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Abstract

The Minimal Detectable Displacement (MDD) is an important measure of monitoring networks sensitivity to displacements.
In addition to the accuracy criteria, it is used as a detectability criterion in the optimal design of such networks. The paper
examines whether the MDD provides grounds for verifying the correctness of the confidence, and the significance thresholds
applied in the analyses of the determined displacements. According to our knowledge, the task so formulated has not yet
been the subject of research presented in the literature in the field of geodetic determination of displacements. Hence, the
approach presented here can be regarded as a new proposal extending the application area of the MDD. The investigations
are focused on a probabilistic aspect of combining confidence and detectability as well as significance and detectability by
the superimposition of the corresponding ellipsoids and their joint analysis. An initial research result is the diagrams show-
ing a significance index and a non-centrality parameter as functions of the rank of the covariance matrix for displacements
and also of system redundancy for specified values of Type I and Type II error probabilities. The diagrams, together with
the theoretical basis created within the research, made it possible to analyse and evaluate the support by Minimal Detect-
able Displacement in confidence region determination and significance test of displacements. Based on the analysis of
MDD support, two options of modifying the confidence and significance thresholds related to single point displacements
are proposed for practical use.

Keywords Ellipsoids superimposition - Error-limit determination - Significance test - MDD support evaluation - Thresholds
modification

1 Introduction extended onto deformation models by Heck (1986). In that
paper, the MDD and a sensitivity ellipse for a single network
point were first proposed. Some important findings concern-
ing the theory of network sensitivity and datum invariance
can be found in, e.g., Even-Tzur (2002, 2010), Xu (1995,
1997). The need for inserting the sensitivity criteria into the

network optimization procedures is formulated in (Kuang

The transfer to displacement monitoring of the concept of
Minimal Detectable Bias (MDB) introduced by Baarda
(1968) was made by Pelzer (1972). The term network sen-
sitivity with minimal detectable displacement (MDD) as
its measure was introduced and later became an element of

network analysis together with accuracy and reliability (Nie-
meier 1982; Niemeier et al. 1982). The concept of network
sensitivity to displacements was elaborated in detail and
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1991; Yazji 1997; Alizadeh-Khameneh et al. 2015).

The MDD concept is still commonly used in a priori anal-
yses of monitoring network accuracy and sensitivity. The
results of such joint analyses for horizontal networks are pre-
sented in the form of a confidence ellipse and a sensitivity
ellipse for each network point. However, except for compar-
ing the sizes, no other relationships between these ellipses
are considered. Such a limited approach is most certainly
due to the lack of a relevant theoretical basis. To our knowl-
edge, in significance tests of computed displacements, the
information contained in the sensitivity characteristics has
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not been taken into account as yet. Hence, the need to exam-
ine the possibility of using MDD as a source of supporting
information both in a priori analyses of monitoring networks
accuracy and in significance tests of displacements. If suc-
cessful, that might extend the range of applications of MDD.

To respond to the above-mentioned need, the objectives
of the present paper are the following:

e to create a theoretical basis that would enable one to
investigate the extent of MDD support in the analyses
of monitoring network accuracy and also in significance
tests of the computed displacements,

e to examine the possibility of modifying the above-men-
tioned procedures so as to use the supporting information
contained in the MDD.

It is necessary to emphasize that the paper concerns only
the models with parameters being network points displace-
ments. It does not deal with the models containing also strain
parameters as used in network deformation analysis.

2 Brief review of basic concepts
and notation

The review concentrates on minimum-constraint datum defi-
nition as commonly used in the monitoring of displacements
and the measures of network sensitivity to displacements.

2.1 Minimum-constraint datum definitions

Let us consider a displacement monitoring model based on
observation differences from two measurement campaigns

A‘d:Al+VAl, CA] (la)

S-d=0 (1b)

where A(n X u)—design matrix, rank A =u — d (d—network
defect), d(u X 1)—vector of displacements, Al(n X 1)—vec-
tor of observation differences, v,,(n X 1)—vector of random
errors in Al (with opposite sign), C,,(n X n)y—covariance
matrix for Al (positive definite), S(d X u)—coefficient matrix
in datum constraints.

We shall denote by A and (Al), the elements of the stand-
ardized model (1) corresponding to A and Al, respectively.

The models as in (1) having point displacements as
parameters are basically equivalent to those with point
velocities.

The matrix S has the following properties

rank [g] =u, rankS=d 2
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The minimum-constraint datum definition eliminates
the network defect without causing observation distortions.
There are several types of such constraints, e.g., free net
constraints.

Below, we present the least squares (LS) solution for the
standardized model (1), distinguishing the following two
ways in which the result of the global model test can be
used in defining the covariance matrix for displacements

(i) using the a priori variance factor 62=1, where 62 is

a variance of the standardized observation difference

(Al)s,i (i=1,...,n);
i=0.Qi=0Q4 3)

(i1) using the estimator (unbiased) of o-é,
the a posteriori variance factor;

ie., 62, termed

Ci=6,Q “
Ad (i) d = (ATA,)JAT(AD; C4 = (ATA,); rank Cg=u—d
®)

for free net constraints C4 = (ATA ) = (ATA,)"

Ad (i) d = (ATA,) AT(AD; C4 =62 (ATA,)q. rank C; = rank Cg
(6)

In the above formulas, (ATA 1s a reﬂexwe g-inverse
of ATA, such that S- (ATA, 0, (ATA,)" is a

pseudoinverse.

Also known is another datum definition, termed over-
constraint datum (where S(w X u), rank S = w, w > d), fix-
ing some network points. It eliminates the network defect
but causes observation distortions. Its use is bounded by
the restrictions on mutual displacements of the points being
fixed and the types of measured quantities.

2.2 Network sensitivity to displacements

The measures of sensitivity to displacements are derived on
the basis of hypotheses testing

H,: E(&) =0
H, : E(&) £0

where d is the LS estimator of the vector of displacements
as in (5) and (6).

If the covariance matrix C; as in (3) is used, the test sta-
tistic is
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d = dTCEd 7

e under H,, ® has a central ;(}f distribution, / is a rank of Cy,

e under H,, ® has a non-central ;(}f distribution, with a non-
centrality parameter

A= (iTCdJI(i 8)

A vector d is considered detectable if 4 > Aha,p,» Where
Aha,p, 18 @ critical value of non-centrality parameter deter-
mined for the specified values of Type I and Type II error
probabilities a, and f,.

If the covariance matrix C 4 as in (4) is used, the test statistic
is
~ dTdi

Py = — ©)

Q>

2
o

. . . AD -
where Q, is a cofactor matrix, 4 is a rank of Qg, 67 is the a
posteriori variance factor

e under H,, @ has a central Fy , distribution (r is a model
redundancy; r=n—u+d),

e under H,, @ has a non-central F}, , distribution, with a non-
centrality parameter

s a
_dTQpd

Ap = (10)

52
%

A critical value of the non-centrality parameter is denoted
here by A4 p.- A vector d is considered detectable if
Ag > Aprq p» Where @, and f, as above.

For a single point vector with a non-singular covariance
matrix, / is a number of the vector components.

On the basis of the formulas (8) and (10), we can write the
equations of s—dimensional sensitivity ellipsoids for the case
of Cjand Cd, respectively, i.e.,

d'Cid = 4y, (an
d'Q:d
52 = lh,r,a‘,,ﬁ\, (12)

Based on (11) and (12), we get the commonly used sensitiv-
ity measure as Minimal Detectable Displacement (MDD), cor-
respondingly for the case of C4and Cé (Niemeier 1982, 1985)

A’ha B,
”d”min = ﬁ ”d”mm = 6-0
max

M., B,

N 13)

max

where A,,, 1S a maximal eigenvalue of the matrix C:ir and
Q}, 6, 1s a square root of the a posteriori variance factor.

According to (Hsu and Hsiao 2002), both the minimal and
the maximal value of MDD should be taken into considera-

tion. The maximal value is based on a minimal eigenvalue
Amin'

Datum invariance of the sensitivity quadratic form as in
(7) is an important issue in the subject of the paper since
the MDD defined on its basis is applied in different types of
datum definition. It is known that the form is invariant to the
choice of the type of minimum-constraint datum definition.
A concise proof, complementary to the existing proofs (e.g.,
Even-Tzur 2010), is presented in “Appendix A” section. It
covers all possible types of datum definition.

A non-centrality parameter for a test statistic (10) in the
case of the model (1) with weights of observation differences
is considered in “Appendix B” section.

3 Investigating MDD support
in accuracy analysis and in the testing
of displacements

In investigations, we operate with h-dimensional displace-
ment vectors (h > 1). For simplicity, the corresponding
regions of confidence, significance and sensitivity, being
line segments (h=1), ellipses (h=2), ellipsoids (h=3) and
hyper-ellipsoids (4> 3), will be termed for all 4 the ellip-
soids, e.g., (Pope 2008).

The proposal covers the following two task cases:

e Case I Confidence region determination supported by
network sensitivity characteristics (variance factor option
1)

e Case II Significance test of computed displacements sup-
ported by network sensitivity characteristics (variance
factor option (i) and (ii)).

As a final result, the extent of the support is evaluated.
3.1 Creating of the theoretical basis
3.1.1 Variance factor option (i)

A property of the test statistic ® = (iTCdT(i under H, and H,,

i.e., ®=Afor h > 1 (see (7), (8)), as expressed in terms of
the corresponding values of ®@ and A (i.e., u and 4, respec-
tively), means the following equality

@ Springer
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Upg = /lh,cx,ﬁ (14)

For a given a, we get  from the above equality. We will
say that such g is coordinated with a given a. Assuming
an arbitrary value of f not coordinated with a given a and
denoted by § will result in w4, , # A, o 5.

Let critical values of @ and A be denoted by u, and
Ao Where u =ity o , Ay = Ay p 5 @, and f, are the values
of a and f assumed in u, and A, respectively. Putting,
e.g., a,=0.05 and f,=0.20, we get from (14) u, # 4,, and
hence, we can see that §,=0.20 is not coordinated with
a,=0.05. The value of § coordinated with a,=0.05 will
be denoted by E

The investigation of MDD support requires knowl-
edge on the relationship between the sizes and probabil-
ity features of the following three concentric and simi-
lar h-dimensonal ellipsoids, such as sensitivity ellipsoid
(Eq.,), confidence ellipsoid (E,,, ) (also termed as a limit-
error ellipsoid) and significance ellipsoid (Esig).

Let us consider equations of these ellipsoids, referring
to the expression for a test statistic @ as in (7). The com-
ponents of the vector d will be treated here as algebraic
variables.

Eg, dTCded = Uy; Uy = Uy, 3 A, —significance level (15)

u,—a critical value of the variable @ such that
P{dD > uh,(x“} =a,

E.., dTC}d = Uy ()5 Uo(y) = Uny 5 Yo—confidence level

Uyyy—a critical value of the variable @ such that
P{<I> < uh,yo} =7,

E,., chgd = Aos Ay = Ang,p, (see (11))

A,—a critical value of a non-centrality parameter of
the variable ®.

E.., represents a detectability threshold for displacements.
It is easy to prove that every vector that satisfies Eq. (11) is
an MDD in this direction.

Putting y, = 1 — a, in (16), we get uy, =i, which
reduces the number of sizes to be analyzed to two, the cor-
responding parameters being Uy, and 4,4 g .

The values of u, , were computed iteratively on the basis
of the arguments of cumulative distribution function (CDF)
for a ;(f—distributed random variable. For the computation
of 4 q_p, use was made of the efficient and sufficiently accu-
rate numerical program developed by Aydin and Demirel
(2005) according to the algorithm and the associated theory
given in (Gaida and Koch 1985). The results of the computa-
tion are presented in Table 1 and Fig. 1.

The symbol h;o,ﬁo in Table 1 denotes a crossing point of
the curves u,(h) and A,(h) (see Fig. 1).

We can see in Fig. 1 that with the increase in 4, both the
curves increase monotonically, the former one at a higher
rate.

At a certain value of h, denoted as /; , (being equal to
7.3), these curves cross each other. For i </, po We have
c: b,
the symbol g denotes the value of # coordinated with

a,=0.05. For u,< 4,, we have E>ﬁ0 and for u > A, E<ﬂ0.

u,<4,, whereas for h>h’ . we have u,> A,. For a given h,

5 6 7 8 9 10 20 50

11.1 12.6 14.1 15.5 16.9 18.3 314 675
12.8 13.6 144 15.0 15.6 16.2 21.0 30.2

(16)

Table 1 Values of u, and A, for h 1 5 3 4
different & (a,=0.05, f,=0.20);
o, p,=73 u, 38 60 78 95

A 7.8 9.6 10.9 11.9
Fig. 1 Parameters u, and A, U A Ao
as functions of &; a,=0.05, 35
£,=0.20
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We can also notice that the values of E decrease with the
increase in &, which is consistent with the findings in (Aydin
2011) focused on the power of the test.

The properties as presented above for a,=0.05, §,=0.20
can be observed for other values of , and f...

For single network points, we have & <h;o,ﬁo’ so the size of
E, is greater than that of E;, and E,, (withy, = 1 — a,). For
networks taken as a whole or for the subsets of their points,
such that 7> hzﬁ we have the opposite situation.

sen

3.1.2 Variance factor option (ii)

From the formulas (9) and (10), it follows that the property
analogous to that in the variance factor option (i), i.e., ®=4,
does not hold directly for ®. We can get this effect by intro-
ducing a rescaled variable @, defined by

VY=nh- o a7
Hence,
d’Q*d
Y= _2‘1 (18)
O-O

The values of ¥ will be denoted by “w”.
The variable does not have an identifiable probability distri-
bution but has a property useful for the present derivations, i.e.,

Property If r — oo, the probability distribution of the vari-
able ¥ — ;{é (the property is well known in mathematical
statistics).

So, since with r— oo 82— 62, the variable
a'Qid o
- i =d'Cid=o.
o2 d

As was assumed in Sect. 2.1, 62 = 1.
Now, we find the critical value of @ for a given significance

level a. Denoting the values of @ by “z”, we shall write

P{<I>F > zhm} =«

Substituting (17) and duly modifying the internal inequal-
ity, we obtain finally

P{¥>w, . =a (19)

where wy .o = A 2y

The variable ¥, being compatible with @ as regards
properties and scale, satisfies the equality ¥ = Ag for i >
1 and r > 1. So, the values of ¥ and A, i.e., w and Ay are
bound by the equality

Wh,r,(x = Ah,r,(x,ﬁ (20)

In analogy to (14), f§ is coordinated with a given value
of a.

Let critical values of ¥ and Ar be denoted by w, and A,
where Wy = Wy a5 Apo = Ao p, (@,=0.05, f,=0.20). We
may check that w, # A, and hence, §,=0.20 is not coor-
dinated with a,=0.05. The value of f coordinated with
a,=0.05 will be denoted by B (for simplicity of notation,
the same symbol as for variance factor option (i) is used).

For Case II (variance factor option (ii)), we need to
acquire knowledge on the relationship between the sizes of
the corresponding significance ellipsoid and the sensitivity
ellipsoid. We shall denote these ellipsoids by Esig and £,
respectively. We write their equations without additional
explanations

d'Q:d
sig ~D =Wo W, = Whra, @D
0-0
d'Q:d
sen T = lF,o; AF,O = )’h,r,%,ﬁo 22

To the above-mentioned property of ¥ concerned with
r increasing to infinity, we may add the following

e since with r — co wy . = U and Ay o5 = Ay, SO
Esig - Esig and Esen - Esen'

Table2 Values of w, and Ag,, L 1 5 3

o, Pyt

for different 4 and r (a,=0.05,
o =0.20); 15 4 5 w, 66 116 162 208 253 297 341 385 430 474 912 2222 x
Ao 123 187 245 301 357 412 467 521 575 629 1168 277.9
10 w, 50 82 111 139 166 193 219 246 272 298 555 1319 499
Ao 97 132 162 190 217 243 269 295 320 345 591 1318
20 w, 44 70 93 115 136 156 176 196 215 235 425 983 120
Ao 87 112 133 151 168 184 200 215 230 244 384 784
100 w, 39 62 81 99 115 131 147 163 178 193 335 739 79
Ape 80 99 113 125 136 145 154 162 170 178 243  40.

x—value difficult to determine

@ Springer
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Fig.2 Parameters w, and 4,
as functions of A, for =10 and
r=50 (a,=0.05, f,=0.20)

The values w, were obtained by rescaling the values
Znra,» cOmputed iteratively based on the arguments of
CDF for F} —distributed variable. Like the values of A
in option (i), the values of Ag, were computed with the
use of a numerical program developed by Aydin (2011).
The results of the computation are presented in Table 2
and Fig. 2.

The symbol h;
the curves w () and Ag () for some r (see Fig. 2).

Figure 2 presents the curves w(h) and Ag ,(h) for r=10
and r=50. The curves are generally similar to their equiva-
lents in Fig. 1. We can see in Table 2 and Fig. 2 that the
values of # where these curves intersect (denoted here as
h;mﬁosr) increase with the decrease in r. For r= 10, the inter-
section of the curves falls outside the diagram.

Interpretation of the cases h <hzo,ﬁo»r and /> h;o»ﬁo,r is like

Bor in Table 2 denotes a crossing point of

that given for option (i). The values of f§ decrease with the
increase in A.

Fig. 3 Presentation of ellipsoids
for analysis in Case I (1, 2,
3—vectors of characteristic
location, y, = 1 — a)

@ Springer

for h < hy,_p,

=
*
RN
o
RN
(&)
N
o
=

3.2 Analysis for Case |
3.2.1 Variance factor option (i)

Usually, both the confidence ellipse and the sensitivity
ellipse are presented together as a result of network quality
analysis. We provide the description of characteristic dis-
placement vectors and some probabilistic features of each
of the ellipses (here—ellipsoids).

The values of # in Fig. 3 are computed for h=2
(h< h;ﬂyﬁo), h=15 (h> h(’;mﬁo).

Since we consider the a priori accuracy analysis, the
vectors 1, 2, 3 represent potential (not determined) dis-
placement vectors.

Deterministic description of the characteristic vectors:

for h< h:mﬁu for h> h:(mﬁo

1. error-affected displacements
displ. under detectability
threshold

2. error-free displacements
displ. under detectability
threshold

3. error-free displacements
detectable displacements

1. displ. under detectability
threshold
error-affected displacements
2. detectable displacements
error-affected displacements

3. error-free displacements
detectable displacements

for h > hy,_p,

con

y=0.95, =0.20
v=0.95, B=0.42

y=0.95, B=0.20
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For a zone between the ellipsoids (see vector 2), we
observe some inconsistency in the above description. It is
due to the fact that the confidence related and the sensi-
tivity related qualifications concern different assumptions
(i.e., hypothesis H, and hypothesis H,), with Type I and
Type II error probabilities not mutually coordinated. The
detectability threshold 4, is different from the error-limit

Uo(y):

3.3 Analysis for Case ll
3.3.1 Variance factor option (i)

For the analysis of significance combined with sensitivity,
we present the significance ellipsoid and the sensitivity ellip-
soid together with the description of characteristic displace-
ment vectors and some probabilistic features of each of the
ellipsoids.

The values of § in Fig. 4 are computed for h=2

(h<h p)h=15 (h>h, p)-

Fig.4 Presentation of ellipsoids
for analysis in Case II, option (i)
(1, 2, 3—vectors of characteris-
tic location)

Fig.5 Presentation of ellipsoids *
<

for analysis in Case II, option h h“mBo’r

(ii) (1, 2, 3—vectors of charac-

teristic location)

Jm

0=0.05, B=0.20
0=0.05, p=0.42

a=0.05, B=0.20
a=0.05, B=0.42

The deterministic description is as follows

for h< hfxmﬁu for h> h;o-ﬁo

1. insignificant displacement 1. displ. under detectability threshold

2. detectable displacement
insignificant displacement

2. significant displacement
displ. under detectability
threshold

3. significant displacement
detectable displacement

3. detectable displacement
significant displacement

Like in Case I, for a zone between the ellipsoids (see vec-
tor 2), we observe some inconsistency in the above descrip-
tion. The cause of inconsistency is as that explained in Case
I. Here, the detectability threshold A, is different from the
significance threshold u,.

We may readily classify the computed i-dimensional
displacement vector d either as 1, 2 or 3, respectively, by
means of the following checks based on the values u of the
test statistic @, i.e.,

forh<h:{0,[5 tuu,, Uy <UL Ay, u> A (23)

o

for h > h:;o,ﬁn T UL Ay, Ay <uLu,, u>u, (24)

a=0.05, B=0.20

a=0.05, p=0.15
a=0.05, B=0.20

@ Springer
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3.3.2 Variance factor option (ii) 3.4 Evaluating the MDD support in task Cases |
and Il
Since the deterministic description of the displacement
vectors is analogous to that in option (i), we only present ~ The MDD support is understood here as providing grounds
both the ellipsoids together with their probabilistic features  for verifying the correctness of the significance (or con-

(Fig. 5). fidence) threshold. The support is the greater the closer
To classify the computed k-dimensional displacement is the sensitivity ellipsoid to significance (or confidence)

vector d either as 1, 2 or 3, respectively, we use here the fol- ellipsoid.

lowing checks based on the values w of the variable ¥ and The value of E obtained from the equality (14) with

Apasin (21) and (22) a,=0.05 (or y, =1 — a,) depends except i only on the

value of a,. Hence, f is only partially connected with
the detectability threshold A, which is defined on both
a, and f,. The difference |4, — u,| # 0 is a main cause of
for h > h;mﬁmr DWW S Apgs Wi <W < Weg W>W, (26)  inconsistency in the description of vector qualification dis-
cussed in Sect. 3.2 (Fig. 3) and Sect. 3.3 (Figs. 4 and 5).

For this variance factor option, the greater the system  The smaller is #, and the smaller is |/10 - u0|, the greater
redundancy, the lower is the detectability threshold, and  is MDD support. The analysis of the above-mentioned
the smaller are the displacement vectors that can be con-  relationships led to introducing of the following directly-
sidered as insignificant. It is therefore recommended to  proportional measure of MDD support, defined by
always ensure an appropriately high redundancy level.

The values of § in Fig. 5 are computed for r=20 and for h < It ; Q<ﬂ, ﬁ) 27
h=2(h<hy o ), h=20 (h>h , ). e T\ A

for h < h;mﬁ P D WS W, We WS Apg, W Ag,  (25)

o>

o

for h > h:mﬁo Q<E, u_0> (28)

Table 3 Values of O for some h 1 2 3 4 5 6 7 8 9 10 20 30 40 50
h (a,=0.05, p,=0.20); italics

concerns h>hy f 050 058 0.64 069 073 076 079 0.8 0.84 086 096 098 0.995 0.998

WA 049 062 072 079 086 092 098 097 092 089 0.67 056 049 045

Ag 1,

c
>

>
c

0,2
0,1
0,0

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 E

Fig.6 Plot of Q values for some & (a,=0.05, §,=0.20); Q points are labeled with the values of &; h </, B in blue, h> I, B in red

@ Springer
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where f=1— f is a power of the test for u, = A,, the second
components in Q are equal to 1 for & =h:ﬂ,ﬁ(,'

Since both the parameters in Q are mutually incompa-
rable, in the case of opposite trends in their functions of 4,
ranking of Q will not be possible. Therefore, the ranking
of the MDD support will then have to be carried out with
respect to each of the parameters separately.

The measure of MDD support as in (27) and (28) is con-
structed on the basis of parameters used in Table 1 and dia-
grams in Fig. 1. Hence, variability of Q values is some other
representation of the above-mentioned diagrams.

The values of Q for some # are presented in Table 3 and
Fig. 6.

The results in Table 3 and Fig. 6 apply to Task Case I and
Task Case II (variance factor option (i)). We may conclude
that the MDD support is the smallest for single point dis-

placements in 1D networks (E =0.5, % =0.49) and becomes
successively greater for 2D (f=0.58, Z—" =0.62) and 3D net-
works (=0.64, % =0.72). For h> I, p, (i-e., for global net-

work displacements), in terms of § the support is increasing,
whereas in terms of 2 it is decreasing. For h=50, g is

approaching 1 while %Ofalls down to 0.45.

In analogy to the definition in (27) and (28), the measure
of MDD support for Task Case II (variance factor option (ii))
is defined as follows

WO

for h < hzmﬁmr Q(l_f, o > (29)
F,o
A 0

forh> I, Q</_f, — > (30)
(8]

where f=1 —E is a power of the test for Az = w,, E is
obtained from the equality (20), i.e., W4 = 4 the
second components in Q are equal to 1 for h=h The

h,r,a,.8°
*

g, Boor”

MDD support is presented in Table 4 and Fig. 7.

Like in Fig. 6, the MDD support is the smallest for single
point displacements in 1D networks and becomes succes-
sively greater for 2D and 3D networks. And also, for 2> h:ﬁ’r
(i.e., for global network displacements), in terms of g the
support is increasing, whereas in terms of L Tt is

u,

decreasing.

According to the property presented in Sect. 3.1 (variance
factor option (ii)), with the increase in r, the MDD support
becomes closer and closer to that in Fig. 6 for Task Case II
(variance factor option (i)).

Table 4 Values of Q for some & h 1
and r=20 (a,=0.05, §,=0.20);

2 3 4

5 6 7 8 9 10 20 30 40 50

italics concerns h>h;, bor

051 0.58 0.63

i
W . 0.50 0.62 0.70

AF,U
Ao’ Wy

0.67 0.70
0.76 0.81

072 074 076 0.77 0.78 0.85 0.88 0.89 0.90
085 0.88 091 094 09 090 085 082 0.80

0,1 0,2 0,3 0,4

0,5

B

0,6 0,7 0,8 0,9

Fig. 7 Plot of Q values for some & and r=20 (a,=0.05, §,=0.20); Q points are labeled with the values of ; h<h, Pur in blue, h>h; Pur in red
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The diagrams in Figs. 6 and 7 confirm the theory in
Sect. 3.1 in that the MDD support for both the variance fac-
tor options increases up to the intersection point (h;wﬁo or
h:&,,ﬁmr)’ and behind this point it increases in terms of the first
parameter but decreases in terms of the second parameter.
Since the smaller is r (variance factor option (ii)), the inter-
section point falls for greater &, a zone of the increasing
MDD support becomes longer. This effect was observed on
a diagram for =10 where h:&),ﬁo’rz 49.9, not shown in the
present paper.

3.5 Investigating the possibility of thresholds
modification

The question now arises whether the MDD support gives
grounds for advantageous modification of the thresholds in
the significance test of displacements (or confidence region
determination) and detectability for h=1, 2, 3. The follow-
ing two possibilities can be taken into account:

e lowering the detectability threshold while keeping the
sensitivity (or confidence) threshold fixed, i.e., E, is
brought toward E, in terms of size,

e raising the sensitivity (or confidence) threshold while
keeping the detectability threshold fixed, i.e., Eg, is

brought toward E, in terms of size.

From the analyses carried out for the first possibility, it
follows that such a modification would result in an unaccep-
table increase in the probability of the Type II error. Maxi-
mum values of this probability, expressed in terms of the
power of the test f are presented in Table 3 and Fig. 4. So,
we pass to the second possibility.

Below, we present the analysis for two reasonable options
of modifying the significance threshold for both the vari-
ance options, i.e., (i) and (ii). In Option 1, we assume u,, ,, =
0.5(u, + 4,), while in Option 2 u,, ,, = A,, where the subscript

“m” denotes the modified quantity. In Option 1, E, . lies in

sig,m

between E, and E,,, while in Option 2 E, ,, = Egsen.
The data for the analysis are presented in Tables 5 and 6.
The symbol Em denotes ff coordinated with a,, ), and as in
Sect. 3.1 (variance factor option (i)), the symbol E denotes

p coordinated with e, (here a,=0.05).

Ad option 1 (variance factor option (i))

For h <h;‘;0,ﬁ0, the Type I error probability « is decreased
from the level of 0.05 to an average level of 0.02 (for h=1,
2, 3), whereas the coordinated Type II error probability f
displays a slight increase of about 0.01 from the average
level of about 0.43. For i > h;o,ﬁn’ the Type I error probability
a is increased over the level of 0.05, whereas the coordinated
Type II error probability f is decreased below 0.20.

Ad option 2 (variance factor option (i))

The changes, being analogous to those in Option 1, are
greater. For h < hzo,ﬁo’ the probability « is decreased to an
average level of 0.01, while the coordinated Type II error
probability g displays a slight increase of about 0.02.

Based on the above results, it seems reasonable to apply
modification only for 4 < h;o»ﬁo’ and thus for single point dis-
placements. Either of the Options, as advantageous in terms
of testing errors probabilities, is acceptable. Instead of the
diversified level of «, ,, for different /, the averaged common
values 0.02 and 0.01 can be recommended for Option 1 and
Option 2, respectively. However, since it was found in com-
putations that for #=3 in Option 2 (with a, ,,=0.01) Eg, ,
lies slightly outside E,,, the significance level «, ,, =0.015
is proposed for Option 2. With this level E, lies inside
Egeps 1.6, U 1 < Ag

It was verified that the above conclusions also apply to
the variance factor option (ii) the more, the greater the r.
The computations showed that for #=3 in Option 2 with
o =0.015 Eg, , lies inside E,, (i.e., wy p, <Ag,) for r>23.
For h=2 and h=1, we have > 10 and r > 7, respectively.

sig,m

IZ?il:nsce?aactz)fo(:p(t)iggo(?) 3 b o fo Fom B h Hom Ao %om i B
1 5.85 785 0.016  0.500  0.500 10 17.27 16,24  0.069  0.138  0.145
7.81 9.64 0.020 0427 0417 20 2619 2096 0.160 0.032  0.045
3 9.36 1090 0.025 0370 0358 30 3416 2455 0274 0.007 0.014

saranee btoropton @) 1 Mm Cm B B P tn Gm B
7.85 0.005 0.500 0.500 10 16.24 0.093 0.130 0.145
9.64 0.008 0.435 0.417 20 20.96 0.399 0.019 0.045
3 10.90 0.012 0.379 0.358 30 24.55 0.747 0.002 0.014
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Tab.le 7 Data for thior} 2, h u, Uy, A, o, ﬁ E

variance factor option (i), ’ ’ m

%m=0015 1 3.84 5.92 7.85 0.015 0.500 0.500
2 5.99 8.40 9.64 0.015 0.430 0.417
3 7.81 10.46 10.90 0.015 0.377 0.358

If the above-mentioned restrictions on the value of r are
acceptable, the significance level «, ;,=0.015 can be pro-
posed for both options (i) and (ii) in Option 2. Otherwise,
the value of «, , for option (ii) should be increased accord-
ingly. The data for variance factor option (i) are presented
in Table 7.

A similar modification can be carried out for confidence
area determination (variance factor option (i)). The modified
confidence level y, ,, would be 0.98 for Option 1 and 0.985
for Option 2.

The choice of Options for both Task Cases I and II can be
made depending on the type of practical applications.

The determined measures of MDD support and the pro-
posed threshold modifications have a general character and
are valid for any realization of Task Case I or Task Case II.
Therefore, enclosing a numerical example did not seem to
be necessary.

4 Concluding remarks

Theoretical findings of the research can be summarized as
follows:

e determining Type II error probability B corresponding to
Type I error probability «,,

¢ introducing a rescaled Fisher-distributed test statistic which
made it possible to construct a significance ellipsoid com-
parable with the sensitivity ellipsoid for the case when the
a posteriori variance factor is used,

e proposing a 2-parameter measure Q of MDD support in the
accuracy analysis and significance test of displacements.

The computations show that the MDD support both in
confidence region determination and significance test of sin-
gle point displacements is the smallest for 1D networks. It
increases successively for 2D and 3D networks. For global
network displacements, with the increase in 4, the MDD sup-
port increases with regard to # much more than for single point
displacements but decreases with regard to the second param-
eter in Q. Based on the analysis of MDD support, two options
of modifying the significance and confidence thresholds for
single point displacements are proposed. The modified thresh-
olds being closer to the detectability threshold, correspond

to significance level @=0.02 or a=0.015 and the confidence
level y=0.98 or y=0.985. The advantage of these modifica-
tions is that the proposed decrease in the significance level a
(or increase in confidence level y) results in a negligibly small
increase in the Type II error probability /.

In future research, it is planned to consider other types of
displacement monitoring models and also, based on publica-
tions such as, e.g., (Xu et al. 2000) to examine the possibility
of extending the findings of the present paper onto geometrical
deformation approach.

Appendix A

Another proof for datum invariance of sensitivity
quadratic form

Thesis A necessary and sufficient condition for datum invari-
ance of the form ® in a model (1) is that the coefficient
matrix S in minimum-constraint datum definition eliminat-
ing the model defect is of the rank equal to that defect.

Proof Substituting d and C, as in (5) into the formula
d = (iTC;ci (as in (7)), we get

© = (AD7A, (ATA )5 [(ATA)5] " (ATA, ;AT (a0,

= (ADTA, (ATA,)AT(AD, oy

According to (Rao and Mitra 1971; Rao 1973), the
expression A (ATA)” AT, where (ATA)™ denotes a general-
ized inverse of ATA, does not depend on the choice of the
generalized inverse.

Hence, for any given (Al),, excluding (Al), € Ker(AT),
i.e., AZ(A])s = 0, the form @ will have the same value for
any type of the inverse (ATA, )¢ used. This means any type
of minimum-constraint datum definition [see (2)].0]

It follows immediately from the proof that for any over-

constraint datum definition (i.e., where rank S > d) the
form @ is not datum invariant.
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Appendix B

Non-centrality parameter for the model (1)
with weights of observation differences

The displacement vector d and its covariance matrix C;
(and Cy) are as follows

d= (A"PyA) AP Al

Ci=o0.,(ATPyA)g
C;= 62 (ATPyA)g

where P, —weight matrix (pos. definite), o2 —a priori
variance of the observation difference of unit weight, &ZW
—estimator (unbiased) of 62 .

Denoting C4as C4 = 6§’WG, where G = (ATPMA);, the
test statistic ¥ corresponding to that in (18), will be

_d'c+d

62
o,W

b g

Due to the property that ¥ =4y (as in Sect. 3.1, variance
factor option (ii)), we get the non-centrality parameter for
the analyzed option of the model (1).

We can check the same convergence of ¥ to @, i.e., since

with 7 = o0 &g’w - o-iw, so¥ — dTg?—:d = .
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