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Abstract
The Minimal Detectable Displacement (MDD) is an important measure of monitoring networks sensitivity to displacements. 
In addition to the accuracy criteria, it is used as a detectability criterion in the optimal design of such networks. The paper 
examines whether the MDD provides grounds for verifying the correctness of the confidence, and the significance thresholds 
applied in the analyses of the determined displacements. According to our knowledge, the task so formulated has not yet 
been the subject of research presented in the literature in the field of geodetic determination of displacements. Hence, the 
approach presented here can be regarded as a new proposal extending the application area of the MDD. The investigations 
are focused on a probabilistic aspect of combining confidence and detectability as well as significance and detectability by 
the superimposition of the corresponding ellipsoids and their joint analysis. An initial research result is the diagrams show-
ing a significance index and a non-centrality parameter as functions of the rank of the covariance matrix for displacements 
and also of system redundancy for specified values of Type I and Type II error probabilities. The diagrams, together with 
the theoretical basis created within the research, made it possible to analyse and evaluate the support by Minimal Detect-
able Displacement in confidence region determination and significance test of displacements. Based on the analysis of 
MDD support, two options of modifying the confidence and significance thresholds related to single point displacements 
are proposed for practical use.

Keywords  Ellipsoids superimposition · Error-limit determination · Significance test · MDD support evaluation · Thresholds 
modification

1  Introduction

The transfer to displacement monitoring of the concept of 
Minimal Detectable Bias (MDB) introduced by Baarda 
(1968) was made by Pelzer (1972). The term network sen-
sitivity with minimal detectable displacement (MDD) as 
its measure was introduced and later became an element of 
network analysis together with accuracy and reliability (Nie-
meier 1982; Niemeier et al. 1982). The concept of network 
sensitivity to displacements was elaborated in detail and 

extended onto deformation models by Heck (1986). In that 
paper, the MDD and a sensitivity ellipse for a single network 
point were first proposed. Some important findings concern-
ing the theory of network sensitivity and datum invariance 
can be found in, e.g., Even-Tzur (2002, 2010), Xu (1995, 
1997). The need for inserting the sensitivity criteria into the 
network optimization procedures is formulated in (Kuang 
1991; Yazji 1997; Alizadeh-Khameneh et al. 2015).

The MDD concept is still commonly used in a priori anal-
yses of monitoring network accuracy and sensitivity. The 
results of such joint analyses for horizontal networks are pre-
sented in the form of a confidence ellipse and a sensitivity 
ellipse for each network point. However, except for compar-
ing the sizes, no other relationships between these ellipses 
are considered. Such a limited approach is most certainly 
due to the lack of a relevant theoretical basis. To our knowl-
edge, in significance tests of computed displacements, the 
information contained in the sensitivity characteristics has 
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not been taken into account as yet. Hence, the need to exam-
ine the possibility of using MDD as a source of supporting 
information both in a priori analyses of monitoring networks 
accuracy and in significance tests of displacements. If suc-
cessful, that might extend the range of applications of MDD.

To respond to the above-mentioned need, the objectives 
of the present paper are the following:

•	 to create a theoretical basis that would enable one to 
investigate the extent of MDD support in the analyses 
of monitoring network accuracy and also in significance 
tests of the computed displacements,

•	 to examine the possibility of modifying the above-men-
tioned procedures so as to use the supporting information 
contained in the MDD.

It is necessary to emphasize that the paper concerns only 
the models with parameters being network points displace-
ments. It does not deal with the models containing also strain 
parameters as used in network deformation analysis.

2 � Brief review of basic concepts 
and notation

The review concentrates on minimum-constraint datum defi-
nition as commonly used in the monitoring of displacements 
and the measures of network sensitivity to displacements.

2.1 � Minimum‑constraint datum definitions

Let us consider a displacement monitoring model based on 
observation differences from two measurement campaigns

where �(n × u)—design matrix, rank A = u − d (d—network 
defect), �(u × 1)—vector of displacements, Δ�(n × 1)—vec-
tor of observation differences, �Δ�(n × 1)—vector of random 
errors in Δ� (with opposite sign), �Δ�(n × n)—covariance 
matrix for Δ� (positive definite), �(d × u)—coefficient matrix 
in datum constraints.

We shall denote by �s and (Δ�)s the elements of the stand-
ardized model (1) corresponding to A and Δ� , respectively.

The models as in (1) having point displacements as 
parameters are basically equivalent to those with point 
velocities.

The matrix S has the following properties

(1a)� ⋅ � = Δ� + �Δ�, �Δ�

(1b)� ⋅ � = �

(2)rank

[

�

�

]

= u, rank � = d

The minimum-constraint datum definition eliminates 
the network defect without causing observation distortions. 
There are several types of such constraints, e.g., free net 
constraints.

Below, we present the least squares (LS) solution for the 
standardized model (1), distinguishing the following two 
ways in which the result of the global model test can be 
used in defining the covariance matrix for displacements

	 (i)	 using the a priori variance factor �2
o
 = 1, where �2

o
 is 

a variance of the standardized observation difference 
(Δl)s,i (i = 1,…,n);

	 (ii)	 using the estimator (unbiased) of �2
o
 , i.e., 𝜎̂2

o
 , termed 

the a posteriori variance factor;

for free net constraints ��̂ =
(

�T
s
�s

)−

�o
≡
(

�T
s
�s

)+

In the above formulas, 
(

�T
s
�s

)−

�
 is a reflexive g-inverse 

of �T
s
�s , such that � ⋅

(

�T
s
�s

)−

�
= � , 

(

�T
s
�s

)+ is a 
pseudoinverse.

Also known is another datum definition, termed over-
constraint datum (where �(w × u) , rank � = w , w > d ), fix-
ing some network points. It eliminates the network defect 
but causes observation distortions. Its use is bounded by 
the restrictions on mutual displacements of the points being 
fixed and the types of measured quantities.

2.2 � Network sensitivity to displacements

The measures of sensitivity to displacements are derived on 
the basis of hypotheses testing

where �̂ is the LS estimator of the vector of displacements 
as in (5) and (6).

If the covariance matrix ��̂ as in (3) is used, the test sta-
tistic is

(3)��̂ = 𝜎2
o
��̂ = ��̂

(4)�̂�̂ = 𝜎̂2
o
��̂

(5)
Ad (i) �̂ =

(

�T
s
�s

)−

�
�T

s
(Δ�)s; ��̂ =

(

�T
s
�s

)−

�
rank ��̂ = u − d

(6)
Ad (ii) �̂ =

(

�T
s
�s

)−

�
�T

s
(Δ�)s; �̂�̂ = 𝜎̂2

o

(

�T
s
�s

)−

�
, rank �̂�̂ = rank ��̂

Ho ∶ E
(

�̂

)

= �

Ha ∶ E
(

�̂

)

≠ �
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•	 under Ho , Φ has a central �2
h
 distribution, h is a rank of ��̂,

•	 under Ha , Φ has a non-central �2
h
 distribution, with a non-

centrality parameter

A vector �̂ is considered detectable if 𝜆 > 𝜆h,αo,βo , where 
�h,αo,βo is a critical value of non-centrality parameter deter-
mined for the specified values of Type I and Type II error 
probabilities �

o
 and �

o
.

If the covariance matrix �̂�̂ as in (4) is used, the test statistic 
is

where ��̂ is a cofactor matrix, h is a rank of ��̂ , 𝜎̂2
o
 is the a 

posteriori variance factor

•	 under Ho , ΦF has a central Fh,r distribution (r is a model 
redundancy; r = n − u + d),

•	 under Ha , ΦF has a non-central Fh,r distribution, with a non-
centrality parameter

A critical value of the non-centrality parameter is denoted 
here by �h,r,αo,βo . A vector �̂ is considered detectable if 
𝜆F > 𝜆h,r,αo,βo , where �o and �o as above.

For a single point vector with a non-singular covariance 
matrix, h is a number of the vector components.

On the basis of the formulas (8) and (10), we can write the 
equations of h—dimensional sensitivity ellipsoids for the case 
of ��̂ and �̂�̂ , respectively, i.e.,

Based on (11) and (12), we get the commonly used sensitiv-
ity measure as Minimal Detectable Displacement (MDD), cor-
respondingly for the case of ��̂ and �̂�̂ (Niemeier 1982, 1985)

(7)Φ = �̂T�+

�̂
�̂

(8)𝜆 = �̂T�+

�̂
�̂

(9)ΦF =
�̂T�+

�̂
�̂

h ⋅ 𝜎̂2
o

(10)𝜆F =
�̂T�+

�̂
�̂

𝜎̂2
o

(11)�T�+

�̂
� = 𝜆h,αo,βo

(12)
�T�+

�̂
�

𝜎̂2
o

= 𝜆h,r,αo,βo

where Λmax is a maximal eigenvalue of the matrix �+

�̂
 and 

�+

�̂
 , 𝜎̂o is a square root of the a posteriori variance factor.
According to (Hsu and Hsiao 2002), both the minimal and 

the maximal value of MDD should be taken into considera-
tion. The maximal value is based on a minimal eigenvalue 
Λmin.

Datum invariance of the sensitivity quadratic form as in 
(7) is an important issue in the subject of the paper since 
the MDD defined on its basis is applied in different types of 
datum definition. It is known that the form is invariant to the 
choice of the type of minimum-constraint datum definition. 
A concise proof, complementary to the existing proofs (e.g., 
Even-Tzur 2010), is presented in “Appendix A” section. It 
covers all possible types of datum definition.

A non-centrality parameter for a test statistic (10) in the 
case of the model (1) with weights of observation differences 
is considered in “Appendix B” section.

3 � Investigating MDD support 
in accuracy analysis and in the testing 
of displacements

In investigations, we operate with h-dimensional displace-
ment vectors (h ≥ 1). For simplicity, the corresponding 
regions of confidence, significance and sensitivity, being 
line segments (h = 1), ellipses (h = 2), ellipsoids (h = 3) and 
hyper-ellipsoids (h > 3), will be termed for all h the ellip-
soids, e.g., (Pope 2008).

The proposal covers the following two task cases:

•	 Case I Confidence region determination supported by 
network sensitivity characteristics (variance factor option 
(i))

•	 Case II Significance test of computed displacements sup-
ported by network sensitivity characteristics (variance 
factor option (i) and (ii)).

As a final result, the extent of the support is evaluated.

3.1 � Creating of the theoretical basis

3.1.1 � Variance factor option (i)

A property of the test statistic Φ = �̂T�+

�̂
�̂ under Ho and Ha , 

i.e., Φ = � for h ≥ 1 (see (7), (8)), as expressed in terms of 
the corresponding values of Φ and � (i.e., u and � , respec-
tively), means the following equality

(13)‖�‖min =

�

𝜆h,αo,βo

Λmax

‖�‖min = 𝜎̂o

�

𝜆h,r,αo,βo

Λmax
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For a given α, we get β from the above equality. We will 
say that such β is coordinated with a given α. Assuming 
an arbitrary value of � not coordinated with a given α and 
denoted by 𝛽  will result in uh,α ≠ 𝜆h,α,β̃.

Let critical values of Φ and � be denoted by uo and 
�o , where uo = uh,αo , �o = �h,αo,βo ; �o and �o are the values 
of α and β assumed in uo and �o , respectively. Putting, 
e.g., �o = 0.05 and �o = 0.20, we get from (14) uo ≠ �o , and 
hence, we can see that �o = 0.20 is not coordinated with 
�o = 0.05. The value of � coordinated with �o = 0.05 will 
be denoted by � .

The investigation of MDD support requires knowl-
edge on the relationship between the sizes and probabil-
ity features of the following three concentric and simi-
lar h-dimensonal ellipsoids, such as sensitivity ellipsoid 
(

Esen

)

 , confidence ellipsoid 
(

Econ

)

 (also termed as a limit-
error ellipsoid) and significance ellipsoid 

(

Esig

)

.
Let us consider equations of these ellipsoids, referring 

to the expression for a test statistic Φ as in (7). The com-
ponents of the vector d will be treated here as algebraic 
variables.

uo —a critical value of the variable Φ such that 
P
{

Φ > uh,αo

}

= 𝛼o

(14)uh,α = �h,α,β

(15)Esig �T�+

�̂
� = uo; uo = uh,αo

; 𝛼o−−significance level

(16)
Econ �T�+

�̂
� = uo(𝛾); uo(𝛾) = uh,γo

; 𝛾o−−confidence level

uo(γ) —a critical value of the variable Φ such that 
P
{

Φ < uh,γo

}

= 𝛾o

�o —a critical value of a non-centrality parameter of 
the variable Φ.

Esen represents a detectability threshold for displacements. 
It is easy to prove that every vector that satisfies Eq. (11) is 
an MDD in this direction.

Putting �o = 1 − �o in (16), we get uh,γo = uh,αo which 
reduces the number of sizes to be analyzed to two, the cor-
responding parameters being uh,αo and �h,αo,βo.

The values of uh,αo were computed iteratively on the basis 
of the arguments of cumulative distribution function (CDF) 
for a �2

h
—distributed random variable. For the computation 

of �h,αo,βo use was made of the efficient and sufficiently accu-
rate numerical program developed by Aydin and Demirel 
(2005) according to the algorithm and the associated theory 
given in (Gaida and Koch 1985). The results of the computa-
tion are presented in Table 1 and Fig. 1.

The symbol h∗
αo,βo

 in Table 1 denotes a crossing point of 
the curves uo(h) and �o(h) (see Fig. 1).

We can see in Fig. 1 that with the increase in h, both the 
curves increase monotonically, the former one at a higher 
rate.

At a certain value of h, denoted as h∗
αo,βo

 (being equal to 
7.3), these curves cross each other. For h < h∗

αo,βo
 , we have 

uo < �o , whereas for h > h∗
αo,βo

 we have uo > �o . For a given h, 
the symbol �  denotes the value of β coordinated with 
�o = 0.05. For uo < �o , we have � > �o and for uo > �o , � < �o . 

Esen �T�+

�̂
� = 𝜆o; 𝜆o = 𝜆h,αo,βo (see (11))

Table 1   Values of u
o
 and �

o
 for 

different h ( �
o
 = 0.05, �

o
 = 0.20); 

h
∗
α
o
,β

o

 = 7.3

h 1 2 3 4 5 6 7 8 9 10 20 50

u
o

3.8 6.0 7.8 9.5 11.1 12.6 14.1 15.5 16.9 18.3 31.4 67.5
�
o

7.8 9.6 10.9 11.9 12.8 13.6 14.4 15.0 15.6 16.2 21.0 30.2

Fig. 1   Parameters u
o
 and �

o
 

as functions of h; �
o
 = 0.05, 

�
o
 = 0.20
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We can also notice that the values of �  decrease with the 
increase in h, which is consistent with the findings in (Aydin 
2011) focused on the power of the test.

The properties as presented above for �o = 0.05, �o = 0.20 
can be observed for other values of �o and �o.

For single network points, we have h < h∗
αo,βo

 , so the size of 
Esen is greater than that of Esig and Econ (with �o = 1 − �o ). For 
networks taken as a whole or for the subsets of their points, 
such that h > h∗

αo,βo
 , we have the opposite situation.

3.1.2 � Variance factor option (ii)

From the formulas (9) and (10), it follows that the property 
analogous to that in the variance factor option (i), i.e., Φ = � , 
does not hold directly for ΦF . We can get this effect by intro-
ducing a rescaled variable ΦF , defined by

Hence,

The values of Ψ will be denoted by “w”.
The variable does not have an identifiable probability distri-

bution but has a property useful for the present derivations, i.e.,

Property  If r → ∞ , the probability distribution of the vari-
able Ψ → �2

h
 (the property is well known in mathematical 

statistics).

So, since with r→ ∞ 𝜎̂2
o
→ 𝜎2

o
 ,  the var iable 

Ψ →

�̂T�+

�̂
�̂

𝜎2
o

= �̂T�+

�̂
�̂ ≡ Φ.

As was assumed in Sect. 2.1, �2
o
 = 1.

Now, we find the critical value of Φ for a given significance 
level α. Denoting the values of ΦF by “z”, we shall write

(17)Ψ = h ⋅ΦF

(18)Ψ =
�̂T�+

�̂
�̂

𝜎̂2
o

P
{

ΦF > zh,r,α

}

= 𝛼

Substituting (17) and duly modifying the internal inequal-
ity, we obtain finally

where wh,r,α = h ⋅ zh,r,α.
The variable Ψ , being compatible with Φ as regards 

properties and scale, satisfies the equality Ψ = �F for h ≥ 
1 and r ≥ 1. So, the values of Ψ and �F , i.e., w and �F are 
bound by the equality

In analogy to (14), � is coordinated with a given value 
of �.

Let critical values of Ψ and �F be denoted by wo and �F,o , 
where wo = wh,r,αo

 , �F,o = �h,r,αo,βo ( �o = 0.05, �o = 0.20). We 
may check that wo ≠ �F,o , and hence, �o = 0.20 is not coor-
dinated with �o = 0.05. The value of � coordinated with 
�o = 0.05 will be denoted by �  (for simplicity of notation, 
the same symbol as for variance factor option (i) is used).

For Case II (variance factor option (ii)), we need to 
acquire knowledge on the relationship between the sizes of 
the corresponding significance ellipsoid and the sensitivity 
ellipsoid. We shall denote these ellipsoids by Êsig and Êsen , 
respectively. We write their equations without additional 
explanations

To the above-mentioned property of Ψ concerned with 
r increasing to infinity, we may add the following

•	 since with r → ∞ wh,r,α → uh,α and �h,r,α,β → �h,α,β , so 
Êsig → Esig and Êsen → Esen.

(19)P
{

Ψ > wh,r,α

}

= 𝛼

(20)wh,r,α = �h,r,α,β

(21)Êsig

�T�+

�̂
�

𝜎̂2
o

= wo; wo = wh,r,αo

(22)Êsen

�T�+

�̂
�

𝜎̂2
o

= 𝜆F,o; 𝜆F,o = 𝜆h,r,αo,βo

Table 2   Values of w
o
 and �

F,o
 

for different h and r ( �
o
 = 0.05, 

�
o
 = 0.20); h∗

α
o
,β

o
,r

x—value difficult to determine

r h 1 2 3 4 5 6 7 8 9 10 20 50 h
∗
α
o
,β

o
,r

5 w
o

6.6 11.6 16.2 20.8 25.3 29.7 34.1 38.5 43.0 47.4 91.2 222.2 x
�
F,o

12.3 18.7 24.5 30.1 35.7 41.2 46.7 52.1 57.5 62.9 116.8 277.9
10 w

o
5.0 8.2 11.1 13.9 16.6 19.3 21.9 24.6 27.2 29.8 55.5 131.9 49.9

�
F,o

9.7 13.2 16.2 19.0 21.7 24.3 26.9 29.5 32.0 34.5 59.1 131.8
20 w

o
4.4 7.0 9.3 11.5 13.6 15.6 17.6 19.6 21.5 23.5 42.5 98.3 12.0

�
F,o

8.7 11.2 13.3 15.1 16.8 18.4 20.0 21.5 23.0 24.4 38.4 78.4
100 w

o
3.9 6.2 8.1 9.9 11.5 13.1 14.7 16.3 17.8 19.3 33.5 73.9 7.9

�
F,o

8.0 9.9 11.3 12.5 13.6 14.5 15.4 16.2 17.0 17.8 24.3 40.1

Page 5 of 12 112



	 W. Prószyński, S. Łapiński 

1 3

 

The values wo were obtained by rescaling the values 
zh,r,αo , computed iteratively based on the arguments of 
CDF for Fh,r—distributed variable. Like the values of �o 
in option (i), the values of �F,o were computed with the 
use of a numerical program developed by Aydin (2011). 
The results of the computation are presented in Table 2 
and Fig. 2.

The symbol h∗
αo,βo,r

 in Table 2 denotes a crossing point of 
the curves wo(h) and �F,o(h) for some r (see Fig. 2).

Figure 2 presents the curves wo(h) and �F,o(h) for r = 10 
and r = 50. The curves are generally similar to their equiva-
lents in Fig. 1. We can see in Table 2 and Fig. 2 that the 
values of h where these curves intersect (denoted here as 
h
∗
αo,βo,r

 ) increase with the decrease in r. For r = 10, the inter-
section of the curves falls outside the diagram.

Interpretation of the cases h < h∗
αo,βo,r

 and h > h∗
αo,βo,r

 is like 
that given for option (i). The values of � decrease with the 
increase in h.

3.2 � Analysis for Case I

3.2.1 � Variance factor option (i)

Usually, both the confidence ellipse and the sensitivity 
ellipse are presented together as a result of network quality 
analysis. We provide the description of characteristic dis-
placement vectors and some probabilistic features of each 
of the ellipses (here—ellipsoids).

The values of �  in Fig.  3 are computed for h = 2 
(h < h∗

αo,βo
 ), h = 15 (h > h∗

αo,βo
).

Since we consider the a priori accuracy analysis, the 
vectors 1, 2, 3 represent potential (not determined) dis-
placement vectors.

Deterministic description of the characteristic vectors:

for h < h∗
α
o
,β

o

for h > h∗
α
o
,β

o

1. error-affected displacements 
displ. under detectability 
threshold

1. displ. under detectability 
threshold  
error-affected displacements

2. error-free displacements  
displ. under detectability 
threshold

2. detectable displacements  
error-affected displacements

3. error-free displacements 
detectable displacements

3. error-free displacements  
detectable displacements

Fig. 2   Parameters w
o
 and �

F,o
 

as functions of h, for r = 10 and 
r = 50 ( �

o
 = 0.05, �

o
 = 0.20)

Fig. 3   Presentation of ellipsoids 
for analysis in Case I (1, 2, 
3—vectors of characteristic 
location, �

o
= 1 − �

o
)
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For a zone between the ellipsoids (see vector 2), we 
observe some inconsistency in the above description. It is 
due to the fact that the confidence related and the sensi-
tivity related qualifications concern different assumptions 
(i.e., hypothesis Ho and hypothesis Ha ), with Type I and 
Type II error probabilities not mutually coordinated. The 
detectability threshold �o is different from the error-limit 
uo(�).

3.3 � Analysis for Case II

3.3.1 � Variance factor option (i)

For the analysis of significance combined with sensitivity, 
we present the significance ellipsoid and the sensitivity ellip-
soid together with the description of characteristic displace-
ment vectors and some probabilistic features of each of the 
ellipsoids.

The values of �  in Fig.  4 are computed for h = 2 
(h < h∗

αo,βo
 ), h = 15 (h > h∗

αo,βo
).

The deterministic description is as follows

for h < h∗
α
o
,β

o

for h > h∗
α
o
,β

o

1. insignificant displacement 1. displ. under detectability threshold
2. significant displacement 

displ. under detectability 
threshold

2. detectable displacement  
insignificant displacement

3. significant displacement 
detectable displacement

3. detectable displacement  
significant displacement

Like in Case I, for a zone between the ellipsoids (see vec-
tor 2), we observe some inconsistency in the above descrip-
tion. The cause of inconsistency is as that explained in Case 
I. Here, the detectability threshold �o is different from the 
significance threshold uo.

We may readily classify the computed h-dimensional 
displacement vector d̂ either as 1, 2 or 3, respectively, by 
means of the following checks based on the values u of the 
test statistic Φ , i.e.,

(23)for h < h
∗
αo,βo

∶ u ≤ uo, uo < u ≤ 𝜆o, u > 𝜆o

(24)for h > h
∗
αo,βo

∶ u ≤ 𝜆o, 𝜆o < u ≤ uo, u > uo

Fig. 4   Presentation of ellipsoids 
for analysis in Case II, option (i) 
(1, 2, 3—vectors of characteris-
tic location)

Fig. 5   Presentation of ellipsoids 
for analysis in Case II, option 
(ii) (1, 2, 3—vectors of charac-
teristic location)
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3.3.2 � Variance factor option (ii)

Since the deterministic description of the displacement 
vectors is analogous to that in option (i), we only present 
both the ellipsoids together with their probabilistic features 
(Fig. 5).

To classify the computed h-dimensional displacement 
vector d̂ either as 1, 2 or 3, respectively, we use here the fol-
lowing checks based on the values w of the variable Ψ and 
λF as in (21) and (22)

For this variance factor option, the greater the system 
redundancy, the lower is the detectability threshold, and 
the smaller are the displacement vectors that can be con-
sidered as insignificant. It is therefore recommended to 
always ensure an appropriately high redundancy level.

The values of �  in Fig. 5 are computed for r = 20 and 
h = 2 (h < h∗

αo,βo,r
 ), h = 20 (h > h∗

αo,βo,r
).

(25)for h < h
∗
αo,βo,r

∶ w ≤ wo, wo < w ≤ 𝜆F,o, w > 𝜆F,o

(26)for h > h
∗
αo,βo,r

∶ w ≤ 𝜆F,o, wf,r,λ < w < wf,r,α, w > wo

3.4 � Evaluating the MDD support in task Cases I 
and II

The MDD support is understood here as providing grounds 
for verifying the correctness of the significance (or con-
fidence) threshold. The support is the greater the closer 
is the sensitivity ellipsoid to significance (or confidence) 
ellipsoid.

The value of �  obtained from the equality (14) with 
�o = 0.05 (or �o = 1 − �o ) depends except h only on the 
value of �o . Hence, �  is only partially connected with 
the detectability threshold �o , which is defined on both 
�o and �o . The difference |

|

�o − uo
|

|

≠ 0 is a main cause of 
inconsistency in the description of vector qualification dis-
cussed in Sect. 3.2 (Fig. 3) and Sect. 3.3 (Figs. 4 and 5). 
The smaller is �  , and the smaller is |

|

�o − uo
|

|

 , the greater 
is MDD support. The analysis of the above-mentioned 
relationships led to introducing of the following directly-
proportional measure of MDD support, defined by

(27)for h < h
∗
αo,βo

Q

(

𝛽,
uo

𝜆o

)

(28)for h > h
∗
αo,βo

Q

(

𝛽,
𝜆o

uo

)

Table 3   Values of Q for some 
h ( �

o
 = 0.05, �

o
 = 0.20); italics 

concerns h > h∗
α
o
,β

o

h 1 2 3 4 5 6 7 8 9 10 20 30 40 50

� 0.50 0.58 0.64 0.69 0.73 0.76 0.79 0.81 0.84 0.86 0.96 0.98 0.995 0.998
u
o

�
o

;�o
u
o

0.49 0.62 0.72 0.79 0.86 0.92 0.98 0.97 0.92 0.89 0.67 0.56 0.49 0.45

Fig. 6   Plot of Q values for some h ( �
o
 = 0.05, �

o
 = 0.20); Q points are labeled with the values of h; h < h∗

α
o
,β

o

 in blue, h > h∗
α
o
,β

o

 in red
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where � = 1 − � is a power of the test for uo = �o , the second 
components in Q are equal to 1 for h = h∗

αo,βo
.

Since both the parameters in Q are mutually incompa-
rable, in the case of opposite trends in their functions of h, 
ranking of Q will not be possible. Therefore, the ranking 
of the MDD support will then have to be carried out with 
respect to each of the parameters separately.

The measure of MDD support as in (27) and (28) is con-
structed on the basis of parameters used in Table 1 and dia-
grams in Fig. 1. Hence, variability of Q values is some other 
representation of the above-mentioned diagrams.

The values of Q for some h are presented in Table 3 and 
Fig. 6.

The results in Table 3 and Fig. 6 apply to Task Case I and 
Task Case II (variance factor option (i)). We may conclude 
that the MDD support is the smallest for single point dis-
placements in 1D networks ( � = 0.5, uo

�o
 = 0.49) and becomes 

successively greater for 2D ( � = 0.58, uo
�o

 = 0.62) and 3D net-
works ( � = 0.64, uo

�o
 = 0.72). For h > h∗

αo,βo
 (i.e., for global net-

work displacements), in terms of � the support is increasing, 
whereas in terms of �o

uo

 it is decreasing. For h = 50, �  is 
approaching 1 while uo

�o
 falls down to 0.45.

In analogy to the definition in (27) and (28), the measure 
of MDD support for Task Case II (variance factor option (ii)) 
is defined as follows

where �  = 1 − �  is a power of the test for �F = wo , �  is 
obtained from the equality (20), i.e., wh,r,αo

 = �h,r,αo,β , the 
second components in Q are equal to 1 for h = h∗

αo,βo,r
 . The 

MDD support is presented in Table 4 and Fig. 7.
Like in Fig. 6, the MDD support is the smallest for single 

point displacements in 1D networks and becomes succes-
sively greater for 2D and 3D networks. And also, for h > h∗

α,β,r
 

(i.e., for global network displacements), in terms of �  the 
support is increasing, whereas in terms of �o

uo

 it is 
decreasing.

According to the property presented in Sect. 3.1 (variance 
factor option (ii)), with the increase in r, the MDD support 
becomes closer and closer to that in Fig. 6 for Task Case II 
(variance factor option (i)).

(29)for h < h
∗
αo,βo,r

Q

(

𝛽,
wo

𝜆F,o

)

(30)for h > h
∗
αo,βo,r

Q

(

𝛽,
𝜆F,o

wo

)

Table 4   Values of Q for some h 
and r = 20 ( �

o
 = 0.05, �

o
 = 0.20); 

italics concerns h > h∗
α
o
,β

o
,r

h 1 2 3 4 5 6 7 8 9 10 20 30 40 50

� 0.51 0.58 0.63 0.67 0.70 0.72 0.74 0.76 0.77 0.78 0.85 0.88 0.89 0.90
w
o

�
F,o

;�F,o
w
o

0.50 0.62 0.70 0.76 0.81 0.85 0.88 0.91 0.94 0.96 0.90 0.85 0.82 0.80

Fig. 7   Plot of Q values for some h and r = 20 ( �
o
 = 0.05, �

o
 = 0.20); Q points are labeled with the values of h; h < h∗

α
o
,β

o
,r
 in blue, h > h∗

α
o
,β

o
,r
 in red
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The diagrams in Figs. 6 and 7 confirm the theory in 
Sect. 3.1 in that the MDD support for both the variance fac-
tor options increases up to the intersection point ( h∗

αo,βo
 or 

h
∗
αo,βo,r

 ), and behind this point it increases in terms of the first 
parameter but decreases in terms of the second parameter. 
Since the smaller is r (variance factor option (ii)), the inter-
section point falls for greater h, a zone of the increasing 
MDD support becomes longer. This effect was observed on 
a diagram for r = 10 where h∗

αo,βo,r
 = 49.9, not shown in the 

present paper. 

3.5 � Investigating the possibility of thresholds 
modification

The question now arises whether the MDD support gives 
grounds for advantageous modification of the thresholds in 
the significance test of displacements (or confidence region 
determination) and detectability for h = 1, 2, 3. The follow-
ing two possibilities can be taken into account:

•	 lowering the detectability threshold while keeping the 
sensitivity (or confidence) threshold fixed, i.e., Esen is 
brought toward Esig in terms of size,

•	 raising the sensitivity (or confidence) threshold while 
keeping the detectability threshold fixed, i.e., Esig is 
brought toward Esen in terms of size.

From the analyses carried out for the first possibility, it 
follows that such a modification would result in an unaccep-
table increase in the probability of the Type II error. Maxi-
mum values of this probability, expressed in terms of the 
power of the test � are presented in Table 3 and Fig. 4. So, 
we pass to the second possibility.

Below, we present the analysis for two reasonable options 
of modifying the significance threshold for both the vari-
ance options, i.e., (i) and (ii). In Option 1, we assume uo,m = 
0.5(uo + �o) , while in Option 2 uo,m = �o , where the subscript 

“m” denotes the modified quantity. In Option 1, Esig,m lies in 
between Esig and Esen , while in Option 2 Esig,m ≡ Esen.

The data for the analysis are presented in Tables 5 and 6. 
The symbol �

m
 denotes � coordinated with �o,m , and as in 

Sect. 3.1 (variance factor option (i)), the symbol � denotes 
� coordinated with �o (here �o = 0.05).

Ad option 1 (variance factor option (i))
For h < h∗

αo,βo
 , the Type I error probability � is decreased 

from the level of 0.05 to an average level of 0.02 (for h = 1, 
2, 3), whereas the coordinated Type II error probability � 
displays a slight increase of about 0.01 from the average 
level of about 0.43. For h > h∗

αo,βo
 , the Type I error probability 

� is increased over the level of 0.05, whereas the coordinated 
Type II error probability � is decreased below 0.20.

Ad option 2 (variance factor option (i))
The changes, being analogous to those in Option 1, are 

greater. For h < h∗
αo,βo

 , the probability � is decreased to an 
average level of 0.01, while the coordinated Type II error 
probability � displays a slight increase of about 0.02.

Based on the above results, it seems reasonable to apply 
modification only for h < h∗

αo,βo
 , and thus for single point dis-

placements. Either of the Options, as advantageous in terms 
of testing errors probabilities, is acceptable. Instead of the 
diversified level of �o,m for different h, the averaged common 
values 0.02 and 0.01 can be recommended for Option 1 and 
Option 2, respectively. However, since it was found in com-
putations that for h = 3 in Option 2 (with �o,m = 0.01) Esig,m 
lies slightly outside Esen , the significance level �o,m = 0.015 
is proposed for Option 2. With this level Esig,m lies inside 
Esen , i.e., uo,m < �o.

It was verified that the above conclusions also apply to 
the variance factor option (ii) the more, the greater the r. 
The computations showed that for h = 3 in Option 2 with 
�o,m = 0.015 Êsig,m lies inside Êsen (i.e., wo,m < �F,o ) for r ≥ 23. 
For h = 2 and h = 1, we have r ≥ 10 and r ≥ 7, respectively.

Table 5   Data for Option 1; 
variance factor option (i)

h u
o,m

�
o

�
o,m �

m
� h u

o,m
�
o

�
o,m �

m
�

1 5.85 7.85 0.016 0.500 0.500 10 17.27 16,24 0.069 0.138 0.145
2 7.81 9.64 0.020 0.427 0.417 20 26.19 20,96 0.160 0.032 0.045
3 9.36 10.90 0.025 0.370 0.358 30 34.16 24.55 0.274 0.007 0.014

Table 6   Data for Option 2; 
variance factor option (i)

h u
o,m

�
o,m �

m
� h u

o,m
�
o,m �

m
�

1 7.85 0.005 0.500 0.500 10 16.24 0.093 0.130 0.145
2 9.64 0.008 0.435 0.417 20 20.96 0.399 0.019 0.045
3 10.90 0.012 0.379 0.358 30 24.55 0.747 0.002 0.014

112 Page 10 of 12



Investigating support by minimal detectable displacement in confidence region determination…

1 3

If the above-mentioned restrictions on the value of r are 
acceptable, the significance level �o,m = 0.015 can be pro-
posed for both options (i) and (ii) in Option 2. Otherwise, 
the value of �o,m for option (ii) should be increased accord-
ingly. The data for variance factor option (i) are presented 
in Table 7.

A similar modification can be carried out for confidence 
area determination (variance factor option (i)). The modified 
confidence level �o,m would be 0.98 for Option 1 and 0.985 
for Option 2.

The choice of Options for both Task Cases I and II can be 
made depending on the type of practical applications.

The determined measures of MDD support and the pro-
posed threshold modifications have a general character and 
are valid for any realization of Task Case I or Task Case II. 
Therefore, enclosing a numerical example did not seem to 
be necessary.

4 � Concluding remarks

Theoretical findings of the research can be summarized as 
follows:

•	 determining Type II error probability � corresponding to 
Type I error probability �o,

•	 introducing a rescaled Fisher-distributed test statistic which 
made it possible to construct a significance ellipsoid com-
parable with the sensitivity ellipsoid for the case when the 
a posteriori variance factor is used,

•	 proposing a 2-parameter measure Q of MDD support in the 
accuracy analysis and significance test of displacements.

The computations show that the MDD support both in 
confidence region determination and significance test of sin-
gle point displacements is the smallest for 1D networks. It 
increases successively for 2D and 3D networks. For global 
network displacements, with the increase in h, the MDD sup-
port increases with regard to � much more than for single point 
displacements but decreases with regard to the second param-
eter in Q. Based on the analysis of MDD support, two options 
of modifying the significance and confidence thresholds for 
single point displacements are proposed. The modified thresh-
olds being closer to the detectability threshold, correspond 

to significance level � = 0.02 or � = 0.015 and the confidence 
level γ = 0.98 or γ = 0.985. The advantage of these modifica-
tions is that the proposed decrease in the significance level � 
(or increase in confidence level γ) results in a negligibly small 
increase in the Type II error probability β.

In future research, it is planned to consider other types of 
displacement monitoring models and also, based on publica-
tions such as, e.g., (Xu et al. 2000) to examine the possibility 
of extending the findings of the present paper onto geometrical 
deformation approach.

Appendix A

Another proof for datum invariance of sensitivity 
quadratic form

Thesis  A necessary and sufficient condition for datum invari-
ance of the form Φ in a model (1) is that the coefficient 
matrix S in minimum-constraint datum definition eliminat-
ing the model defect is of the rank equal to that defect.

Proof  Substituting �̂ and ��̂ as in (5) into the formula 
Φ = �̂T�+

�̂
�̂ (as in (7)), we get

According to (Rao and Mitra 1971; Rao 1973), the 
expression �

(

�T�
)−
�T , where 

(

�T�
)− denotes a general-

ized inverse of �T� , does not depend on the choice of the 
generalized inverse.

Hence, for any given (Δ�)s , excluding (Δ�)s ∈ Ker
(

A
T
s

)

 , 
i.e., �T

s
(Δ�)s = 0 , the form Φ will have the same value for 

any type of the inverse 
(

�T
s
�s

)−

�
 used. This means any type 

of minimum-constraint datum definition [see (2)].□

It follows immediately from the proof that for any over-
constraint datum definition (i.e., where rank S > d) the 
form Φ is not datum invariant.

(31)
Φ = (Δ�)T

s
�s

(

�T
s
�s

)−

�

[(

�T
s
�s

)−

�

]+(

�T
s
�s

)−

�
�T

s
(Δ�)s

= (Δ�)T
s
�s

(

�T
s
�s

)−

�
�T

s
(Δ�)s

Table 7   Data for Option 2, 
variance factor option (i), 
�
o,m

 = 0.015

h u
o

u
o,m

�
o

�
o,m �

m
�

1 3.84 5.92 7.85 0.015 0.500 0.500
2 5.99 8.40 9.64 0.015 0.430 0.417
3 7.81 10.46 10.90 0.015 0.377 0.358
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Appendix B

Non‑centrality parameter for the model (1) 
with weights of observation differences

The displacement vector �̂ and its covariance matrix ��̂ 
(and �̂�̂ ) are as follows

where �Δ�—weight matrix (pos. definite), �2
o,w

 —a priori 
variance of the observation difference of unit weight, 𝜎̂2

o,w

—estimator (unbiased) of �2
o,w

.
Denoting �̂�̂ as �̂�̂ = 𝜎̂2

o,w
� , where � =

(

�T�Δ��
)−

�
 , the 

test statistic Ψ corresponding to that in (18), will be

Due to the property that Ψ = �F (as in Sect. 3.1, variance 
factor option (ii)), we get the non-centrality parameter for 
the analyzed option of the model (1).

We can check the same convergence of Ψ to Φ , i.e., since 
with r → ∞  𝜎̂2

o,w
→ 𝜎2

o,w
 , so Ψ →

�̂T�+�̂

𝜎2
o,w

≡ Φ.
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�
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