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Abstract
With the advancements of satellite altimeter technology and data volume, the accuracy and spatial resolution of altimeter-
derived marine gravity fields have been steadily improved. Ideally, a best marine gravity field from multi-altimeter missions
is one that combines all data by optimally calibrating their relative weights. To this end, we use the minimum norm quadratic
unbiased estimator theory to calibrate error variances of geoid gradients (GGs) from the Cryosat-2 mission and the Jason-1/2
geodetic missions and then use a scaling factor to modify the global covariance functions into local covariance functions. The
calibrated error variances and the scaling factors are used in the least-squares collocation to estimate the gridded north and
east components of GGs, which are used to compute gravity anomaly and vertical gravity gradient (VGG) by the methods of
inverse Vening-Meinesz (IVM) and numerical differentiations. The assessment of the altimeter-derived gravity anomalies in
the northern part of the South China Sea using the shipborne gravity data shows an average gravity accuracy improvement of
9.5% by calibrated and scaled covariances of GGs compared to the initial variances. The method for VGG computations is
confirmed by examining the extinct ridges in the Gulf of Mexico.

Keywords Altimeter · Covariance function · Geoid gradient · Gravity anomaly · South China Sea · Variance components ·
Vertical gravity gradient

1 Introduction

Satellite altimetry hasmanyapplications in geodesy and earth
sciences. As the altimeter technology advances, the accu-
racies and spatial resolutions of sea surface height (SSH)
measurements improveover time. SSHs fromsatellite altime-
ters have been used to determine marine gravity anomalies
since the era of Seasat in the 1970s (Haxby 1987; Hwang
and Parsons 1995; Sandwell et al. 2014; Yu et al. 2021). Sev-
eral global grids of marine gravity are now freely available,
e.g., DTU17 (Andersen and Knudsen 2020) and Sandwell
V31.1 (Sandwell and Smith 1997), vastly advancing marine
geophysics and coastal gravity fields for geoid modeling.

In the 1990s, satellite altimetry underwent a substantial
advance in data density and accuracy, which motivated many
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researchers to develop improved methods for marine gravity
derivations. The data andmethod improvements have led to a
number of global marine gravity grids (Andersen and Knud-
sen 1996, 1998;Hwang et al. 1998, 2002;Hwang andParsons
1995, 1996; Sandwell and Smith 1997; Schwarz et al. 1990;
Wang 1999, 2001;Andersen 2013).When combining altime-
ter data from multiple missions for gravity determination,
proper weights for the individual mission data are important
for achieving an optimal result. For example, Sandwell and
Smith (1997) used a priori error estimates of the along-track
slopes for weighting the data from Geosat and ERS-1 geode-
ticmissions (GMs).Hwang et al. (1998, 2002) used empirical
variances for SSHs from themissions of Seasat, Geosat exact
repeat mission (Geosat/ERM), Geosat/GM, ERS-1/ERM,
ERS-1/GM, ERS-2, and TOPEX/POSEIDON data. Ander-
sen and Knudsen (1998) created global, gridded SSHs of
Geosat and ERS-1 GM data using the fast Fourier trans-
form (FFT) without specifically stating the standard errors
of the SSHs. The gravity recovery approach of Wang (2001)
was similar to that of Andersen and Knudsen (1998) but was
based on data from Geosat/ERM, Geosat/GM, ERS-1/ERM,
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ERS-1/GM, ERS-2, and TOPEX/POSEIDON without spe-
cific error estimates for the data.

Since 2010, new GM data from Cryosat-2, Jason-1/2, and
SARAL/AltiKa have been available and were incorporated
with the earlier altimeter data from Geosat and ERS-1 to
recover global and local marine gravity grids with higher
accuracies and resolutions than for previous grids. For exam-
ple, Zhang et al. (2017) determined gravity anomalies over
Southeastern China Seas from some of these recent altime-
ter datasets. Sandwell et al. (2019) derived global gravity
fields from all existing altimeter GM data. Zhu et al. (2020)
determined marine gravity over the South China Sea (SCS)
from multi-satellite GM/ERM altimeter data and estimated
the weights of geoid gradients (GGs) from the Ka-band
SARAL/AltiKa altimeter and other Ku-band missions. In
these sample studies, standard errors of the SSHs from an
altimeter mission are not specifically given and are not cal-
ibrated with each other for best relative weights. The use of
such uncalibrated weights may not lead to an optimal marine
gravity field. Thus, optimizing data weights for altimeter
observations from multiple missions can be an improvement
for amarine gravity derivationmethod, especiallywhen a sta-
tistical approach such as least-squares collocation (LSC) is
used to construct grids of north and east gradient components,
which can be used to determinemarine gravity anomalies and
vertical gravity gradients (VGGs).

The VGG is the vertical derivative of gravity anomaly,
and it can amplify short-wavelength information in the grav-
ity anomaly (Wessel and Lyons 1997). Both marine gravity
anomalies and VGGs can be used to estimate oceanic depths
(Smith and Sandwell 1994; Wang 2000; Hsiao et al. 2016),
but the VGG is more sensitive than gravity anomaly to shal-
low anomalous masses and geologic structures. As such, the
VGG is better suited to mapping relative fine-scale seafloor
tectonic structures (Marson and Klingele 1993; Li 2001;
Harper et al. 2021). The VGG has been used to detect the
tectonic signatures associated with continental margins in
the SCS (Hwang and Chang 2014) and the Gulf of Mex-
ico (Sandwell et al. 2014). There are several methods for
computing VGGs. For example, Rummel and Haagmans
(1990) determinedVGGs at crossover points from the second
derivatives of altimetric geoid heights by Laplace’s equa-
tion. Sandwell and Smith (1997) computed VGGs from the
horizontal derivatives of the east and north vertical deflec-
tions by numerical differentiations. Wang (2001) calculated
VGGs from gravity anomalies using the integral formula
given in Heiskanen and Moritz (1985). Bouman et al. (2011)
discussed possible systematic effects in the computation of
VGG from altimeter data. Again, like previous studies for
gravity derivation, these papers forVGGderivations used un-
calibrated altimeter data noises. Bouman (2012) presented
rigorous relationships between geoidal undulation, deflec-
tion of the vertical (DOV) and vertical gravity gradients.

In view of the potential benefit of improved altimeter data
weights for gravity and VGG recoveries, the first objective
of this paper is to use the minimum norm quadratic unbiased
estimator (MINQUE) (Rao 1971; Koch 2013) to calibrate
multi-satellite error variances. With ever-increasing altime-
ter data densities and redundancies for parameter estimation
(see Sect. 3), the use of a method like MINQUE for altime-
ter noise calibration becomes possible. The second objective
is to use a simplified method for scaling the global covari-
ance functions of GG for a best LSC estimation of north and
east gradient components, which are then used to determine
marine gravity anomalies and VGGs in the Gulf of Mex-
ico and the northern part of the SCS. The resulting gravity
anomalies will be assessed by shipborne measurements, and
the VGGs will be validated by the result of Sandwell V31.1
VGGs. When using the gridded north and east gradient com-
ponents to compute VGGs, we also consider small terms that
had been neglected by other authors.

2 Altimeter and shipborne data

2.1 The altimeter data and standard errors in SSHs
and along-track geoid gradients

2.1.1 Satellite altimeter data

Toexperimentwith themethods of calibration,weuse altime-
ter measurements from the Cryosat-2 and the Jason-1/2 GM.
Cryosat-2 data are from the Baseline-D Geophysical Data
Record (GDR) of the European Space Agency (ESA). Jason-
1 data are from the GDR version “e” native products of the
Centre National d’Etudes Spatiales (CNES). Jason-2 data are
from the GDR version “d” products of CNES. Table 1 lists
the information about these altimeter data and missions.

2.1.2 Resampling the 20-HZ SSHs to 2-HZ SSHs

Tocalibrate the relativeweights ofGGs from the three altime-
ter missions, we need initial standard errors of GGs, which
are determined from the standard errors of SSHs. First, we
resampled the 20-HZ SSH measurements from the three
altimeter missions into 2-HZ SSH measurements and esti-
mated their standard errors. The standard errors of SSHs
were then used to estimate the standard errors of GGs by
error propagation.

The Cryosat-2 GDRs directly provide the 20-HZ SSHs
with instrument, range, and geophysical corrections. The
20-HZ SSHs from Jason-1 and Jason-2 were obtained by
subtracting the range measurements from the altitude mea-
surements, and then applying the corrections recommended
in the data manual, including range and geophysical correc-
tions. The range corrections contain the wet/dry troposphere
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Table 1 Information about the GM data used in this study

Geodetic
mission

Data duration Repeat period
(days)

Orbit height
(km)

Inclination angle (°) Mean track separation at the
equator (km)

Cryosat-2 2010/07–2020/12 369 730 92 7.5

Jason-1 2012/05–2013/06 406 1336 66.04 8

Jason-2 2017/07–2019/10 406 1336 66.04 4

correction, ionosphere correction, and sea state bias correc-
tion. The geophysical corrections include tide effects (the
sum of the solid earth tide, ocean tide, and pole tide), inverted
barometer height correction, and high-frequency fluctuations
of the sea surface topography.

To obtain smooth SSHs while retaining short-
wavenumber information, we fitted 3-s SSHs (60 samples)
by a quadratic polynomial in latitude and then produced
the two-per-second (2-HZ) SSHs in the 2nd second from
the solved polynomial coefficients. Note that the resampled
2-HZ SSHs are located in the 2nd second of the 3-s arc.
The use of 3-s data for fitting the 20-HZ SSHs results in
significantly smoother 2-HZ SSHs, compared with the use
of 1-s data for fitting. Pope’s (1976) tau-test procedure was
used simultaneously to detect outliers when resampling the
20-HZ data.

In the resampling, each of the 3-s SSHs (60 samples) is
expressed as a quadratic function of latitude

li + vi � a · ϕ2
i + b · ϕi + c, i � 1, 2, · · · , 60 (1)

where li is the observed SSH, vi is the residual,ϕi is the lati-
tude of li , and a, b and c are the coefficients of the quadratic
polynomial. Equation (1) can be represented in the following
matrix form

L + V � AX (2)

where L �
⎡
⎢⎣

l1
...
l60

⎤
⎥⎦, V �

⎡
⎢⎣

v1
...

v60

⎤
⎥⎦, A �

⎡
⎢⎣

’21
...
’260

ϕ1
...

ϕ60

1
...
1

⎤
⎥⎦, X �

⎡
⎢⎣
a
b
c

⎤
⎥⎦. The least-squares solution of the vector of coefficients

X is

X̂ � (ATPA)−1ATPL (3)

where P is the weight matrix, which is an identity matrix in
this study. Then the residual vector can be computed as

V � AX̂ − L (4)

The a posteriori variance of unit weight σ̂ 2
0 is

σ̂ 2
0 � VTPV

r
� VTPV

n − q
(5)

where r � n − q is the degree of freedom. For 60 samples
and the two-degree polynomial, n � 60, q � 3. The cofactor
matrix of the residuals is

QV � P−1 − A(ATPA)−1AT (6)

An SSH is flagged as an outlier if its residual satisfies the
condition (Pope 1976)

τ � |vk |
σ̂0

√
qkk

> τ1−α; 1, r−1 �
√

rF1−α; 1, r−1

r − 1 + F1−α; 1, r−1
(7)

where qkk is the kth element of the diagonal elements ofQV,
1 − α is the confidence level, τ1−α; 1, r−1 can be computed
by F-distribution F1−α; 1, r−1 with 1 and r − 1 degrees of
freedom. Not all SSHs whose residuals satisfying the condi-
tion in Eq. (7) are outliers because large residuals of some
SSHs may be caused by a biased solution of X̂ caused by
real outliers. Thus, we used an iterative produce to detect the
real outliers correctly. In each iteration, we found the maxi-
mum of the τ values satisfying the condition in Eq. (7) and
removed the corresponding SSH. We repeated this process
until we no longer found outliers. After removing all the out-
liers, the remaining SSHs were approximated by a quadratic
polynomial (Eq. 1), and the needed 2-HZ SSHs (at 1.25 and
1.75 s of the 3-s arc) were then computed from the least-
squares-estimated polynomial coefficients in X̂ (Eq. 3) by

L2HZ � A2HZX̂ (8)

where A2HZ �
[

ϕ2
2HZ_1

ϕ2
2HZ_2

ϕ2HZ_1

ϕ2HZ_2

1
1

]
, ϕ2HZ_1 and ϕ2HZ_2

are the expected latitudes of 2-HZ SSHs, L2HZ is a vector
containing the resampled 2-HZ SSH. According to the error
propagation theory, the error variancematrix of the estimated
2-HZ SSHs from the error covariance matrix of the coeffi-
cients of the quadratic polynomial X̂ is

�L2HZ � A2HZ�̂X̂A
T
2HZ (9)
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where �̂X̂ � σ̂ 2
0 (A

TPA)−1.

2.1.3 Computing along-track geoid gradients

In this paper, we use the GGs to derive the marine grav-
ity anomaly and VGG by the method of inverse Vening-
Meinesz (IVM) and by numerical differentiations, respec-
tively. Because it is not possible to carry out global inte-
grations when converting GGs to gravity anomalies and
VGGs, the remove-compute-restore procedure is used (Fors-
berg 1984). First, the dynamic oceanic topography (DOT)
from Levitus et al. (1997) is removed from the altimeter
SSHs to generate the geoid heights (GHs). Second, the ref-
erence GHs of the Earth Gravitational Field Model 2008
(EGM2008; Pavlis et al. 2012) are also removed to obtain
the residual GHs. The standard errors of the EGM2008 coef-
ficients are considered in the global covariance function we
used (see Eq. (23) below). Then the residual along-track GGs
are approximated by the slope of two successive residual
along-track GHs

εα, res � (Nres2 − Nres1)

d
(10)

where the εα, res is the residual GG with azimuth α and has
an opposite sign to DOV, Nres1 and Nres2 are two successive
residual GHs, and d is their distance. The full along-track
GGs can be obtained when the residual GHs are replaced by
the GHs in Eq. (10). The residual GGs are used to compute
the north and east components of GGs by LSC described in
Sect. 3.2, and the full GGs are used to calibrate the error
variances of the GGs from multiple altimeters in Sect. 3.1.
The estimated error variance of εα, res is simply

σ 2
ε � σ 2

N1
+ σ 2

N2

d2
(11)

where σ 2
N1

and σ 2
N2

are the error variances of Nres1 and Nres2,
and are the error variances of the corresponding 2-HZ SSHs
computed by Eq. (9). The error variance of the full GGs is
the same as that of the residual GGs. Because the correlation
coefficients of two successive residual GHs (or SSHs) cannot
be properly estimated, we simply assume that they are zero
to avoid damages introduced by the use of improper corre-
lations, i.e., Nres1 and Nres2 are uncorrelated. Therefore, in
Eq. (11) the covariance of Nres1 and Nres2 is ignored.

2.2 Shipborne gravity anomalies

The shipborne gravity anomalies in the northern part of the
SCS are for validating the marine gravity anomalies derived
in this paper. From the Ocean Data Bank of Taiwan, we

obtained the shipborne gravity anomalies measured by Tai-
wan’s R/V Ocean Researcher I (ORI) over 2009–2016. The
standard deviation and the mean value of the crossover dif-
ferences of the gravity anomalies are 2.2 and 2.3 mgal,
respectively (Lee et al. 2016). Figure 1 shows the distribu-
tion of the shipborne gravity data. For assessing the gravity
anomalies in this paper, we selected high-accuracy shipborne
data along 19 straight-trajectory lines (L1–L19 in Fig. 1). The
19 lines are straight so that the influence of the acceleration
due to turning can be avoided, and they are located in areas
with rough gravity fields, having short-wavelength gravity
signals. Thefluctuations of the gravity anomalies along the 19
lines are small, suggesting that the gravity data are stable. Lee
et al. (2016) used the same shipborne gravity data processing
software as the oneused inHwang et al. (2014). Thus, the spa-
tial resolution of the along-track shipborne gravity anomalies
is about 0.5 km (Hwang et al. 2014), corresponding to 0.25’,
compared with the 1’ grid interval for the altimeter-derived
gravity anomalies in this paper. The shipborne gravity data is
affected by long-wavelength errors such as mechanical drift
of the gravimeter and absence of base-station ties (Wessel
and Watts 1988). We used the gravity field of EGM2008
(Pavlis et al. 2012) to degree 2160 as a reference field to
remove the systematic bias of the shipborne measurements
of the 19 lines. For each line, the differences between the
shipborne gravity and the reference gravity field were fitted
by a quadratic polynomial of time, and the polynomial coeffi-
cients were estimated by the least-squares method. Then the
systematic biases determined by the estimated coefficients
were used to correct the shipborne data (Hwang and Parsons
1995).

3 Calibrating the error variance and scaling
the global covariance function of geoid
gradients

3.1 Calibrating the error variance components
of multi-altimeter geoid gradients byMINQUE

This study uses the method of LSC with noise (Moritz
1980) to estimate the north and east gradient components
from the along-track GGs of the three altimeter missions.
In this method we take care of two issues: calibrating the
error variances of the GGs from multiple altimeter datasets
(this Section) and scaling the global covariance functions
(see Sect. 3.2 for the detail of scaling). The LSC method
for generating the north and east gradient components using
along-track GGs has been presented by Hwang and Parsons
(1995). This study advances this method by optimally cal-
ibrating the data weights and global covariance functions
(see Sect. 3.2). A priori (initial) error variances of the GGs
can be assigned empirically or propagated from the standard
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Fig. 1 Shipborne gravity
anomalies in the northern part of
the SCS from the Ocean Data
Bank of Taiwan. L1–L19 are 19
straight-trajectory lines for
assessing the gravity anomalies

errors of the SSHs that are used to generate the correspond-
ing GGs. Such a priori variances may not be correct weights
when data from multiple satellites are used. Therefore, we
should calibrate the initial variance to obtain appropriate rel-
ative weights of the data from these three altimeter missions.

For the variance calibration, this study uses an approach
based on MINQUE (Rao 1971; Koch 2013), which deter-
mines the variance components of GGs from Cryosat-2,
Jason-1, and Jason-2. An along-track GGwithin a data selec-
tion window (Fig. 2) forms an observation equation as

(12)

εi + vi � ξcosαi + ηsinαi + a�ϕ2
i + b�λ2i

+ c�ϕi�λi + d�ϕi + e�λi + f

where εi is the observed full along-track GG, vi is the resid-
ual, αi is the azimuth of εi , ξ and η are the north and
east gradient components at the grid point, respectively,
(ϕi , λi ) and (ϕ0, λ0) are the latitudes and longitudes of
εi and the grid point, respectively, �ϕi � ϕi − ϕ0, and
�λi � λi − λ0. The term ξcosαi + ηsinαi is the sum of
the projections of the north and east gradient components
in the along-track direction (Heiskanen and Moritz 1985).
The term a�ϕ2

i + b�λ2i + c�ϕi�λi + d�ϕi + e�λi + f is
used to absorb the spatial variation of the GGs within the
data selection window. The window should be big enough to
have sufficiently large degrees of freedom for least-squares
estimating the parameters in Eq. (12), and it should also be
small enough to well satisfy the point relationship between
the GGs and their component, i.e., εi � ξcosαi + ηsinαi .

Both Jason-1 and Jason-2 are the follow-onmissions of the
TOPEX/POSEIDON mission and the two missions result in
SSHs with similar standard errors (Sandwell et al. 2019). In
the low-resolutionmodel (LRM), Cryosat-2’s altimeter func-
tions like a conventional radar altimeter such as the Jason-1

and Jason-2 altimeters but producesmore accurate SSHs than
the latter two. Therefore, we divide the altimeter data into
two categories, i.e., those fromCryosat-2 and fromJason-1/2.
The observation equations in Eq. (12) for the GGs from these
two categories (Cryosat-2 and Jason-1/2) in a data selection
window like that in Fig. 2 are represented by the following
matrix forms

{
V1 � A1X − L1

V2 � A2X − L2
(13)

Let V �
[
V1

V2

]
be the joint vector of residuals, A be the

joint design matrix, i.e., A �
[
A1

A2

]
, and L �

[
L1

L2

]
be the

joint vector of observations with L1 and L2 containing GGs
from Cryosat-2 and Jason-1/2, respectively. Equation (13)
can be written as

V � AX − L (14)

If a data selection window (Fig. 2) contains
n along-track GGs, the elements in A are A �⎡
⎢⎣

cosα1
...

cosαn

sinα1
...

sinαn

�ϕ2
1

...
�ϕ2

n

�λ21
...

�λ2n

�ϕ1�λ1
...

�ϕn�λn

�ϕ1
...

�ϕn

�λ1
...

�λn

1
...
1

⎤
⎥⎦.

The elements in the vector of unknows X are

X �
[

ξ η a b c d e f
]T
. We assume that these two

categories of GGs are independent of each other so that the
covariance matrices between vectors L1 and L2 are zero
matrices. Hence, the initial covariance matrix for all the
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Fig. 2 Diagram of determining
the north and east gradient
components (ξ, η) at a grid point
(ϕ0, λ0) from along-track GGs
(colored dotted lines representing
different altimeter datasets). The
green box shows the data
selection window

GGs is

(15)

�0 �
[

σ 2
1C1
0

0
σ 2
2C2

]

� σ 2
1

[
C1

0
0
0

]
+ σ 2

2

[
0
0

0
C2

]
� σ 2

1T1 + σ 2
2T2

where C1 and C2 are the cofactor matrices of GGs from
Cryosat-2 and Jason-1/2, respectively, σ 2

1 and σ 2
2 are the

variances of unit weight, which are unknown variance com-
ponents and will be estimated, and Ti is constructed by Ci

and is an augmented matrix with the same dimension as �0.
The principle of MINQUE is summarized below. In our

case, an arbitrary linear function of the two variance compo-
nents is


 � ϕ1σ
2
1 + ϕ2σ

2
2 �

[
ϕ1 ϕ2

][
σ 2
1

σ 2
2

]
� BY (16)

where Y contains the two variance components. 
 can be
estimated by a quadratic form of the observation vector L,
i.e.,


̂ � LTML (17)

whereM is an unknown symmetricalmatrix. In theMINQUE
theory, 
̂ must satisfy the following three properties:

(1) Invariance. The quadratic form LTML is independent
of the vector of unknows X, which is equivalent to

MA � 0 (18)

(2) Unbiasedness. The quadratic formLTML should be the
unbiased estimate of 
. That is, M should satisfy the
following condition.

ϕi � tr (MTi), i � 1, 2 (19)

where tr (.) denotes the trace.
(3) Minimum norm. The Euclidean norm of the difference

between the actual and the theoretical estimated values
of Eq. (17) should be minimum, that is,

tr(M�0M�0) � min (20)

The essence of the MINQUE theory is to estimate the
matrix M that minimizes tr (M�0M�0), subject to the con-
straints in Eqs. (18) and (19). The detailed derivations are
given by Rao (1971) and Koch (2013). Then the resulting
matrix M is used to estimate the variance components.
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By estimating the variance components, we refined the
relative weights of the along-track GGs from Cryosat-2 and
Jason-1/2. The initial covariance matrix �0 in Eq. (15) can
be obtained by setting σ 2

1 � σ 2
2 � 1 with C1 and C2 being

cofactor matrices obtained from the initial error variances
given in Eq. (11). In practice, at each grid point, we set a
8′ × 8′ data selection window (Fig. 2). Then the variances
of the GGs for Cryosat-2 and Jason-1/2 propagated from the
error variances of the 2-HZ SSHs form the diagonal elements
of the initial cofactor matrices C1 and C2, respectively. A
summary of the formulae used in the MINQUE estimation
of variance components is as follows (in the 8′ × 8′ data
window around a grid point):

(1) W � �−1
0 (I − A(AT�−1

0 A)−1AT�−1
0 )

(2) S �
[
tr (WT1WT1) tr (WT1WT2)
tr (WT2WT1) tr (WT2WT2)

]

(3) q �
[
LTWT1WL
LTWT2WL

]

(4) The estimated variance components (variances of unit

weight): Ŷ �
[

σ̂ 2
1

σ̂ 2
2

]
� S−1q

(5) The calibrated variance matrix for GGs: �̂0 �[
σ̂ 2
1C1
0

0
σ̂ 2
2C2

]

(6) Replace �0 by �̂0 and repeat steps (1)–(5) until σ̂ 2
1 �

σ̂ 2
2

In this study, because we assume that the a priori covari-
ance matrix�0 and the a posterior covariance matrix �̂0 are
both diagonal matrices, they are actually variance matrices.
TheW matrix in the above procedure is originated from the
least-squares estimation of X̂ as

X̂ � (AT�̂
−1
0 A)−1AT�̂

−1
0 L (21)

Furthermore, the 2× 2 covariance matrix of the estimated
variance components (̂σ 2

1 and σ̂ 2
2 ) is

�Ŷ � 2σ 4
0 S

−1 (22)

where σ0 is the a priori standard error of unit weight. The
diagonal elements of �Ŷ are the error variances of σ̂ 2

1 and
σ̂ 2
2 . As noted by Caspary (1988, p. 100), a successful esti-

mation of variance components depends on the following
two conditions: (1) the data are not colinear and the error
effects are separable, (2) the function model (Eq. 12) is suit-
able so that the groups of data are correlated and there is a
sufficiently large data redundancy. Because the inclination
angles of Cryosat-2 (92°) and Jason-1/2 (66.04°) are signif-
icantly different, Condition 1 is met. Condition 2 is likely

to be met because the data densities from these missions are
sufficiently large (see Sect. 5.2). The refined error variance
matrix �̂0 is the noise variance matrix in the method of LSC
(see Sect. 3.2) for estimating the north and east gradient com-
ponents.

3.2 Scaling the global covariance function

The second issue, entangled with the error variance calibra-
tion, is scaling the global covariance functions. First, the
global covariance function of the earth’s anomalous potential
relative to a gravitational model such as EGM2008 can be
expressed as (Tscherning and Rapp 1974; Hwang and Par-
sons 1995)

(23)

K (ψ) �
Nmax∑
n�2

E2
n

R2

(n − 1)2
Pn(cosψ)

+
∞∑

n�Nmax+1

cn
R2

(n − 1)2
Pn(cosψ)

where ψ is the spherical distance, E2
n is the anomaly error

degree variance of degree n of the reference gravity field
(from the error variances of the coefficients of EGM2008
gravitational model, Pavlis et al. 2012), R is earth’s mean
radius (about 6371 km), Pn(cosψ) is the Legendre poly-
nomial, and cn � A(n−1)

(n−2)(n+B) s
n+1 is the Model 4 “signal”

variance of global gravity anomaly field, with A � 425.28
mgal2, B � 24, and s � 0.999617 (Tscherning and Rapp
1974). The first term in Eq. (23) is the error part and the
second term is the signal part of K (ψ).

By covariance propagation (Moritz 1980), the global
covariance function K (ψ) can be used to construct the
covariance functions for the longitudinal and transversalGGs
(Tscherning 1974) and then for along-trackGGs (Hwang and
Parsons 1995, Appendix A). These global covariance func-
tions can be used in the LSC formula to compute the residual
north and east gradient components (relative to EGM2008)
(Moritz 1980, p. 102):

s �
[

ξ

η

]
� CsL

(
CLL + �̂0

)−1L (24)

where vector L contains the residual along-track GGs cal-
culated by Eq. (10) within the data selection window in
Fig. 2, s is a vector containing the residual north (ξ ) and
east (η) gradient components, which are simply the gradi-
ents with azimuths of 0° and 90° and are two special cases of
along-track GGs, �̂0 is the calibrated error variance matrix
in Sect. 3.1 and works as a filter,CsL is the covariance matrix
for signals (in vector s) and observations (in vector L), and
CLL is the covariance matrix for observations. The elements
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in CsL and CLL are constructed from the modified global
covariance functions by scaling factors for the residual along-
track GGs described below. On each grid point, the residual
north and east gradient components are computed by LSC
using all the residual along-track GGs in the data selection
window (Fig. 2).

Because we use a small data selection window (8′ × 8′)
in this study, we only calibrate the variances of the global
covariance functions without calibrating parameters such as
correlation length and curvature parameter that character-
ize local covariance functions. Note that there are several
methods formodifying global covariance functions into local
covariance functions, e.g., Knudsen (1987), or for directly
constructing local covariance functions for a given study area,
e.g., Forsberg (1987).As shown inEq. (23), the global covari-
ance function K (ψ) contains the errors in the coefficients of
EGM2008 (error) and the Model 4 degree variances (sig-
nal) and is independent of the actual roughness of the gravity
field in a data selection window around the grid point (Fig. 2)
where the north and east gradient components are estimated.
In LSC, the error variances work as a filter, but this filter can
function properly only when there is a best balance between
signals (for constructing the elements in CsL and CLL) and
data errors (for constructing the elements in �̂0). Otherwise,
LSC may result in poor qualities in the estimated north and
east gradient components.

In this paper, we use the following approach to modify the
global covariance functions into local covariance functions.
Specifically, in a given data selection window (Fig. 2), we
determine a scaling factor for the global covariance function
using:

β � V 2
ξ + V 2

η

Cll(0) + Cmm(0)
(25)

where V 2
ξ and V 2

η are the variances of the residual north and
east gradient components, respectively, computed byEq. (24)
in the data selectionwindow, andCll (0) andCmm(0) are vari-
ances of longitudinal and transversal gradients derived from
the global covariance function (the spherical distance is zero)
in Eq. (23). In this study, the global covariance functions for
the longitudinal and transversal gradients are computed by a
FORTRAN program coded by Tscherning (1974). The idea
of scaling global covariance function has been proposed in
previous studies, which were mostly based on sparse altime-
ter data, e.g., Hwang et al. (1998). The present altimeter data
density is vastly increased over that in the 1990s, thus we
expect a different result from the use of scaled global covari-
ance functions for optimized marine gravity determinations
from altimetry.

To grid the scaling factors (β), we also use a mov-
ing window to compute the β values on the central grid.
We experimented with three window sizes, i.e., 10′ × 10′,

20′ ×20′, and 30′ ×30′. Using the results of shipborne grav-
ity assessments,we found that the resulting gravity anomalies
differ by only 0.001mgal. One criterion for selecting a proper
window is that the computed scaling factors should be suf-
ficiently smooth from one grid point to the next grid points
(in the four quadrants). For the best smoothness and small-
est computational load, we decided that 20′ × 20′ is the best
window size. We then computed scaling factors on a 1′ × 1′
grid (the same grid for gravity anomaly and VGG). From
visual inspections, the scaling factors obtained in this way
can avoid oscillating north and east gradient components in
the subsequent LSC computations (see Eq. 26 below).

Within a small spherical distance, the global covariance
function K (ψ) and the global covariance function of along-
track GGs roughly are nearly Gaussian (Hwang and Parsons
1995). Thus, the needed local covariance functions for the
matrices inEq. (24) can be obtained bymultiplying the global
covariance functions by β. As such, we can re-write Eq. (24)
as

s �
[

ξ

η

]
� CsL

(
CLL + �̂0

)−1
L

� βCsL
(
βCLL + �̂0

)−1 L � CsL

(
CLL +

1

β
�̂0

)−1

L

(26)

where CsL and CLL are scaled covariance matrices, which
are constructed from the scaled global covariance functions,
i.e., βK (ψ), and the covariance functions propagated from
it. The simultaneous use of calibrated error variances of GGs
and scaled global covariance functions as in Eq. (26) can
balance the contributions from signals and noises to improve
the estimated north and east gradient components.

4 Use of north and east gradient
components for determining gravity
anomaly and vertical gravity gradient

4.1 Gravity anomaly

The gridded north and east gradient components are used to
derive gravity anomalies and VGGs. The methods are sum-
marized in the two subsections here. The regular grids of
residual north and east gradient components generated in
Sect. 3.2 can be converted to residual gravity anomalies by
the inverseVening-Meinesz (IVM) formula based on 1DFFT
method (Hwang 1998):

�gP � γ0�ϕ�λ

4π
F−1
1

⎧⎨
⎩

ϕn∑
ϕQ�ϕ1

[
F1

(
H ′ (�λQP

)
cosαQP

)]
F1 (ξcos)

+
[
F1

(
H ′ (�λQP

)
sinαQP

)]
F1 (ηcos)

⎫⎬
⎭

(27)
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where P is the computational point,Q is a contributing point
on the unit sphere, �gP is the residual gravity anomaly at
P, γ0 is the normal gravity, ξcos � ξcosϕ, ηcos � ηcosϕ,
�λQP � λQ − λP , �ϕ and �λ are grid intervals in the
directions of latitude and longitude, respectively, αQP is the

azimuth fromQ toP, H ′ � − cos
ψQP
2

2sin2
ψQP
2

+
cos

ψQP
2 (3+2sin

ψQP
2 )

2sin
ψQP
2 (1+sin

ψQP
2 )

is

a kernel function depending on spherical distance (ψQP ), and
F1 is the 1D FFT operator. By adding the reference gravity
values of EGM2008 to the residual gravity anomalies com-
puted by Eq. (27), the full marine gravity anomalies can be
obtained.

We also add the innermost-zone effect around the neigh-
borhood of the computational point P, where the kernel

function H ′ is nearly or completely singular. The innermost-
zone effect on the gravity anomaly is

�gi � γ0

2

√
�x�y

π

(
ξy + ηx

)
(28)

where ξy � ∂ξ/∂y and ηx � ∂η/∂x (x and y are the rectan-
gular coordinates pointing east and north, respectively) are
the gradients of the GGs, and �x and �y are the grid inter-
vals. ξy and ηx are determined by numerical differentiations
of the gridded ξ and η values and can be used to determine
VGGs (see Sect. 4.2). Figure 3 shows the flowchart of deriv-
ing marine gravity anomalies from multi-altimeter data in
this paper.

Fig. 3 The flowchart of deriving marine gravity anomalies from multi-altimeter data
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4.2 Vertical gravity gradient

The VGG in this study is the vertical gradient of the gravity
anomaly and has the same definition as that given by Heiska-
nen andMoritz (1985) and Sandwell and Smith (1997, except
the sign). In fact, a gravity gradient is the sum of the gradient
of the normal gravity defined by an ellipsoid and the gradi-
ent of the gravity anomaly. The VGG in this study and in
Sandwell and Smith (1997) is only the vertical gradient of
the gravity anomaly.We calculate the VGG from the gradient
components obtained in Sect. 3.2. The formula for determin-
ingVGGhas been given byHeiskanen andMoritz (1985) and
includes more terms than the formula given by Sandwell and
Smith (1997). According to Heiskanen and Moritz (1985,
p. 117), the VGG in the spherical coordinate is

∂�g

∂r
� 2G

R2 N +
G

R
ξ′tanϕ − G

R

∂ξ′

∂ϕ
− G

Rcosϕ

∂η′

∂λ
(29)

where �g is the gravity anomaly, r is the radial variable,
which is positive toward the opposite direction of gravity, G
is the mean gravity value over the earth, R � 6371 km, is
earth’s mean radius, N is the geoidal undulation, λ and ϕ are
longitude and latitude, respectively, ξ′ and η′ are the north
and east DOV components and have opposite signs with the
north and east gradient components (ξ and η) in Sects. 3.2.
Using the same local rectangular coordinates (x , y) as in
Eq. (28) and the relationships Rdϕ � dy, Rcosϕdλ � dx ,
we have

∂�g

∂r
� 2G

R2 N +
G

R
ξ′tanϕ − G

(
∂ξ′

∂y
+

∂η′

∂x

)

� 2G

R2 N − G

R
ξ tanϕ + G

(
∂ξ

∂y
+

∂η

∂x

)
(30)

According to Heiskanen and Moritz (1985), the first two
terms on the right-hand side are small compared to the third
term; this issue will be discussed in Sect. 5.5. The third term
in Eq. (30) can be readily determined from the numerical dif-
ferentiations of the north and east gradient components for
the innermost-zone effect (Eq. 28). The residual north and
east gradient components (ξ and η) determined by Eq. (26)
are used for the numerical differentiations to generate the
term for the innermost-zone effect (Eq. 28) and the third
term in Eq. (30). The reference VGG is obtained from the
reference field of the DOV components (ξ′ and η′) based on
the EGM2008 model to degree 2160. By restoring the refer-
enceVGGto the residualVGG, the fullVGGcanbeobtained.
Note that the sign of DOV components of EGM2008 is oppo-
site to that of gradient components defined in Sect. 3.2.

5 Results and discussion

5.1 Resampled 2-HZ data

Using the procedure described in Sect. 2.1.2, we resampled
the 20-HZ SSHs into 2-HZ SSHs. As an example, Fig. 4
shows the result of resampling 3-s SSHs along a section of
pass 127, cycle 501 of Jason-2. In this example, only one out-
lier was detected and removed, and the remaining data were
fitted by the quadratic polynomial. Then the 2-HZSSHswere
obtained at the 2nd second along the fitted polynomial (the
green line, circles are the 2-HZ SSHs at 1.25th and 1.75th
second). The fitted quadratic polynomial from the 3-s data
with/without the outliers is shown by the cyan/black line.
The outlier has affected the resampled 2-HZ SSHs but not
to a serious extent. In the study area shown in Fig. 1, there
are 6,935,601 20-HZ Cryosat-2 SSHs, and a total of 258,837
outliers (3.73%) were detected. For Jason-1/2, the numbers
of outliers are 31,798 (5.73%) and 54,779 (5.84%), respec-
tively. The outliers were not used in the determination of
geoid gradients. The shortest wavelengths corresponding to
the resampled 2-HZ SSHs of Jason-1/2 and Cryosat-2 are
5.8 km and 6.4 km, respectively. The mean cross-track dis-
tances of Jason-1 GM, Jason-2 GM and Cryosat-2 at the
equator are 8 km, 4 km and 7.5 km, respectively.

It is possible that the 2-HZ SSHs resampled from 3-s
data may be over smoothed, resulting in the loss of high-
frequency seafloor characteristics. To examine this issue, we
also generated 2-HZ SSHs by fitting the 1-s (20 samples)
data with a quadratic polynomial. Figure 5a shows the 2-
HZ SSHs generated by fitting 3-s (60 samples) and 1-s (20
samples) data of Jason-2. The 2-HZ SSHs generated from
the 3-s data are smoother than those from the 1-s data. The
along-track gradients of the 2-HZ SSHs from the 3-s data
are smoother than those from the 1-s data, as shown in
Fig. 5b. Note that smooth SSHs and gradients do not nec-
essarily lead to more accurate gravity anomalies and VGGs.
To show the effectiveness of resampled 2-HZ SSHs from the

Fig. 4 An example of resampling 20-HZ SSHs into 2-HZ SSHs in a
3-s arc (blue, red, and blue) along a section of pass 127, cycle 501 of
Jason-2
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(a)

(b)

Fig. 5 The profiles of a resampled 2-HZ SSHs, and b along-track GGs
from the 1-s and 3-s fittings along a section of pass 127, cycle 501 of
Jason-2

3-s fitting, we determined the root-mean-squared (RMS) dif-
ferences between the shipborne gravity anomalies and the
Jason-2-derived gravity anomalies by using the 2-HZ SSHs
from the 1-s and 3-s fittings. The differences are shown in
Table 2. An improvement rate in Table 2 is calculated by
rate � RMSD1sec−RMSD3sec

RMSD1sec
×100%, and a positive rate value

suggests improvement. Except line 5, the accuracies along all
lines are improved by using the 3-s fitting. The deterioration
in the accuracy of the 3-s fitting along line 5may be caused by
systematic biases in the 3-s case in some sections of this line.
The average RMS differences in the 1-s and 3-s fittings are
4.05 mgal and 3.39 mgal, respectively. Thus, the use of the
3-s fitting improves the gravity accuracy by 15.3% over the
use of the 1-s fitting. These results indicate that the resam-
pled 2-HZ SSHs from the 3-s data outperform the case of
1-s data, resulting in marine gravity anomalies with higher
accuracies. Because the 2-HZ SSHs from the 3-s data are
already smooth, no filtering is applied to such 2-HZ SSHs in
order to retain the high-wavenumber seafloor signatures in
the altimeter-derived gravity and VGG fields.

5.2 Calibrated error variances byMINQUE

The initial error variances of residual along-track GGs for
Cryosat-2 and Jason-1/2 are shown in Fig. 6a, c, respectively.
They are computed by Eq. (11) using the error variances
of the resampled 2-HZ SSHs by Eq. (9). The initial gradi-
ent variances of Jason-1/2 are larger than those of Cryosat-2
becauseCryosat-2 has an overall higher observation accuracy
than Jason-1/2 (Sandwell et al. 2019). In theory, the error vari-
ances of GGs should be larger in the coastal regions, where
radar waveforms can be contaminated (Deng et al. 2002) and
geophysical correction models for SSH measurements can

Table 2 RMS differences (RMSD, in mgal) between the shipborne and
the Jason-2-derivedgravity anomalies (1-s and3-sfittings) and improve-
ment rate from 1-ec to 3-s fitting

Line RMSD (1-s) RMSD (3-s) Rate (%)

L1 3.80 3.25 14.5

L2 3.45 2.85 17.5

L3 3.26 3.05 6.6

L4 3.44 2.97 13.8

L5 4.08 4.15 − 1.6

L6 3.75 3.23 13.7

L7 2.97 2.83 5.0

L8 3.11 2.53 18.6

L9 4.11 3.57 13.1

L10 3.71 3.16 15.0

L11 6.17 3.27 47.0

L12 4.83 3.39 29.8

L13 3.62 2.78 23.0

L14 4.31 3.86 10.4

L15 5.07 4.69 7.6

L16 4.21 3.70 12.1

L17 4.06 3.93 3.2

L18 4.69 3.30 29.7

L19 4.38 3.85 12.2

Mean 4.05 3.39 15.3

be poor. However, Fig. 6a, c show that this is not the case
for both categories of GGs. This may be because the original
20-HZ SSHs have been free from waveform contaminations
and poor geophysical corrections, the variances of the resam-
pled 2-HZSSHs are already uniform over coastal regions and
open oceans.However, the 20-HZSSHs in the coastal regions
may contain long-wavelength systematic errors, but they do
not propagate into the errors of GGs because of the use of
along-track differentiations when deriving GGs. As such, the
variances of GGs in Fig. 6a, c are mostly caused by the ran-
dom errors of the 20-HZSSHs not by the potential systematic
errors of the SSHs, especially in the coastal regions.

Using the MINQUE theory described in Sect. 3.1, we
estimated new error variances of along-track GGs from
Cryosat-2 and Jason-1/2 for each grid point in a 8′ × 8′ data
selection window. The calibrated (new) error variances are
shown in Fig. 6b, d. The patterns of the calibrated variances
(Fig. 6b, d) are different from those of the initial variances
(Fig. 6a, c). The calibrated variances tend to increase with
the roughness of the marine gravity field. For example, the
calibrated variances are relatively large around the Dong-
sha Island and the area to its east, the Batan Islands, and
the Babuyan Islands and their coastal areas. One reason for
this relationship is that the calibration by MINQUE will be
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Fig. 6 Left column: the initial error variances of residual GGs for
a Cryosat-2 and c Jason-1/2, and e their ratios (variances of Jason-
1/2 divided by variances of Cryosat-2). Right column: the calibrated

error variances of residual GGs for b Cryosat-2 and d Jason-1/2 by
MINQUE, and f their ratios

effective only when the along-track GGs are with sufficiently
large magnitudes; this occurs only over an area with a rough
gravity fieldwhere theGGs are relatively large for effectively
determining the variance components. The results in Fig. 6b,
d suggest that the calibrated variances of Jason-1/2 are larger
than those of Cryosat-2. The calibrated error variances are
used for an optimal LSC determination of the north and east
gradient components by Eq. (26). In addition, the along-track
patterns in Fig. 6a, c, e are caused by large error variances
of data along several tracks. The MINQUE calibration uses

data in a 8′ × 8′ window, thus reducing such track patterns
(Fig. 6b, d, f).

Figure 6e shows the ratios between the initial variances
of Cryosat-2 and Jason-1/2 (variances of Jason-1/2 divided
by variances of Cryosat-2) within the 8′ × 8′ data selec-
tion windows. The ratios are proportional to the numbers
of GG observations from Jason-1/2 (Fig. 7d). Figure 6f
shows the ratios of the calibrated variances of the two cat-
egories of altimeter data, which are smaller than those in
Fig. 6e. This is because the calibrated variances of Jason-1/2
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Fig. 7 The accuracies (variances, in sec4) of estimated variances com-
ponents for a Cryosat-2 and b Jason-1/2; the numbers of gradient
observations in a 8′×8′ data selection window for cCryosat-2, d Jason-
1/2, and e combined Cryosat-2 and Jason-1/2; and f the distribution of

the numbers of iterations for estimating variance components using
MINQUE

(Fig. 6d) in some regions are smaller than the initial vari-
ances (Fig. 6c). This result indicates that the relative weights
of the 2-HZ SSHs of Jason-1/2 in some regions are improved
after calibrating by MINQUE. The comparison between the
sub-figures in the left column of Fig. 6 and those in the right
column suggests that using the initial variances of the two
categories of altimeter data is inappropriate, and the initial
variances of Jason-1/2 are artificially too big in comparison
to those of Cryosat-2.

Figure 7a, b shows the accuracies (variances) of estimated
variance components (Eq. 22) for Cryosat-2 and Jason-1/2,
respectively, which are proportional to the numbers of points
in the data selection windows (Fig. 7c, d). As such, the
accuracies are low in the areas with sparse altimeter data
points. In most windows, the numbers of Cryosat-2 are larger
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Fig. 8 Distribution of the scaling
factors of the global covariance
functions. Relatively large
scaling factors occur in areas of
rough gravity fields and shallow
waters

than 120 (Fig. 7c) and those of Jason-1/2 are larger than 40
(Fig. 7d). Thus, the total number of Cryosat-2 and Jason-1/2
can be larger than 150 (Fig. 7e). The degrees of freedom
are sufficiently large to estimate reliable variance compo-
nents (Fig. 6b, d). Moreover, 2–6 iterations are needed to
reach convergences in the variance component estimations,
as shown in Fig. 7f.

5.3 Scaling factors for the global covariance
functions

Using Eq. (25), we computed the scaling factor (β) of global
covariance functions from the north and east gradient com-
ponents estimated by Eq. (24) using the calibrated error
variances of GG. Figure 8 shows the scaling factors, which
are for modifying the global covariance functions into local
covariance functions to improve the estimated north and east
gradient components by LSC. The distribution pattern of the
scaling factors (Fig. 8) is correlated with the marine grav-
ity pattern (see Sect. 5.4). In general, scaling factors are
large in areas where the gravity anomaly variances are large.
This is because a rough gravity field corresponds to a large
variance of GGs, leading to a large scaling factor that in
turn increases the global covariance functions. The global
covariance functions are based on the standard errors of the
EGM2008 geopotential coefficients and the model gravity
signal components beyond degree 2160 (Eq. 23), thus such
functions cannot really reflect the local gravity field varia-
tions, especially in areas with seamounts, trenches, and other
high-wavenumber seafloor signatures. On the other hand, a
scaling factor less than one leads to smaller scaled global
covariance functions, resulting in an artificial increase in the
error variances of GGs in a data selection window and lead-
ing to relatively smooth north and east gradient components

from LSC. The use of the scaling factors has improved the
gravity accuracy (see Sect. 5.4).

5.4 Improvedmarine gravity accuracy due
to calibrated error variances and scaled global
covariance functions

Using both the calibrated error variances (Fig. 6c, d) and the
scaling factors (Fig. 8), we derived marine gravity anomalies
on a 1′×1′ grid in the SCS fromCryosat-2 and Jason-1/2 data
by IVM, as shown in Fig. 9a. We assessed the accuracy of
the altimeter-derived gravity anomalies using the shipborne
gravity anomalies along the 19 lines in Fig. 1. The RMS dif-
ferences are shown in Table 3. The rate in Table 3 is defined
as rate � RMSDinitial−RMSDcalibratedandscaled

RMSDinitial
× 100%, which indi-

cates the improvement rate due to calibration and scaling.
On average, the use of the calibrated error variances and
scaled covariances improves the gravity accuracy by 9.5%,
compared with the case using the initial error variances. For
line 10, the negative rate may be due to systematic biases in
some sections of this line between the gravity anomalies from
the altimeter case using the calibrated and scaled covariance
and the shipborne measurements. Table 3 also shows that
the gravity accuracy from the error-calibrated Cryosat-2 and
Jason-1/2 altimeter data and the scaled covariances is better
than the gravity accuracy from only un-calibrated Cryosat-
2 or Jason-1/2 altimeter data. Thus, the gravity accuracy
benefits from the use of multiple altimeters and from error
calibration and covariance scaling. The differences between
the altimeter-derivedgravity anomalies (Fig. 9a) and the ship-
borne gravity anomalies along the 19 lines in Fig. 1 are shown
in Fig. 9b. The differences (Fig. 9b) appear to have no specific
patterns.
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Fig. 9 a Gravity anomalies
derived from Cryosat-2 and
Jason-1/2 altimeters using the
calibrated error variances and
scaled global covariance
functions, and b the differences
between the gravity anomalies in
(a) and the shipborne gravity
anomalies along the 19 lines in
Fig. 1

5.5 Vertical gravity gradient determination

VGGs on a 1′ × 1′ grid were determined by Eq. (30) using
the north and east gradient components estimated from the
calibrated variances and scaled global covariance functions.
Heiskanen andMoritz (1985) recommended that the first two
terms in Eq. (30) can be neglected because they are relatively
small compared with the third term. However, in this paper,
we also computed the first two terms in an attempt to deter-
mine optimalVGGs. First,wevalidate our computer program
for VGG computation by comparing the VGGs from this
paper and from Sandwell et al. (2014) in the Gulf of Mexico,
where extinct ridges have been discovered in the VGGs from
Cryosat-2 and Jason-1 altimeter data.Note that, to our knowl-
edge, there are no publicly available observed VGGs in the

world oceans for assessing the accuracy of altimeter-derived
VGGs.The altimeter-derivedVGGsmaybefiltered and com-
pared with the vertical gradients from the satellite mission
GOCE such as those presented by Ebbing et al. (2018). How-
ever, this comparison is not carried out in this study and can
be a subject of future studies.

Figure 10a shows the VGGs in the Gulf of Mexico from
the first term in Eq. (30), i.e., 2G

R2 N , where N is the geoidal
height of EGM2008 to degree 2160. Figure 10b, c show
the reference and residual VGGs from the second term in
Eq. (30), i.e., G

R ξ′tanϕ or −G
R ξ tanϕ, respectively. The ref-

erence VGGs are from the north DOV components (ξ′) of
EGM2008 to degree 2160, and the residual VGGs are from
the north gradient components (ξ ) computed in this study.
The reference and residual VGGs from the third term in
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Table 3 RMS differences (in
mgal) between the shipborne
gravity anomalies and the gravity
anomalies derived from
Cryosat-2 and Jason-1/2 using
the initial variances and the
calibrated and scaled covariances

Line The initial variances The calibrated and scaled
covariances

Cryosat-2 Jason-1/2 Cryosat-2 & Jason-1/2 Cryosat-2 & Jason-1/2 Rate (%)

L1 2.67 2.89 2.23 2.11 5.7

L2 2.21 3.08 2.16 2.00 7.3

L3 2.32 3.24 2.23 1.83 17.9

L4 1.88 2.84 2.10 1.58 24.7

L5 3.17 3.95 3.11 3.11 − 0.2

L6 2.70 3.62 2.70 2.61 3.4

L7 2.42 2.54 2.26 1.64 27.1

L8 2.31 2.60 2.21 1.80 18.4

L9 2.88 3.42 2.67 2.65 1.0

L10 2.54 3.41 2.54 2.84 − 11.9

L11 2.69 2.80 2.46 2.27 7.6

L12 2.54 3.50 2.74 2.70 1.5

L13 3.02 2.86 2.72 2.24 17.6

L14 2.57 3.55 2.94 2.43 17.3

L15 3.89 4.56 3.88 3.74 3.6

L16 2.87 3.26 2.74 2.57 6.1

L17 3.34 3.78 3.15 2.93 6.7

L18 3.07 3.71 3.05 2.82 7.4

L19 3.16 3.83 3.37 2.71 19.8

Mean 2.75 3.34 2.70 2.45 9.5

Eq. (30), i.e., −G
(

∂ξ′
∂x + ∂η′

∂y

)
or G

(
∂ξ
∂x + ∂η

∂y

)
, are shown in

Fig. 10d, e, respectively. The VGGs in Fig. 10d are com-
puted from the DOV components of EGM2008, and those in
Fig. 10e are computed from the residual GGs in this paper.
Although the VGGs from the first two terms (Fig. 10a–c) are
small in comparison to those from the third term (Fig. 10d,
e), they are correlated with seafloor signatures in the Gulf of
Mexico.

Figure 10f shows the full VGGs generated by combining
the quantities in Fig. 10a–e. The tectonic signatures that have
been interpreted by Sandwell et al. (2014), such as the extinct
spreading ridges, fracture zones, and continent-ocean bound-
aries, are evident in Fig. 10f and are similar to those indicated
in the VGGfield of Sandwell V31.1 (Fig. 10g) (themethod is
documented by Sandwell and Smith (1997); see also https://
topex.ucsd.edu/pub/global_grav_1min/). This shows that our
computer program correctly determines the VGGs. Note that
the tectonic signatures are mainly contributed by the refer-
ence VGGs from the third term (Fig. 10d), with Fig. 10b
also showing some tectonic signatures. The residual VGGs
from the second and third terms (Fig. 10c, e) show signatures
that are due to altimeter data noises and high-wavenumber
seafloor variations. Note that the sign of the VGG derived
by our program is opposite to that of Sandwell V31.1 VGG.

For a convenient comparison, we reverse the color bars in
the VGGs in Fig. 10a–f. In this paper, the sign convention
of VGG follows that used in physical geodesy (Heiskanen
and Moritz 1985), thus GG has the opposite sign with DOV.
Sandwell and Smith (1997) may have treated along-track
GGs as along-track DOV. As such, our VGGs have an oppo-
site sign with the VGGs defined in Sandwell V31.1. The
VGG from this study (Fig. 10f) and from Sandwell V31.1
(Fig. 10g) have almost identical signatures.

After the validation in the Gulf of Mexico, then we com-
puted VGGs in the northern part of the SCS (same coverage
as in Fig. 9a). Figure 11a shows the full VGGs in the northern
part of the SCS from the calibrated Cryosat-2 and Jason-1/2
altimeter data using our computer program. The tectonic sig-
natures in Fig. 11a are similar to those found in the VGG
field of Sandwell V31.1 (Fig. 11b). Note that some stripes
are present in Fig. 11b (Sandwell V31.1), but not in Fig. 11a
(this paper). Both the gravity field (Fig. 9a) and the VGG
field (Fig. 11a) are correlated with seafloor signatures in the
same way, but the VGG field shows sharper boundaries of
features than the gravity field. The differences between the
VGGs from this paper and from Sandwell V31.1 are shown
in Fig. 11c, which appear to be random. The mean and RMS
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Fig. 10 VGGs in the Gulf of
Mexico according to Eq. (30)
from a the first term, b the
reference and c residual parts of
the second term, d the reference
and e residual parts of the third
term; f the full VGGs, and
g Sandwell V31.1 VGGs. Note
that the color bar in (g) is
opposite to that in (a)–(f)
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Fig. 11 The full VGGs in the
northern part of the SCS from
a this paper, b Sandwell V31.1,
and c the differences between
(a) and (b). Note that the two
color bars have opposite color
scales because of the opposite
signs of VGGs in (a) and (b).
The red line at 19.83°N shows a
profile along which gravity
anomalies, VGGs, and depths are
compared in Fig. 12
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Fig. 12 a The gravity anomalies (Fig. 9a) and VGGs from this paper (red line, Fig. 11a) and from Sandwell V31.1 (cyan line, Fig. 11b), and b the
multi-beam depths along the profile in Fig. 11a

values of the differences in Fig. 11c are 0.044 Eötvös and
10.160 Eötvös, respectively.

Figure 12a compares the altimeter-derived gravity anoma-
lies (Fig. 9a) and VGGs from this study (Fig. 11a) and from
Sandwell V31.1 (Fig. 11b) along the profile indicated in
Fig. 12a. Figure 12b shows the oceanic depths from multi-
beam measurements (Yu et al. 2021). There are notable
correlations between the gravity anomalies, VGGs, and the
depths near the areas marked by the vertical green dashed
lines. The four magenta lines mark the locations where the
VGGs appear to be more correlated with small seafloor fea-
tures than gravity anomalies. This higher sensitivity of VGG
shows that VGGs have the potential to recover bathymetry
at short spatial wavelengths. A geophysical interpretation of
the altimeter-derived VGGs in the northern part of the SCS
is not pursued here but can be a subject of future studies.

6 Conclusions

In this study, we obtained 2-HZ SSHs from 20-HZ SSHs
of Cryosat-2 and Jason-1/2 and determined along-track GGs
and their initial error variances. The initial variances were
then calibrated by the method of MINQUE. For each grid
point, a scaling factor was determined to scale the global

covariance functions. The calibrated and scaled covariances
were used to estimate the north and east gradient compo-
nents, which are then used to derive gravity anomalies and
VGGs. In the northern part of the SCS, the accuracy of the
gravity anomalies from the calibrated and scaled covariances
are improved compared with the case using the initial error
variances of GGs. Our method for computing VGGs consid-
ers more terms compared to the methods used in previous
studies. We validated the computer program for VGG com-
putation in the Gulf of Mexico and then derived VGGs in
the northern part of the SCS. Compared to gravity anoma-
lies, VGGs aremore sensitive to seafloor signatures at shorter
spatial wavelengths and might be more powerful in detecting
structural boundaries.

In this study, we only used Cryosat-2 and Jason-1/2 data
to calibrate error variances and scale global covariance func-
tions by the methods given in Sect. 3. We expect that the
methods are applied to more altimeter datasets to refine the
marine gravity anomalies and VGGs presented in Sect. 5.
For example, the rangemeasurements by the SARAL/AltiKa
altimeter are the most accurate among all ongoing and past
altimeters, its SSH dataset can be useful for error vari-
ance calibration and gravity accuracy improvement. The
future SWOT altimeter mission will provide wide-swath
SSHobservationswith unprecedented spatial resolutions and
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range accuracies. Calibrating the data errors of the existing
missions with respect to the data errors of the SWOTmission
is highly important when merging all these altimeter data.
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