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Abstract
Customary confidence regions do not truly reflect in the majority of our geodetic applications the confidence one can have in
one’s produced estimators. As it is common practice in our daily data analyses to combine methods of parameter estimation
and hypothesis testing before the final estimator is produced, it is their combined uncertainty that has to be taken into account
when constructing confidence regions. Ignoring the impact of testing on estimation will produce faulty confidence regions
and therefore provide an incorrect description of estimator’s quality. In this contribution, we address the interplay between
estimation and testing and show how their combined non-normal distribution can be used to construct truthful confidence
regions. In doing so, our focus is on the designing phase prior to when the actual measurements are collected, where it is
assumed that the working (null) hypothesis is true. We discuss two different approaches for constructing confidence regions:
Approach I in which the region’s shape is user-fixed and only its size is determined by the distribution, and Approach II in
which both the size and shape are simultaneously determined by the estimator’s non-normal distribution. We also prove and
demonstrate that the estimation-only confidence regions have a poor coverage in the sense that they provide an optimistic
picture. Next to the provided theory, we provide computational procedures, for both Approach I and Approach II, on how to
compute confidence regions and confidence levels that truthfully reflect the combined uncertainty of estimation and testing.

Keywords Best linear unbiased estimator (BLUE) · Hypothesis testing · Detection–identification–adaptation (DIA) ·
DIA-estimator · Confidence region · Estimation-only confidence · Estimation + testing confidence · Confidence level

1 Introduction

To evaluate the quality of an estimator, it is not uncommon to
compute the probability that a certain region, dependent on
the estimator, covers the unknown true parameter (vector) or
alternatively, compute the size of the region that corresponds
with a certain preset value of the probability. Such region is
called the confidence region/set and the corresponding prob-
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ability is called its confidence level/coefficient (Koch 1999).
Using the concept of confidence region and confidence level,
one can evaluate the separation between the estimator and
the unknown value it is aimed to estimate, and connect this
separation to a probability. For a given confidence level, the
smaller the size of the confidence region the higher the quality
of the estimator, and for a given confidence region, the higher
the confidence level the higher the quality of the estimator.

To construct the confidence region for the parameters of
interest, one may take one of the following two approaches.

– Approach I: One can define beforehand the shape of the
region, e.g., spherical, ellipsoidal or rectangular, and then
compute its size for a given confidence level (Hoover
1984; Šidák 1967; Hofmann-Wellenhof et al 2003); or

– Approach II: One can have the confidence region deter-
mined by the contours of the probability density function
(PDF) of the estimator for a given confidence level (Hyn-
dman 1996; Gundlich and Koch 2002; Teunissen 2007).
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Examples of Approach I are the circular error probable
(CEP) or the spherical error probable (SEP) as used in the
field of navigation for instance. CEP/SEP is defined as the
radius of the circle/sphere around the to-be-estimated point
such that it contains a certain fraction, say 90% or 95%, of
the estimator’s outcomes. Examples of Approach II are the
error ellipses/ellipsoids as used in surveying and geodetic
networks.

Approach I is the simplest and gives information of how
often one can expect the solution to fall within the prede-
fined shape region. Approach II is more complex, but also
more informative since it shows through the shape of the
confidence region where in space the solution is ‘weak’
and where ‘strong.’ We note that if the estimator has an
elliptically contoured distribution (Cambanis et al 1981),
e.g., normal distribution, then there would be no difference
between Approach I and Approach II provided that the con-
fidence region in Approach I is taken to be ellipsoidal and
defined by the estimator’s variance matrix.

Whether Approach I or Approach II is taken, it is impor-
tant to realize that the properties of the confidence region are
determined by the probabilistic properties of the estimator.
The size and, in case of Approach II, the shape of the confi-
dence region are driven by the estimator’s PDF. It is therefore
crucial, in order to have a realistic confidence region and one
that properly reflects the quality of the estimator, that one
works with the correct PDF of one’s estimator. It is here that
we believe improvements in our geodetic and navigational
practice of data analysis and quality control are in order.

In our daily data processing, it is common practice to
combine methods of parameter estimation and hypothesis
testing. Such examples can be found in a wide variety of
different applications, like geodetic quality control (Kösters
and Van der Marel 1990; Seemkooei 2001; Perfetti 2006),
navigational integrity (Teunissen 1990; Gillissen and Elema
1996; Yang et al 2014), deformation analysis and structural
health monitoring (Verhoef and De Heus 1995; Yavaşoğlu
et al 2018; Durdag et al 2018; Lehmann and Lösler 2017;
Nowel 2020), and GNSS integrity monitoring (Jonkman and
De Jong 2000; Kuusniemi et al 2004; Hewitson and Wang
2006; Khodabandeh and Teunissen 2016). However, when
combining parameter estimation and statistical testing, the
finally produced estimator will have inherited uncertain-
ties stemming from both the estimation and testing steps.
It is therefore of importance, when constructing confidence
regions, to take this combined uncertainty into account. In
(Teunissen 2018) it was shown, by means of the PDF of
the DIA-estimator, that this combined uncertainty cannot be
captured by the usually assumed normal distribution. Hence,
the customary procedure followed in practice of ignoring the
impact of testing on estimation (Wieser 2004; Devoti et al
2011;Dheenathayalan et al 2016;Huang et al 2019;Niemeier
and Tengen 2020) will produce faulty confidence regions and

therefore provide an incorrect description of the estimator’s
quality.

The aim of the present contribution is to address how the
interplay between estimation and testing affects the con-
fidence region and confidence level of the parameters of
interest. We prove and demonstrate that the estimation-only
confidence regions have a poor coverage in the sense that
they provide a too optimistic picture and that they should
thus be made larger in order to contain the required prob-
ability of one’s estimator. Next to the provided theory, we
also provide computational procedures, for both Approach I
and Approach II, on how to correctly compute and construct
confidence regions and their confidence levels.

In doing so, our focus is on the designing phase prior to
when the actualmeasurements are collected.Whendesigning
a measurement set up (e.g., a geodetic network), one will
usually assume that the actual measurements and adjustment
will also be done under the working (null) hypothesis H0.
That is, a priori one has no reason to believe why a specific
other model would be valid than H0. But one does know a
priori what estimation and testing procedure one will apply,
and it is on the basis of this knowledge that one then should
construct the appropriate confidence regions, in order to be
able to judge one’s measurement design properly.

This contribution is structured as follows. A brief review
of the necessary background theory is provided in Sect. 2.
We describe the null and alternative hypotheses, highlight
the role of the misclosure space partitioning when testing
these hypotheses, and provide and discuss the statistical dis-
tribution of the DIA-estimator. It is hereby emphasized that
its distribution is non-normal even if one works with lin-
ear models and normally distributed observations. In Sect.
3, we consider, also as reference for later sections, the cus-
tomary estimation-only case when testing is not taken into
account. In Sect. 4, we discuss the method of constructing
confidence region of Approach I. It is shown if one neglects
the testing contribution and assumes the resulting estima-
tor to be normally distributed, that the resulting confidence
region of Approach I would actually cover a smaller prob-
ability than one presumes with the preset confidence level.
Then, in Sect. 5, we take Approach II to form the confi-
dence region of the DIA-estimator using its PDF contours. It
is demonstrated that the confidence region resulting from
Approach II can be a non-convex and even disconnected
region. In Sect. 6, we describe the necessary steps for the
numerical algorithms. This is first done for evaluating the
confidence level of the DIA-estimator corresponding with
any translational-invariant confidence region, which is then
followed by a description of the numerical algorithms for
constructing confidence regions based on both Approach I
and Approach II. Finally, a summary with conclusions is
provided in Sect. 7.
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We use the following notation: E(·) and D(·) denote the
expectation and dispersion operator, respectively. The n-
dimensional space of real numbers is denoted asRn . Random
vectors are indicated by use of the underlined symbol ‘·’.
Thus x ∈ R

n is a random vector, while x is not. x̂ and
x̄ denote the BLUE-estimator and the DIA-estimator of
x , respectively. The squared weighted norm of a vector,
with respect to a positive-definite matrix Q, is defined as
‖·‖2Q = (·)T Q−1(·).H is reserved for statistical hypotheses,
P for regions partitioning the misclosure space,N (x, Q) for
the normal distribution with mean x and variance matrix Q,
andχ2(n, ξ) for theChi-square distributionwith n degrees of
freedom and the non-centrality parameter of ξ . P(·) denotes
the probability of the occurrence of the event within paren-

theses. The symbol
H∼ should be read as ‘distributed as . . .

under H.’ The superscripts T and −1 are used to denote the
transpose and the inverse of a matrix. The complement of a
region is denoted by the superscript c. The expression ‘iff’ is
used for ‘if and only if.’

2 Brief review of background theory

In this section, we provide a brief review of estima-
tion + testing inference with corresponding DIA-estimator
and describe the concept of translational-invariant confi-
dence regions. We restrict our attention to the linear model
with normally distributed observables. Departures from
these assumptions, such as nonlinearity and/or distributional
approximations are not taken into account, but see, e.g., (Teu-
nissen 1989; Zaminpardaz et al. 2017; Niemeier and Tengen
2017; Lösler et al. 2021).

2.1 Integrated estimation and testing

Let y ∈ R
m be the normally distributed random observable

vector with an unknown mean but a known variance matrix.
The following null and κ > 0 alternative hypotheses are put
forward on the mean of y,

null H0 : E(y) = Ax, D(y) = Qyy

alternative Hi : E(y) = Ax + Cibi , D(y) = Qyy
(1)

for i = 1, . . . , κ , with x ∈ R
n the estimable unknown

parameter vector, A ∈ R
m×n the known design matrix of

rank(A) = n, and Qyy ∈ R
m×m the positive-definite vari-

ance matrix of y. We assume that [A Ci ] is a known matrix
of full rank and bi is an unknown vector.

To test the hypotheses in (1) against one another and select
the most likely one, it is required to have redundant mea-
surements under H0, i.e., r = m − n �= 0. In that case, an
ancillary statistic, known as the misclosure vector t ∈ R

r ,

can be formed as (Teunissen 2006)

t = BT y (2)

where B ∈ R
m×r is a matrix of rank(B) = r , such that

[A B] ∈ R
m×m is invertible and AT B = 0, see, e.g., (Yang

et al 2021; Teunissen 2003, p. 62) for constructing matrix B.

With y
H0∼ N (Ax, Qyy) and y

Hi∼ N (Ax + Cibi , Qyy) for
i = 1, . . . , κ , the misclosure vector is then distributed as

t
H0∼ N (bt0 = 0, Qtt )

t
Hi∼ N (bti = Cti bi , Qtt ), for i = 1, . . . , κ

(3)

with Qtt = BT Qyy B the variance matrix of t and Cti =
BTCi . As t has a known PDF under H0, which is the PDF
of N (0, Qtt ), any statistical testing procedure is driven
by the misclosure vector t and its known PDF under H0.
A testing procedure can be established through unambigu-
ously assigning the outcomes of t to the hypotheses Hi ’s
for i = 0, 1, . . . , κ , which can be realized by partition-
ing the misclosure space R

r in κ + 1 subsets Pi ⊂ R
r

(i = 0, 1, . . . , κ). The testing procedure is then unambigu-
ously defined as (Teunissen 2018)

select Hi iff t ∈ Pi , for i = 0, 1, . . . , κ (4)

Therefore, the testing procedure’s decisions are driven by
the outcome of the misclosure vector t . If Hi is true, then
the decision is correct if t ∈ Pi , and wrong if t ∈ P j �=i .
Note, in single-redundancy case r = 1, that P1 = · · · =
Pκ = Pc

0 , implying that the alternative hypotheses are not
distinguishable from one another.

Statistical testing is usually followed by the estimation
of the parameters of interest x . These parameters then get
estimated according to themodel selected through the testing
procedure, as

x̂0 = A+ y if H0 is selected (t ∈ P0)

x̂ i �=0 = x̂0 − Li t if Hi �=0 is selected (t ∈ Pi �=0)
(5)

where x̂0 and x̂ i �=0 are the BLUEs of x underH0- andHi �=0-

model, A+ = Qx̂0 x̂0 A
T Q−1

yy the BLUE-inverse of A with
Qx̂0 x̂0 = (AT Q−1

yy A)−1 the variance matrix of x̂0, and Li =
A+CiC

+
ti with C+

ti = (CT
ti Q

−1
t t Cti )

−1CT
ti Q

−1
t t . Being linear

functions of the normally distributed random vector y, the
individual estimators x̂ i ’s (i = 0, 1, . . . , κ) are all normally
distributed with a mean of x under H0.

2.2 DIA-estimator

As (5) shows, the outcome of testing (4) dictates how
the parameter vector x gets estimated. The probabilistic
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properties of such an estimation + testing combination is
captured by the DIA-estimator of Teunissen (2018). The
DIA-estimator of the parameter vector x is given as

x̄ =
κ∑

i=0

x̂ i pi (t) (6)

where pi (t) is the indicator function of region Pi (cf. 4), i.e.,
pi (t) = 1 for t ∈ Pi and pi (t) = 0 for t /∈ Pi . The PDF of x̄
is then driven by the probabilistic properties of the estimators
x̂ i ’s (i = 0, 1, . . . , κ) and t , which under Hi is given by

fx̄ (ξ |Hi , x) = fx̂0(ξ |Hi , x)P(t ∈ P0|Hi )

+
κ∑

j=1

fx̄ |t∈P j (ξ |t ∈ P j ,Hi , x)P(t ∈ P j |Hi )

(7)

where fx̂0(ξ |Hi , x) denotes the PDF of x̂0 under Hi which
is characterized by the parameter vector x . The conditional
PDF fx̄ |t∈P j (ξ |t ∈ P j ,Hi , x) conditioned on t ∈ P j is of
the form

fx̄ |t∈P j (ξ |t ∈ P j ,Hi , x) =
∫

P j

f x̂ j ,t (ξ, τ |Hi , x)

P(t ∈ P j |Hi )
dτ (8)

In the above equation, fx̂ j ,t
(ξ, τ |Hi , x) is the joint PDF of

x̂ j and t under Hi which is characterized by the parameter
vector x and, given (5), can be obtained as

fx̂ j ,t (ξ, τ |Hi , x) = fx̂0(ξ + L jτ |Hi , x) ft (τ |Hi ) (9)

Note, although the estimators x̂ i ’s (i = 0, 1, . . . , κ) and the
misclosure t are normally distributed, that the DIA-estimator
x̄ is not due to its nonlinear dependency on t . Figure 1
illustrates the non-normal PDF of x̄ for a simple binary-
hypothesis testing example, with the null hypothesisH0 and
the alternative Ha , as given in (Teunissen 2018), Examples
5 and 8. The results are shown for different values of false-
alarm probability PFA, standard deviation of x̂0 denoted by
σx̂0 , standard deviation of t denoted by σt , and bias values ba
under Ha . The difference between the panels in Fig. 1 and
those of Figures 6–8 in (ibid) is that the latter were acciden-
tally based on other values than given in their captions (e.g.,
standard deviations instead of variances).

In this contribution, we focus on confidence region and
confidence level evaluation underH0, and thus wework with
estimators’ PDF under H0. Using the total probability rule
with correct acceptance CA = {t ∈ P0,H0} and false alarm
FA = {t /∈ P0,H0} events, the PDF of x̄ under H0 can be
decomposed as

fx̄ (ξ |H0, x) = fx̄ |CA(ξ |CA, x)PCA + fx̄ |FA(ξ |FA, x)PFA
= fx̂0(ξ |H0, x)PCA + fx̄ |FA(ξ |FA, x)PFA

(10)

with the false-alarm probability PFA and the correct-
acceptance probability PCA satisfying PCA + PFA = 1. The
second equality of (10) is a consequence of x̄ |CA = x̂0|CA
and that x̂0 and t are independent from each other, i.e.,
x̂0|CA = x̂0.

2.3 Confidence region

The general definition of a confidence region and confidence
level reads as follows (Schervish 1995).

Definition (Confidence region & confidence level) Let x ∈
R
n be a random vector of which the PDF is dependent on

the unknown parameter vector x ∈ R
n . Let Cα(x) ⊂ R

n

be a random set of which the location, size and shape are
determined by α and x such that

P
(
x ∈ Cα(x)

) = 1 − α for all x ∈ R
n (11)

Then, Cα(x) is said to be a 100(1 − α)% confidence region
for x and (1 − α) is called the confidence level. ��
Thus, a confidence region is random and it corresponds with
a certain probability that it covers the parameter vector x . The
interpretation of the confidence region is that if independent
samples of x were to be generated many times, the realized
confidence regions would then include x , 100(1 − α)% of
the time.

A random confidence region Cα(x) can be constructed as
follows (Casella and Berger 2001). Let Sα(x) ⊂ R

n be an
x-dependent set with the property that

P
(
x ∈ Sα(x)

) = 1 − α for all x ∈ R
n (12)

Then, the random set

Cα(x) = {
ξ ∈ R

n
∣∣ x ∈ Sα(ξ)

}
(13)

is a 100(1 − α)% confidence region for x , satisfying (11).
With this definition in mind, we refer, in the following, to
Sα(x) also as confidence region. For every realization of
x , the corresponding realization of (13) gives all values of
ξ ∈ R

n for which Sα(ξ) covers that realization of x . To
compute the confidence region (13) for a given confidence
level or the other way round, one needs to make use of (12).
The probability P

(
x ∈ Sα(x)

)
in this equation is, in general,

dependent on the unknown x through the PDFof x andSα(x).
The following result specifies the conditions underwhich this
probability becomes independent of x .
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Fig. 1 PDF of x̄ under, from left
to right, H0, Ha with ba = 1,
Ha with ba = 3, and Ha with
ba = 5. The top panels
correspond to σ 2

x̂0
= 0.5 and

σ 2
t = 2, while the bottom panels

to σ 2
x̂0

= 0.25 and σ 2
t = 1. For

the results under Ha , La was set
to 0.5

Lemma 1 Let x ∈ R
n be a random vector of which the PDF,

denoted by fx (ξ |x), is dependent on the unknown parameter
vector x ∈ R

n, and let Sα(x) ⊂ R
n be an x-dependent set.

Then, P
(
x ∈ Sα(x)

)
is independent of x if

(i) Sα(x) is translational invariant, i.e., Sα(x + γ ) =
Sα(x) + γ for any x, γ ∈ R

n where Sα(x) + γ is a set
of vectors obtained by translating all the vectors inside
Sα(x) over γ ;
and

(ii) fx (ξ |x) is translational invariant, i.e., fx (ξ+γ |x+γ ) =
fx (ξ |x) for any ξ, x, γ ∈ R

n.

Proof See ‘Appendix.’ ��
In this contribution, we will consider three different con-

fidence regions as follows.

– Estimation-only confidence region which is constructed
based on the normal distribution of x̂0 underH0 neglect-
ing the impact of testing preceding the estimation pro-
cess, and is denoted by SE

α (x);
– Estimation + testing confidence region (Approach I)
which has the same shape as the estimation-only one but
its size is determined by the PDF of x̄ under H0, and is
denoted by SI

α(x);
– Estimation + testing confidence region (Approach II)
which is constructed based on the concept of highest den-
sity regions where its shape and size are determined by
the contours of the PDF of x̄ under H0, and is denoted
by SII

α (x).

Table 1 provides an overview of these three confidence
regions. For a one-dimensional example x ∈ R, Fig. 2 shows
the construction of these confidence regions for the same
value of α. Confidence regions in the one-dimensional case
are simply intervals referred to as confidence intervals. In
each panel, the horizontal border of the green area indicates
the corresponding confidence interval.

The estimation-only confidence interval in Fig. 2 [left] is
an x-centered interval over which the probability mass of
the normal PDF of x̂0 is (1 − α). The estimation + testing
confidence region using Approach I in Fig. 2 [middle] is an
x-centered interval over which the probability mass of the
PDF of x̄ is (1 − α). It is observed that since the PDF of x̄
is less peaked around x compared to the PDF of x̂0, the con-
fidence interval in the middle panel is wider than the one in
the left panel. This implies that working with the estimation-
only confidence interval when combining estimation with
testing provides a too optimistic description of the estima-
tor’s quality. The estimation + testing confidence interval
using Approach II in Fig. 2 [right] consists of three discon-
nected sub-intervals over which the total probability mass of
the PDF of x̄ is (1 − α) and the PDF of x̄ is larger than a
certain value. The reason for getting a disconnected confi-
dence interval is that the PDF of x̄ is multi-modal; having
one major mode at x and two minor modes equally spaced
to the left and right of x .
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Table 1 An overview of the confidence regions studied in this contribution

Confidence region Formula

Estimation-only confidence region SE
α (x) =

{
ξ ∈ R

n
∣∣ ‖ξ − x‖2Qx̂0 x̂0

≤ χ2
1−α(n, 0)

}

with P
(
x̂0 ∈ SE

α (x)
∣∣H0

) = 1 − α

Estimation + testing confidence region (Approach I) SI
α(x) =

{
ξ ∈ R

n
∣∣ ‖ξ − x‖2Qx̂0 x̂0

≤ sIα
}

with P
(
x̄ ∈ SI

α(x)
∣∣H0

) = 1 − α

Estimation + testing confidence region (Approach II) SII
α (x) = {

ξ ∈ R
n
∣∣ fx̄ (ξ |H0, x) ≥ sIIα

}

with P
(
x̄ ∈ SII

α (x)
∣∣H0

) = 1 − α

Fig. 2 Construction of the three confidence intervals in Table 1 for the
same value of α. [Left] Black graph: the normal PDF of x̂0; Green area:
the (1− α) probability mass over SE

α (x) indicated by the green double
arrow. [Middle] Black graph: the PDF of x̄ ; Green area: the (1−α) prob-

ability mass over SI
α(x) indicated by the green double arrow. [Right]

Black graph: the PDF of x̄ ; Green area: the (1 − α) probability mass
over SII

α (x) indicated by the green double arrows

3 Estimation-only confidence region: current
practice

Although parameter estimation is often carried out follow-
ing a statistical testing procedure to select the most likely
hypothesis, the approach that is usually followed in practice
to evaluate the quality of the resulting estimator, including its
confidence region, does not take into account the uncertainty
of the testing decisions (Wieser 2004; Devoti et al 2011;
Dheenathayalan et al 2016; Huang et al 2019; Niemeier and
Tengen 2020). Therefore, in the designing phase, to construct
a confidence region for the parameters of interest x underH0,
the eventual estimator is taken as x̂0 (cf. 5) rather than x̄ (cf.
6).

Confidence regions can in principle take many different
shapes. For the linear model as in (1), the confidence region
is often taken to be of ellipsoidal shape. This is a conse-

quence of x̂0
H0∼ N (x, Qx̂0 x̂0), and thus the quadratic form

‖x̂0 − x‖2Qx̂0 x̂0
being distributed as a central Chi-square dis-

tribution with n degrees of freedom,

‖x̂0 − x‖2Qx̂0 x̂0

H0∼ χ2(n, 0) (14)

The 100(1− α)% ellipsoidal confidence region for x is then
given as

SE
α (x) =

{
ξ ∈ R

n
∣∣ ‖ξ − x‖2Qx̂0 x̂0

≤ χ2
1−α(n, 0)

}
(15)

where χ2
1−α(n, 0) is the (1 − α) quantile of the central Chi-

square distribution with n degrees of freedom. The smaller
the α, the larger the confidence region. It will be clear that
both the set (15) and the normal distribution fx̂0(ξ |H0, x)
satisfy the conditions of Lemma 1 and that therefore the
probability x̂0 lying in SE

α (x) under H0 can be computed
without knowing x .

Example 1 (Three-point network with angle measurements)
Consider a two-dimensional (2-D) terrestrial survey network
of three points forming an isosceles triangle as shown in
Fig. 3. At each point, the internal angle is measured, yielding
three measurements in total (m = 3). In the following, we
use Ei and Ni to denote the East and North coordinates of
point i , respectively, di j for the observed-minus-computed
direction measurement made from point i to point j , li j for
the computed distance between point i and point j , ηi ∈ R

2

for the coordinate increment vector of point i , and vi j =
1
li j

[N j −Ni , Ei −E j ]T ∈ R
2 for the unit vector orthogonal

to the unit direction vector frompoint i to point j . The general
linearized observation equation of the angle measured from
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Fig. 3 Two-dimensional terrestrial surveynetworkof three points form-
ing an isosceles triangle

Fig. 4 Illustration of the 90% confidence ellipse SE
α (x) in (15) for the

model specified in Example 1

point i to points j and k for the 2-D network underH0 reads

E(a jik) = 1

lik
vTik (ηk − ηi ) − 1

li j
vTi j (η j − ηi ) (16)

with a jik = dik −di j . For the 2-D network in Fig. 3, we take
points 1 and 2 as S-basis (Baarda 1973; Teunissen 1985),
and thus the total number of unknowns is n = 2, namely two
unknowncoordinate increments of point 3 (x = [xE, xN]T =
η3 ∈ R

2). With m = 3 and n = 2, the redundancy is r = 1.
The angle measurements are assumed to be uncorrelated and
normally distributed. Figure 4 shows the confidence ellipse
SE

α (x) in (15) for α = 0.1 assuming that the standard devia-
tions of direction measurements are the same and equal to 5
seconds of arc.

To understand the shape and orientation of the ellipse in
Fig. 4, driven by Qx̂0 x̂0 , let us first assume that the network
points form an equilateral triangle. In this case, due to the
symmetry of the network configuration andmeasuring all the
three internal angles with the same precision, SE

α (x) would

be of circular shape. Now, if one moves point 3 further away
from the other two points in the North direction, the network
configuration changes to an isosceles triangle like that in
Fig. 3. In this case, the observational model becomes more
sensitive to themovement of point 3 in the East direction than
in the North direction. Thus, the previous circular confidence
region would become an ellipse with its minor axis parallel
to the East direction, as shown in Fig. 4. ��

4 Estimation+ testing confidence region:
Approach I

When estimation is combined with testing, using the prob-
abilistic properties of x̂0 (cf. 5) to compute confidence
region/level is statistically incorrect as it does not do jus-
tice to the statistical testing that preceded the estimation of
the parameters x . Thus for a proper computation of confi-
dence region/level, one needs to work with x̄ (cf. 6). In this
section, we consider the construction of confidence region
using Approach I with the geodetic-common choice of ellip-
soidal region, but based on the PDF of x̄ , as

SI
α(x) =

{
ξ ∈ R

n
∣∣ ‖ξ − x‖2Qx̂0 x̂0

≤ sIα
}

(17)

where sIα is chosen so as to satisfy

P
(
x̄ ∈ SI

α(x)
∣∣H0

)
= 1 − α (18)

The smaller the α, the larger the sIα . The confidence region in
(17) is an ellipsoidal region of the same shape and orientation
as that of (15), be it that the size of (17) is determined by the
PDF of x̄ through (18). For the PDF fx̄ (ξ |H0, x), we have
the following result.

Lemma 2 The PDF of the DIA-estimator x̄ underH0 (cf. 7)
is translational invariant, i.e.,

fx̄ (ξ + γ |H0, x + γ ) = fx̄ (ξ |H0, x) for any ξ, x, γ ∈ R
n

(19)

Proof See ‘Appendix.’ ��

With the above result and that (17) is a translational-
invariant set, the probability in (18) can be computed without
knowing x according to Lemma 1. This computation is, how-
ever, not trivial due to the complexity of fx̄ (ξ |H0, x).Wewill
come back to this in Sect. 6 where we present the required
numerical algorithm.

Here we now discuss the consequences if one, because
of convenience, would stick to using the estimation-only
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ellipsoidal confidence region as in (15). Then, since the prob-
ability is now driven by the PDF of x̄ , we have the following
result.

Theorem 1 (Confidence levels of estimation-only versus
estimation + testing underH0) Let SE

α (x) be the ellipsoidal
confidence region as in (15). Then, we have

P
(
x̄ ∈ SE

α (x)
∣∣H0

)
≤ 1 − α (20)

Proof See ‘Appendix.’ ��
The above theorem shows that SE

α (x) has poorer cover-
age for the DIA-estimator x̄ than (1 − α), and thus needs
to be scaled up in order to contain the required probability
of (1 − α), which implies that sIα ≥ χ2

1−α(n, 0). Therefore,
neglecting the link between estimation and testing and taking
SE

α (x) as if it would be the 100(1 − α)% confidence region
of x̄ under H0, will provide a too optimistic description of
the DIA-estimator’s quality, i.e., the region is then shown too
small. With (7), the difference between the actual confidence
level P(x̄ ∈ SE

α (x)|H0) and the desired confidence level
(1 − α) reads

(1 − α) − P
(
x̄ ∈ SE

α (x)
∣∣H0

)
=

k∑

i=1

{
P(t ∈ Pi |H0)

×
∫

SE
α (x)

[
fx̂0(ξ |H0, x) − fx̂ i |t∈Pi (ξ |t ∈ Pi ,H0, x)

]
dξ

}

(21)

which would approach zero under any of the conditions
below

– fx̂0(ξ |H0, x) − fx̂ i |t∈Pi (ξ |t ∈ Pi ,H0, x) → 0
– P(t ∈ Pi �=0|H0) → 0
– α → 0

The difference between fx̂0(ξ |H0, x) and
fx̂ i |t∈Pi (ξ |t ∈ Pi ,H0, x) would vanish, i.e.,
fx̂0(ξ |H0, x) = fx̂ i |t∈Pi (ξ |t ∈ Pi ,H0, x), if the correlation
between x̂ i and t would be zero. One can get zero correla-
tion between x̂ i and t if Li = 0 (cf. 5), which can happen
if AT Q−1

yy Ci = 0 (Ci being Qyy-orthogonal to the columns
of A, zero influential bias (Teunissen 2017)). In addition, the
correlation between x̂ i and t would get close to zero if Li t
becomes far more precise than x̂0, i.e., Qx̂0 x̂0 � Li Qtt LT

i ,

and/or Li → 0 and/or Qtt → 0. Given that t
H0∼ N (0, Qtt ),

the probability P(t ∈ Pi |H0), for i = 1, . . . , κ , would
approach zero if ft (τ |H0) becomes highly peaked at zero,
i.e., Qtt → 0, and/or if regions Pi �=0 shrink, i.e., P0 → R

r

(PFA → 0). Table 2 summarizes conditions under which
P(x̄ ∈ SE

α (x)|H0) gets closer to (1 − α).

Table 2 Conditions under which P
(
x̄ ∈ SE

α (x)
∣∣H0

)
gets closer to

(1 − α)

Condition Consequence

AT Q−1
yy Ci = 0 (∀i ∈ {1, . . . , k}) P

(
x̄ ∈ SE

α (x)
∣∣H0

) = 1 − α

Qx̂0 x̂0 � Li Qtt LT
i (∀i ∈ {1, . . . , k}) P

(
x̄ ∈ SE

α (x)
∣∣H0

) → 1 − α

Li → 0 (∀i ∈ {1, . . . , k})
Qtt → 0

PFA → 0

α → 0

Despite Theorem 1, one might still be willing to work
with SE

α (x), due to its lower computational burden com-
pared to SI

α(x), if the difference between P(x̄ ∈ SE
α (x)|H0)

and (1 − α) is not deemed significant based on the require-
ments of the application at hand. The computation of the
exact confidence level P(x̄ ∈ SE

α (x)|H0) requires integrat-
ing fx̄ (ξ |H0, x) over SE

α (x), which is not trivial due to the
complexity of the integrand. The following result however
presents an easy-to-compute upper bound for the difference
between the actual and desired confidence levels.

Theorem 2 (Upper bound for the actual and desired confi-
dence levels difference) The difference between the desired
confidence level (1 − α) and the actual confidence level
P(x̄ ∈ SE

α (x)|H0) can be bounded from above as

(1 − α) − P(x̄ ∈ SE
α (x)|H0) ≤ (1 − α) PFA (22)

Proof See ‘Appendix.’ ��
With the above easy-to-compute upper bound, one can

decide whether or not to use the region SE
α (x) as the 100(1−

α)% confidence region.

Example 2 Here we graphically show, with the PDFs of
a simple 1-dimensional example having one alternative
hypothesis (κ = 1), the effect of each of the factors in Table
2 on the difference between P(x̄ ∈ SE

α (x)|H0) and (1 − α).
Suppose that theH0-model in (1) contains only one unknown
parameter (n = 1) and that its redundancy is one (r = 1),
i.e., x ∈ R and t ∈ R. The canonical form of such a model,
applying the Tienstra-transformation T to the normally dis-
tributed vector of observables y, reads (Teunissen 2018)

T y=
[
A+
BT

]
y=

[
x̂0
t

]
Hi∼ N

([
x+bx̂0,i

bti

]
,

[
σ 2
x̂0

0
0 σ 2

t

])

(23)

where σx̂0 and σt are the standard deviations of x̂0 and t ,
respectively. As r = 1, we can only consider one single
alternative hypothesis, say Ha , and thus i ∈ {0, a}. If more
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than one alternative is considered, they will not be separable
from each other. Under the null and alternative hypotheses,
we have

H0 : bx̂0,0 = 0, bt0 = 0
Ha : bx̂0,a = La ba, bta = ba

(24)

for some ba ∈ R\{0} and La ∈ R (cf. 5). To test H0 against
Ha , we use the following misclosure space partitioning

P0 = [−
√

χ2
1−PFA

(1, 0) σt ,
√

χ2
1−PFA

(1, 0) σt ]
Pa = Pc

0

(25)

In the simple model as given in (23), there is a scalar
parameter of interest x ∈ R, and thus SE

α (x) in (15) reduces
to the following interval

SE
α (x) =

[
x −

√
χ2
1−α(1, 0) σx̂0 , x +

√
χ2
1−α(1, 0) σx̂0

]

(26)

Figure 5 [left] shows the graphs of fx̄ (ξ |H0, x) and its
components (10), i.e., fx̂0(ξ |H0, x) and fx̂a |FA(ξ |FA, x), for
different values of σx̂0 , σt , La and PFA. Figure 5 [right] shows
the corresponding graphs of the confidence level difference
(1 − α) − P(x̄ ∈ SE

α (x)|H0) and its upper bound (22) as a

function of CI=
√

χ2
1−α(1, 0) σx̂0 for 0.001 ≤ CI ≤ 10. In

accordance with Table 2, it is observed that the difference
between P(x̄ ∈ SE

α (x)|H0) and (1 − α) gets smaller for the
following situations: σx̂0 ↑ (first vs. second row), σt ↓ (first
vs. third row), La ↓ (first vs. fourth row) and PFA ↓ (first vs.
fifth row).

We note that increasing CI for a given σx̂0 is equivalent
to decreasing α (cf. 26). As the left panels in Fig. 5 show,
fx̂0(ξ |H0, x), in blue, is more peaked than fx̄ (ξ |H0, x), in
magenta, around x , implying that 1−α = P(x̂0 ∈ SE

α (x)|H0)

increasesmore rapidly thanP(x̄ ∈ SE
α (x)|H0) asCI increases

from 0.001. In addition, we have

CI → 0 �⇒
{
P(x̄ ∈ SE

α (x)|H0) → 0
(1 − α) → 0

CI → ∞ �⇒
{
P(x̄ ∈ SE

α (x)|H0) → 1
(1 − α) → 1

(27)

Therefore, as the actual confidence level P(x̄ ∈ SE
α (x)|H0)

and the desired confidence level (1−α) are continuous func-
tions of CI, the difference (1 − α) − P(x̄ ∈ SE

α (x)|H0) will
be an increasing and then decreasing function of CI. This
behavior can clearly be recognized in all the panels. ��

Fig. 5 [Left] Illustration of the DIA-estimator PDF under H0 and its
components (cf. 10) for the models and conditions specified in (23)
to (25). [Right] Illustration of the confidence level (CL) difference
(1 − α) − P(x̄ ∈ SE

α (x)|H0) in gray and its upper bound (22) in red as

a function of CI=
√

χ2
1−α(1, 0) σx̂0 (26)
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5 Estimation+ testing confidence region:
Approach II

In this section, we take Approach II to construct confidence
region by using the contours of the PDF fx̄ (ξ |H0, x). For
a given H0-model and a misclosure space partitioning, the
value of this PDF depends on ξ and x . We make use of the
concept of highest density regions anddefine the 100(1−α)%
confidence region as the one which has the smallest volume
among all the regions which cover the probability (1 − α)

for the DIA-estimator. Such region can be shown to take the
following form (Hyndman 1996; Teunissen 2007)

SII
α (x) =

{
ξ ∈ R

n
∣∣ fx̄ (ξ |H0, x) ≥ sIIα

}
(28)

where sIIα is chosen such that

P(x̄ ∈ SII
α (x)|H0) = 1 − α (29)

The smaller the α, the smaller the sIIα . The confidence region
in (28) is driven by the contours of the DIA-estimator’s PDF.
Therefore, Approach II is more informative than Approach
I since it shows through the shape of the confidence region
where in space the solution is ‘weak’ and where ‘strong’. In
case x̄ has an elliptically contoured distribution, e.g., nor-
mal distribution, then the confidence region SII

α (x) based on
Approach II (28) would be identical to the confidence region
SI

α(x) based on Approach I (cf. 17).
Special case (detection only): Let the integrated estimation
+ testing procedure provide x̂0 as the estimate of x if H0 is
accepted, while declare the solution for x to be unavailable
ifH0 is rejected. Hence, in this case the testing is confined to
detection only and no identification is attempted. The DIA-
estimator for this case is given by

x̄ =
{
x̂0 if t ∈ P0

unavailable if t /∈ P0
(30)

To determine the confidence in x̄ , one should note that x̄
solution is only available when t ∈ P0. Thus we compute the
confidence region conditioned on t ∈ P0. As x̄ |(t ∈ P0) =
x̂0|(t ∈ P0) and x̂0 is normally distributed and independent
from t , i.e., x̂0|(t ∈ P0) = x̂0, the confidence regions (17)
and (28) should be formed based on the normal PDF of x̂0.
Thus, these two confidence regions become identical and the
same as SE

α (x) in (15). Therefore, if the testing procedure is
confined to validating the null hypothesis only, there would
be no difference between the estimation-only and estimation
+ testing confidence regions under H0, for a given α.

Determining the confidence region (28) requires the com-
putation of sIIα which can be done using (29). It was already
shown in Lemma 2 that the PDF fx̄ (ξ |H0, x) is translational

invariant. Therefore, the probability in (29)will become inde-
pendent of the unknown x if SII

α (x) satisfies the condition (i)
in Lemma 1, i.e., SII

α (x) should be translational invariant. We
have the following result.

Theorem 3 The confidence region SII
α (x) in (28) is transla-

tional invariant iff fx̄ (ξ |H0, x) is translational invariant.

Proof See ‘Appendix.’ ��

As the above theorem shows, the confidence region (28)
inherits the translational-invariance property from that of the
PDF fx̄ (ξ |H0, x). Therefore, the probability in (29) is inde-
pendent of the unknown x .

Example 3 (Continuation of Example 1) We now add in
parallel to the three angle measurements, one length ratio
measurement (Baarda 1967) taken at point 1, thus increasing
the total number ofmeasurements by one tom = 4. In the fol-
lowing, we use ρi j to denote the observed-minus-computed
pseudo-distance measurement made from point i to point j ,
and ui j = 1

li j
[E j − Ei , N j − Ni ]T ∈ R

2 for the unit direc-
tion vector from point i to point j . The general linearized
observation equation of the length ratio measurement taken
from point i to points j and k for the 2-D network underH0

reads

E(r jik) = 1

lik
uTik (ηk − ηi ) − 1

li j
uTi j (η j − ηi ) (31)

with r jik = 1
lik

ρik− 1
li j

ρi j . As the total number of unknowns
is n = 2, the redundancy is r = 2. The length ratio measure-
ment is assumed to be normally distributed and uncorrelated
with the angle measurements.

As alternative hypotheses, we consider those describing
outliers in individual observations. Herewe restrict ourselves
to the case of one outlier at a time. In that case, there are as
many alternative hypotheses as there are observations, i.e.,
κ = m = 4, with Ci = ci ∈ R

4 (1), for i = 1, . . . , 4, where
the ci -vector takes the form of a canonical unit vector having
1 as i th entry and zeros elsewhere. To test the hypotheses at
hand, we first use overall model test to check the validity of
H0 and then employ datasnooping to screen each individual
observation for the presence of an outlier (Baarda 1968; Kok
1984). The corresponding misclosure space partitioning is
given by

P0 =
{
t ∈ R

2
∣∣ ‖t‖2Qtt

≤ χ2
1−PFA

(r , 0)
}

Pi =
{
t ∈ R

2 \ P0
∣∣ |wi | = max

j∈{1,...,4} |w j |
}

, i = 1, . . . , 4

(32)
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Fig. 6 Illustration of
100(1 − α)% confidence
regions of estimation-only and
estimation + testing for the
model specified in Example 3
and for different values of α. In
each panel, green area indicates
the region (28), red ellipse
indicates the boundary of (17),
and blue ellipse indicates the
boundary of (15)

where wi is Baarda’s w-test statistic computed as (Baarda
1967; Teunissen 2006)

wi = cTti Q
−1
t t t

√
cTti Q

−1
t t cti

; cti = BT ci , i = 1, . . . , 4 (33)

Figure 6 shows the three confidence regions in (15), (17)
and (28), see Table 1. The green area shows the regionSII

α (x),
while the blue and red ellipses show the boundary of the
regions SE

α (x) and SI
α(x), respectively. The results are illus-

trated for α = 0.1, 0.05, 0.02 and 0.01 assuming that the
standard deviations of direction and pseudo-distance mea-
surements are 5 seconds of arc and 3 mm, respectively, and
PFA = 10−1. According to (20), the blue ellipse does not
cover the probability (1 − α) for the DIA-estimator. Figure
7 elaborates more on this by showing positive values for the
difference (1 − α) − P(x̄ ∈ SE

α (x)|H0) as a function of α.
Thus the blue ellipse should be made larger in order to con-
tain the required probability of (1 − α). This explains why
the red ellipse always encompasses the blue one.

Adding the length ratio measurement from point 1 to the
previous angular measurements increases the sensitivity of
the model to the movement of point 3 along the triangle side
connecting point 1 to point 3. Therefore, the ellipse shown in
Fig. 4 would shrink and its orientationwould change depend-
ing on the length ratio precision with respect to the angular
measurements. In the current example, the length ratio mea-
surement is around two times more precise than the angle

Fig. 7 Illustration of the confidence level (CL) difference (1 − α) −
P(x̄ ∈ SE

α (x)|H0) as a function of α

measurements. In the extreme case, if the length ratio is
known with zero standard deviation, the confidence ellipse
will have its minor axis parallel to the triangle side connect-
ing point 1 to point 3. As this length ratio measurement gets
less precise, the confidence ellipse’s minor axis moves fur-
ther toward the East direction. This explains the shape and
orientation of the ellipses in Fig. 6 as compared to those of
the ellipse shown in Fig. 4.

It is observed in Fig. 6 that the green region SII
α (x) can

significantly differ in shape from the ellipsoidal confidence
region which is conventionally used. Depending on the α

value, SII
α (x) can be a non-convex and even disconnected
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Fig. 8 Contour maps of the PDF of x̄ under H0 and its constituent components for the model specified in Example 3. The range of PDF values of
each colored region is specified in the color bar on the right

region, which can be explained by the shape of the PDF of
x̄ . Figure 8 (top-left) shows the contour plot of this PDF, i.e.,
fx̄ (ξ |H0, x), which is a multi-modal distribution with three
modes (peaks); one major mode at x = [xE, xN]T with a
PDF value larger than 2000, and two minor modes approxi-
matelyNorth andSouth of x = [xE, xN]T with the samePDF
values between 20 and 50. According to the contour plot of
fx̄ (ξ |H0, x), for α values corresponding with sIIα > 50, the
confidence region (28) is a single contiguous area. As sIIα gets
smaller than 50, the two minor modes of fx̄ (ξ |H0, x) start
contributing to the construction of the confidence region. As
a result, (28) becomes a non-convex region which, for some
values of sIIα within the range 10 < sIIα < 50, can even consist
of three disconnected sub-regions.

The multi-modality of fx̄ (ξ |H0, x) can also explain why
the red ellipse is significantly larger than the blue one, i.e.,
sIα is significantly larger than χ2

1−α(2, 0), for small values
of α. Although the majority of the probability mass for the
DIA-estimator under H0 is located around x , some proba-
bility mass can still be located far from x around the two
minor modes of fx̄ (ξ |H0, x). Therefore, in order for the red
ellipse to cover large probabilities, equivalent to having small
α values, one needs to set large values for sIα such that the
probability mass around the minor modes is also captured by
the red ellipse.

The shape of fx̄ (ξ |H0, x) is driven by its constituent com-
ponents (7), i.e., fx̂0(ξ |H0, x) and fx̄ |t∈Pi (ξ |t ∈ Pi ,H0, x)

for i = 1, . . . , 4,which are all illustrated inFig. 8. The contri-
bution of fx̂0(ξ |H0, x) and fx̄ |t∈Pi (ξ |t ∈ Pi ,H0, x), for i =
1, . . . , 4, to the PDF of x̄ underH0 is driven by the respective
probabilities P(t ∈ P0|H0) = 1 − PFA and P(t ∈ Pi |H0).
As PFA = 10−1 and

∑4
i=1 P(t ∈ Pi |H0) = PFA, then

fx̂0(ξ |H0, x) has the largest contribution. This explains the
similarity of the shapes of the three contour lines 200, 1000
and 2000 (the three closest lines to x = [xE, xN]T ) between
the top-left and top-middle panels. The multi-modality of
fx̄ (ξ |H0, x) results from the same property of the condi-
tional distribution fx̄ |t∈P4(ξ |t ∈ P4,H0, x) shown in the
bottom-right panel. ��

6 On the computation of DIA-estimator’s
confidence level and confidence region
underH0

In this section, we present a numerical algorithm for
computing the DIA-estimator’s confidence level under H0

corresponding with any arbitrary translational-invariant con-
fidence region. In addition, numerical algorithms are also
presented for computing the DIA-estimator’s confidence
region under H0 based on Approach I and Approach II. An
overview of these algorithms is given in Fig. 9.
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6.1 Confidence level

Let Sα(x) ⊂ R
n be a translational-invariant confidence

region satisfying the condition (i) in Lemma 1. The com-
putation of the confidence level P(x̄ ∈ Sα(x)|H0) requires
integrating the non-normal PDF fx̄ (ξ |H0, x) over the region
Sα(x). This is not an easy task due to the complexity of
the PDF of x̄ , see, e.g., Fig. 8. We therefore show how
the confidence level can be computed by means of Monte
Carlo simulation. In doing so, we make use of the fact that
a probability can always be written as an expectation, and
an expectation can be approximated by taking the average
of a sufficient number of samples from the distribution. The
probability P(x̄ ∈ Sα(x)|H0) can be written as

P(x̄ ∈ Sα(x)|H0) =
∫

Sα(x)
fx̄ (ξ |H0, x) dξ

=
∫

Rn
ι(ξ) fx̄ (ξ |H0, x) dξ

= E(ι(x̄)|H0) (34)

with the indicator function

ι(ξ) =
{
1 if ξ ∈ Sα(x)
0 otherwise

(35)

Note, the above probability is independent of the unknown
x as Sα(x) and fx̄ (ξ |H0, x) satisfy the conditions (i) and
(ii) in Lemma 1, respectively. Therefore, one may choose
for the unknown x any n-vector for the computation of (34).
Let x̄ (s) ∈ R

n , s = 1, . . . , N , be sample vectors indepen-
dently drawn from the distribution fx̄ (ξ |H0, x). Then, for
sufficiently large N , determined by the requirements of the
application at hand, the confidence level P(x̄ ∈ Sα(x)|H0)

can be well approximated by

P̂(x̄ ∈ Sα(x)|H0) =
∑N

s=1 ι(x̄ (s))

N
(36)

The simulation of x̄ (s) underH0 can be carried out through
the following steps.

1. Simulation of y(s) under H0: To simulate a sample vec-
tor y(s) ∈ R

m from N (Ax, Qyy), we first use a random
number generator to simulate a sample u(s) ∈ R

m from
the multivariate standard normal distribution N (0, Im).
Then, we use the Cholesky-factor CT of the Cholesky-
factorization Qyy = CTC , to transform u(s) to CT u(s),
which now can be considered to be a sample from
N (0, Qyy). Then,we shiftCT u(s) to y(s) = CT u(s)+Ax ,
to get the asked for sample from N (Ax, Qyy). Note that
A, Qyy and x are needed to generate y(s). The matrices
A and Qyy are known, as they define the assumed model.

Although vector x ∈ R
n is not known, one can, fortu-

nately, take any n-vector as choice for x .
2. Computation of x̂ (s)

0 and t (s): Application of the Tienstra-
transformation T = [A+T , B]T ∈ R

m×m to y(s) gives

[
x̂ (s)
0
t (s)

]
= T y(s) (37)

with x̂ (s)
0 and t (s) being the samples of the BLUE of x and

the misclosure under H0-model, respectively.
3. Computation of x̄ (s): At this stage it must be known

which testing procedure is chosen to select themost likely
hypothesis.With the testingprocedure knownand themis-
closure sample t (s), one of the hypotheses is selected. If
H0 is selected, then x̂ (s)

0 is the asked for sample of x̄ ,

i.e., x̄ (s) = x̂ (s)
0 . IfHi �=0 is selected, we first compute the

sample of the bias-estimator as b̂(s)
i = C+

ti t
(s) and then

x̂ (s)
i = x̂ (s)

0 − A+Ci b̂
(s)
i which is the asked for sample of

x̄ , i.e., x̄ (s) = x̂ (s)
i .

With the above three steps repeated N times, one obtains the
sample set x̄ (s), s = 1, . . . , N , as needed for the computation
of (36).

6.2 Confidence region: Approach I

In order to determine the confidence region SI
α(x) in (17) for

a chosen value of α, one needs to find the threshold value sIα .
With (18), this threshold value can be computed by inverting

P
(
‖x̄ − x‖2Qx̂0 x̂0

≤ sIα
∣∣H0

)
= 1 − α (38)

which is not trivial due to the complexity of the PDF of x̄ . We
therefore show how sIα can be computed for a chosen value
of α by means of Monte Carlo simulation and density quan-
tile approach (Hyndman 1996). We first define the following
random variable

θ = −‖x̄ − x‖2Qx̂0 x̂0
(39)

Therefore sIα should satisfy

P
(
θ ≥ −sIα

∣∣H0

)
= 1 − α (40)

implying that −sIα is the α quantile of θ . Therefore, −sIα can
be approximated as α sample quantile from a set of indepen-
dent samples from the distribution of θ . Let x̄ (s) ∈ R

n , s =
1, . . . , N , be sample vectors independently drawn from the
distribution fx̄ (ξ |H0, x). Then, θ(s) = −‖x̄ (s) − x‖2Qx̂0 x̂0

∈
R, s = 1, . . . , N are independent samples from the distribu-
tion of θ underH0. After sorting the samples in an ascending
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order, the first sample with an index larger than αN gives an
approximation of the α quantile of θ (Hyndman 1996). An
approximation of sIα is then obtained by changing the sign of
the mentioned sample.

With the above procedure, one needs to take the following
steps to find an approximation of sIα for a given α.

1. Generate N independent samples x̄ (1), x̄ (2), . . . , x̄ (N )

from the distribution fx̄ (ξ |H0, x) by repeating the three
simulation steps explained in Sect. 6.1, N times, taking
any n-vector as choice for x .

2. For each sample x̄ (s), for s = 1, . . . , N , compute the
corresponding sample θ(s) as

θ(s) = −‖x̄ (s) − x‖2Qx̂0 x̂0
(41)

3. Sort the samples θ(1), θ (2), . . . , θ (N ) in an ascending
order. Let θ1 ≤ θ2 ≤, . . . ,≤ θN be the sorted values
of the samples θ(1), θ (2), . . . , θ (N ).

4. An approximation of sIα is then given by

ŝIα = −θ�Nα� (42)

where �·� is the ceiling function which rounds numbers
up.

6.3 Confidence region: Approach II

In order to determine the confidence region SII
α (x) in (28)

for a chosen value of α, one first needs to find the threshold
value sIIα . With (29), this threshold value can be computed by
inverting

P
(
fx̄ (x̄ |H0, x) ≥ sIIα

∣∣H0

)
= 1 − α (43)

which is again not trivial due to the complexity of the PDF of
x̄ . We therefore show how sIIα can be computed for a chosen
value of α by means of Monte Carlo simulation and den-
sity quantile approach. We first define the following random
variable

ν = fx̄ (x̄ |H0, x) (44)

Therefore sIIα should satisfy

P
(
ν ≥ sIIα

∣∣H0

)
= 1 − α (45)

implying that sIIα is the α quantile of ν. Therefore, sIIα can
be approximated as α sample quantile from a set of inde-
pendent samples from the distribution of ν. Let x̄ (s) ∈ R

n ,
s = 1, . . . , N , be sample vectors independently drawn from
the distribution fx̄ (ξ |H0, x). Then, ν(s) = fx̄ (x̄ (s)|H0, x),

s = 1, . . . , N , are independent samples from the distribu-
tion of ν underH0. After sorting the samples in an ascending
order, the first sample with an index larger than αN gives an
approximation of the α quantile of ν, i.e., sIIα .

To compute the samples of ν in (44), one needs to compute
the PDF of x̄ , which, using (7) to (9), can be written as

fx̄ (ξ |H0, x) =
k∑

j=0

∫

P j

f x̂0(ξ + L jτ |H0, x) ft (τ |H0) dτ

=
k∑

j=0

∫

Rr
fx̂0(ξ+L jτ |H0, x)p j (τ ) ft (τ |H0) dτ

= E

⎛

⎝
k∑

j=0

fx̂0(ξ + L j t |H0, x) p j (t)

⎞

⎠ (46)

where L0 = 0 and the expectation in the last equality is with
respect to ft (τ |H0). Given the last equality, we compute
fx̄ (ξ |H0, x) using a Monte Carlo simulation. Let t (l) ∈ R

r ,
for l = 1, . . . , M , be sample vectors independently drawn
from the distribution ft (τ |H0). Then, for sufficiently large
M , determinedby the requirements of the application at hand,
the value of fx̄ (ξ |H0, x) can be well approximated by

f̂ x̄ (ξ |H0, x) =
∑M

l=1

(∑κ
j=0 fx̂0

(
ξ + L j t (l)

∣∣H0, x
)
p j

(
t (l)

))

M
(47)

The procedure of finding an approximation of sIIα for a
givenα, explained above, canbe summarized in the following
steps.

1. Generate N independent samples x̄ (1), x̄ (2), . . . , x̄ (N )

from the distribution fx̄ (ξ |H0, x) by repeating the three
simulation steps explained in Sect. 6.1, N times, taking
any n-vector as choice for x .

2. GenerateM independent samples t (1), t (2), . . . , t (M) from
the distribution ft (τ |H0) by repeating the first two simu-
lation steps explained in Sect. 6.1, M times.

3. For each sample x̄ (s), for s = 1, . . . , N , compute the
corresponding sample ν(s) as

ν(s) =
∑M

l=1

(∑κ
j=0 fx̂0

(
x̄ (s) + L j t (l)

∣∣H0, x
)
p j

(
t (l)

))

M
(48)

4. Sort the samples ν(1), ν(2), . . . , ν(N ) in an ascending
order. Let ν1 ≤ ν2 ≤, . . . ,≤ νN be the sorted values
of the samples ν(1), ν(2), . . . , ν(N ).

5. An approximation of sIIα is then given by

ŝIIα = ν�Nα� (49)
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Fig. 9 An overview of the necessary steps for the numerical algorithms to evaluate the confidence level, and to construct the confidence regions
based on Approach I and Approach II

7 Summary and conclusions

In this contribution, a critical appraisal was provided on the
computation and evaluation of confidence regions and stan-
dard ellipses. We made the case that in the majority of our
geodetic applications the customary confidence regions do
not truly reflect the confidence one can have in one’s pro-
duced estimators.

We have shown that the common practice of combining
parameter estimation with hypothesis testing, necessitates
that the uncertainties of both estimation and testing are taken
into account when constructing and evaluating confidence
regions. We provided theory and computational procedures
on how to compute and construct such confidence regions
and associated confidence levels. In doing so, we made use
of the concept ofDIA-estimator and focused on the designing
phase prior to when the actual measurements are collected,
thereby naturally assuming that the null hypothesis H0 is
valid.

To construct the confidence region for the parameters of
interest, two different approaches were discussed: Approach
I in which the region’s shape is user-fixed and only its size is
determinedby the estimator’s distribution; andApproach II in
which both the size and shape are simultaneously determined

by the estimator’s distribution. It was hereby emphasized
irrespective of which approach is taken, that the properties
of the confidence region are determined by the probabilistic
properties of the estimator.

In using Approach I, we considered the geodetic-common
choice of ellipsoidal region and then determined its size by
the non-normal PDF of the DIA-estimator. We proved and
demonstrated that if one neglects the testing contribution and
assumes the estimator resulting from combined estimation
+ testing to be normally distributed, that the resulting con-
fidence region of Approach I would actually cover a smaller
probability than one presumes with the preset confidence
level. We also provided an easy-to-compute upper bound for
the difference between the actual and preset confidence level.

To form the confidence region of Approach II, we used the
concept of highest density regions and defined the confidence
region as the one which has the smallest volume among all
the regions which cover the same probability. The shape and
size of such confidence region are then driven by the contours
of the DIA-estimator’s PDF. It was demonstrated that the
confidence region of Approach II can significantly differ in
shape from the ellipsoidal confidence regionwhich is conven-
tionally used. It can be a non-convex and even disconnected
region depending on the preset confidence level. However, in
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the very special case when one opts for not including identifi-
cation, but have the testing procedure be confined to detection
only, there would be no difference between the customary
confidence region and those of Approach I and Approach II.

We presented the numerical algorithms for computing the
confidence level of the DIA-estimator corresponding with
any translational-invariant confidence region, as well as the
numerical algorithms for constructing confidence regions
based on both Approach I and Approach II. These are sum-
marized in Fig. 9. Although Approach II confidence regions
are more informative than those of Approach I, they demand
higher computational complexities. The trade-offs, based on
informativity and complexity, in selecting these approaches
are determined by the application at hand.

We remark that although our analyses were presented
assuming a normal distribution for the measurements, our
confidence region/level computation algorithms in Sect. 6
and Fig. 9 can be applied for any arbitrary distribution of the
measurements. In that case, for Approach II, use needs to be
made of a more generalized form of (47) as

f̂ x̄ (ξ |H0, x) =
∑M

l=1

(∑κ
j=0 fx̂ j |t

(
ξ
∣∣t (l),H0, x

)
p j

(
t (l)

))

M
(50)

Finally, in this study, attention was focused on the compu-
tation of truthful confidence regions/levels under the null
hypothesis H0. A similar study under alternative hypothe-
ses, is the topic of future works.
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Appendix

Proof of Lemma 1 Given that

P(x ∈ Sα(x)) =
∫

Sα(x)
fx (ξ |x) dξ (51)

we show that the above integral remains invariant for any
change in x . If we replace x by x ′ = x + γ for an arbitrary
γ ∈ R

n , then we have∫

Sα(x ′)
fx (ξ |x ′) dξ =

∫

Sα(x)+γ

fx (ξ |x + γ ) dξ

=
∫

Sα(x)
fx (η + γ |x + γ ) dη

=
∫

Sα(x)
fx (η|x) dη (52)

showing that the probability in (51) is independent of x , thus
proving Lemma 1. In (52), in the first equality use is made
of condition (i), the second equality is obtained by change of
variable ξ → η = ξ −γ , and in the last equality use is made
of condition (ii). ��
Proof of Lemma 2 Combining (7) to (9) and defining L0 = 0,
one can write, for any arbitrary vector γ ∈ R

n ,

fx̄ (ξ + γ |H0, x + γ )

=
κ∑

i=0

∫

Pi

f x̂0(ξ + γ + Liτ |H0, x + γ ) ft (τ |H0) dτ

=
κ∑

i=0

∫

Pi

f x̂0(ξ + Liτ |H0, x) ft (τ |H0) dτ

= fx̄ (ξ |H0, x) (53)

which proves Lemma 2. Note, the second equality is a con-
sequence of the PDF of x̂0 under H0 being translational
invariant.

��
Proof of Theorem 1 The probability P(x̄ ∈ SE

α (x)|H0) can be
written, using (7) to (9), as

P
(
x̄ ∈ SE

α (x)
∣∣H0

)
=

κ∑

i=0

∫

SE
α (x)

∫

Pi

f x̂ i ,t (ξ, τ |H0, x) dτ dξ

=
κ∑

i=0

∫

Pi

ft (τ |H0)

∫

SE
α (x)

fx̂0(ξ + Liτ |H0, x) dξ dτ

= P
(
x̂0 ∈ SE

α (x)
∣∣H0

)

+
κ∑

i=1

∫

Pi

{
ft (τ |H0)

∫

SE
α (x)

[
fx̂0(ξ+Liτ |H0, x)− fx̂0(ξ |H0, x)

]
dξ

}
dτ
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= 1 − α

+
κ∑

i=1

∫

Pi

{
ft (τ |H0)

[
P(χ2

i
(τ )≤χ2

1−α(n, 0))−P(χ2
0
≤χ2

1−α(n, 0))
] }

dτ

(54)

where χ2
0

∼ χ2(n, 0) and χ2
i
(τ ) ∼ χ2(n, ‖Liτ‖2Qx̂0 x̂0

)

for i = 1, . . . , κ . Since P(χ2
i
(τ ) ≤ χ2

1−α(n, 0)) is always

smaller than or equal to P(χ2
0

≤ χ2
1−α(n, 0)), then the term

between square brackets in the last equality will always be a
non-positive value, from which (20) follows. ��
Proof of Theorem 2 Taking the integral of both sides of (10)
over SE

α (x) gives

P(x̄ ∈ SE
α (x)|H0) = (1 − α) PCA

+
∫

SE
α (x)

fx̄ |FA(ξ |FA, x) dξ PFA

≥ (1 − α) PCA.

(55)

Using the above lower bound and that PFA = 1 − PCA, we
arrive at (22). ��
Proof of Theorem 3 ‘if’ part: with fx̄ (ξ |H0, x) being transla-
tional invariant, we have, for any γ, x, ξ ∈ R

n ,

ξ ∈ SII
α (x + γ ) ⇔ fx̄ (ξ |H0, x + γ ) ≥ sIIα

⇔ fx̄ (ξ − γ |H0, x) ≥ sIIα
⇔ (ξ − γ ) ∈ SII

α (x)
⇔ ξ ∈ SII

α (x) + γ

(56)

from which we can conclude that SII
α (x + γ ) = SII

α (x) + γ

for any γ, x ∈ R
n . ‘only if’ part: let SII

α (x+γ ) = SII
α (x)+γ

be valid for any γ, x ∈ R
n and α ≥ 0. Then, we have

{
ξ
∣∣ fx̄ (ξ |H0, x + γ ) ≥ sIIα

}
=

{
ξ
∣∣ fx̄ (ξ − γ |H0, x) ≥ sIIα

}

(57)

That (57) holds for all sIIα proves that the PDF fx̄ (ξ |H0, x)
is translational invariant. ��
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Yavaşoğlu HH, Kalkan Y, Tiryakioğlu I, Yigit C, Özbey V, Alkan
MN, Bilgi S, Alkan RM (2018) Monitoring the deformation and
strain analysis on the Ataturk Dam, Turkey. Geomat Nat Haz Risk
9(1):94–107

Zaminpardaz S, Teunissen PJ, NadarajahN (2017) Single-frequency L5
attitude determination from IRNSS/NavIC and GPS: a single-and
dual-system analysis. J Geod 91(12):1415–1433

123

https://doi.org/10.1007/s00190-017-1045-7

	On the computation of confidence regions and error ellipses: a critical appraisal
	Abstract
	1 Introduction
	2 Brief review of background theory
	2.1 Integrated estimation and testing
	2.2 DIA-estimator
	2.3 Confidence region

	3 Estimation-only confidence region: current practice
	4 Estimation + testing confidence region: Approach I
	5 Estimation + testing confidence region: Approach II
	6 On the computation of DIA-estimator's confidence level and confidence region under mathcalH0
	6.1 Confidence level
	6.2 Confidence region: Approach I
	6.3 Confidence region: Approach II

	7 Summary and conclusions
	Acknowledgements
	Appendix
	References




