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Abstract

One of the major sources of uncertainty affecting vertical land motion (VLM) estimations are discontinuities and trend
changes. Trend changes are most commonly caused by seismic deformation, but can also stem from long-term (decadal to
multidecadal) surface loading changes or from local origins. Although these issues have been extensively addressed for Global
Navigation Satellite System (GNSS) data, there is limited knowledge of how such events can be directly detected and mitigated
in VLM, derived from altimetry and tide-gauge differences (SATTG). In this study, we present a novel Bayesian approach to
automatically and simultaneously detect such events, together with the statistics commonly estimated to characterize motion
signatures. Next to GNSS time series, for the first time, we directly estimate discontinuities and trend changes in VLM data
inferred from SATTG. We show that, compared to estimating a single linear trend, accounting for such variable velocities
significantly increases the agreement of SATTG with GNSS values (on average by 0.36 mm/year) at 339 globally distributed
station pairs. The Bayesian change point detection is applied to 606 SATTG and 381 GNSS time series. Observed VLM,
which is identified as linear (i.e. where no significant trend changes are detected), has a substantially higher consistency with
large-scale VLM effects of glacial isostatic adjustment (GIA) and contemporary mass redistribution (CMR). The standard
deviation of SATTG (and GNSS) trend differences with respect to GIA+CMR trends is by 38% (and 48%) lower for time
series with constant velocity compared to variable velocities. Given that in more than a third of the SATTG time series variable
velocities are detected, the results underpin the importance to account for such features, in particular to avoid extrapolation
biases of coastal VLM and its influence on relative sea-level-change determination. The Bayesian approach uncovers the
potential for a better characterization of SATTG VLM changes on much longer periods and is widely applicable to other
geophysical time series.

Keywords Vertical land motion - Change points, discontinuities and trend changes - Bayesian Inference - GNSS - GPS -
Satellite Altimetry - Tide Gauges - Relative Sea Level change - DiscoTimeS

1 Introduction

Understanding and estimating vertical land motion (VLM)
is critical to quantify and interpret the rates of coastal rel-
ative sea level change (RSLC). Next to the absolute sea
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level change (ASLC), with a current global rate of about
3 mm/year (Cazenave et al. 2018), VLM substantially influ-
ences regional relative sea level change with rates in the same
order of magnitude as the ASLC itself. VLM uncertainties
are thus also a major contributor to the error budget of RSLC
(Woppelmann and Marcos 2016; Santamaria-Gémez et al.
2017). VLM is caused by various processes, such as the
Glacial Isostatic Adjustment (GIA) (Peltier 2004), surface
loading changes (e.g. due to ice and water mass changes (Far-
rell 1972; Riva et al. 2017; Frederikse et al. 2020), tectonic
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and volcanic activity (Riddell et al. 2020; Houli¢ and Stern
2017; Serpelloni et al. 2013), human impacts such as ground-
water pumping (e.g. Wada et al. 2012; Kolker et al. 2011),
or other local effects caused by erosion or dam building, for
instance. In order to determine the impact of VLM on either
contemporary or projected RSLC, a general assumption is
that the regional VLM is constant over decadal to centennial
time scales, which is valid for VLM excited by processes
such as GIA. However, natural processes, in particular seis-
mic activity, or nonlinear deformation due to surface mass
changes (Frederikse et al. 2020), but also instrumental issues
can hinder the assessment of the linear component of VLM.
Therefore, we develop a novel approach, to detect disconti-
nuities and potential significant trend changes in VLM data.
The unsupervised (automatic) identification of such events
is useful to mitigate discontinuities and can also serve as
a decision-making tool for the treatment of nonlinear time-
dependent VLM.

Most of global VLM observations stem from the Global
Navigation Satellite Systems (GNSS) or from differences
of absolute (satellite altimetry—SAT) and relative sea level
(tide gauge—TG) measurements (SATTG). With the increas-
ing availability of altimetry data (in time), as well as with an
enhanced performance of coastal altimetry, the latter method
(SATTG) has been steadily developed and applied over the
last two decades (e.g. Cazenave et al. 1999; Nerem and
Mitchum 2003; Kuo et al. 2004; Pfeffer and Allemand 2016;
Woppelmann and Marcos 2016; Kleinherenbrink et al. 2018;
Oelsmann et al. 2021). SATTG VLM estimates are particu-
larly valuable, because they complement GNSS-based VLM
at the coastlines. Nevertheless, linear VLM rates from GNSS
are more accurate (0.6 mm/year, (Santamaria-Gomez et al.
2014)) than those from SATTG (1.2-1.8 mm/year, (Klein-
herenbrink et al. 2018; Pfeffer and Allemand 2016)). Ideally,
they should be one order of magnitude less than contempo-
rary rates of absolute sea level change, which is in the range
of 1-3 mm/year (Woppelmann and Marcos 2016).

These reported accuracy estimates are based on the
assumption that VLM is linear. However, GNSS and SATTG
time series, whose records are typically shorter than three
decades, are not always suitable to estimate a long-term lin-
ear component of VLM. They may be affected by variable
velocities at shorter timescales, which are most commonly
caused by earthquakes and their associated post-seismic
crustal deformation (e.g. Klos et al. 2019), but can also have
other natural or human-related origins. Kolker et al. (2011),
for instance, found significant subsidence trend changes (in
the order of several mm/year) at TGs in the Gulf of Mex-
ico, which were attributed to subsurface fluid withdrawal.
Cazenave et al. (1999) reported that also volcanic activity
can cause discontinuities and trend changes, based on the
analysis of SATTG time series. Besides these geophysical
origins, about one-third of discontinuities detected in GNSS
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time series could be attributed to instrumental issues, such as
antenna changes (Gazeaux et al. 2013).

While discontinuity detection has been extensively addressed

for GNSS data (Blewitt et al. 2016; Klos et al. 2019), to our
knowledge, there exists no study which adequately tackles
the problem of directly estimating discontinuities in SATTG
time series. Woppelmann and Marcos (2016), for exam-
ple, manually rejected time series, which were potentially
affected by variable velocities. Klos et al. (2019), on the other
hand, utilized GNSS data to correct SATTG VLM estimates
that were strongly influenced by tectonic activity. Thus,
an improved and independent characterization of SATTG
time series is crucial, because SATTG observations have
the potential to substantially expand scarce VLM estimates
derived from GNSS time series, which also usually cover
a shorter time span than the SATTG observations (Woppel-
mann and Marcos 2016). Therefore, we develop a Bayesian
model to automatically and simultaneously detect change
points (cp), caused by discontinuities and trend changes,
as well as other common time-series features of SATTG
observations. We apply our method to a global set of 606
SATTG pairs and 381 coastal GNSS stations and show
that our approach better aligns SATTG and GNSS trends.
The latter is demonstrated by comparing our results at 339
GNSS/SATTG co-located stations globally distributed. The
method can be potentially valuable for GNSS time-series
analysis, in particular with regard to the unsupervised detec-
tion of discontinuities or significant trend changes.

The awareness of discontinuities and other nonlinear
behaviour in time series, as well as the demand for accurate
position and velocity estimates from GNSS data, have led to
the development of a wide range of semi- to fully automatic
discontinuity detection tools, e.g. Vitti (2012), Gallagher
et al. (2013), Goudarzi et al. (2013), Kowalczyk and Rapin-
ski (2018) or Klos et al. (2019). Some discontinuity-detection
approaches feature deterministic models (including, e.g. rate,
annual cycle and noise formulations), as well as step func-
tions to model discontinuities in time series (He et al. 2017,
Klos et al. 2019). Montillet et al. (2015), for instance,
investigated different approaches to detect single discontinu-
ities at specified epochs using linear-least squares. Another
approach of discontinuity detection is Hector (Bos et al.
2013a; Montillet and Bos 2020), which utilizes Maximum
Likelihood Estimation (MLE) to determine trends and noise
parameters. Discontinuities are identified in an iterative man-
ner until the Bayesian information criterion (BIC, Schwarz
1978) reaches a predefined threshold (Bos and Fernandes
2016). As an alternative to modelling trends and discontinu-
ities explicitly, Wang et al. (2016) presented a state-space
model and singular spectrum analysis, which provides a
better approximation of time-varying nonsecular trends or
annual cycle amplitudes, than the MLE method. Another
nonparametric method is MIDAS (Median Interannual Dif-



Bayesian modelling of piecewise trends and discontinuities to improve the estimation of coastal...

Page3of23 62

ference Adjusted for Skewness, Blewitt et al. (2016)), which
is a variant of a Theil-Sen trend estimator and is capable to
robustly mitigate discontinuities in the data for linear trend
estimation. Many other solutions for discontinuity detection
exist, which are more thoroughly described in, e.g. Gazeaux
et al. (2013) or He et al. (2017).

In a comparative research study, Gazeaux et al. (2013)
analysed the capability of 25 different algorithms to detect
discontinuities in synthetically generated data. They found,
however, that manual screening still outperformed the best
candidate among the solutions. Trends derived from semi-
automated approaches were shown to still be biased in the
order of 0.4 mm/year, as a result of undetected disconti-
nuities in the data. Given this accuracy limitation, improving
automatic discontinuity detection is thus subject of ongoing
research and leads to steady development of the algorithms,
see, e.g. He et al. (2017).

The discontinuity detection with standard approaches like
linear least-squares becomes particularly difficult for an
increasing number of discontinuities with unknown epoch.
In addition, as highlighted by Wang et al. (2016), site move-
ments are not necessarily strictly linear and can be affected
by time-varying movements. Thus, it is critical to also detect
discontinuities in the form of the onset of trend changes or
post-seismic deformation to evaluate the validity of a strictly
linear secular motion. Commonly applied algorithms, such
as MIDAS, for instance, do not yet account for such time-
series features. Another central challenge for discontinuity
and trend change detection is the appropriate identification
of the stochastic properties of the time series. This is espe-
cially problematic for SATTG time series, as their associated
noise amplitudes are usually one order of magnitude larger
than in GNSS data.

To our knowledge, none of the existing methods have been
applied or tested to detect an arbitrary number of disconti-
nuities and/or trend changes in SATTG time series. More
generally, it is currently unknown to what extent variable
velocities caused by dynamics such as seismic events can
be (automatically) detected in SATTG time series, given the
high noise levels in the data. To fill this gap, we present in this
paper a new algorithm called DiscoTimeS (Discontinuities in
Time Series), which simultaneously estimates the number of
discontinuities, the associated magnitudes of discontinuities
and piecewise linear trends together with other time series
features, such as the annual cycle and noise properties. With
the implementation of this method, we seek to answer the
following research questions:

— To what extent can we automatically detect change points
in SATTG time series?

— How does piecewise determination of trends in SATTG
data improve its comparability with GNSS data?

— How can we exploit the detection and mitigation of trend
changes to obtain more robust linear VLM estimates?

To cope with the extensive number of parameters, we use
a Bayesian framework and generate inferences with Markov
chain Monte Carlo (MCMC) methods. MCMC methods are
capable to deal with highly complex models and were already
successfully applied by Olivares and Teferle (2013) to esti-
mate noise model components in GNSS data. Although not
yet tested, these methods could also be adapted to SATTG
time series. The framework allows to assess the empirical
probability distribution of a set of multiple unknown param-
eters such as the epoch and the number of change points in
the data. The appropriate analysis of the empirical probabil-
ity distribution is a key element for the automated detection
of discontinuities and trend changes.

We describe the datasets, i.e. synthetic, GNSS and SATTG
time series, as well as GIA VLM data in Sect. 2. The Bayesian
model formulation and set-up are presented in Sect. 3. In
Sect. 4.1, we evaluate the model performance using synthetic
SATTG and GNSS data. Section 4.2 provides examples of
physical origins of trend changes and substantiates the neces-
sity to detect them. In Sect. 4.3, we analyse 339 time series
of co-located SATTG and GNSS stations and discuss the
implications of discontinuity detection in SATTG time series.
Finally, in Sect. 4.4 we demonstrate how mitigating discon-
tinuities can enhance the agreement of VLM observations
with VLM from GIA and contemporary mass redistribution
(CMR). We show that these results are also consistent with
trend estimates derived with MIDAS. We discuss the advan-
tages, caveats and potential applications of our method in
Sect. 5.

2 Data

To answer our research questions and to test our method, we
apply the Bayesian model to VLM time series from GNSS
and SATTG, as well as to synthetically generated data. We
use multi-mission altimetry data, combined with most recent
(until 2020) TG observations from PSMSL (Permanent Ser-
vice for Mean Sea Level, Holgate et al. 2013). We compare
SATTG trend estimates with global VLM estimates of GIA
and the nonlinear effect of CMR.

2.1 SATTG observations

Previous studies have inferred VLM either from direct differ-
ences of SAT and TG observations, or from networks of TGs
and ASL from altimetry using different interpolation tech-
niques (Santamarfa-Gémez et al. 2014; Montillet et al. 2018;
Hawkins et al. 2019). In this research, we analyse VLM time
series which are derived from SATTG differences according
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to the recipe in Oelsmann et al. (2021). In order to increase
the quality and quantity of altimetry data close to the coast,
we use dedicated choices in terms of range and corrections
needed to estimate sea surface height (see Table 1). We use
along-track altimetry data of the missions ERS-2, Envisat,
Saral, Topex, Jasonl to Jason3, their extended missions and
Sentinel 3A and 3B. All these missions provide continuous
altimetry time series over 25 years (1995-2020). For all mis-
sions, satellite orbits in the ITRF2014 (Altamimi et al. 2016b)
are used. To reduce systematic differences between the dif-
ferent missions, the tailored altimetry data is cross-calibrated
using the global multi-mission crossover analysis (MMXO)
(Bosch and Savcenko 2007; Bosch et al. 2014).

We use monthly TG data from PSMSL. At every TG, we
select 20% of the highest correlated data within a radius of
300 km. This selection confines a region of coherent sea-level
variations, which is called Zone of Influence (ZOI). Using
these highly correlated altimetry observations, we reduce
the discrepancies w.r.t. the TG observations and simultane-
ously enhance the temporal density of altimetry data, because
several altimetry tracks are combined. This has the effect
of reducing the uncertainty and increasing the accuracy of
SATTG trends. A relatively large selection radius of 300
km is chosen, because previous studies found along-shore
correlation length scales up to 1000km (e.g. Hughes and
Meredith 2006). We also showed in a previous study (Oels-
mann et al. 2021) that VLM is consistent in a ZOI, even if
VLM is computed from distant (up to 300 km) but highly
correlated sea-level anomalies. Correlations are computed
based on detrended and deseasoned SAT and TG data. When
combining the individual mission time series and monthly
PSMSL data, the along-track data are averaged and dec-
imated to monthly means to match the frequency of TG
observations. The correlations are computed independently
for missions which share the same nominal track. We spa-
tially average the along-track data in the ZOI and compute the
differences between their monthly averages and the TG data.
Furthermore, the following data selection criteria are applied:
We omit time series where the multi-mission, monthly SAT
time series (averaged in the ZOI) present a correlation with
the TG data lower than 0.7 (i.e. ~ 10th percentile of all data)
and a root-mean-square (RMS) error higher than 5.5 cm (~
90th percentile of all data). We only use SATTG time series
with a minimum of 150 months of valid data, which yields a
number of 606 remaining SATTG estimates.

2.2 GNSS data

The GNSS time series are obtained from the Nevada Geode-
tic Laboratory (NGL) of the University of Nevada (Blewitt
et al. 2016, http://geodesy.unr.edu, accessed on 1 Septem-
ber, 2020). Because we directly compare segments of linear
trends from SATTG and GNSS time series, we require suf-
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ficiently long periods of data. Therefore, we only use time
series with minimum lengths of 6 years and with at least 3
years years of valid observations. Additionally, based on the
uncertainty estimates provided by MIDAS, we reject GNSS
time series with a trend uncertainty larger than 2 mm/year.
This prevents us from using very noisy GNSS data. Finally,
we select the closest GNSS station within a 50-km radius to
a TG. Because the monthly SATTG time series have a lower
resolution than the GNSS time series, we downsample the
latter daily time series to weekly averages (similarly as in
Olivares-Pulido et al. 2020), which also reduces computa-
tional time of the fitting procedure.

2.3 Synthetic data of sensitivity experiments

In order to evaluate the performance of our method, we apply
the model to synthetic time series which mimic the properties
of real SATTG and GNSS time series and include disconti-
nuities (in form of offsets) and trend changes.

The modelled time-series features are a trend, a harmonic
annual cycle and a noise term. All time series have a duration
of 20 years and 5% missing values. We define the time-series
properties (i.e. annual cycle and noise amplitudes) according
to the analysis of the 606 SATTG time series and 381 GNSS
time series, which were analysed using the Bayesian Model
DiscoTimeS and Maximum Likelihood Estimation (Bos et al.
2013a).

We apply a seasonal component to model annual surface
mass loading variations affecting VLM, such as hydrologi-
cal or atmospheric loading (e.g. Glomsda et al. 2020; Ray
et al. 2021). In contrast to the GNSS data, annual variations
in SATTG data can, however, also stem from discrepancies
in the observations of the different techniques. As we show
in the following, these non-geophysical deviations can have
much larger amplitudes than those obtained from GNSS data
and also influence the noise characteristics.

Several studies affirmed that a combination of white noise
(WN) and power law noise (PL) is most appropriate to
describe stochastic properties of GNSS time series (e.g.
Williams 2008; Langbein 2012). For the synthetic GNSS
time series, we create PL + WN noise, using similar proper-
ties as found for 275 GNSS vertical position time series by
Santamaria-G6émez et al. (2011). We use a spectral index of
—0.9, which is close to flicker noise process, and amplitudes
of 2mm/year and 6 mm/year %/ for white and coloured
noise, respectively. To study the impact of the noise type on
the change point detection, we also analyse synthetic GNSS
data with less realistic AR1 noise.

Although several studies (Royston et al. 2018; Bos et al.
2013Db) investigated noise properties of altimetry and TG SL
time series, there is no consensus on which noise model is
most appropriate for SATTG time series. Thus, we determine
the noise characteristics of the data using an autoregressive
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Table 1 Applied models and geophysical corrections for estimating sea surface heights

Parameter Model/method References

Range and Sea State Bias ALES Passaro et al. (2018)

Inverse barometer DAC-ERA* ,DAC Carrere et al. (2016) and Carrere and Lyard (2003)

Wet troposphere GPD+*,VMF3 Fernandes and Lazaro (2016) and Landskron and Béhm (2018)
Dry troposphere VMEF3 Landskron and Bohm (2018)

Ionosphere NIC09 Scharroo and Smith (2010)

Ocean and Load tide FES2014 Carrere et al. (2015)

Solid Earth and Pole tide IERS 2010 Petit and Luzum (2010)

Mean Sea surface DTU18MSS Andersen et al. 2018

Radial errors MMXO Bosch et al. (2014)

*If available

process AR1 and a PL. + WN noise model (with the Hector
Software, Bos et al. 2013a). The Bayesian Information Cri-
terion (BIC, Schwarz 1978) is slightly more in favour of the
ARI1 noise model compared to the PL. + WN process. There-
fore, we decide to apply the AR1 noise model for SATTG
data.

We adopt different magnitudes of the annual cycle, the
AR coefficient and the white noise amplitude according to
median values, which are estimated from SATTG and GNSS
time series (derived from fitting them with the Bayesian
Model), as defined in Table 2. The noise and annual cycle
amplitudes are 67 times larger for SATTG than for GNSS
time series. It is expected that this behaviour strongly influ-
ences the range of discontinuities and trend changes to be
detectable by the algorithm. Therefore, in the sensitivity
experiments, we take these different noise properties into
account by testing the detectability of different discontinuity-
to-noise ratios, instead of absolute values of discontinuities.

We perform three experiments in which we vary (1) only
the discontinuity-to-noise-ratio, (2) the trend and (3) the
number of change points, together with discontinuities and
trends. The full set-up is described in Table 3. Figure la
exemplifies time series of the experimental set-ups for dif-
ferent parameters.

The change point for the first two experiments is set in the
centre of the time series. These experiments are conducted to
assess the sensitivity of the algorithm to detect single discon-
tinuities and trend changes for different noise amplitudes in
the data. The third experiment is built to reveal how different
numbers of change points might affect the trend estimation.

We vary the discontinuity-to-noise ratio and the trend
change with a stepsize of 0.5 mm/year. For every step and
every tested number of change points (in the change point
experiment), we generate 10 different synthetic series and
model fits.

2.4 GIA and CMR estimates

We use the GIA solution from Caron et al. (2018), which is
based on 128,000 forward models. The likelihood of param-
eters, which describe the Earth structure and ice history, was
estimated from an inversion of GPS and relative sea level data
within a Bayesian framework. The GIA estimate represents
the expectation of the most likely GIA signal. Formal uncer-
tainty estimates were directly inferred from the Bayesian
statistics.

Next to GIA-related long-term surface deformations, we
take into account the effects of ongoing changes in terrestrial
water storage as well as mass changes in glaciers and ice
sheets causing elastic responses of the Earth, which can result
in variable vertical velocities (e.g. Riva et al. 2017; Fred-
erikse et al. 2019). These responses to CMR are not captured
by GIA models and only partially detected by GNSS data
due to the relative shortness of the record lengths. Frederikse
et al. (2019) showed that associated time-varying solid Earth
deformations can lead to significantly different trends in the
order of mm/years depending on the time period considered
during the last two decades. Therefore, we supplement VLM
estimates from GIA with CMR-related land motions accord-
ing to Frederikse et al. (2020). This estimate is based on
a combination of GRACE (Gravity Recovery and Climate
Experiment, Tapley et al. 2004) and GRACE-FO (Grav-
ity Recovery and Climate Experiment Follow-On, Kornfeld
et al. 2019) observations during 2003-2018, as well as pro-
cess model estimates, observations and reconstructions for
the period 1900-2003. To correct SATTG and GNSS VLM
estimates with CMR, we compute linear trends of CMR over
the same time spans of observation and add them to the GIA
trend estimates.
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Table 2 Synthetic time-series

Component SATTG GNSS-AR1 GNSS-PLWN
features
Base trend k& [mm/year] 0 0 0
Annual cycle amp. [mm] 20 25 2.5
White noise € [mm] 20 3.2 2
PL noise € [mm/year_k/ 4 - -
ARI. coeff. ¢ 0.3 0.45 -
Time span [years] 20 20 20
Temporal resolution Monthly Weekly Weekly
Gaps 5% (random) 5% (random) 5% (random)
a) discontinuity - gnss (plwn) b) trend - gnss (plwn) ¢) cp - gnss (plwn)
—— ratio: 1.0 —— trend change: 0.5
trend change: 2.0 40
60 trend change: 5.0
2040
40 Wy %’W" N". "" L
0 w *M LB
—-20
— #cp: 2
—40 #cp: 3 MWWM
#cp: 4
1995 2000 2005 2010 1995 2000 2005 2010 1995 2000 2005 2010
(d) discontinuity - sattg e) trend - sattg 1) cp - sattg
0] e 00| e
ratio: 3.0 150 trend change: 5.0
5 100
‘ 1001, | b J
1 | il | 0
“MM 50 1! "‘“ “wl NJ1 \ |
N ‘ RN -100 ‘
0 A
s 2000 T L000 M,
#cp:d [
1999 2004 2009 2014 1999 2004 2009 2014 1999 2004 2009 2014

Fig. 1 Examples of synthetic height time series (mm) generated for
the sensitivity experiments. The upper (lower) row shows time series
which imitate VLM observations from GNSS-PLWN (and SATTG).
The different lines exemplify variations of the discontinuity-to-noise
ratio (a, d), the trend change magnitudes in mm/year (b, e), as well

Table 3 Set-up of the sensitivity experiments

as of variations in the number of change points and the magnitudes of
the discontinuities and trend changes (c, f). In the discontinuity (a, d)
and the trend change experiments (b, e), the change point is located in
the centre of the time series. In ¢ and f, change points are randomly
distributed

Property

1. Exp. discontinuity

2. Exp. trend change

3. Exp. change point

Number of discontinuities

Discontinuity positions

Discontinuity size (discontinuity-to-noise ratio)
Trend change

A Trend change

1

Centre

0.5,1.0, 1.5, ...5
No

1

Centre

0

Yes

0.5, 1.0, 1.5, ...5 [mm/year]

2-4
~ U(t) witht € [t;, T]
~ U(d) withd € [2,5]
Yes
~ N(0, 12) [mm/year]
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3 Methods

3.1 DiscoTimeS: a Bayesian model for change point
detection

Our overarching goal is to detect the most common time-
series features in GNSS and SATTG data using a single
comprehensive model. The major components considered in
this study are discontinuities o(¢) (abrupt changes in height),
trends g(¢), a seasonal term seas and a noise term 7, which
can also be identified in Fig. 2:

y(0) = o(1) + g(1) + seas + 1 H

Here y(¢) denotes either GNSS or SATTG observations
at time ¢ and is described with a set of unknown parameters
®, which define the motion components (see Sect. 3.3 and
Table 4 for a full description of @). The discontinuities o(z)
and trend components g(#) are assumed to change with time.
Disruptions can occur in form of abrupt jumps, changes in
trends, the onset of post-seismic deformation or a combina-
tion of such events. Thus, the time-dependent components
are piecewise estimated over individual segments of the time
series. These segments depend on the number of change
points and the time (epoch) when they occur (hereafter called
change point position), which are unknown parameters &
of the model, as well. We aim to simultaneously estimate
the most likely number n and position of change points s,
together with the other terms describing the motion signa-
tures.

3.2 Deterministic and stochastic model components

In the following, we summarize how the deterministic com-
ponents, discontinuities, trend changes and the seasonal cycle
are defined. Suppose that the linear motion at the begin-
ning of the time series is defined by a base trend k. The
time series is divided by n change points at positions s;
(with j =1, ..., n). After every change point, the base trend
is updated by an incremental trend change /;. This can
be described as a cumulative sum of all trend adjustments
over time k + ) ju=s; j- Taylor and Letham (2018) used
k+a@)™h (= k + Z;'.:l a(t)jh;) as an alternative repre-
sentation using the Heaviside step function a(z) € 0, 1.

Thus, we obtain a segmented step function for the trend
component. Multiplication of this trend function with time
would, however, introduce discontinuities at the change point
positions, which are proportional to the trend change: y =
sjh ;. Hence, the full representation of the trend component
must be corrected for these discontinuities as follows:

g(t)=(k+a®) hyr —a@n)y. 2)

a) SATTG
0.10( )

¢ o
=)
o

Height changes [m]
(=]
(=]
[=)

i

1

1

-0.05 1 1

1

sattgy | sattg,
-0.10 :
b) GNSS

0.10( ) g T T T
Random realizations | P
—_ observed i i i
E 0.05{ — pw trends : Jik
3 20CI i ol [l

o3 i i
g | i i
£ 0.00 g
3] i
- 1
= 1
2 .05 i T
z i P
i P
1 1 1
010 1 I

\9‘56 f))QQQ qpebﬁ rLQQ% rLQ\(L rLQ\Q’ rLQ()’Q

Year

Fig. 2 Bayesian model fit for a SATTG time series and b GNSS time
series observed at co-located stations in Kujiranami (Japan). The dis-
continuity and trend change in 2011 are similarly detected in SATTG
and GNSS data. Observed height changes [m] are shown in orange
together with 1000 randomly drawn realizations from different chains
in green (shading in the background). The blue lines illustrate the pos-
terior means of the selected best chain (see Appendix B). The blue
shading denotes the 20 confidence intervals (CI) of this model. Detected
change points are marked by the dashed vertical lines. The grey dotted
lines confine the segments of the time series (sattgi, sattgs), which
are compared with the GNSS piecewise trends (colour figure online)

In agreement with trend changes, arbitrary discontinuities
(i.e. offsets) can occur after every change point. Such ‘seg-
ment discontinuities’ are parameterized in a similar way as
in Eq. (2):

o(t) =o+a@) p. 3)

Here o is again the base offset and p is a vector of length
n, which comprises the discontinuity adjustments after every
Sj.

For simplicity, we implement a time-invariant seasonal
component (i.e. without interannual variations), which
describes the seasonal cycle as monthly multi-year averages.
The twelve multi-year monthly means are contained in the
vector m. Thus, the seasonal component is:

seas = x(1)" ' m, 4)

with x(r) € 0, 1:
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(1) = 1, ifmonth (t) =i 5)

0, otherwise

Finally, the noise 1 in Eq. (1) is approximated as a first-
order autoregressive process AR(1). We emphasize that the
presented model set-up explicitly allows for trend changes,
which are, however, usually constrained in other applications.
These include, for example, the computation of reference
frames (ITRF2014 (Altamimi et al. 2016a) and DTRF2014
(Seitz et al. 2021)), or existing trend-estimators like MIDAS.
In Sect. 4.2, we discuss several geophysical processes, which
generate trend changes and hamper the determination of
secular trends. These examples underline the advantages of
detecting trend changes, which can otherwise lead to misin-
terpretations of estimated secular rates.

3.3 Bayesian parameter estimation

The resulting model consists of a multitude of unknown
model parameters, which is particularly influenced by the
arbitrary number of change points and related properties (e.g.
epoch, magnitude of discontinuity). Thus, given the high
complexity of our problem, we use Bayesian MCMC meth-
ods (e.g. Brooks et al. 2011) to approximate the full posterior
probability distribution of the model parameters P(60|y).

For every parameter in ®, we formulate our prior beliefs of
their probability distributions P (&), which are then updated
during the sampling process. Such an assignment of P(®) is
exemplified using the two most influential parameters in our
model, which are the number n and the position s; of change
points. Note that n sets the size of the parameter vectors,
for example, of the vector containing the trend increments.
Thus, for n = 0, we do not estimate any trend change or
discontinuity, for instance. The number of change points is
approximated with multiple (n,,4,) discrete Bernoulli dis-
tributions, which generate samples between 1 (change point
detected, with probability ¢) and 0 (no change point detected,
probability 1 — g) for every possible change point. A change
point is switched on when the probability g exceeds 0.5. The
position of the change points s is assumed to be normally
distributed. Their mean values pg are drawn from a random
uniform distribution U (¢) (hyperprior, i.e. a probability dis-
tribution of the hyperparameters ug of the prior distribution)
spanning the time period of observations:

s ~ N(pg, 02) with ug ~ U(t) and 7 € [11, T] (6)

The positive autocorrelation coefficient ¢ and the white
noise amplitude o2 are both drawn from halfnormal distri-
butions with oy and &y, respectively. Finally, we approxi-
mate all the other parameters, the trend and discontinuities
0, p, k, h and the monthly means m with normal distribu-
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tions. Hence, we obtain the following set of unknown param-
eters of the model: ® = (q, ®g, o, Rps ks lhs ms Os, O,
Op, Ok, Oh, Op, 0w, 0m). As can be seen, the complexity of
the model is set by the number of change points. For exam-
ple, if two change points are detected, there are 2 (o, tx)
+ 12 (pm)+ 2%4 (q, R, Rps Bis) + 2 0, Oy = 24 different
parameters to be estimated.

In addition to the type of probability distribution P(®),
we also specify initial values of the associated distribu-
tion parameters. Here, we make use of prior knowledge of
common GNSS and SATTG time-series characteristics, to
improve the parameter estimation. As an example, we set
qo = 0.1 as the initial values for the probability (i.e. 10%)
of a change point to occur (at the beginning of initialization).
Thus, we define a so-called informative prior for qg, which
expresses specific knowledge of the expectation of a change
point to occur. We also define other initial settings, which
are more thoroughly explained in Appendix A. Table 4 sum-
marizes the complete model set-up and initial assumptions.
Note that these initial values are set for the normalized time
series.

We use different MCMC samplers to generate inferences
about the desired target distribution P (6]|y). For all continu-
ous variables, we use the state-of-the-art No-U-Turn (NUTS)
sampler (Hoffman and Gelman 2014). For the binary vari-
ables q, which control the occurrence of change points, we
use a Metropolis-within-Gibbs step method (e.g. van Raven-
zwaaij et al. 2018). In order to enhance the robustness of
the parameter estimates, we generate an ensemble consisting
of eight independent Markov Chains, whose initial condi-
tions are perturbed within the limits of the aforementioned
described prior distributions. Every chain features 8000 iter-
ations, which is found to be sufficient for individual chains
to achieve convergence of the parameters (according to the
convergence diagnostic by Geweke (1992)). As an example
of the required computing capacities, fitting a 20-year-long
weekly sampled GNSS time series takes on average four
hours using four cores with two hyperthreads per core.

Figure 2 shows independent model fits of SATTG and
GNSS time series. Next to the observations (red), we show
randomly selected draws from the eight different Markov
chains (green), as well as the posterior mean of trends and
discontinuities from the ensemble (blue), which is identi-
fied as the best chain. Vertical dashed lines indicate detected
change points.

The example shows that, depending on the characteris-
tics of the time series, the Markov chains may behave very
differently. While in the case of SATTG there is almost no
spread (green line), for the GNSS example it is very large
(green background shading). The latter is an example of *'mul-
timodality’, a central problem when using discrete variables
(Brooks et al. 2011). We utilize different Bayesian model
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Table 4 Overview of model components, parameters and prior distributions

yt)=o+a®)Tp+ Gk +a@) ™t —a)Ty +x@)Tm+7

Name Parameter Prior distribution Hyperparameter prior distribution
CP (change point) prob. q Ber(q), q=0.1 -

CP position S ~ N(pg, 52) ms~U(t)andt € [t), T]
Discontinuities o,p ~ N(0, 20%) -

Trends k,h ~ N0, 12) -

Monthly means m ~ N0, 12) -

AR1-coeff.* ¢ ~ Half Norm (0.4%) -

White noise ow ~ Half Norm(1?) -

*Lag-one autocorrelation coefficient

selection criteria (see Appendix B), which provide a measure
of model fit and complexity, to select a single best-performing
chain among the ensemble members. The successful approx-
imation of the observations by the depicted chain selection in
Fig. 2b underpins that exploiting several independent chains
is of paramount importance for parameter estimation.

4 Results
4.1 Sensitivity experiments with synthetic data

The sensitivity experiments are performed to investigate (1)
the accuracy of the trend estimation (in the presence of dis-
continuities and trend changes) as well (2) as the accuracy of
the discontinuity epoch. For this purpose, we simulate differ-
ent time series (with different noise properties) and gradually
vary time-series parameters such as the magnitude of the dis-
continuity, the trend change, or the number of change points
(see Sect. 2.3). Figure 3 summarizes the results for the syn-
thetic GNSS data with PL and AR1 noise (first and second
row), as well as for the SATTG time series (last row). In
columns 1-3, we illustrate the accuracy of trend estimation
expressed by the absolute deviations of the estimated trends
(of the individual ensembles) from the known (prescribed)
linear trends (see Appendix C); column 4 shows the change
point detection-rate.

We compare the absolute deviations of the estimated
piecewise trends APW (in green), with the deviations of
trends, computed without accounting for any discontinuities
in the data, i.e. the deviations of single linear trends (ALIN,
in red). Figure 3 shows that these deviations are linearly
dependent on the magnitude of the discontinuity or the trend
change. These statistics are compared to the deviations of
trends, which are obtained, when piecewise trends are com-
puted over the known individual time-series segments (ALIN
(discontinuity known), blue line). The latter represents the
theoretical best trend estimate, given the noise of the data.

We observe that the Bayesian APW estimates in the
discontinuity and the trend experiments (Fig. 3 first and sec-
ond column) generally outperform the linear trend estimates
ALIN. With increasing discontinuity or trend change, the
accuracy of the Bayesian estimates remains almost constant,
while the linear trend deviations ALIN are naturally increas-
ing, in particular with increasing offset magnitude. There is,
however, a notable dependency of the APW deviations on the
noise type and noise amplitudes. The accuracy of trend esti-
mates is much lower for GNSS data with a PL noise model,
than for the AR1 noise. In the latter case (AR1 model, Fig. 3e,
f), the APW deviations are practically identical to the theoret-
ically best achievable deviations, while for the GNSS-PLWN
experiments deviations between 0.25-0.5 mm/year are found
(Fig. 3a, b). Hence, the higher low-frequency variability in
the GNSS-PLWN data strongly influences the general accu-
racy level of trend estimation and has a higher impact than
the magnitude of the offset.

In accordance with the differences induced by the noise
model type, also the noise amplitudes influence the accuracy
of trend estimates. The APW trend deviations of the simu-
lated SATTG time series (Fig. 31, j), which have much higher
noise amplitudes than the GNSS-AR1 data, range in the order
of 0.5-1.5 mm/year. Still, the estimated piecewise trends are
only slightly worse than the theoretical best achievable trend
estimates and consistently better than the ALIN deviations.
This underpins that the model can significantly improve the
accuracy of trend estimation (APW) by mitigating unknown
discontinuities or trend changes.

In the change point experiments (Fig. 3c, g k), different
numbers of change points with random epoch and magni-
tudes of discontinuities and trend changes were simulated.
The experiments confirm the dependence of the accuracy
of trend estimates on noise model type and amplitudes as
found for the single discontinuity and trend experiments.
Here, higher trend deviations are found for the experiment
with synthetic GNSS data and PL noise w.r.t. the AR1 noise
model.
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Fig. 3 Accuracy of trend estimates and detection rates based on the
sensitivity experiments with synthetic data. Results are provided for
the discontinuity (first column), trend (second column) and change
point (third and fourth columns) sensitivity experiments. Each row
shows statistics for different time-series types: GNSS+PLWN (first
row), GNSS-ARI1 (second row) and SATTG time series (last row). In
columns 1-3, we show absolute (weighted) deviations of piecewise
(APW , green) and linear trend (ALIN, red) estimates with respect to
the piecewise simulated (known) trends of the synthetic time series. The
linear trends are computed with least squares without accounting for dis-
continuities. The blue line (ALIN) corresponds to linear trend estimates
which are computed over the known time-series segments, i.e. here we

We simulate up to 4 change points and we observe that
the model performances slightly deteriorate as the number of
change points increase (Fig. 3c, g, k). Accordingly, perfor-
mances are expected to further decrease with a much larger
number of change points, if the duration of the time series
remains the same. This is likely caused by the reduced length
of the remaining time-series segments. For example, with
four equally distributed change points, each segment would
only have a length of 4 years (for a 20-year-long time series).
At the given noise levels of the time series, a 4-year-long
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assume the discontinuities are known. Solid lines and shadings indicate
the mean and 95% confidence bounds of the different fits per tested
parameter. In ¢, g and k the magenta lines show APW deviations when
only SATTG (GNSS) segments with a length over 8 (3) years are used.
A discontinuity-to-noise ratio of 1 is equivalent to 3.2 mm (GNSS) and
20mm (SATTG). In the change point experiments, the magnitudes of
the discontinuities are randomly drawn from an uniform distribution
covering values within the twofold—fivefold of the white noise ampli-
tudes. In the last column, we show true- and false-positive detection
rates (TP and FP) for the change point sensitivity experiment (colour
figure online)

SATTG time series would, however, have a trend uncer-
tainty of more than 5 mm/year (even without accounting for
autocorrelated noise). The large noise amplitudes and their
effect on trend uncertainty therefore set a natural lower bound
for accurate trend estimation when using short segments of
SATTG or GNSS time series. A lower trend accuracy is thus
less a sign of low model performance, but rather caused by
the large uncertainties of the piecewise trends. The magenta
curvesinFig. 3c, g, killustrate how the APW trend deviations
are influenced when only longer time series are used. Here,
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we set the minimum required length of the SATTG (GNSS)
time series to 8 (3) years, which corresponds to trend uncer-
tainties of ~ 2 mm/year uncertainty. For both time-series
types, SATTG and GNSS, this entails better accuracy and a
reduction in the number of extreme deviations as shown by
the narrower uncertainty bands, which represent the spread
of the different fits per parameter. Therefore, we also apply
these criteria of minimum segment lengths (i.e. 8 years for
SATTG and 3 years for GNSS) for the real data applications.

The performance of the discontinuity detection is also
evaluated by means of the false-positive (FP) and true-
positive (TP) detection rates for the different experimental
set-ups (see Fig. 3d, h, 1). A change point is correctly detected
when the prescribed change point position is within the
confidence bounds (95%) of the 2 o uncertainties of the
estimated change point position. The TP detection rate is
defined as the proportion of change points that are correctly
detected (w.r.t. the number of prescribed change points).
Detected change points that do not correspond to the pre-
scribed ones are accounted in the FP detection rate, which
indicates over/misfitting of the data.

The TP detection (FP detection) rate for the GNSS-
PLWN time series is lower (higher) than for the associated
GNSS-ARI1 time series (Fig. 3d, h). These results reflect the
differences in the performances based on the accuracy of
the trend estimates. In particular, the increased FP rate for
GNSS-PLWN time series consolidates that simultaneously
estimating discontinuities and trend changes in the pres-
ence of PL noise remains a key challenge for discontinuity
detection. Interannual variations (in GNSS-PLWN series) are
likely to be overfit or misinterpreted, for example, by fitting
discontinuities or trend changes. This can explain the bet-
ter performance for GNSS-ARI time series, which feature
little low-frequency variability. Also, the generally high TP
detection rate for SATTG shows that differences in the noise
amplitude are less influential than the type of the noise itself.

Overall, we obtain relatively high TP detection rates
(50-100%), compared to previously reported statistics by
Gazeaux et al. (2013), where the highest reported TP rate was
in the order of 40%. On average, 223 out of 270 prescribed
change points are correctly detected in the cp-experiments.
Differences in the experimental set-up, as well as in the defi-
nition of the TP detection rate, can explain these disparities.
For example, in the change point experiments, discontinuities
have a minimum size of two times the white noise amplitude.
In Gazeaux et al. (2013), the magnitudes of the discontinu-
ities were drawn from a Pareto distribution, which includes
smaller discontinuities than applied in the presented experi-
ments. Also the definition of the detection-rate differs across
the studies, considering that in this study the estimated epoch
uncertainties are used as a temporal tolerance and Gazeaux
et al. (2013) set a constant 5-day tolerance window around
a change point. There exist also general differences in the

time-series noise-amplitudes and temporal resolutions. With
the focus on discontinuity detection in SATTG time series,
it should be noted that the accuracy of epoch estimation in
SATTG data strongly decreases compared to GNSS data,
given the low monthly resolution as well as the high noise
levels in the data.

In summary, the synthetic experiments verify that Disco-
TimeS improves the accuracy of those trend estimates that
are impaired by unidentified discontinuities. Hence, in the
following chapters we apply the algorithm to real data and
test to what extent DiscoTimeS can be utilized as an unsu-
pervised discontinuity-detector.

4.2 Detecting discontinuities and trend changes in
SATTG and GNSS data

The premise of this study is that VLM cannot only be dis-
turbed by abrupt changes in height, but can also exhibit trend
changes on decadal time scales, which hamper an unbiased
assessment of secular trends. The detection of significant
trend changes can provide valuable information about the
reliability of extrapolating the VLM at the considered station.
To further substantiate the existence and physical justifica-
tion of such nonsecular VLM, we show GNSS observations
together with piecewise trend estimates, as well as the single
linear trend estimates by MIDAS (which is a robust estimator
of a single trend).

Figure 4 depicts three physical mechanisms that can influ-
ence the linearity of VLM. The majority of trend changes
in VLM observations can be attributed to earthquakes, see
Fig. 4a—d. These examples are useful to understand the lim-
itations of established methods (like MIDAS), which do not
incorporate possible trend changes. In such cases, an estima-
tion of trend changes can be applied as a preprocessing step
before fitting the data with adequate models including terms
of post-seismic deformation, for instance.

Next to earthquakes, VLM can also be affected by more
localized processes as highlighted by the time series in the
second row (e—h) of Fig. 4. The associated GNSS stations
are all located in the Gulf of Mexico, near Houston. In this
zone, VLM exhibits a relatively large spatial and temporal
variability (0—10 mm/year subsidence), which is influenced
by extraction of hydrocarbons, groundwater withdrawal, land
reclamation and sedimentation, (Letetrel et al. 2015; Kolker
et al. 2011). Such processes likely also affect the selected
GNSS stations. The station velocities in Fig. 4e, f indicate that
averaged linear trends might not be entirely representative
of a secular trend, given the detected variability in trends
over different periods of time. The closely located stations
DENI1 and DEN3 (with a distance of 2 km) also show a
trend change around the end of year 2015, which is also not
reported in the station metadata. Hence, we assume that local
VLM explains the consistency of the signal in both stations.
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Fig. 4 Vertical land motion time series from GNSS observations
and contemporary mass redistribution (CMR). The first row depicts
earthquake-affected stations from Alaska (a), Chile (b) and Japan (c,
d). The second row illustrates time series from stations near or at the
coast of the Gulf of Mexico, influenced by local processes causing vari-
able velocities. The last row shows station time series in Iceland (i, j)

Asin the previous examples, itis not straightforward to derive
a secular trend in such cases.

The third mechanism that contributes to potential trend
changes is nonlinear surface deformation due to mass load-
ing changes. In the lastrow of Fig. 4, we show stations located
in high northerly latitudes (AKUR in Iceland and JNUI in
Alaska), which are most likely affected by present-day ice
mass changes (on top of secular GIA VLM). In Fig. 4i, k,
we show the GNSS observations and the model estimates of
piecewise trends. Next to them, we show surface deforma-
tion time series due to CMR from Frederikse et al. (2020)
in panels Fig. 4j, 1, with the same GNSS time series in the
background. The CMR data indicate subtle trend changes on
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and Alaska (k, 1), which correlate on decadal time scales with CMR (j
and 1, blue lines). Note that a trend of 13 mm/year was subtracted from
the JNU1 station. We show observations in orange, the model estimate
of piecewise trends in blue (with 2 o confidence intervals and dashed
lines for detected change points) and the trend estimate from MIDAS
in grey (a—h) (colour figure online)

subdecadal time scales, which are qualitatively also reflected
by the GNSS data. Frederikse et al. (2020) provided evidence
that decadal VLM variations due to CMR changes can sig-
nificantly influence GNSS station velocities in the order of
millimeters per year. This is particularly critical when VLM
is derived from short time series.

Evident physical origins motivate the identification of
trend changes in GNSS and SATTG data. Thus, in the fol-
lowing section we investigate whether accounting for trend
changes can improve the agreement of trends over individual
periods between independent techniques.
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Fig. 5 Vertical land motion time series from SATTG (top row) and
GNSS (bottom row) pairs. a Station in Sakamoto Asamushi, Aomori,
Japan, b station in Mossel Bay, South Africa, ¢ station in La Palma,
Spain. Next to the observations (orange line), we show the model mean
fit in green (in the background), the model mean without the annual

4.3 Comparison of piecewise and linear SATTG
trends with piecewise GNSS trends

We compare piecewise trends from SATTG and GNSS data
at 339 globally distributed station pairs, which have a max-
imum distance of 50 km. The trends are computed with the
same model settings (of the deterministic and noise compo-
nents) for both time series. Figure 5 displays time series at
three stations that exemplify the increased consistency of the
estimations in SATTG and GNSS time series when using the
DiscoTimeS approach.

Figure 5a (corresponding to a station located in Japan)
and Fig. 5b (corresponding to a station located in Mossel
Bay, South Africa) show an almost coincident position of
the largest discontinuity detected. In the first case, we can
detect the discontinuity caused by the Tohoku Earthquake
in 2011. Due to the related crustal deformation, the north-
ern parts of the Tohoku region were affected by land uplift
(Imakiire and Koarai 2012), as can also be seen by the instan-
taneous ~4 cm uplift in both time series shown in Fig. 5a.
The subsequent post-seismic deformation is approximated
by a range of piecewise trend segments in the GNSS time
series. In the SATTG time series, these subtle post-seismic
signals are below the detection limits due to the larger noise
amplitude of the data (see upper panel in Fig. 5a), and con-
sequently a single trend is estimated. Due to the strong
instantaneous earthquake-induced land uplift, most of the

cycle in blue lines and finally the 2 o confidence intervals of the fit
with blue shadings. The positions of change points are marked by the
vertical dashed lines. The time series show pronounced discontinuities
in SATTG observations, which are partially also observed in the GNSS
time series (colour figure online)

concurrent change points (in GNSS and SATTG data) are
found in Japan. Figure 5b shows a change in the zero posi-
tion of the TG (in Mossel Bay), which is in agreement with a
height change in the GNSS time series. The origin of the shift
in the SATTG time series (or accordingly the TG) is unclear,
because it is not documented in the station metadata. The
automated detection of the discontinuity is thus crucial to
estimate accurate VLM trends and can facilitate and support
the manual inspection of discontinuities.

Figure 5c shows height changes in time series of La Palma,
aregion that is affected by volcanic activity. We observe high
variability in the SATTG time series over the period 1997-
2008. The trend in the latter segment of SATTG aligns much
better with the GNSS data over the same period than the vari-
ations before. Identification of such variability can be a very
useful information for investigations focused on SL trends
based on TG observations. This example also underpins the
importance of analysing such effects in SATTG time series
directly, considering that we often have limited information
from GNSS over the full period of observation, as is the case
at this particular location.

Despite the abundance of time series, which are affected
by both, discontinuities and trend changes, in the majority
of cases discontinuities are not necessarily associated with a
trend change (such as in Fig. 5b or in the GNSS time series
in Fig. 5¢). In order to mitigate such inappropriate trend
changes, we apply a significance check. At every detected
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Fig. 6 Comparison of the piecewise trend deviations APW with the
single linear trend deviations ALIN. The trend deviations are the abso-
lute weighted deviations from the piecewise GNSS trends as described
by Egs. (7) and (8) in Appendix C. We subtract the APW from the ALIN
deviations at every individual station pair. Therefore, a positive differ-
ence indicates an improvement by using the Bayesian model compared
to estimating a single linear trend from a SATTG time series, and vice
versa. The differences are grouped by the number of detected change
points in the SATTG time series, as well as by the maximum allowed
distance between GNSS and TG stations

discontinuity, we test whether the trend differences between
consecutive time-series segments are significant, given the
combined trend uncertainties of the segments. Trend uncer-
tainties of every time segments are recomputed, while the
estimated discontinuity epochs and magnitudes of discon-
tinuities are held constant. Otherwise, trend uncertainties
would be influenced by the estimated epoch and discontinuity
uncertainties. The re-computation of the trend uncertainties
is performed with DiscoTimeS, without allowing for change
points and with appropriate noise models for the respective
time-series types. We use an AR1 model for SATTG and
a PLWN model for GNSS data, assuming a constant spec-
tral index of —0.9. Note, that in the model configuration,
which incorporates the estimation of discontinuities, a AR1
noise model is used for both time-series types. We iterate
the test over all time-series segments, which also allows to
identify multiple non-significant trend changes. Finally, for
all neighbouring segments with no significant trend changes,
we remove the detected discontinuities and recompute the
trends over the combined segments. We apply this signifi-
cance test for the following statistical comparison of SATTG
and GNSS trends.

To what extent the Bayesian piecewise trend estimation
improves trend estimates from SATTG (w.r.t. GNSS data) is
depicted by Fig. 6 and Table 5. Here, positive values of the
differences of trend deviations ALIN and APW indicate an
improvement when using the Bayesian change point detec-
tion, i.e. a better consistency between GNSS and SATTG
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is ensured. The differences are grouped by the number of
detected change points in SATTG time series. We addition-
ally sorted the data by the maximum allowed distance of a
TG-GNSS pair. In 227 of the cases, the model detects no
change points in the data. Here, the deviations of trend esti-
mates are equal for both ALIN and APW. This means that
we model purely linear motions over the full period in both
cases.

When one or two change points are detected, the piece-
wise trend estimation outperforms the linear trend estimation
with mean improvement of 0.48 mm/year (21.7%) for one
detected change point and an improvement of 0.46 mm/year
(17.5%) for two detected change points. The percentage of
improvements refers to the absolute deviations of trends as
also listed in Table 5.

There are only nine cases where more than two change
points are detected. Here, the scatter of trend differences
using the piecewise estimation decreases compared to the
linear estimates. This could be due to the increased fragmen-
tation of the data and shortness of the time-series segments.
Such small number of samples (9), however, hinders a robust
assessment of the significance of improvement/deterioration.
In general, the lower consistency achieved in such cases sug-
gests a careful treatment of SATTG piecewise trends with
more than two detected change points for the given record
lengths.

To test the significance of the improvement when at least
one change point is detected (i.e. n > 0), we apply ordinary
bootstrapping (see, e.g., Storch and Zwiers 1999). Based on
the given differences of ALIN—APW (withn > 0), we gen-
erate 10,000 random sets with replacements, using the same
number of sample size for each set (i.e. 112 VLM differ-
ences). We compute the mean of these bootstrapped sets,
which yields an empirical probability distribution of the mean
and its 95% confidence intervals (i.e. the 2.5 and 97.5% per-
centiles). The obtained mean of +0.36 [0.02, 0.7] mm/year
shows that in general the improvement by fitting piecewise
trends is significant.

The geographical distribution of the differences (mm/year)
between ALIN and APW is illustrated in Fig. 7. Improve-
ment (deterioration) with respect to a linear trend estimation
is indicated with red (blue), and the circles sizes are scaled
by their absolute values. The largest improvement occurs in
regions with pronounced tectonic activity, in particular in
Japan (Fig. 7¢).

An improvement (in the order of ~ 1-2 mm/year) is also
observed in regions with less tectonic activity, which are
nearly randomly distributed over the globe. This indicates
that a non-negligible part of the stations are also affected by
other (local) phenomena, which are potentially more diffi-
cult to detect and less likely to be known than those related
to earthquakes.
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Table 5 Comparison of the piecewise trend deviations APW with single linear trend deviations ALIN (as deviations from the piecewise GNSS

trends)

#cp ALIN [mm/year] APW [mm/year] Improvement [mm/year] Improvement [%] # Station pairs
0 1.48 1.50 —0.02 —1.1 227

1 2.20 1.72 0.48 21.7 65

2 2.61 2.16 0.46 17.5 38

3 1.62 2.80 —1.19 —73.4 8

4 5.81 5.09 0.72 12.4 1

Improvement is given as the mean differences of ALIN and APW in mm/year (and %). Positive values indicate the improvement obtained after

applying DiscoTimeS. The data are sorted by the number of detected change points in SATTG

Fig.7 Geographical (a)
distribution of trend differences 180°W 120°W 60°W 0° 60°E 120°E
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Another area of improvement is the East Australian coast.
Frederikse et al. (2019) showed that this region is affected by
variable velocities due to CMR. Vertical solid Earth crustal
deformation rates were shown to vary from ~0.5 mm/year in
2002-2009 to —1.5 mm/year in 2009—-2017. This could be an
explanation for a better agreement of the piecewise SATTG
and GNSS trends in this area. For this comparison, SATTG
and GNSS data are intentionally not corrected for CMR to
test how associated variable velocities can be detected by
DiscoTimeS.

In some cases, DiscoTimeS trend estimates yield larger
deviations compared to the single linear trend estimates.
Some of these cases are located in Great Britain (Fig. 7b)
and Japan (Fig. 7c). There are various possible reasons which
might explain such degradation. One factor could be the rel-
atively large allowed maximum distance of 50km between

15°E

28°E 126°E 135°E

the GNSS and TG stations. The comparability of piecewise
trend estimates with GNSS could be severely reduced, when
the VLM dynamics are caused by very localized events. In
such a case, a smooth long-term linear trend might better
fit to a distant GNSS estimate. Indeed, when only allowing
for a maximum distance of 1 km, some of those cases can
be mitigated and the improvements by using piecewise trend
estimates increases further (Fig. 6).

Next to differential VLM at GNSS and TG stations caused
by highly localised VLM, it should be emphasised that errors
in the altimetry data or mismatches between SAT and TG
SL observations still represent the largest error sources. This
is also governed by the accuracy of altimetry SL observa-
tions in the coastal zone, which is influenced by a large
variety of factors, for example, the applied corrections and
adjustments (e.g. tidal corrections), but also local conditions
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Fig. 8 Trend differences between a single linear SATTG estimates, b
time-averaged piecewise GNSS trend estimates and ¢ MIDAS trend
estimates and VLM from GIA (red) and GIA+CMR (blue). The 606
single linear SATTG trend estimates are grouped into a set where no
change point was detected (n = 0, 380 cases) and at least one change
point was detected (n > 1,226 cases). The GNSS data are grouped into

such as complex coastlines or islands, which can perturb the
backscattered radar signal. Next to deviations in the observed
oceanic SL signals, the associated non-physical noise in
SATTG VLM time series can thus lead to an erroneous detec-
tion of discontinuities, which should therefore be carefully
inspected.

4.4 Exploiting knowledge of variable velocities to
increase consistency of SATTG and GNSS VLM
estimates with VLM from GIA and CMR

One important contribution of DiscoTimesS is its ability for
qualitatively labelling the vertical land motion as ‘constant’
or ‘variable’. While trend uncertainty is a good statistical
measure to quantify a possible range of trend changes, it
is, however, less suited as a measure to resolve a possi-
ble time-dependent variable velocities. Therefore, we also
investigate how we can exploit the information on the seg-
mentation and trend changes in the SATTG and GNSS time
series to increase their agreement with large-scale VLM fea-
tures such as GIA (and CMR). We use the estimated number
of change points to detect potentially nonlinear motion in
SATTG time series. For GNSS data, where more disconti-
nuities (n > 0 in 92% of the cases, i.e. 688 in total) are
detected, we allow for a possible small rate of change in
the trends (< 0.4 mm/year), such that the overall motion
is still labelled as ’constant’. This threshold corresponds to
the median weighted standard deviation of piecewise trends
within a times series, std(pw_gnss), of all GNSS data. To
substantiate the results, we complement the analysis by com-
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sets in which the weighted standard deviation of the trend changes in a
single time series is below or above 0.4 mm/year. This value represents
the median of all standard deviations for the 381 GNSS stations. Trend
differences are up to twice as large as for SATTG and GNSS VLM
observations which are characterised as ‘variable’ VLM (colour figure
online)

paring estimated GNSS trends with those computed with
MIDAS (Blewitt et al. 2016).

Figure 8 and Table 6 show the differences of single linear
SATTG trends w.r.t. GIA and GIA+CMR estimates. The lin-
ear SATTG trends are grouped according to whether change
points are detected by the model or not. Linear SATTG
trends agree much better with the large-scale VLM, when
the model detects no change points, i.e. when it characterises
the motion over the full period as ’linear’. The agreement
with GIA+CMR VLM, which is quantified by the standard
deviation of the differences, is almost 40% (1.22 mm/year)
better for the case of no detected change points. We obtain
the best agreement when also including the CMR correction
compared to using the GIA estimate only.

Still, the standard deviation of the differences of SATTG
trends and the combined GIA+CMR effect (1.95 mm/year)
as well as the median bias of trends (0.59) are relatively large.
Such high discrepancies can be caused by local VLM, which
is constant but not represented by either the GIA model nor
the CMR effect. There is, for example, a strong outlier with
a deviation from GIA+CMR of almost 18.2 mm/year when
no change point is detected (Fig. 8a). The derived SATTG
time series (from a TG in Elfin Cove, Alaska) is associated
with a very steady uplift motion (of 21 mm/year), which
is not captured by the combined GIA+CMR effect. Overall,
despite these cases of local but highly constant VLM, exclud-
ing the SATTG estimates associated with variable velocities
strongly improves the agreement of SATTG and GIA+CMR
on a global scale.

We obtain similar results from the analogous analysis
comparing GNSS and GIA+CMR effects. Here, we com-
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Table 6 Statistics of trend differences of linear SATTG trends (computed with least-squares without accounting for change points) and GNSS with

respect to GIA/GIA+CMR VLM estimates

VLM estimate Number of change points STD [mm/year] Median A Trends [mm/year] Count

SATTG-GIA n=0 2.13 0.76 380
n>0 3.35 0.85 226

SATTG-GIA+CMR n=0 1.95 0.59 380
n>0 3.17 0.68 226

DiscoTimeS Trend standard deviation [mm/year]

GNSS-GIA <04 1.66 —0.15 191
> 0.4 3.25 —0.27 190

GNSS-GIA+CMR <04 1.53 —0.49 191
> 0.4 2.93 —0.48 190

MIDAS Trend standard deviation [mm/year]

GNSS-GIA <04 1.81 —0.06 191
> 0.4 3.33 —0.18 190

GNSS-GIA+CMR <04 1.68 —0.55 191
> 0.4 2.99 —0.45 190

SATTG estimates are grouped depending on whether or not change points are detected. GNSS estimates are instead grouped by the standard
deviation of piecewise trends as estimated by DiscoTimeS. We also provide the statistics for MIDAS linear trend estimates, which are grouped
according to the criterion estimated with DiscoTimeS. Shown are the standard deviation and the median of the differences, as well as the number

of estimates

pare the weighted averaged piecewise trends (estimated with
DiscoTimeS), as well as the MIDAS trends with GIA+CMR
VLM estimates. The trend differences are sorted according
to the standard deviation of trend changes within a time
series as detected by DiscoTimeS. Trend differences w.r.t.
large-scale GIA+CMR VLM are strongly reduced for time
series with minor trend changes (std < 0.4 mm/year), com-
pared to time series where a high standard deviation in trend
changes is detected (see Fig. 8b and Table 6 second section).
As for SATTG VLM estimates, the combined GIA+CMR
effect improves the comparability compared to the sole GIA
VLM correction.

These findings are also supported by the analysis of
MIDAS trends, which are grouped according to the same
criteria as the piecewise DiscoTimeS estimate. The stan-
dard deviation of the differences of trends w.r.t. to GIA (or
GIA+CMR) is consistent with the statistics obtained by the
DiscoTimeS estimates (Table 6). Based on these statistics, the
performances of DiscoTimeS in terms of trend estimation are
at the same level of MIDAS, also when a significant nonlin-
ear behaviour is detected. The results not only underline the
benefit of detecting trend changes to spot significant variable
velocities, but also substantiates the validity of DiscoTimeS
for mitigating discontinuities. In essence, the significantly
increased consistency with GIA+CMR estimates substanti-
ates the successful detection and characterization of variable
velocities in both GNSS and SATTG time series.

5 Discussion and concluding remarks

We present a new approach to automatically and simultane-
ously estimate discontinuities, trend changes, seasonality and
noise properties in geophysical time series. With the focus on
VLM, we demonstrate the versatility and adaptability of the
Bayesian model and its application for SATTG and GNSS
data. The major aim of the model development is to fur-
ther improve the detectability of variable velocities, than it is
currently achievable by state-of-the-art algorithms. Although
we strongly focus on coastal VLM for relative sea-level esti-
mation, we highlight that the model promises a much wider
application range, especially in geodesy, for detecting dis-
continuities in time series of space-geodetic techniques or
climate and sea-level sciences in an automated mode.

We use sensitivity experiments to understand the impact
of discontinuities and trend changes on trend accuracy and
detection limits for time series of different noise properties.
The analyses show that the accuracy of trend estimates and
the detection rates are influenced by the noise characteristics
(noise type and magnitudes), as well as by time series param-
eters such as the number of simulated change points. The
accuracy of linear trends estimated over very short periods
decreases according to the growing uncertainties. There-
fore, we set 3 and 8 years as minimum required segment
lengths for GNSS and SATTG observations, respectively.
Using these constraints, DiscoTimeS consistently outper-
forms linear trend estimates, also for time series with multiple

@ Springer



62 Page 18 of 23

J. Oelsmann et al.

change points, discontinuities and trend changes. Differences
between estimated and prescribed trends are in the order of
0.3-0.5 mm/year for synthetic GNSS data simulated using
PLWN noise, < 0.1 mm/year for GNSS data simulated using
ARI1 noise and within arange of 0.5-1.5 mm/year for SATTG
data.

The results show that PL noise has a significant impact
on the accuracy of trend estimates, as well as on the detec-
tion rates of change points. This implicates that PL noise can
represent an ambiguity for the model, which causes difficul-
ties to discriminate between noise and discontinuity or trend
change and can potentially lead to overfitting of the data. The
discussion on the role of PL noise for discontinuity detection
was also raised by (Gazeaux et al. 2013). They highlighted
that Hector (Bos and Fernandes 2016), as the only algorithm
to take into account PL noise, yielded a lower FP rate (i.e.
was less likely to overfit the data), but had also a reduced TP
rate. Thus, further developments are required to better disen-
tangle discontinuities in the presence of low-frequency noise
and to find a compromise between over- and underfitting of
the data, which ultimately depends on the user requirements.
Because we analyse time series with an unknown number
of discontinuities and additionally trend changes (and PL-
noise), which substantially increases the complexity of the
problem and thus the uncertainties of the estimates, the model
estimates should be carefully reviewed and interpreted by the
user.

We use sensitivity experiments to understand the detection
limits of discontinuities and trend changes for time series of
different noise properties. The analyses show that the abil-
ity to detect different magnitudes of discontinuities and trend
changes strongly depends on the signal-to-noise ratio and the
temporal resolution of the data. The model accurately detects
discontinuities in the order of 3—4 mm and ~ 1 mm/year trend
changes in synthetic GNSS time series (with white noise
amplitudes of 3.2 mm and a duration of 20 years). The detec-
tion limit for discontinuities for much noisier SATTG-type
time series (20 mm white noise amplitudes) is one order of
magnitude larger with about ~4 cm. In case of trend changes
in SATTG time series, the accuracy of detecting the exact
position of discontinuities in time series is decreased. How-
ever, the determination of the magnitude of the trend change
itself is still about three times more accurate than estimates
obtained from single linear trend fits. The results also point
towards the necessity of setting a lower limit of time series
length, over which piecewise linear trends are estimated. The
accuracy of linear trends estimated over very short periods
decreases according to the growing uncertainties. Therefore,
we set 3 (8) years as minimum required segment lengths for
GNSS (SATTG) observations. Using these constraints, the
model consistently outperforms linear trend estimates, also
for time series with multiple change points, discontinuities
and trend changes.
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We apply the model to globally distributed coastal VLM
data, consisting of 381 GNSS and 606 SATTG observations
using the same model settings. The comparison of piecewise
estimated GNSS and SATTG trends at 339 co-located station
shows a higher agreement of the trends by 0.36 mm/year
compared to linear SATTG estimates, when change points
are detected in SATTG time series. The improvement is 0.48
mm/year (21.7%) and 0.46 (17.4%) for one (two) detected
change points in the SATTG time series.

The fact that we obtain significant improvements in the
comparability of GNSS and SATTG trends when account-
ing for variable velocities, supports the possibility to assess
the time dependency of SATTG VLM at locations where no
GNSS stations are available. This is crucial, because SATTG
time series usually cover much longer periods of observations
than GNSS data. The model also enables the characterization
of the ’linearity’ of the VLM, as shown by the much higher
consistency of GNSS and SATTG trends with GIA+CMR,
for time series which are identified as ’linear’ VLM. This
could also generally support a more systematic selection of
GNSS VLM data to constrain GIA models (e.g. Caron et al.
2018).

Despite the progress in taking a step towards a fully
automated discontinuity detection (see also previous devel-
opments, e.g. Gazeaux et al. 2013), the model estimates
should still be carefully reviewed in view of the variety of
factors and inadequate model assumptions, which can still
compromise the model results. One central challenge is the
correct identification of the stochastic noise properties in the
presence of change points, which can strongly influence the
change point detection rate. We show, for example, that PL
noise still leads to a higher ambiguity (and overfitting) in
the detection of change points than noise models without
low-frequency components. In addition, differences between
SAT and TG data, which can either be caused by physi-
cal or instrumental issues, can also result in an erroneous
discontinuity-detection. Such time series should therefore be
carefully inspected by the user. Another remaining caveat
is that the parametrization of post-seismic relaxation with
piecewise incremental trends is a simplification of the pro-
cess and can be better described by using a relaxation model.
These limitations should be considered, when applying the
presented method as an unsupervised discontinuity and trend
change detection tool for preprocessing data.
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Appendices
A Model initialization

Before estimating the parameters, time series are normal-
ized, such that the same prior assumptions are valid for both
SATTG and GNSS data. Compared to SATTG time series
GNSS data have much lower noise amplitudes, so without
normalization the prior of, e.g., o, would need to be set indi-
vidually. We normalize the data by the median of their 2-year
running-standard-deviation, hereinafter called o, . With this
approach we avoid that extreme discontinuities (in particular
present in GNSS data), which present orders of magnitudes
larger than the ’true noise amplitude’ influence the normal-
ization. We also subtract the offset of the first observation
from the data.

Next to the initial probability of qo, which is explained
in Sect. 3.3, several other parameters need to be initialized.
The maximum number n,,,, of possible detectable change
points is set to 5. The initial AR(1) noise parameter (i.e. the
lag-one autocorrelation coefficient) are set to o = 0.4 and
0w = 1. The white noise standard deviation is thus consistent
with the standard deviation of the normalized data. In case
the PLWN model is applied we set 6, = 0.2,6,; = 1. To
reduce the complexity of the model, the spectral index is
not estimated but prescribed to k = —0.9, which generates a
noise process close to Flicker Noise. For the trend parameters,
we also use informative priors: We set o and oy, to 1. Note
that this value corresponds to ~ loyps/year, and is thus
in the order of mm/year to cm/year (for GNSS or SATTG
time series). This is another crucial prior assumption, which
is based on knowledge of typical physical magnitudes of
VLM. The definition primarily avoids that large shifts in the
time series would be compensated in form of large VLM
rates, but rather be approximated by discontinuities. For the
discontinuities, we use noninformative priors with o, and o'
of 20 (which can be translated to 20 standard deviations). The
exact initial change point positions are randomly drawn from
the aforementioned uniform distribution, the prior standard
deviation o is set to 5 years. The multi-year monthly means
I are set to 0 with oy =1.

For very obvious and easily detectable discontinuities in
the data (in particular in GNSS time series), knowledge of
such events can support the model initialization and gener-
ally speed up the computation. We therefore incorporate the
position and magnitudes of discontinuities ps and g, in the
initial conditions, which are detected when absolute consec-
utive differences are 15 times larger than the median of all
consecutive differences. In general, such events are only rec-
ognized for some GNSS stations.
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B Model selection strategies

There are several options to compare and evaluate different
Bayesian models (Gelman et al. 2013). As an objective mea-
sure to compare different individual model realizations, we
take into account the out-of-sample predictive accuracy of
a model. Here, the Pareto-smoothed importance sampling
leave-one-out cross-validation (PSIS-LOO) introduced by
(Vehtarietal. 2017) is applied, which provides an approxima-
tion of the predictive accuracy (loo) and a simulated estimate
of the effective number of parameters (p-loo) of the model.
In theory, in the cross-validation (CV) approach the data is
split into training sets, on which the model is trained, as well
as holdout sets from which the predictive accuracy is com-
puted. (Vehtari et al. 2017) developed an efficient method to
compute LOO using the existing simulation draws in order to
avoid re-fitting of the full time series. As an example, the esti-
mates of piecewise trends and discontinuities (blue) in Fig. 2
stem in both cases (SATTG and GNSS) from the ensemble
member with the best CV-score.

Using CV (or other criteria such as WAIC (widely appli-
cable information criterion) or DIC (deviance information
criterion)) to select a single best-performing realization, can
however lead to overfitting of the data and introduce a signif-
icant selection bias (Piironen and Vehtari 2017), even though
the CV-score might indicate the best predictive accuracy
among the realizations. Piironen and Vehtari (2017) show
that, for example, CV-based model selection is especially
vulnerable to overfitting at smaller sample sizes, which might
thus also have a significant influence for our application
where SATTG time series have much lower samples (res-
olution) than the GNSS data. They underpin that Bayesian
Model Averaging yields better results and is substantially
less prone to overfitting than single model selection based on
CV.

Therefore, we take into account the averaged number of
estimated change points 7 over all model candidates, as a
simplified variant of Bayesian Model Averaging. Note, that
even if two realizations estimated the same number of change
points, the estimated change point positions and dependent
parameters might still significantly deviate. For this reason,
we can not average over all parameters and only use 7 as
ensemble average information.

In total we define three selection options, to identify which
is the best solution for SATTG and GNSS time series. In
the first case, best;y,, we select the model with the high-
est predictive accuracy. Secondly, we select the model with
the highest predictive accuracy from the candidates where
n = 7. This selection is called best;,, and represents a less
optimistic choice than best;,,. Finally, as the most conser-
vative selection scheme, we use the model with the lowest
effective number of parameters lowest,_;o,. Note, that this
is not necessarily equivalent to the model with the lowest
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number of change points. The estimated effective number of
parameters is also reduced, for example, when there is no
significant trend change after a change point and h becomes
ZEero.

The comparison of SATTG and GNSS piecewise trends
in Sect. 4.3 reveals that the highest agreement of piecewise
trends is achieved when selecting SATTG ensemble member
based on lowest,_jo, and GNSS chains based on besty,.
We obtain similar results when using best;,, to select the
best GNSS realization. The fact that we obtain best results
when we choose the chain with the lowest number of effective
parameters for SATTG (lowest,_j,), indicates that using
besty, instead might lead to overfitting of the data, as also
discussed by Piironen and Vehtari (2017). The necessity to
apply different selection schemes is most likely caused by
the general differences in noise properties of the different
techniques, combined with the different sample sizes of the
observations. SATTG data could especially be vulnerable to
overfitting in cases when change points are detected due to
discrepancies of SAT and TG data, which are not attributable
to local VLM dynamics or equipment changes.

C Piecewise and linear trend validation

For either synthetic or real data, we investigate how the per-
formance of piecewise trend estimation agrees with the fitof a
linear trend estimate computed using linear least square esti-
mation. We compare the deviations of piecewise estimated
trends with the deviations of a linear trend fit with respect
to the known (prescribed) trends of the synthetic time series.
Similarly, we analyse the deviations of piecewise SATTG
trends and deviations of linear SATTG trends with respect
to the piecewise GNSS trends. Note that in the latter case
we consider the piecewise GNSS trends as the ground truth,
which are also estimated with the Bayesian model. With the
real data application, we aim to answer our research ques-
tions, i.e. to which extent variable velocities can be detected
in SATTG time series and what improvements or benefits are
obtained by using this approach.

Figure 2 exemplifies how the piecewise SATTG and the
piecewise GNSS trends are compared and matched with each
other. The two SATTG trend segments to be compared with
GNSS are indicated by satrg and sattg,. Every piecewise
SATTG trend is matched with the piecewise GNSS trend
which is estimated over the same period. In case that one
SATTG trend segment is compared to several piecewise
GNSS trends pw_gnss;, the latter are again averaged and
weighted by the fraction of the length of the GNSS segment
/; relative to the overlap period of SATTG and GNSS seg-
ments.

Thus, for n > 0 we obtain several piecewise SATTG and
GNSS trend differences for a single station pair. In order to
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derive a single trend difference estimate for a SATTG-GNSS
pair, we average these absolute piecewise trend differences
again by weighting them by the time of the individual overlap
periods as given in Eq. (7). This procedure yields absolute
trend differences, which are both based on piecewise SATTG
and GNSS trends and hereinafter called AP W.

izt [(pw_sattgi — pw_gnssi)|l;

Z?:l l;

APW = @)

In a similar way, we compute ALIN to analyse the
differences between single linear SATTG lin_sattg; and
piecewise GNSS trend estimates, as shown in Eq. (8)

Yoiy |(in_sattg; — pw_gnss;)|l;

ALIN =
il

®)

The example of the real data trend comparison can also be
transferred to the sensitivity experiments. Here, the piecewise
SATTG fit can be thought of as the synthetic data fit and
the piecewise GNSS trends are representative for the known
piecewise trends of the synthetic data.
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