The loosely called “raw” observations
of the TLS are time differences. Consecutively, we con-

sider the correlations as being temporal by placing ourselves
at the level of the sensor. These time differences are used
to compute the range and do not carry information about
the reflected surface from which the laser light comes
from. The fact that the object may have been black, white,
rough or smooth is mainly summarized in the intensity,
togetherwith deterministic information about the atmosphere
(Wujanz et al. 2017). However, the random variations of
the atmospheric refractivity index are not accounted for in
the intensity. Following Wheelon (2001, Ch. 5 and 6), such
variations correlate the measurements. These atmospheric
correlations can be modelled by a fGn with H ≈ 0.8 in (8),
see Wheelon (2001, Ch. 6, Eq. 6.84). Here we make use of
the plane wave assumption.

Kermarrec et al. (2021b) show empirically that the cor-
relation structure of range noise for a phase TLS can be set
to H ≈ 0.7 in a first approximation. This corresponds to
a combination of WN and atmospheric noise. The sum of
stochastic processesmodelled as one stochastic process leads
to a smaller value of H than expected for pure atmospheric
correlations. Making a parallel with AR processes, this is
similar to saying that an AR(p) to which a WN is added
corresponds to an AR(q) with q < p (see Sect. 2.3.3. and
Granger and Morris 1976). In this contribution, we will esti-
mate both the ratio ofWNand fGn and H in a first calibration
step by maximum likelihood. From empirical investigations,
we found a ratio of variance less than 0.1 for the flicker noise
with respect to the sum of WN and atmospheric noise. Cor-
respondingly, we propose to neglect this noise for the sake of
simplification. The reader is referred to Appendix 3 for more
details on the maximum likelihood estimation.

Angle correlations Encoders measure the rotational position
of the optical mirrors and provide output that corresponds to
the displacement by counting the number of rotations of the
motor axis. Based on physical considerations, the correla-
tion structure of angle measurements can be explained as a
combination of flicker noise for approximately 60% andWN
for 40% (Kermarrec and Hartmann 2021). The variance of
the cross-correlations between vertical and horizontal angles
could be shown to be up to ten times smaller than that for sim-
ple correlations (one angle with itself). We allow ourselves
to neglect these cross-correlations in a first approximation.

2.3.3 Modelling with an AR process: the VIF

In this contribution, we simplify the fGn to an AR process to
compute the VIF for the noise of TLS measurements (range
and angles). This simplification is justified in Appendix 1.

We start by fitting a small plane to the object and esti-
mate the parameters of the physical model, by analysing the
residuals of the approximation (Sect. 2.3.2 and Appendix 3
for more details). From the ratio WN/atmospheric noise, we
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Fig. 1 Flowchart summarizing the computation of the VIF from the
residuals of an LS adjustment

compute the VIF empirically by Monte Carlo (MC) simula-
tions. To that aim, 1 000 realizations of the estimated fGn are
generated with different random vectors. For each run, the
τ̂VIF is estimated following (10). Here, we set the order of an
AR process using the AIC. Finally, the mean value of τ̂VIF
over the 1000 samples is taken.

This MC-based method permits to start from a physical
modelization of the noise and allow to fix the VIF for the
whole experiment: there is no need to estimate the VIF each
time an approximation of the point cloud is made. We men-
tion that from (9), the VIF will depend on the variance of the
process, which we supposed to have been empirically deter-
mined by an intensity model (Kermarrec et al. 2018; Wujanz
et al. 2017).

With the example of a Hurst exponent of H � 5
/
6 ≈ 0.8,

a combination of 70% fGn and 30% WN for the range and
60% flicker noise and 40% WN for the angles, we found in
mean τ̂VIF,r � 17 and τ̂VIF,φ � τ̂VIF,λ � 48 for a sample size
of 1 000. We note that τ̂VIF,range < τ̂VIF,angle: this is logical
as the correlation structure of the angle corresponds to the
one of a flicker noise. This noise has a stronger long-range
dependence than the atmospheric one.

The VIF can be used to account for correlations each time
the inverse of the VCM of some estimated parameters is
involved. It replaces the fully populated inverse of the VCM
of the measurement noise. In case of small sample size, the
VIF may have to be recomputed. Indeed, the order of the AR
process has to be restricted to ensure an accurate computation
of its coefficients (Granger and Moris 1976). The procedure
adopted to estimate the VIF based on a physical model is
summarized in a flowchart in Fig. 1.

We point out the possibility to estimate the correlation
structure directly from the psd of the residuals of aLS approx-
imation. This method was proposed in Kermarrec et al.
(2021a) with an application to Kalman filtering. Here we
prefer a calibration step from a plane adjustment to estimate
the correlation structure as we assume this latter to be con-
stant for the experiment. For point clouds with large range
differences, or for measurements lasting several hours, varia-
tions of atmospheric conditions may occur and necessitate to

reiterate the calibration procedure. Fortunately, and from our
personal experience, no strong differences in the correlation
parameters should be expected. Such investigations are let to
a next contribution.

We further mention that the AT as proposed in (2) and
(5) involves the empirical computation of the autocorrelation
coefficients and need to be computed for each approximation.
Here we circumvent this challenge as both ρ̂1:p and the â1:p
may be inaccurate for small samples, resulting in an addi-
tional degree of uncertainty for τ̂AT and τ̂AT/AR.

2.4 The temporal VCM for TLSmeasurements: angle
and range

The information about the temporal correlation structure of
the noise of the TLS measurements can be summarized in a
symmetric and positive semidefinite matrix called the VCM:

• Its diagonal elements correspond to the variances of the
observations. Whereas the angle variances are often taken
as constant, a popular empirical model for the TLS range
variance is based on the point-wise intensity (Wujanz et al.
2017, 2018). Heteroscedasticity is accounted for since a
different variance is associated with each point.

• The off-diagonal elements of the VCM describe the corre-
lations between the observations and are set up using the
proposed model as a combination of fGn and WN. The
VCM is, thus, not obligatory Toeplitz.

The VCM for the two polar angles �φ , �λ and the range
�r is called �ll. It is built by sorting the measurements tem-
porally as follows:

�ll �
⎡
⎣�φ 0 0

0 �λ 0
0 0 �r

⎤
⎦ � σ 2

0Qll, (10)

with Qll being the cofactor matrix and σ 2
0 the variance of

unit weight. Figure 2 (left) shows a visualization of �φ by
setting the standard deviation σφ of the angle noise to 0.005°.
Figure 2 (right) is the corresponding ACF, modelled as a mix
of flicker noise and WN. It illustrates the strong long-range
dependence of the measurements simulated: the correlation
decays quickly at the origin but stays at a low level for a long
time.

This matrix can be simplified:

(i) By neglecting the correlations between the angle noise,
so that both �φ ,�λ become diagonal matrices. We call
the corresponding VCM �ll_noCangle,

(ii) By considering the noise as non-correlated. In that case,
�ll is a diagonal matrix called �ll_diag. It is the usual
WN assumption made when correlations are said to
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Fig. 2 Visualization of �φ in
rad.2 (left) together with the
corresponding ACF (right). The
700 simulated observations are
equally distant (one per unit of
time, here, s)

be “neglected”. Heteroscedasticity is still taken into
consideration.

(iii) By using the VIF for both angles and range, VIFφ �
σ 2

φ τ̂VIF,φ, VIFλ � σ 2
λ τ̂VIF,λ, VIFr � σ 2

r τ̂VIF,r . Here
τ̂VIF can be replaced by τ̂AT or τ̂AT/AR following the
derivation presented in Sect. 2. Heteroscedasticity can
be accounted for with a point-wise variance. The cor-
responding diagonal VCM is given by

�ll_VIF �
⎡
⎣VIFφ · I 0 0

0 VIFλ · I 0
0 0 VIFr · I

⎤
⎦. (11)

3 Simulations

In this section, we will demonstrate the advantages of the
VIF computed with τ̂VIF compared to the VIF with the τ̂AT
and τ̂AT/AR formulations. To that aim, we will make use of
simulated observations from a plane. Planes have a simple
geometry and are often used for calibration purpose (Wujanz
et al. 2017). We explain how neglecting correlations will
affect the results of the LR test and its distribution. Our aim
is not to perform a sensitivity analysis of the test statistics as,
for example, Neumann and Kutterer (2007).We further point
out that B-splines surface fitting could be used in a similar
manner (Kermarrec et al. 2020).

3.1 Plane fitting

The infinitively extended surface of a plane is defined by
a normal vector nT � (

nx ny nz
)
, with nTn � 1, and a

distance parameter d as follows: nTPi � d. Pi is an arbi-
trary Cartesian point lying on the plane (Bronshtein 2007,
p. 214f). Since n is a normalized vector, d represents the
shortest distance of the plane from the origin of the frame. In
order to estimate the plane parameters xT � (

nx ny nz d
)

with LS method, the TLS polar observations are converted
into Cartesian coordinates by

Pi �
⎛
⎝ x

y
z

⎞
⎠

i

�
⎛
⎝ r sin φ cos λ

r sin φ sin λ

r cosφ

⎞
⎠

i

, i � 1...n (12)

where n refers to the number of points observed. Following
Lösler (2020), numerically stable equation systems are more
likely formodels usingCartesian coordinates instead of polar
observations.

An LS estimation allows the derivation of the parame-
ters of the plane given a set of points not lying on a straight
line. Here the objective function �(v) � vT�−1

ll_carv is mini-
mized, where v are the zero-mean observational residuals of
the adjustment considered as being normally distributed. We
call �ll_car the transformed VCM �ll of the polar measure-
ments of size 3n × 3n after the propagation of uncertainty,
i.e. �ll_car � F�llF

T, with F the matrix of the linearized
transformation between polar and Cartesian coordinates. �ll
can be one of the previously introduced VCM in Sect. 2.
The parameters of the plane and the observational residuals
are obtained by an errors-in-variables model. Regarding a
detailed derivation, the reader is referred to the contribution
by Neitzel (2010).

The a posteriori variance factor of the unit weight is
defined as σ̂ 2

0 � �(v)
/
n − 3 for a plane adjustment. It can

be tested against σ 2
0 using the global test (Teunissen 2000).

The reader should refer to Kermarrec and Schön (2016) for
an application of the VIF in the global test. In this contribu-
tion, we focus on the congruency test, which is based on the
Mahalanobis distance.

3.2 Data generation

The TLS observations are generated as being from a plane
of size 1 m×1 m. The distance from the vertical plane to the
TLS is fixed at 5m. The simulated point cloud is aligned cen-
trically at the height of the tilting axis of theTLS. The number
of observations is 700 per plane, and the time between two
measurements is set at 0.08 ms to keep the simulations com-
putationally manageable. Decreasing the simulated scanning
rate does not affect the generality of the results due to the
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long-range dependence of the simulated correlation struc-
ture. The value of 0.001 for the ACF for the range noise is
reached within one scanning line so that increasing the num-
ber of observations will not affect our conclusions. We refer
to Appendix 3 for a discussion on “gluing” the residuals of
the LS fitting to estimate the noise parameters and the impact
of this method on the spectral content of v.

We add a noise vector to each TLS-simulated polar coor-
dinates consisting of one range and two angles. The standard
deviations for range and angles are chosen following theman-
ufacturer’s datasheet for a Zoller + Fröhlich Imager 5006:
1.5 mm for the range and 0.005° for the two angles. The
correlation structure is chosen following the derivation of
Sect. 2.

We generate noise vectors rc � LTrw corresponding to
the fully populated VCM �ll using a Cholesky decompo-
sition (Koch 2017). We set rw ∼ N(0, 1), and decompose
�ll � LLT with L being a real lower triangular matrix with
positive diagonal entries. The noise vectors are generated
within an MC simulation, so that the underlying random
vectors are different at each run. We recall that four main
cases of VCMwill be considered in the LS adjustment of the
simulated observations:

1. The correct fully populated VCM �ll: we will refer to
this case as the “reference” in the following,

2. The fully populated VCM built by neglecting the corre-
lations between angle measurements called �ll_noCangle,

3. A diagonal VCM accounting for heteroscedasticity with
all correlations disregarded and named �ll_diag,

4. A diagonal VCM �ll_VIF for which range and angles
correlations are accounted for by means of the VIF. We
have four subcases to compute �ll_VIF:

(i) Using (2): based on the AR empirical ACF: τ̂AT.
(ii) Using (5): based on the AR empirical ACF using

an AR noise model: τ̂AT/AR.
(iii) Using (7): based on using the AR coefficients com-

puted individually for each run of the MC (thus,
residual-based): τ̂VIF.

(iv) Based on a mean value of (iii) for the τ̂VIF, as pro-
posed in Sect. 2.3.3.

With these configurations, we can investigate: (i) how a
simplification of the stochastic model by neglecting correla-
tions gradually acts on the LR test, as well as (ii) the impact
of four different formulations of the VIF.

3.3 Congruency test

In order to test for deformation between two epochs, we use
an LR test, called a test of the congruence, congruency test,
or Mahalanobis distance test (Mahalanobis 1936; Tagushi

et al. 2001, see also Caspary and Borutta 1987; Zaminpardaz
and Teunissen 2022). Before presenting the results of our
investigations, we need to clarify the term “deformation” to
avoid misunderstanding.

Note on deformation and hypothesis testing Deformations
are caused by physical changes of an object. The goal in
deformation analysis is to detect these changes through
measurements. Unfortunately, measurements are always
affected by measurement uncertainties. In LS adjustment,
these uncertainties as well as correlations are specified in
the stochastic model. Whereas the noise corresponds to
the dispersion of the measurement, the signal relates to
the physical change of the object. Hence, the challenge in
deformation analysis is to separate between the noise and
the signal. Hypothesis testing is a common statistical tool to
decide between noise and signal, but requires a reliable and
realistic stochastic model. Disregarding correlations affects
the test statistic, and the probability density function of such
a test may not belong to known statistical test distributions.
Applying critical values taken from improper distributions
leads to wrong decisions, as shown by Lehmann and Lösler
(2018). This problem can be solved by improving critical
values or by deriving test statistics that follow known
statistical test distributions using a proper stochastic model.
According to Lehmann (2012), adapting critical values
requires a Monte Carlo integration: this leads to additional
numerical effort, which is usually undesirable. For that
reason, we focus on the test statistic and investigate the VIF
as an appropriate approximation of the stochastic model.

We call �̂ � x̂2 − x̂1 the vector corresponding to the
differences of the estimated plane parameters between two
epochs designed with the subscripts 1 and 2. The uniformly
most powerful invariant test for deformation under the null
hypothesis is based on the test statistic:

T �
�̂

T
Q+

�̂�̂
�̂

σ 2
0

(13)

with Q
�̂�̂

� Qx̂1 + Qx̂2 the dispersion cofactor matrices

of the estimated parameters. Q+
�̂�̂

is the pseudo-inverse of
Q

�̂�̂
.

We call p f � rank(Q
�̂�̂

), which is three for a plane
adjustment. We define the hypotheses for deformation anal-
ysis as follows:

H0 : � � 0 vs H1 : � �� 0 so that the null hypothesis
states that no deformation occurred.

Here we set the significance level of the LR test to
α � 0.05:Lehmann andLösler (2018) showed that the loss of
power of the test due to nonlinearity is small for that choice.
Under some regularity conditions, the test statistic T under
H0 follows a χ2

p f (chi2) distribution. Here the normality of
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the estimated parameters is assumed, as well as the existence
of derivatives of the likelihood function with respect to the
parameters. Another key condition is that the region over
which the likelihood function is positive cannot depend on
unknown parameter values. It is questionable whether these
conditions taken from the Wilks’ theorem hold in case of
a misspecified stochastic model (Wilks 1938). In order to
check the discrepancy with these assumptions, we make use
of the Gamma distribution �. This 2-parameter distribution
�(a, b) with a the shape and b the scale corresponds to a
χ2
p f for the a � p f

/
2 and b � 2, i.e. �

(
p f

/
2, 2

) � χ2
p f .

By using this distribution, we can investigate how misspec-
ifications of the stochastic model affect the distribution of
T , i.e. if b �� 2 and/or a �� p f

/
2. We make use of a para-

metric distribution intentionally to ease the comparison with
the chi2. We follow hereby the empirical results of Ferencz
et al. (2005) regarding the distribution family of similarity
distances, see also Burghouts et al. (2008).

The null hypothesis is accepted if T < kχ2

1−α , where k
χ2

1−α

is the critical value of the chi2 distribution.

3.4 Simulating rigid deformations

We simulate a true deformation by varying the distance to the
scanner from 5.000 m (reference configuration) to 5.003 m.
This corresponds to a shift of the plane along the target axis
without tilting. Here we consider the simple case of a rigid
body motion: only the distance to the centre of the TLS is
changed. The test statistic (12) may not be the most optimal
in that particular case, as only one parameter is changed. We
tested for the distance only for the sake of completeness.
Fortunately, the conclusions presented in the next section
were not changed.

For each deformation case, we compute the mean of the
test statistic T , as defined in (12), over the 1 000 independent

runs. In the following, we investigate the extent to which the
VIF is a way to face the challenge of unrealistic test statistics,
by using physical information about the correlation structure,
as developed in Sect. 2.

3.5 Results

3.5.1 No deformation

In this section, no deformation was simulated with the aim
of validating the statistical properties of the congruency test
with regard to the stochastic model. The results are presented
in Table 1. We call “reference”, the values obtained with the
correct stochasticmodel�ll (first column inTable 1).Wepro-
pose to guide the discussion along two axes: (i) the impact
of the stochastic model and (ii) the four different computa-
tions of the VIF. We point out that the Gamma distribution
was identified as the best or the second-best parametric dis-
tribution with IC. Within the MC simulation, we computed
quantiles of the distribution numerically with the given sig-
nificance level: we found values close to the one from the
parametric distributionGamma. The results are not presented
for the sake of shortness.

Impact of the stochastic model

• Neglecting the correlations between angle measurements.
Table 1 highlights the nearly equivalence between the
results given with the true VCM �ll used to generate the
correlated noise for the range and the two angles, and
�ll_noCangle, for which only correlations between range
measurements were considered as a simplification. The
mean of T and the parameters of the Gamma distribu-
tion are similar. To further visualize the near equivalence
between the two stochastic models, we have plotted the

Table 1 Comparison of the test
statistics results using different
stochastic models and different
computation methods of the VIF

�ll �ll_noCangle �ll_VIF

(i–iv)
�ll_diag

T (mean) 3.12 3.15 i: 6.34
ii: 5.64
iii: 2.28
iv: 2.58

28.95

Gamma distribution �[a, b] [1.48,2.11] [1.48,2.16] i: [1.01, 5.93]
ii: [1.61, 4.12]
iii: [1.58, 2.24]
iv: [0.91, 2.83]

[0.88, 32.55]

k�
1−α, α � 0.05

(χ2
3 � 7.81)

8.16 8.31 i: 18.44
ii: 16.87
iii: 9.06
iv: 7.97

90.43

The mean of T , the parameters of the Gamma distribution (shape and scale) as well as the correspond-
ing critical values are given for each case under consideration. We recall that a Gamma distribution with
�

(
p f

/
2,2

)
corresponds to a χ2

p f
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Fig. 3 Eigenvalues decomposition of the dispersion matrix for the four
stochastic models under consideration (the VIF corresponds to iv)

three eigenvalues of Q
�̂�̂

, which is the dispersion matrix
involved in the computation of T . Figure 3 shows that the
lines (blue and red, corresponding to the two stochastic
models under consideration) are confounded. We link this
finding with the 10 times smaller standard deviation of the
angle measurements with respect to the range.

• Neglecting all correlations.When�ll_diag is used (Table 1,
last column), neither T nor the parameters of the Gamma
distribution is corresponding to what we would expect.
T is unrealistic and too high by up to a factor 10 with
respect to the reference. The shape of the Gamma dis-
tribution is 1, which does not correspond to the correct
value (a � p f

/
2 � 1.5, b � 2), which was found with

the reference model �ll. Thus, there is a strong difference
when correlations are neglected and heteroscedasticity is
accounted for only: the χ2

p f is not the correct distribution
when correlations exist and an uncorrected diagonal VCM
is assumed. We further point out that this example is inde-
pendent of the fitted object: the stochastic model has a low
impact on the parameters estimated by LS as long as the
number of generated observations is large. The difference
found is linked with the structure of the dispersion matrix.
Figure 3 shows that all three eigenvalues of �ll_diag are
much smaller than for the reference matrix. Correspond-
ingly, a higher value of T is found when the inverse is
taken.

• Using the VIF to account for correlations. Even if there are
discrepancies between the four methods under considera-
tion to compute the VIF, the mean values of T are closer
to the expected one than with �ll_diag. The mean of T for
(iv) corresponds to the one obtained with the correct VCM
and is similar to the reference value compared to (i), (ii)
and (iii). Correspondingly, the correct critical value corre-

sponding to the χ2
p f can be used with �ll_VIF with a high

trustworthiness. The effect of fully populated VCM com-
pared with a diagonal VCM is seen in the parameters of
the Gamma distribution: they are not corresponding to the
correct p f , i.e. the shape a near 1 is common to all diago-
nal VCM, including �ll_diag, but the critical value is close
to the correct one for iv only.

• Impact of the VIF computations. We found that the mean
of T computed using �ll_VIF with methods (iii) and (iv) is
the closest to the reference value. We recall that method
(iv) uses the approximation of the VIF. Method (iii) is our
proposal for computation the weighted variance for which
the VIF is estimated by fitting the residuals with an AR
process for each MC run independently.

Our simulations could validate the use of the VIF with
our proposal to estimate τ̂VIF based on physical considera-
tion. This latter gives test statistics and critical values closer
to the one obtained with the reference VCM, compared to
the proposals (ii) and (i), which make use of the empirical
ACF. Correspondingly, it is plausible to use the VIF in the
congruency test to replace the correct fully populated VCM
of the noise. This conclusion was shown to vary little with
the number of generated observations, provided that it was
higher than 500.

3.5.2 Deformation

When the distance changes from 5.000m to 5.003m, the null
hypothesis H0 is rejected from a deformation of magnitude
between 1.0 mm and 1.5 mm for the three models (Fig. 4).
We note that this value is slightly higher (1.5 mm) when cor-
relations are considered, w.r.t. the one obtained with �ll_diag
and �ll_VIF. This result is more than acceptable considering
the advantages of not having to perform matrix inversion of
fully populated VCM.

If we disregard correlations and use the �ll_diag with the

critical value derived from the chi2 (χ2
3 � 7.81, which is cor-

rect for �ll only), the null hypothesis is always rejected. To
our point of view, this is statistically incorrect as the critical
value should have been adapted following 3.5.1. (Table 1, last
column). Here the result of the statistical test can be consid-
ered as unrealistic. As aforementioned, a practitioner should
decide for itself if he wishes to detect statistically insignifi-
cant deformation, which may only be the consequence of the
sensor noise. Such a choicemay be problematic as a decision-
making chain will be started unnecessarily, see “Note on
deformation and hypothesis testing” for a discussion.

We note that the deformation magnitude is statistically
significant from a deformation magnitude approximately 1.5
times lower than the standard deviation of the range noise
(1.5 mm).
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Fig. 4 Test statistics T by varying the distance to the plane (y-axis in
log scale). Three VCMs are compared (�ll,�ll_diag,�ll_VIF). We plot
the critical values corresponding to the confidence level of 95% for the
Gamma/chi2 distribution given in Table 1

3.5.3 General conclusions

In the following, we summarize the main findings of the
simulations:

• The stochastic model can be simplified by neglecting the
correlations between angle measurements without affect-
ing the results of the congruency test.

• The diagonal model, which neglects entirely correlations,
should be avoided in case of correlated observations: the
test statistics T is unrealistic.

• The VIF provides a good alternative to using the fully pop-
ulated VCM. Our proposal is not based on the empirical
ACF but only on the computation of the AR coefficients.
The results for T and the associated critical value were in
good adequacy with the one found using the true model
and slightly better compared to using usual proposals for
computing the AT.

• The shape parameter of the Gamma distribution using the
stochastic model of reference was corresponding to half
the degree of freedom, as expected. Correspondingly, the
critical value of 7.81 canbe usedwithα � 0.05 tomake the
test decision for a plane estimation (3 degrees of freedom).

• In case of correlated measurements, a deformation 1.5
times lower than the standard deviation of the range noise
can be detected (H0 cannot be rejected with a significance
level of α � 0.05).

4 Real data analysis

In this section, we propose to apply the VIF with our
proposal to compute τ̂VIF, to the testing of deformation
using the congruency test with real TLS observations. The
data set corresponds to an artificially loaded bridge and
provides a framework for testing the deformation of small

magnitudes. In the first section, we will describe the data set
briefly. We will present results for small patches of the point
cloud adjusted as a plane.

4.1 Description of the experiment

The TLS data set chosen corresponds to a scanned historic
masonry arch bridge located over the river Aller near Verden
in Germany. During the experiment under consideration, the
bridge was artificially loaded to simulate deformation due
to a traffic jam. The increasing load steps are called E00
(reference), E11, E22, E33, E44 and E55 (see Paffenholz
and Stenz 2017; Schacht et al. 2017, for a more detailed
description of the experiment). Herewe aim to investigate the
impact of accounting for correlations of theTLSobservations
on the congruency test.

The 3D point cloud acquisition was carried out using a
Zoller + Fröhlich Imager 5006HTLS, in periods of a constant
load on the bridge. After registration, we selected the same
small patches of observations in three point clouds (E00,
E11 and E33) using the software CloudCompare. They con-
sist of approximately 700 for the smallest patch 2 and 2500
points (patch 1 and 3) located as shown in Fig. 5 (right).
The smooth shape of the bridge combined with the small
patches selected allowed us to perform an adjustment to a
plane following the methodology developed in Sect. 3. We
used the aforementioned correlation models and variances
to compute three VCM as described in Sect. 3: �ll, �ll_VIF

(method iv), and�ll_diag.Wemake use of the VIF values pro-
posed in Sect. 2 for both range and angles.We further neglect
cross-correlations between angles. The reader is referred to
Appendix 3 for a discussion on the correlation structure and
the way to estimate it empirically.We use the intensity model
proposed by Wujanz et al. (2017, 2018) and the simplifica-
tion of Kermarrec et al. (2018) justified by the small and
homogeneous surfaces chosen. This corresponds to a stan-
dard deviation of approximately 2 mm.

The global test could not reject the null hypothesis regard-
ing the functionalmodelwith a confidence level of 95%.Here
a compatibility test of the individual epoch is not mandatory
as we do not use a posteriori variance. The registration uncer-
tainty σxyz given by the software Scantra (2.0.1.20, technet
GmbH; Berlin) had a maximum of 0.4 mm for the area under
consideration. This value represents the positional accuracy
of a scan after registration and is computed bymeans of error
propagation. It is considered as a value under which no defor-
mation can be detected. We do not consider this information
as being stochastic in the test statistics.

4.2 Results

We compute the deformationmagnitude as the Euclidian dis-
tance between each LS approximation for the epochs of load
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Fig. 5 Left: case study bridge
under load. Right: we localize
the three patches under
consideration. Visualization in
CloudCompare of the point
cloud E00 from the bridge

load 

TLS

load 

Patch 3

Patch 2 

Patch 1

Table 2 Deformation magnitude in mm and test statistics for the four
VCM under consideration. The values were computed for three epochs
corresponding to increasing loads. E00 is called the reference epoch

E00-E11 �ll �ll_VIF �ll_diag

Deformation magnitude (mm)

Patch 1 0.3 0.3 0.4

Patch 2 0.4 0.3 0.2

Patch 3 2.3 2.2 2.2

Test statistics

Patch 1 0.80 1.04 16.86

Patch 2 4.12 4.71 43.45

Patch 3 40.84 40.01 404.48

E00-E33 �ll �ll_VIF �ll_diag

Deformation magnitude (mm)

Patch 1 3.0 3.3 3.3

Patch 2 0.9 0.8 0.8

Patch 3 6.8 6.3 6.3

Test statistics

Patch 1 40.61 40.87 458.18

Patch 2 16.42 16.82 162.08

Patch 3 401.02 400.50 4061.11

Critical value 7.81 (χ2
3 ) 7.81 (χ2

3 ) 90.43 (empirical)

under consideration. The results are presented in Table 2.We
do not start a discussion if deformation “really” occurred, see
Sect. 3.3. The output of the statistical test in (12) depends on
the sensor under consideration. Correspondingly, one may
conclude of the statistical significance of the deformation
for a laser tracker measurement but not for a TLS measure-
ments due to their respective noise property. We recall that
the focus of this contribution is to show that neglecting cor-
relations leads to unrealistic test statistics and to present the
VIF as a simple alternative.

We restrict ourselves to two representative epochs of load-
ing: the first and the third one: from epoch 4, the deformation
magnitude is strong enough so that the null hypothesis is
always rejected, independently of the stochastic model used.

The main findings are summarized as follows:

• Realistic results: The test statistics presented in Table 2
validate the results deduced from the simulations of Sect.
3. The VIF using a modelization with a high-order AR
process allows one to account indirectly for correlations
with a diagonal VCM. It gives comparable results regard-
ing the one given by a fully populated VCM in most cases.
We point out that the test statistics without accounting for
correlations are unrealistic. As stated previously, it is let
to the practitioner if he wants to be overoptimistic or not.

• We found in Sect. 3.5.2 that only deformation magni-
tude slightly larger than 1.5 times the range noise can
be considered as statistically significant with the approxi-
mated correlation structure chosen. Here the deformation
of 0.99mm for path 2 (E00-E33) gives a test statistic above
the critical value, exemplarily. This highlights the high
trustworthiness of the physical model and of the simpli-
fication with the VIF, which led to a similar conclusion.
If we consider patch 3 located close to the load, the H0

is clearly rejected for all models. We point out the need
to adapt the critical value for a diagonal model �ll_diag

to obtain a more realistic test decision: the critical value
from theχ2

3 is not reliable when correlations are neglected.
The critical value to choose cannot be derived analytically
from mathematical consideration, on the contrary to the
one obtained with the true (or close to the truth) VCM.

• Effective sample size: The �ll_VIF efficiently corrects the
effective number of observations available compared to
the diagonal VCM �ll_diag which does not account for
correlations.

• The VIF does not have to be computed for each run or sim-
ulated noise vector, provided that one has some knowledge
of the correlation structure (see Sect. 2 and Appendix 3 for
a proposal to estimate the parameters).We further point out
that the χ2

3 distribution can be used with �ll_VIF but we
insist that it cannot be used with �ll_diag.

We notice that the test statistics close to the critical value
will always have to be interpreted with care, as for E00-E11,
patch 2 using �ll_diag.
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5 Conclusion

A realistic knowledge of the stochastic properties of TLS
measurements includes both the description of the variance
and the correlation structure of the noise. Neglecting corre-
lations can lead to an unnecessary movement of the decision
chain as the critical values for the test decision are unrealistic.
Unfortunately, correlations are often neglected: they are mis-
understood as being synonymous with a high computational
burden.

In this contribution, we have addressed this challenge and
developed a new procedure to correct the effective sample
size for the congruency test when observations are corre-
lated. This factor has a similar effect as inflating the variance
to decrease the number of observations available and can
be used to simplify the fully populated VCM of the noise.
We compared our derivation with more usual formulation of
the effective sample size within the context of deformation
from a plane. We pointed out that our method allowed one
to account for correlations in a simple way using a diagonal
VCM. The mean of the test statistics was close to the correct
one, and allowed to use the correct critical value of the chi2
distribution with a higher trustworthiness than usual AT.

We based ourselves on a simplification of the correlation
structure using an AR process of a high order. This formula-
tion accounts for the long-range dependence of both the range
and angle measurements of TLS observations. We provided
first indications how to estimate atmospheric correlations and
have shown that the VIF could account for them using a
diagonal VCM, with a low computational burden. A correc-
tion of the effective sample size led to a more realistic and
trustworthy test decision compared to VCM accounting for
heteroscedasticity only. The inverses of dispersion matrices
of parameters are involved in many parametric test statistics,
such as the congruency test for deformation detailed in this
contribution. In a next step, we will extend the use of the VIF
to further testing procedures, such as outlier detection, and
ambiguity resolution for GNSS observations.
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Appendix 1

Link between AR processes and fGn

In this appendix, we wish to highlight the empirical relation-
ship between an AR process and a fGn. An AR process is
stationary and can approximate several types of noises; the
stationary fGn is one of those. This is justifiable by analysing
the decay of its ACF to zero. The similarity for a given order
p and a Hurst parameter H makes a correspondence with an
AR process plausible. This can also be seen from a spectral
perspective with the psd as shown in Fig. 6. Here, we have
simulated an atmospheric noise of length 5 000 following
Wheelon (2001), see (8) with H � 5

/
6 (β � 2

/
3). The

ratio of the variance WN to fGn was set to 30%, following

Fig. 6 psd of an AR(1) and fGn with H � 5
/
6 plus WN. The slope −

2/3 corresponds to the fGn with H � 5
/
6 and is given as an indication
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the results of Appendix 3. The spectral content is compared
with the one of an AR(1) for the sake of simplicity. Clearly,
there is a slight discrepancy at high frequencies between the
two spectra. Indeed, a fGn can only be approximated as a
sum of k AR processes of first order (Sørbye et al. 2019).
This sum is itself modellable as an autoregressive process
with moving average (ARMA) of order (k, k − 1) for the
AR and MA components, respectively. From Granger and
Morris (1976), we know that an ARMA of order (p, p) cor-
responds to an AR(p) process plus WN. The addition of a
WN component can (but may not) lead to a change of the
order of the corresponding AR process. Correspondingly, it
is plausible that a noise model expressed as a combination
of fGn plus WN as proposed in Sect. 2.3.2. can be approxi-
mated by an AR model of a given order, as Fig. 6 illustrates.
Following Luo et al. (2012), this order may be large as case
of long-range correlations, as for GPS phase observations
(Kermarrec and Schön 2014). We note that a fractional pro-
cess, such as the fractional autoregressive integrated moving
average, can asymptotically approximate a fGn (Kim and
Kim 2015). Unfortunately, the inverse of the VCM of the
process cannot be expressed in a simple way as for an AR
process.We, thus, prefer the simple and effective AR process
to approximate a fGn.

Appendix 2

Spatial versus temporal correlations

In this appendix, we provide some insights on the link
between spatial and temporal correlations. In Sect. 2, we
have justified the temporal assumption for the correlations
for TLS observations due to the propagation of the laser sig-
nal through the atmosphere considered as a randommedium.
Herewewish to explain the linkwith spatial correlations, fol-
lowing a modelization proposed by Schmitz et al. (2021). To
that aim, we propose to switch from a temporal to a spa-

tial perspective by sorting the residuals “spatially”, i.e. with
respect to the distance to a reference point. For the sake of
simplicity, the reference is taken to be the first measurement:
on a scanned plane this corresponds here to the first “point”
on the left bottom corner, exemplarily but this choice does not
affect our conclusion. Under spatially sorted, we follow the
principle of the variogram in Kriging (Stein 1999). Here we
won’t have a frequency power spectrum but a wavenumber
spectrum (Wheelon 2001, Ch. 1).

We start from a simulated plane, as in Sect. 3. We add
a temporal correlated noise corresponding to a fGn with
slope−2/3 (H � 5

/
6 equivalently) and investigate the spec-

tral content of the residuals. In Fig. 7, we plot the spectral
decomposition of the temporally sorted noise using the Lomb
periodogram (green line). The use of this periodogram is jus-
tified by the fact that the spatially sorted observationsmay not
be exactly equidistant. We further sort the residuals spatially,
i.e. per increasing distance. The residuals are still correlated,
as shown by the slope of the spatial psd (Fig. 7, blue line).
However, the correlation structure is clearly different as the
temporal one (green line).Wehave superimposed the slope of
the underlying noise to highlight the differences. In the spa-
tially sorted residuals, we lost the expected -2/3 slope, which
is still clearly visible in Fig. 7 (green line) for the tempo-
ral counterpart: when investigating spatially sorted residuals,
the fine correlation structure linked with atmospheric tur-
bulence disappeared to let place to a combination of WN
and flicker noise, most probably. The reason comes from the
sorting of the residuals; the “remixing” switches the power
spectral content of the noise and makes the determination
of the correlation structure coming from physical consid-
erations more challenging. We, thus, prefer to estimate the
correlation parameters in the temporal domain, which allows
a much closer investigation with respect to atmospheric or
electronic correlating effects. This does notmean that the spa-
tially sorted residuals are improper to analyse correlations.
For some scanners without time stamp, this may be even the

Fig. 7 Left: power spectral
density of the noise (yellow) and
the residuals (temporal in green
and spatial in blue). Right: the
sorted line-wise residuals
“glued” as a time series
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only possibility. The method as presented in Appendix 3 can
still be used to estimate the correlation parameters.

Appendix 3

Atmospheric correlations

In this appendix,wewish to highlight that the spectral decom-
position of the temporally sorted residuals from patch 1
is corresponding to the structure expected from physical
considerations. The other patches gave similar pattern but
contain a small number of observations for an accurate deter-
mination of the slope of the psd via maximum likelihood.We
conjecture that the correlation structure of the residuals cor-
responds to an atmospheric noise with a psd slope of -2/3, a
white and, eventually, a flicker noise.

We analyse the amount of the different noises using the
Hector software (Bos et al. 2013), which allows to fix a given
model and estimate its parameters by maximum likelihood.

We did not include a deterministic functional model as we
deal with the residuals of an LS approximation; they should
not contain any drift or sinusoidal pattern.

In Fig. 8 (left, top), we plot the spectrum corresponding
to the atmospheric noise, following the model proposed in
Wheelon (2001). The simulated observations are sorted tem-
porally. We assume that a time stamp for each measurement
is given and the observations are equidistant. The lomb peri-
odogram may be a wise choice in case of non-equidistance
(VanderPlas 2018), as mentioned in Appendix 2. We adopt
the principle of “gluing” the residuals of adjacent scanning
lines. This leads to a time series which elements are not
exactly temporally sorted, i.e. there is a time-jump between
each line (Fig. 8, left, bottom). Fortunately, the correlation
structure of the residuals is our focus and will not be affected
by this procedure because of the stationarity of the residuals.
This latter is given since we approximate observations that
lie on a plane with a plane adjustment from a Gauss–Helmert
model.

Fig. 8 Left (top): power spectral density from a simulated atmospheric
noise, planar wave approximation. Different ratios of WN were added
exemplarily. Right: psd of the glued temporally sorted residuals from

the approximation of patch 1 (blue) and residuals corresponding to one
scanning line (green). Bottom: the temporally sorted residuals glued
together

123



86 Page 16 of 18 G. Kermarrec et al.

This property can be seen in the slope of the psd, which
is linked with the expected Hurst exponent H � 5

/
6. In

Fig. 8 (right, top), we plotted both the spectral decomposi-
tion of the temporal residuals corresponding to a scanning
line and the whole residuals sorted temporally. Gluing the
residualsmay add low frequencies only in case an inadequate
functionalmodel is used, whichmay introduce periodic com-
ponents/drift in the line-wise residuals. These latter won’t
bias the estimation of the correlation parameters, which is a
slope and not specific frequencies.

We estimate the slope of the psd as well as the ratio ofWN
and power law noise by maximum likelihood as proposed in
Montillet and Bos (2020), see also Bos et al. (2013). We
found an estimate of the slope of -0.65, close to the -0.66
expected from the turbulence theory (H � 5

/
6). The ratio

of WN to atmospheric noise was 22/78. We could not find
evidence for an additional flicker noise.

In Fig. 8 (right, top), we highlight that the structure of the
temporal range correlations validates, indeed, the assumption
of atmospheric turbulence by means of a real case example.
We point out that specific investigation will be the aim of a
dedicated contribution. The link with spatial correlations is
developed in Appendix 2 for the sake of completeness.
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