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Abstract
We present a partition-enhanced least-squares collocation (PE-LSC) which comprises several modifications to the classical 
LSC method. It is our goal to circumvent various problems of the practical application of LSC. While these investigations 
are focused on the modeling of the exterior gravity field the elaborated methods can also be used in other applications. One 
of the main drawbacks and current limitations of LSC is its high computational cost which grows cubically with the number 
of observation points. A common way to mitigate this problem is to tile the target area into sub-regions and solve each tile 
individually. This procedure assumes a certain locality of the LSC kernel functions which is generally not given and, there-
fore, results in fringe effects. To avoid this, it is proposed to localize the LSC kernels such that locality is preserved, and 
the estimated variances are not notably increased in comparison with the classical LSC method. Using global covariance 
models involves the calculation of a large number of Legendre polynomials which is usually a time-consuming task. Hence, 
to accelerate the creation of the covariance matrices, as an intermediate step we pre-calculate the covariance function on a 
two-dimensional grid of isotropic coordinates. Based on this grid, and under the assumption that the covariances are suf-
ficiently smooth, the final covariance matrices are then obtained by a simple and fast interpolation algorithm. Applying the 
generalized multi-variate chain rule, also cross-covariance matrices among arbitrary linear spherical harmonic functionals 
can be obtained by this technique. Together with some further minor alterations these modifications are implemented in 
the PE-LSC method. The new PE-LSC is tested using selected data sets in Antarctica where altogether more than 800,000 
observations are available for processing. In this case, PE-LSC yields a speed-up of computation time by a factor of about 
55 (i.e., the computation needs only hours instead of weeks) in comparison with the classical unpartitioned LSC. Likewise, 
the memory requirement is reduced by a factor of about 360 (i.e., allocating memory in the order of GB instead of TB).

Keywords Gravity field · Least squares collocation (LSC) · Covariance function · Data combination · Prediction · 
Antarctica

1 Introduction

Least-squares collocation (LSC) is a commonly used tech-
nique in local or regional gravity field modeling (Moritz 
1980; Krarup 1969). This method is very popular because it 
allows to predict gravity field-related quantities at arbitrary 
locations. At the same time, the desired functionals can be 
inferred from different input functionals (e.g., geoid heights 
from gravity anomalies). Eventually, LSC yields an optimal 

solution in the stochastic sense as it minimizes the prediction 
error using a priori covariance information of the observa-
tion and estimation points. From this perspective, LSC also 
allows to consider the full variance–covariance information 
and an appropriate propagation in the sense of a Gaussian 
process.

There are also some disadvantages of LSC. The compu-
tational cost is proportional to the cubic power of the num-
ber of observation points, while memory requirements are 
proportional to the quadratic power. This limits the practical 
application of the method to a certain maximum number 
of observation points. Even if this number can be reason-
ably handled, in the general application, some sort of tiling 
strategy (Reguzzoni and Tselfes 2009) must be applied to 
comply with computational limits. However, this strategy 
introduces the problem of fringe effects caused by the forced 
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locality assumption. Another disadvantage of regional LSC 
is that it requires the input values at the observation points to 
have a zero mean. In practice, there may be several reasons 
why a residual (nonzero) mean exists, e.g., due to datum 
offsets, systematic effects induced by the measurement set-
up, errors in the observations or reduction models or just due 
to the spatial limitation of the region under consideration. 
In general, it is not trivial to backtrack the source of the 
residual mean value and, therefore, it is often not justified 
to preventively remove it as it is usually done. In any case, 
a residual mean (or unexpected long-wavelength signal) 
causes a severe problem to the classical LSC, which ulti-
mately culminates in unnatural oscillations and long-wave-
length compensation attempts.

In the field of gravity field modeling, the (homogeneous-
isotropic) covariance function used in LSC is commonly 
derived from spherical harmonic degree variances using 
covariance propagation (Moritz 1980). Since this calculation 
step involves the evaluation of Legendre polynomials for 
spherical distances of every pair of data points (i.e., observa-
tion and estimation points), the computation of covariance 
matrices becomes computationally demanding. Especially 
when a tiling approach is applied and identical point pairs 
must be evaluated several times (due to the overlap between 
tiles), the efficiency of the covariance matrix calculation 
deteriorates.

Tackling these challenges, a number of practical modifi-
cations to the original LSC approach was realized resulting 
in the so-called partition-enhanced least-squares collocation 
(short PE-LSC). Among these modifications, there are sev-
eral innovative aspects such as a 2D gridding approach for 
a fast set-up of the covariances, the use of exponential esti-
mators, and the filtering of the transfer function to achieve 
improved localization characteristics. From a practical point 
of view, the most important aspect is a significant accelera-
tion of the run-time, which is primarily achieved by an opti-
mal partitioning strategy of the study area. While the inves-
tigations are focused on the geodetic modeling of the gravity 
field, the usability of the presented methods may be extended 
to any harmonic functional defined on spherical or near-
spherical surfaces (e.g., spheroids with small eccentricities).

The presented investigations are motivated by the IAG 
Subcommission 2.4f “Gravity and Geoid in Antarctica” 
(AntGG) where we aim to compile a refined grid of terres-
trial gravity data in Antarctica as a major update to the data 
set published by Scheinert et al. (2016). For this, an optimum 
combination of a satellite-based global model (accounting 
for long-wavelength signal parts) and the terrestrial (ground-
based or airborne) data is sought for. From the perspective 
of data processing, this paper is a logical succession to the 
study by Zingerle et al. (2019) who discussed data reduction 
and validation making use of a high-resolution gravity field 
model based on satellite and topography data. While the 

present paper focusses on the treatment of methodological 
aspects, resulting final products with respect to the regional 
gravity field in Antarctica will be subject to a separate paper.

Section 2 recapitulates the basics of the theory of LSC 
and introduces the notation. In Sect. 3, we explain in detail 
the different modifications to finally end up with PE-LSC. 
In Sect. 4, we examine and validate these modifications. All 
examples and validations presented in Sects. 3 and 4 are based 
on selected data sets from the AntGG project. Finally, Sect. 5 
concludes the discussion by investigating the computational 
effort when using PE-LSC in real-world scenarios and gives 
a brief outlook to further research on the topic of LSC.

2  Theory and notation

This section provides a brief overview of the LSC theory and 
specifies the notation which will be used in this publication. 
Since we present only the very basics, the reader is referred 
to Moritz (1980) for a more complete and elaborated treat-
ment of this topic.

2.1  The LSC method

LSC is a statistically optimal method for estimating (predict-
ing) quantities s (the underscore below items tags vectors) 
from observations l based on their stochastic relation:

Here, ŝ denotes the estimates for s as result of the colloca-
tion, whereby CSL is the cross-covariance matrix between the 
estimates and observation, CLL the covariance matrix of the 
observations and CNN additive noise covariance matrix. ÃL

S
 

is defined to be the so-called estimator or kernel of the col-
location. It is useful to interpret CSL and CLL to origin from 
a common (signal) covariance matrixCVV , belonging to the 
common ‘signal’ v:

In the context of this publication, the observations l are 
measurements of the Earth’s gravity field and ŝ are estimates 
of the gravity field signal on possibly other locations and in 
terms of other gravity field functionals.

2.2  LSC with a priori reduction

One major limitation of LSC is that it requires the signal v to 
be centered, meaning that the expectation of v shall be zero. 

(1)

ŝ = C
SL

(

C
LL

+ C
NN

)−1
l = Ã

L

S
l,

with

Ã
L

S
∶= C

SL

(

C
LL

+ C
NN

)−1
.

(2)v ∶=

(

s

l

)

↔ CVV ∶=

[

cov
(

vi, vk
)]

=

(

CLL CLS

CSL CSS

)

.
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This implies that collocating a signal that is not centered 
probably yields an unfavorable result. For instance, if one 
tries to collocate gravity observations l directly on a regional 
scale, l is generally not centered since it still contains longer-
wavelength signal components. Thus, it is advantageous to 
remove such signal parts beforehand. This can be achieved 
through prior information v

0
 of the signal which can be 

used to reduce the actual signal v before the collocation and 
restore it afterward (known as remove-compute-restore tech-
nique, RCR, see Forsberg and Tscherning 1981). To reuse 
the previous notation, v can be replaced by Δv through the 
relation:

In this scenario, it is effective to substitute CVV  from 
Sect. 2.1 with the error covariance Ce

VV
∶=

[

cov
(

Δvi,Δvk
)]

 
of v

0
 (which is the same as the signal covariance of Δv ). 

Consequently, v is assumed to be error free in this context 
(despite the noise covariance CNN , see Willberg et al. 2019). 
Together with the restore step, the modified LSC equation, 
based on residuals, reads:

with

An appropriate covariance propagation yields the error 
covariance for the restored estimate ŝ:

In gravity field modeling, the needed a priori information 
can be derived, e.g., from satellite-based global gravity field 
models and topographic models, respectively.

2.3  The covariance function

One crucial point for LSC is finding an adequate, ideally 
analytical, expression for the needed covariances Ce

VV
 . In 

gravity field modeling, it is useful to exploit the harmonic 
character of the gravity field in the absence of masses (in the 
exterior space). Doing so leads to the spherical harmonic 
representation h (i.e., Stokes coefficients, see Moritz 1980) 
of the gravity field, with the relation AH

V
 to the spatial gravity 

signal v in form of:

(3)Δv ∶= v − v
0
=

(

Δs

Δl

)

(4)
Δŝ = ÃL

S
Δl →

ŝ = s
0
+ Δŝ = s

0
+ ÃL

S

(

l − l
0

)

(5)ÃL
S
= Ce

SL

(

Ce
LL

+ CNN

)−1
.

(6)Ce

ŜŜ
= Ce

SS
− Ce

SL

(

Ce
LL

+ CNN

)−1
Ce�
SL
.

(7)v = AH
V
h

Assuming the covariance Ce
HH

 related to h in the spherical 
harmonic domain is known, the covariance Ce

VV
 in the spatial 

domain can be obtained by covariance propagation:

In the classical application Ce
HH

 is modeled by degree 
variances yielding a homogeneous-isotropic covariance 
function in the spatial domain (e.g., see Tscherning and 
Rapp 1974). In modern approaches also the full covariance 
information from global gravity field models is sometimes 
used (see Willberg et al. 2019), resulting in arbitrary, but still 
harmonic, covariance functions.

3  Methodology

Several modifications of the classical approach are intro-
duced to increase the numerical efficiency and stability of 
RCR-LSC (cf. Sect. 2.2). In most of the strategies, the basic 
assumption is that a single observation Δli has a certain 
localized influence on the estimates Δŝ . Generally speaking, 
assuming a localized influence is justified if the covariances 
cov

(

Δli,Δsk
)

 become sufficiently small beyond a certain dis-
tance from the observation point. As arbitrary covariance 
functions do not necessarily show this behavior, their appli-
cation must be restricted to the class of locally dominated 
covariance functions. For the ease of use this class is further 
constrained to (locally dominated) homogeneous-isotropic 
covariance functions. Since this paper deals with functionals 
that are harmonic and defined on or close to a sphere, the 
most natural and most general way of describing this class of 
covariance functions is by using spherical harmonic degree 
variances (cf. Moritz 1980 and Sect. 3.1). Consequently, 
they will be used to construct all covariances throughout 
the rest of this paper. In order to obtain the desired local 
character of the covariance function, it is required that 
within the RCR-LSC, the long-wavelength components are 
reduced beforehand (e.g., see Zingerle et al. 2019). Since 
the presented methods could theoretically also be applied 
to a non-reduced LSC (even if not recommended), in the 
following, each subsection describes a specific modification 
of the classical (RCR-)LSC method. Together, they form the 
basis for the PE-LSC approach which is evaluated in Sect. 4.

3.1  Accelerated covariance calculation

As explained in Sect. 2.3, the calculation of the covariance 
Ce
VV

 from spherical harmonics theoretically requires the cal-
culation of the transformation matrix AH

V
 and the evaluation 

of the (matrix) product AH
V
Ce
HH

AH′

V
 . For the special case of 

degree variances, this calculation can be simplified to the 
homogeneous-isotropic form (see Moritz 1980):

(8)Ce
VV

= AH
V
Ce
HH

AH�

V
.
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where

Herein, cn
H

 denotes the (error) degree variances and Pn the 
Legendre polynomial of degree n, and R is the radius of the 
reference sphere chosen for the degree variances. nmax is the 
maximum degree that is considered in the modeling of cik . 
xi describes the location in form of geocentric coordinates a 

(9)

cik ∶= cov
(

Δvi,Δvk
)

= c
(

tik, uik
)

=

nmax
∑

n=0

ul+1
ik

Pn

(

tik
)

cn
H
∶=

⟨

qH
ik
, c

H

⟩

(10)
tik ∶= ⟨ei, ek⟩

�

= cos �ik
�

, ei ∶=
xi

ri
,

uik ∶= uiuk, ui ∶=
R

ri
, ri ∶=

�

�

xi
�

�

.

single signal element vi refers to. The parameterization via 
t (cosine of spherical distance � ) and u (product of length 
ratios to reference radius) is chosen so that a covariance 
matrix may be efficiently derived by outer (Cartesian) prod-
ucts regarding Δv × Δv . For a better readability in figures 
(see Fig. 1), t is substituted by � and u by the so-called equiv-
alent height heq which is defined by

heq describes the actual height of a pair of points in case that 
both points are located at the same height. The evaluation of 
the simplified Eq. 9 is still time-consuming since it involves 
the calculation of numerous Legendre polynomials for every 
element of the resulting covariance matrices. Therefore, 

(11)heq ∶= R

�

1
√

u
− 1

�

.

Fig. 1  Covariances in terms of gravity disturbances in the Ω
G

 
domain. a Empirical covariances computed from reduced Antarctic 
gravity data (see Sect.  4). b Estimated covariance function derived 
from estimated degree variances (see Fig.  2). c Difference between 
empirical and estimated covariances. d The same covariances as in 
figure a-c, averaged over dimension u . Black: empirical covariance. 

Red: estimated covariances. Blue: difference between empirical and 
estimated covariances. Magenta: number of samples per bin for the 
calculation of the empirical covariances. Results shown are calcu-
lated by applying the spherical approximation to the coordinates (see 
Sect. 3.3)
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to avoid the need to do this calculation for every element, 
it is proposed to introduce an intermediate regular grid 
ΩG = t

G
× u

G
 on which the covariance values c

G
= c

(

ΩG

)

 
are pre-calculated. Assuming a certain smoothness of the 
covariance function, the final elements are then simply 
obtained by applying a (gridded) two-dimensional interpo-
lator (i.e., the interpolation matrix) IG to the pre-calculated 
values c

G
:

This interpolation can be evaluated very efficiently for 
large numbers of point pairs avoiding the need of evaluat-
ing sums of Legendre polynomials every time. Naturally, 
the grid vectors t

G
 and u

G
 should be chosen such that all 

occurring tik and uik are within the limits of the appropriate 
grid vector. The sampling of the grid vectors shall also be 
adapted to the smoothness of the intermediate covariance 
function c(t, u) and the overall accuracy requirements for the 
calculation of the covariance functions. The accuracy can 
also be controlled by the appropriate choice of the interpola-
tion method (e.g., linear, cubic, spline, etc.).

It is even possible to calculate arbitrary derivatives of the 
covariance function regarding local frame coordinates (e.g., 
gravity disturbances, gradients, deflection of vertical, etc.) 
based on a generalized chain rule. Since this generalized 
chain rule (also known as multivariate version of Faà di Bru-
no’s formula, see Hardy 2006) is fairly complicated to state 
and even more complicated to prove, the reader is referred 
to the appropriate literature (e.g., Hardy 2006). In summary, 
the generalized chain rule consists of a linear combination of 
products of partial derivatives. For the commonly used local 
spherical east-north-up (ENU) frame, the partial derivatives 
are given in appendix (A.1). Since the number of summands 
within the generalized chain rule increases rapidly with the 
order of the derivative, the computation is practically limited 
to lower orders (i.e., below ten). In practice, this is only a 
minor limitation as higher-order derivatives are rarely used 
(at least in the scope of gravity field modeling).

3.2  Estimation of degree variances

Having a set of reduced observations Δl , one can estimate 
an empirical covariance function c̃

G
 on the regular grid ΩG 

by binning the individual covariance estimates c̃ik ∶= ΔliΔlk 
into the 2D classes defined by t

G
× u

G
 (see Fig. 1a). In this 

context, Δl is assumed to be centered.
Theoretically, by inverting the linear relation of Eq. 9 it 

would be possible to derive empirical degree variances c
H

 
from c̃

G
 . In practice, there are two major obstacles that pre-

vent us from performing this inversion: firstly, the degree 
variances c

H
 are defined to be only positive; hence, the 

(12)cik = IG
(

ΩG →

(

tik, uik
))

c
G

relation is not linear as Eq. 9 could suggest. Secondly, in 
general this inversion is highly instable due to the high 
dynamic range of the estimates and partially high insensitiv-
ity of c

H
 to c̃

G
 . Nevertheless, a solution is possible when 

altering the functional model and including a reasonable 
regularization: to force positive values and to reduce the 
dynamic range, it is proposed to translate the estimates into 
the logarithmic domain (hence losing linearity). In order to 
tackle the instability issue, it is further proposed to introduce 
cubic basis splines (B-splines, e.g., de Boor 1978) as repre-
sentation for the degree variances c

H
 assuming a certain 

smoothness of the degree variance curve. Obviously, to 
acquire smoothness the number of B-spline control points 
must be chosen to be significantly lower than the number of 
degree variances to estimate. Modifying Eq. 9 accordingly 
yields the nonlinear relation (with QH

G
 being the matrix 

extension of qH
ik

 to all grid locations of ΩG):

where BSP denotes the linear B-spline synthesis matrix (i.e., 
the matrix containing the spline basis functions, transform-
ing from the spline function space to the logarithmic degree 
variance space). BSP might be obtained efficiently by the Cox 
de Boor recursion formula (see de Boor 1978). The vector 
x
SP

 contains the appropriate spline parameters to estimate. 
exp(… ) denotes the element-wise exponential function and 
diag(… ) indicates the vector to diagonal square matrix trans-
form. Using the linearization ASP

G
 , x

SP
 can be obtained by an 

iterative LSA approach

starting with some initial guess x̃
SP

 for x
SP

 (and iteratively 
improving x̃

SP
 by Δx

SP
 ). CGG denotes the covariance of c

G
 

which can also be derived empirically or can simply be 
approximated as, e.g., diagonal matrix with the diagonals 
(variances) as inverse of the number of samples of the appro-
priate bin. PREG and q

REG
 are regularization terms that may 

help to further improve the result. As an example, one may 
add additional smoothing constraints (e.g., second derivative 
set to be zero), add a tie to a baseline value (e.g., zero) or 
force the slope to be flat (e.g., first derivative set to be zero). 
The appropriate weights to the regularization terms may be 
derived empirically such that the iterative LSA converges 
and yields a good fit as well as a realistic result. Figure 2 (in 
combination with Fig. 1) exemplarily shows the functional-
ity of this method.

(13)
c
G
∶= Q

H

G
c
H
=∶ Q

H

G
exp

(

B
SP
x
SP

)

,

�c
G

�x
SP

=∶ A
SP

G
= Q

H

G
diag

(

exp
(

B
SP
x
SP

))

B
SP

(14)

Δx
SP

=

(

A
SP�

G
C
−1

GG
A
SP

G
+ P

REG

)−1

(

A
SP�

G

(

c
G
− Q

H

G
exp

(

B
SP
x̃
SP

))

+ q
REG

)
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3.3  Spherical approximations

In the following, it is assumed that the reduced signal Δv 
describes some harmonic functional in the exterior of a 
spheroidal-shaped body (e.g., Earth’s gravity or magnetic 
field). When the region ΩV  of Δv is large and covers a 
certain latitude range, the use of covariance functions 
derived by spherical harmonic degree variances intro-
duces artificial latitude-dependent systematics. This is 
obvious as the quantity u in Eq. 10 depends on the obser-
vation’s (body-centric) radii which vice versa depend on 

the latitude if Δv resides near the surface (see Fig. 3). 
Apparently, such a latitude-dependent influence cannot be 
physically explained, especially when the signal Δv was 
reduced beforehand for the long-wavelength signal part. 
Theoretically, these systematics can be avoided by using 
spheroidal harmonic degree variances instead of spheri-
cal harmonic degree variances, as the height-dependent 
item u would then vanish for the signal on the surface of 
the spheroid (see Moritz 1980). However, spheroidal har-
monic degree variances become difficult to handle when 
the height is not zero, as it involves the parametric latitude 
and Legendre polynomials of the second kind. Therefore, 
they are rarely used in LSC. Hence, a different approach 
is proposed where once again the locality assumptions are 
considered: in a local (or regional) setting the curvature of 
a spheroid (with small eccentricity) can be approximated 
by a sphere with the curvature radius R , averaged over 
the region ΩV (see also Willberg 2020). Consequently, the 
oblateness in the geometry can be eliminated by a spheri-
cal modification of the coordinates:

hell
i

 denotes the ellipsoidal height of point xi. Evidently, the 
modified geometry in  preserves local relations of adja-
cent points to a large extent while removing the latitude 
dependency. When applying this geometry, also the empiri-
cal degree variances (see Sect. 3.2) should be derived using 
the modified coordinates (cf. Eq. 10) in order to preserve 
consistency. Consequently, results shown in Figs. 1 and 2 are 
also calculated by using the modified geometry.

(15)

Fig. 2  Estimated degree amplitudes (i.e., square root of degree vari-
ances c

H
 ) from empirical covariances ( ̃c

G
, cf. Eq.  13, Fig.  1a) in 

terms of gravity disturbances. Blue: degree amplitude. Red: cumu-
lative amplitude, i.e., the aggregated total power from the maximum 
degree downward (from right). Black: control points of the B-spline 
used for estimating the degree variances (see Eq. 13, equally spaced 
in the logarithmic domain)

Fig. 3  A priori standard deviations (i.e., square root of variance 
entries in CΩ

SS
 , see, e.g., Eq.  9) calculated from spherical degree 

variances (cf. Fig.  2) evaluated on the surface of Antarctica (using 
a polar-stereographic projection). a Standard deviations calculated 
using the original coordinates. b Same standard deviations calculated 

using the modified coordinates (Eq. 15). As the geocentric radii of the 
original coordinate decrease toward the pole due to the oblateness of 
the Earth, the a priori variances systematically increase (cf. Fig. 1b). 
Variations in (b) are solely correlated to varying surface heights 
(topography)
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3.4  Localization of the LSC estimator

Even though the covariance cov
(

Δli,Δsk
)

 between an 
estimate’s signal Δsk and observation’s signal Δli is zero 
(or close to zero), the appropriate element ãik in the LSC 
estimator ÃL

S
 does not necessarily have to be zero (or even 

close to zero). This is counterintuitive because one would 
assume that the estimate does not depend on observations 
that are statistically uncorrelated. Nevertheless, due to the 
inversion of Ce

LL
+ CNN  (cf. Eq. 5) rather large nonzero 

elements may pop up especially when the system has a 
high sensitivity to small changes. This emerging corre-
lation among observations over rather large distances is 
considered to be undesirable as it destroys all previously 
made locality assumptions. Consequently, this behavior 
is mainly responsible for fringe effects when partitioning 
the region Ω to accelerate the collocation (see Sect. 4.2). 
Making a non-critical compromise in terms of optimality 
(cf. Sect. 4.1), this behavior can be avoided when ãik is 
down-weighted by applying a distance-dependent weight-
ing function wik . For PE-LSC the distance measure 1 − tik 
is used for this weighting (see Eq. 16). Alternatively, also 
the spherical distance �ik ∶= acos

(

tik
)

 may be chosen as 
distance measure. The weighting function wik should be 
(1) smooth, and (2) strongly attenuate beyond a certain 
distance �max , but (3) should not influence the LSC estima-
tor ÃL

S
 in close proximity (i.e., when �ik is small). Although 

there might be many functions that satisfy these require-
ments, a very simple and effective one is found when 
applying a slightly modified Gaussian bell curve to tik

Figure 4 exemplarily shows the behavior of wG
ik

 . It should 
be noticed that using tik ∶= cos

(

�ik
)

 (instead of �ik ) as 
parameter in Eq. 16 narrows down the transition width of the 
function and hence contributes to the requirements (2) and 
(3) as stated above. While this weighting approach allows for 
an efficient reduction of fringe effects, it does not guarantee 
to fully eliminate them (cf. Sect. 4.2 and discussion above).

3.5  Optimal partitioning and corresponding 
reduction of numerical effort

The main aim of the forced localization introduced in the 
previous section is to enable the partitioning of the colloca-
tion region ΩS ⊆ ΩV (where the estimates are located in) into 
smaller subregions ΩP

i
 . Dividing ΩS into independent subre-

gions allows a significant reduction of the overall computa-
tion time tc as well as of memory requirements. To perform 
this separation correctly every partition must include the 
necessary surrounding �ΩP

i
 (buffer) to ΩP

i
 (according to the 

(16)wG
ik
∶= exp

(

−

(

tik − 1

cos (�max) − 1

)2
)

.

localization criterion, e.g., �max ) and subsequently introduces 
a certain amount of overhead (see Fig. 5a). As this additional 
overhead is introduced with every partition, the overall over-
head grows linearly with the number of partitions and at a 
certain point becomes larger than the acquired gain. Conse-
quently, when implementing an appropriate algorithm, it is 
favorable to determine an optimal partition size that allows 
maximizing the overall gain (i.e., to minimize tc ): from a 
computational perspective, evaluating the LSC estimator ÃL

S
 

requires a matrix inversion as well as matrix multiplication 
(cf. Eq. 5). In general, matrix inversion as well as multiplica-
tion has a computational cost of O

(

n3
)

≈ kn3 , where n is the 
number of elements of the random vector (that is the number 
of observation resp. evaluation points) and k is a constant 
factor depending on the algorithm used. For the following 
considerations it is assumed that the points are evenly dis-
tributed on a sufficiently large 2D surface (region Ω ) with 
a constant (point) density of � . Dividing this surface into 
m identical partitions, each including n points, the needed 
computation time is given by:

Assuming the subregions ΩP
i
 to be squares, their size can 

be characterized by their edge length d. Having an initial 
number of partitions m0 corresponding to an initial edge 
length d0 the actual number of partitions can be calculated 
(in the 2D case) by:

(17)tc = mkn3

Fig. 4  Modified Gaussian bell attenuation function wG

ik
 (cf. Eq.  16) 

and its exemplary influence to the covariance function. Blue: origi-
nal covariance function in terms of gravity disturbances (cf. Fig. 1d). 
Red: attenuated covariance function. Green: attenuation function 
w
G

ik
 ( �max

= 1.5◦ ). Dashed black: attenuation parameter �max ( 1� , 
cf. Fig.  5a). Vertical red: buffer distance r = 5∕3�max (cf. Fig.  5a). 
Covariance function is evaluated on the ellipsoid
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As mentioned above, the overall size of the partition must 
include its surrounding �ΩP

i
 . This shall be taken into account 

by a buffer distance r (presumably depending on �max ), yield-
ing the edge length of the extended partition de = 2r + d . As 
a rule of thumb, choosing r = 5∕3�max seems to yield a good 
trade-off between omission error and buffer distance when 
applying Eq. 16 as weighting function (see Fig. 4). For the 
sake of simplicity, �ΩP

i
 shall also be a square (omitting the 

roundings of the buffer, cf. Fig. 5a); hence, the area of the 
extended partition is d2

e
 , and with that the number of (obser-

vation) points per partition n = �d2
e
 . By inserting n and m 

into Eq. 17 one finds:

The minimum of this equation is obtained by setting the 
derivative �tc

�d
 to zero:

Hence, the optimal edge length is obviously the chosen 
buffer distance itself. Naturally, this is only valid under the 
assumed simplified conditions, where particularly the spe-
cial treatment of fringe partitions was neglected. Neverthe-
less, for larger regions, this assessment should be sufficient 
in most cases, and for smaller regions, reaching the perfect 
optimum should not be important anyway. Be aware that in 
this derivation, n is primarily related to the number of obser-
vation points 

{

LP
i
∈ Ω

P
i
, �LP

i
∈ �ΩP

i

}

 and not to the number 
of estimation points SP

i
∈ Ω

P
i
 . If the number of the latter 

is significantly larger than the number of the former (i.e., 

(18)m(d) = m0

(

d0

d

)2

(19)
tc(d) =

k

⏞⏞⏞⏞⏞

km0d
2
0
�3

d6
e

d2
= k

(2r + d)6

d2

(20)

≥ n2 ), the optimum can be missed by this estimate, gener-
ally favoring smaller partitions (hence making the matrix 
multiplication less expensive).

From Eq. 19, one can further discern the most expensive 
parts within the LSC, which are represented by (1) the buffer 
distance r (resp. �max ) that increases the cost by the power 
of six, and (2) the point density that increases the cost by 
the power of three. Consequently, if computation time is 
still problematic after partitioning, one should primarily try 
to further reduce the correlation length (e.g., by improved 
reductions) and/or to decrease the observation point density 
(e.g., by thinning the data). Additionally, even if the opti-
mality criterion as stated above is met for a sub-region, in 
practice one might be forced to further partition it, as the 
system memory might not be sufficient (e.g., if the local 
point density is high). This is critical, as the overall compu-
tation time (Eq. 19) increases significantly for d < r∕2 (see 
Fig. 3). Therefore, having enough system memory available 
might be crucial in such cases. In order to be able to dynami-
cally adapt the partition size when the density is too high, 
it is proposed to use a divide and conquer approach. In the 
reference implementation the divide and conquer algorithm 
works recursively in the 3D Cartesian space, always divid-
ing a partition along the dimension with the largest extent 
until all criteria are met (i.e., max. extents or number of 
points, e.g., see Fig. 9). Obviously, this algorithm tends to 
create partitions to be smaller than optimal regarding the 
chosen maximum extents. Hence, choosing these maximum 
extents to be slightly larger than the buffer distance r might 
help to better reach the optimum (i.e., r) on average. As 
shown in Fig. 3, choosing larger extents is less problematic 
than choosing them too small in terms of computation time 
penalty.

Fig. 5  a Scheme of the parti-
tioning items. Blue hatched: 
central area of a partition with 
edge length d. Orange hatched: 
extended area with buffer 
distance r. Light green: central 
and buffer area of an adjacent 
partition. Solid red curve: 1D 
visualization of the attenuation 
function (Eq. 16) for an evalu-
ation point located on the right 
edge of the partition. Dashed 
red line: visualization of the 
parameter �max ( 1� , see Fig. 4) 
for the attenuation function. b 
Normalized computation time 
as function of the normal-
ized partition edge length (see 
Eq. 19)
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4  Validation

Most of the modifications described in Sect. 3 are simple 
to validate. For instance, the validation of the accelerated 
covariance calculation (Sect. 3.1) is performed by cross-
comparison to the rigorous calculation method. It has been 
found that one can approximate the rigorous result to any 
desired accuracy level by increasing the grid sampling or 
using more elaborate interpolation algorithms. The correct 
estimation of the degree variances (Sect. 3.2) is verified by 
inspecting the fit to the empirical covariance function where 
the residuals are small and do not show any systematics 
(Fig. 1c, d). The improvement by using the modified coor-
dinates (Sect. 3.3) is also directly discernible by inspecting 
the a priori variances (Fig. 3).

The validation becomes more difficult when studying the 
modification of the LSC estimator (Sect. 3.4) as this altera-
tion directly influences the outcome of the LSC especially 
in combination with the partitioning approach (Sect. 3.5). 
Hence, an in-depth validation of this topic is performed 
focusing on the behavior of the LSC estimator (Sect. 4.1) 
and the impact of the localization regarding the result and 
the partitioning (Sect. 4.2). Note that all investigations 
within this section are performed using gravity observations 
in selected regions of Antarctica, which already served as 
input to the 2016 AntGG grid (Scheinert et al. 2016). In 
particular, we are making use of gravity disturbances result-
ing from airborne gravimetry in West Antarctica (Bell et al. 
1999; Studinger et al. 2002) and over a transect from the 
Transantarctic Mts. to the South Pole (Studinger et al. 2006). 
The data is reduced beforehand by a high-resolution grav-
ity model combining satellite and topographic information 
(see Zingerle et al. 2019 for the model, Sect. 2.2 for the 
RCR-LSC theory). The obtained observation residuals fit to 
the empirical covariance function and degree variances as 
shown in Figs. 1 and 2. For the localization of the LSC esti-
mator and the partitioning, the parameters r = d = 2.5◦ and 
�max

= 1.5◦ are chosen if not stated otherwise (cf. Sects. 3.4, 
3.5, Figs. 4, 5, 6, 7, 8). Gravity disturbances on or near the 
ice surface form also the output functional in the estima-
tion. Insights found by the following evaluations do not nec-
essarily hold for other setups (i.e., other combinations of 
input/output functionals, estimates with extensive upward or 
downward continuation or different covariance functions), as 
the shape of the LSC estimator might strongly vary between 
different scenarios. Nevertheless, it can be stated that the fol-
lowing conclusions shall be valid in all cases where the pat-
tern of the LSC estimator is locally dominated (cf. Sect. 4.1, 
Fig. 6).

4.1  Behavior of the localized LSC estimator

Without explicitly calculating the LSC estimator (Eq. 5), 
its behavior is generally hard to predict as it involves matrix 
inversion and thus may produce highly variable results even 
when just slightly altering the input configuration. Never-
theless, when inspecting the LSC estimator (i.e., the kernel) 
for different locations (see Fig. 6), at least one general rule 
of thumb could be derived, which is valid in most cases 
(when the covariance function is decreasing with increasing 
distance). The better the observation coverage (i.e., density 
and quality) surrounding an estimation point, the smaller 
the effective influence radius of the kernel (cf. Fig. 6a, point 
A). Vice versa, when the nearby observation coverage is 
poor this influence radius can significantly increase in size 
(cf. Fig. 6d, point B). As a direct consequence, the kernel of 
estimates within good coverage (e.g., point A) can be con-
sidered to be already localized, while the kernel of estimates 
within poor coverage (e.g., point B) does not show this prop-
erty. Subsequently, localizing the kernel (cf. Sect. 3.4) for 
points within good coverage has barely any influence (cf. 
Fig. 6b, c) while localizing those within poor coverage sig-
nificantly alters the kernel (cf. Fig. 6e, f). To have an objec-
tive measure of how strongly the kernel is modified by the 
localization, a kernel disparity measure Δker

i
 is introduced 

for an estimate i as:

where ãik denotes the elements of the original kernel matrix 
ÃL
S
 , and ãloc

ik
 the elements of the localized kernel. Since the 

relation 0≤ wG
ik
≤ 1 holds for all weighting coefficients (cf. 

Eq. 16, Fig. 4), Δker
i

 ranges between zero and one. A value 
of 0 means that the localized kernel is identical to the origi-
nal kernel, and a value of 1 indicates a completely different 
kernel (cf. Fig. 7b). Therefore, as the weighting function 
always attenuates kernel elements toward zero with increas-
ing distance, the appropriate estimate will also be attenuated 
toward zero in comparison with the estimate derived from 
the unmodified kernel (see also Sect. 4.2, Fig. 8). Ultimately, 
the weighting function ensures that the further away the 
closest observation is located from the estimation point, the 
more the corresponding estimate is attenuated toward zero. 
In the context of RCR-LSC (Sect. 2.2.b), this behavior can 
be considered as desirable, as it is unlikely that the LSC is 
able to significantly improve such estimates in comparison 
with the a priori reductions (e.g., see Fig. 7). In fact, the 
unmodified LSC kernel tends to unnaturally overshoot (the 
estimate) in such locations, especially when the observations 
contain long-wavelength errors. This becomes obvious when 
examining the incisive long-range patterns of the original 

(21)Δ
ker
i

=

�

�

�

�

∑

k

�

ãik
�

1 − wG
ik

��2

∑

k ã
2
ik

=

�

�

�

�

∑

k

�

ãik − ãloc
ik

�2

∑

k ã
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kernel function in such locations (cf. Fig. 6b): signals that 
are in the same wavelength range as the extents of the areas 
with positive or negative weights are able to strongly amplify 
the estimate due to possible resonances with the kernel.

In summary, one can conclude that the localization of the 
LSC estimator is probably beneficial in any situation (see 
Fig. 7): in areas with good coverage the original LSC esti-
mate is widely preserved, while in areas with poor coverage 

the estimate is attenuated and thus prevents the previously 
mentioned overshooting. A further strong indication that 
the localization does not negatively impact the estimate 
is given when inspecting the increase in the formal error 
(Eq. 6) when applying the localized kernel: obviously, this 
increase (Fig. 7d) is negligible compared to the formal error 
amplitude (Fig. 7c).

Fig. 6  Influence of the localiza-
tion of the LSC estimator ÃL

S
 

(Eq. 5) for two different evalu-
ation sites in Antarctica: site 
A is located within a densely 
measured area (a-c), while site 
B is located in an area where no 
observations are present (d-f). 
a, d Original LSC estimator. b, 
e Localized LSC estimator (see 
Sect. 3.4, Fig. 4). c, f Difference 
between original and localized 
estimator. For visualization, 
the individual weights of the 
LSC estimator are normalized 
regarding the appropriate larg-
est weight. As a reference, the 
applied weighting parameter 
�max (1.5° black dashed circle) 
and appropriate buffer distance 
r (2.5°, red circle) are shown. 
For ÃL

S
 , the covariance function 

chosen is according to Fig. 1 
using degree variances as of 
Fig. 2. Reference points are 
located on an ellipsoidal height 
of 5 km (slightly above the ice 
layer). The figure’s background 
is shaded in gray (where no 
observations are present). Grid 
coordinates refer to a polar 
stereographic projection where 
the positive y-axis coincides 
with the Greenwich meridian. 
The disparity Δker

i
(see Eq. 21, 

Fig. 7b) between original and 
localized kernel is 0.16% for 
point A and 58.49% for point B
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4.2  Influence of the localization to the partitioning

Even though the localization of the LSC estimator already 
benefits from the classical LSC method (see Sect. 4.1), the 
primary reason for introducing the localization is to enable 
the partitioning of the collocation domain. As explained in 
Sect. 4.1, this localization limits the influence of the LSC 
estimator (i.e., kernel function) according to the chosen 
localization criterion (e.g., �max ), and with this also to the 
buffer distance r (cf. Fig. 6). Obviously, applying a parti-
tioning with buffer distance r to the collocation domain (cf. 
Fig. 5a) prevents the LSC estimator from including observa-
tions outside this region (e.g., see Fig. 6d, elements outside 
the red circle). Hence, it may be concluded that the partition-
ing itself directly impacts the collocation result in case that 
the kernel relies on observations beyond the buffer distance 
r. Albeit those alterations of the result mostly preserve the 
overall quality of the outcome, they introduce disparities 
between adjacent partitions, which manifest as fringe effects. 
In agreement with the findings in Sect. 4.1, these effects can 
be large especially in regions with sparse observation cover-
age where the LSC estimator tends to have a wide pattern 
(see Figs. 6d, 8a). There, the discontinuities on transitions 
between partitions might be problematic particularly when 

evaluating numerical derivatives of the result (cf. Fig. 8c) 
or predicting higher-order gravity functionals. As explained 
in Sect. 3.4, an adequate localization of the LSC estimator 
can prevent most of these fringe effects since correlations 
of the kernel beyond the buffer distance are removed in the 
first place (see Fig. 6e). In practical applications, residual 
fringe effects become virtually untraceable when using an 
appropriate kernel localization (cf. Fig. 8b, d).

As already mentioned in Sect. 3.4, despite the obvious 
large reduction in fringe effects due to the localized kernel, 
there is no mathematical guarantee of continuity between 
estimates of adjacent partitions (due to matrix inversion). 
Nevertheless, one can ask if there is at least convergence 
of the result when increasing the buffer distance r. In 
theory, when the buffer includes the whole collocation 
domain (i.e., an infinite buffer), fringe effects are again 
impossible (since the matrix to be inverted would always 
be the same in this case). Convergence is also desirable, as 
it indicates ‘how stable’ an obtained solution is when add-
ing additional far-distance observations to the estimator. It 
is finally expected, the better the convergence, the better 
the fit to a result obtained by an infinite buffer and hence 
to a rigorous solution without partitioning. For evaluating 
the convergence behavior, LSC estimates are calculated 

Fig. 7  Impact of the localized 
kernel on the estimation result 
(i.e., a 5 km regular polar ste-
reographic grid of reduced grav-
ity disturbances on the surface). 
The localization is identical to 
Figs. 4, 6 (i.e., �max

= 1.5◦ ). a 
Estimation difference between 
original and localized kernel. 
b Kernel disparity Δker

i
 (see 

Eq. 21) on the estimation grid 
(logarithmic scale). c Formal 
error of the estimation with 
the original kernel (see Eq. 6). 
d Formal error increase when 
localizing the kernel (regarding 
the original result, see (c))
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for two different buffer distances r (and hence partition 
edge lengths d) while the localization parameter �max is 
preserved. The difference between these two results can 
then be interpreted as a convergence resp. stability meas-
ure (see Fig. 9). As expected, the convergence is strongly 
improved when using the localized kernel (Fig. 9b) instead 
of the original one (Fig. 9a).

4.3  Statistical evaluation

As last validation, the behavior of the localization is 
inspected from a statistical perspective over the whole 
collocation area (see Fig. 3) by examining frequency dis-
tributions regarding the non-localized LSC solution (cf. 
Fig. 10). Comparing the convergence when increasing the 

Fig. 8  Fringe effects on 
partition boundaries with and 
without kernel localization in 
a peripheral area of Antarctica 
(same setup as in Fig. 7). Parti-
tion boundaries are highlighted 
in red using d = r = 2.5◦ as 
partitioning parameters (see 
Fig. 5a). a Collocated residu-
als obtained by the original 
kernel (gravity disturbances). b 
Collocated residuals obtained 
by the localized kernel. c 
Numerical derivative of a (with 
original kernel) in y-direction. d 
Numerical derivative of b (with 
localized kernel) in y-direction

Fig. 9  Difference between 
LSC estimates when increas-
ing the buffer distance r as 
well as the edge length d from 
2.5° (red lines) to 3.0° (green 
lines). The rest of the setup is 
identical to Fig. 7. a Differ-
ences when using the original 
kernel. b Differences when 
using the localized kernel (with 
�max

= const. = 1.5◦)
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buffer distance (see Fig. 10a) as in Sect. 4b, the localized 
kernel shows a much higher consistency with a 99% per-
centile of just about ± 10 μGal (in contrast to ±320 μGal 
when using the original kernel). This improved consist-
ency by a factor of about 30 is also in good agreement 
with the amplitudes of the deviations shown in Fig. 9. 
The findings from Sect. 4.1 are statistically substantiated 
in Fig. 10b where estimates in proximity to observations 
(<10 km) show just small differences to the original ker-
nel with a 99% percentile of about ±0.3 mGal (cf. also 
Fig. 7a). These differences are getting gradually larger 
with the increasing distance to the nearest observation 
and become as large as about ±3 mGal (99% quantile) for 
far off estimates (>20km). Together with the evaluations 
in Sects. 4.1 and 4.2, this is the final evidence that the 
LSC kernel localization works as expected and produces 
stable results, where residual fringe effects are strongly 
reduced and can be further minimized by increasing the 
buffer distance r.

5  Discussion

In this last section, we briefly discuss the impact of PE-LSC 
to actual application scenarios regarding the feasibility and 
the computational effort, and we compare it to other LSA 
techniques commonly used in this field of study (Sect. 5.1). 
Subsequently, we conclude the paper by summarizing the 

benefits of PE-LSC and by discussing remaining disadvan-
tages. Finally, we present some ideas of how to possibly 
overcome those drawbacks which might be subject of future 
investigations (Sect. 5.2).

5.1  Consequences for the computational effort

In geodesy, large-scale gravity field modeling using scattered 
observations is usually performed either applying spectral 
methods like Fourier analysis, spherical harmonic analysis 
or statistical approaches such as LSC. In the scattered case, 
the spectral methods need to be solved using a general least 
squares adjustment (LSA) approach, since in this case no 
orthogonality assumptions can be used to accelerate these 
methods. Comparing classical LSC and LSA it is discern-
ible that both methods are in the same order of magnitude of 
computational cost (in terms of effort and memory require-
ments) as both require matrix multiplication and inversion. 
As mentioned in Sect. 1, the computational effort of those 
operations is in the cubic order, and memory requirements 
are in the quadratic order (regarding the number of obser-
vation). Solving them becomes numerically expensive with 
an increasing number of observations (see Fig. 11). In prac-
tice, the available memory usually poses a hard limit on the 
computing feasibility because conventional linear algebra 
routines cannot exceed the RAM limit of the system (or just 
with a large penalty in terms of computation time). There-
fore, even current-generation high-performance computing 

Fig. 10  Statistical comparison between the original and the local-
ized kernel over the entire collocation area (see Fig. 3), covering the 
entire Antarctica from 60° to 90°S (for estimates on the same grid as 
in Fig.  7). The frequency distribution shown are generated by com-
puting histograms from the deviations between different solutions 
using a bin size on a µGal level. A logarithmic scale was chosen to 
enable the visualization of frequency distributions of a broader range. 
a Frequency distribution of the deviation between the solution with 
r = d = 3.0◦ and the solution with r = d = 2.5◦ ( �max

= const. = 1.5◦ , 
cf. Fig.  9) for the localized kernel (solid blue line) and the original 

kernel (solid red line). b Frequency distribution of the deviation 
between the solution using the localized kernel (�max

= 1.5◦) and the 
solution using the original kernel ( r = d = 3.0◦ for both solutions, cf. 
Fig. 7). Solid blue line: frequency distribution for the set of estima-
tion points where the nearest observation is less than 10  km away. 
Solid red line: frequency distribution for the set where nearest obser-
vation is 10 to 20 km away. Solid yellow line: frequency distribution 
for the set where the nearest observation is 20 to 400 km away. The 
dashed lines in figure (a) and (b) depict the appropriate 99% percen-
tiles (two sided, > 0.5% and > 99.5%)
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(HPC) systems, having, e.g., about 256 TB of memory, are 
limited to approximately 5 million observations. Their com-
putation would take an infeasible time of ~400 years (single 
core, cf. Fig. 11, dashed blue and dotted green line).

On the other hand, PE-LSC is typically not limited by 
the system memory when using the partitioning approach 
and would accomplish the computation of the same 5 mil-
lion observations in about 2 months (single core, cf. Fig. 11, 
solid blue line). Having a multi-core workstation CPU 
(e.g., 64 cores, assuming an ideal linear scale-up) available 
this task can be performed within a reasonable timeframe 
of 1–2 days. In the appropriate partitioning scenario, an 
exemplary but realistic point density of a 4 × 4 km  grid 
is assumed, where 5 million observations would corre-
spond to a covered area of 8 ⋅ 107 km2 which is roughly the 
area of Asia and Africa together. Extending this scenario 
further to a global scale ( ∼ 5 ⋅ 108 km2 ), it would include 
about 6 times as many points (~30 mio.) and hence, would 
just need about 6 times as much time to finish for the PE-
LSC method, which still yields a reasonable timeframe of 
1–2 weeks (on a 64 core workstation CPU). Currently, the 
same calculation would not be feasible with the classical 
approach (~100,000 years of single-core computation time 

and ~8PB of memory required). This leads to the conclu-
sion, that for general high-resolution and large-scale gravity 
field modeling only a partitioned LSC approach is suited 
to perform this task (for scattered observations). With PE-
LSC, such an approach is given which not only enables the 
optimal partitioning, but also tries to minimize fringe effect 
(cf. Fig. 8) caused by the partitioning. Using PE-LSC in 
the actual scenario of the AntGG project where more than 
800,000 observations must be processed, a solution with 
approx. 1.4 Mio. estimates can be obtained within a few 
hours (on a 56 core CPU).

5.2  Conclusion and outlook

We elaborated a partition-enhanced LSC method (PE-LSC) 
to improve the stability and computational efficiency. The 
discussed modifications, i.e., the accelerated calculation of 
covariance matrices and the partitioning strategy together 
with the kernel localization make it feasible to conduct col-
locations on large scales with relatively low computational 
effort (see Sect. 5.1 and Fig. 11) while minimizing fringe 
effects. In fact, with the shown advancements the effort 
only increases linearly with the size of the study area, which 
makes it even possible to think of applying LSC to scattered 
data on a global scale (cf. Fig. 11).

Although practical limits are not left for PE-LSC (at least 
not in the shown scenario), there is still one major inherent 
shortcoming of the (PE-)LSC method to consider, which 
is the modeling of the covariance function. By now, for 
PE-LSC there is no practical alternative to homogeneous-
isotropic covariance functions, since (1) the information 
of the actual (‘true’) covariance function is not available, 
and (2) there are usually not enough observations present to 
empirically derive general covariance functions comprehen-
sively. (3) Even if such a general covariance function might 
be derived empirically, without a spectral or closed-form 
representation, deriving cross-covariances among different 
functionals would also be problematic. Using homogene-
ous-isotropic covariance functions means to disregard the 
local and directional variations of the investigated physi-
cal quantity. In gravity field modeling, for example, even 
if it is common knowledge that in mountainous regions the 
expected variation in the gravity field signal is larger, by now 
this fact is not considered within PE-LSC. This deficiency 
becomes even more prominent with increasing size of the 
collocation area as it can be expected that the covered ter-
rain also becomes more heterogeneous (mountains, plains, 
sea, ice, etc.).

Therefore, for future work in the field of LSC, overcom-
ing this issue is considered as the most important task to 
make (PE-)LSC a feasible stand-alone alternative even for 
global gravity field modeling. Darbeheshti (2009) provides 
a comprehensive overview of studies already performed on 

Fig. 11  Computational requirements regarding the number of 
observations to process (extrapolated) of the classical LSC or LSA 
approach (unpartitioned) in comparison with the PE-LSC method 
(partitioned). Single-core CPU times are scaled to the Intel Sky-
lake-SP processor family with AVX512 enabled (using double pre-
cision). For the partitioning, a point density of 1∕16 obs./km2 is 
assumed (i.e., a regular 4 × 4 km grid ) with the partition parameters 
r = d = 2.5◦ ≈ 278 km . It is assumed that the number of estimates is 
in the same order as the number of observations. Solid blue: single-
core CPU times for the partitioned approach (PE-LSC). Dashed blue: 
single-core CPU times for the unpartitioned approaches (LSC, LSA). 
Solid red: memory requirements (RAM) for the partitioned approach 
(PE-LSC). Dotted red: memory requirements (RAM) for the unparti-
tioned approaches (LSC, LSA). Dashed green: typical memory limit 
(RAM) of current-gen. workstation PCs (128 GB). Dotted green: typ-
ical memory limit (RAM) of current-gen. high-performance comput-
ers (256 TB)
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this subject. Unfortunately, none of these seems fully appro-
priate for PE-LSC as every method has its own limitations. 
A promising approach for the application in PE-LSC might 
be the classification of the collocation area into classes of 
similar behavior (e.g., mountains, hills, plains, ocean, ice, 
etc.) and a separate estimation of ‘local’ degree variances 
(see Sect. 3.2) for each class. A non-homogeneous and 
non-isotropic covariance function might then be derived by 
some sort of interpolation between the covariance functions 
derived from the different degree variances and based on the 
actual point locations (regarding the previous classification, 
similar as proposed by Tscherning 1999).

Until such a technique becomes available, the shortcom-
ing of the suboptimal covariance modeling might be over-
come by combining (PE-)LSC with the aforementioned 
spectral methods (as discussed, e.g., by Reguzzoni and 
Tselfes 2009). While those methods are rigorous in the way 
they describe the gravity field, they require the observations 
usually to be given on regular grids in order to be applicable 
efficiently (not as in the example above, e.g., see Sneeuw 
1994). At this point, (PE-)LSC can help by pre-calculating 
the observations beforehand on the required grid and, thus, 
producing a best guess of what to expect on those locations. 
Subsequently, this best guess can be used by the spectral 
methods to derive the final spectral representation of the 
gravity field (e.g., cf. Zingerle et al. 2020). If needed, the 
obtained gravity field model can be further improved itera-
tively by recalculating reductions for the RCR-LSC from the 
newly derived model and by restarting the whole procedure 
anew using the improved (narrowed) reductions.

Appendix

Partial derivatives 
of homogeneous‑isotropic covariances 
regarding a local ENU‑frame

Evaluation of the generalized chain rule (see Sect. 3.1) 
requires the partial derivatives of the covariance c (cf. 
Eq. 9) with respect to the chosen local (reference) frame 
coordinates. In case of gravity field modeling, which usu-
ally assumes the chosen local frame to be an ENU-frame 
(east, north, up) tangential to the sphere, the partial deriva-
tives needed are:

in terms of intermediate frame coordinates,

(22)c
n,m

ik
∶=

�(m+n)cik
�tm�un

=

lmax
∑

l=0

cl
(l + 1)!

(l − n + 1)!
u
(l−n+1)

ik
Plm

(

tik
)

for the up component (xU) and

for the east component and north component (xE and 
xN). Here, Plm

(

tik
)

 denotes the mth derivate of Pl

(

tik
)

 
regarding tik (not to confuse with the associated Legendre 
function which is defined slightly different), 

(

�i,�i

)

 are the 
appropriate spherical coordinates (longitude and latitude) 
of vi. In Eq. 22, in opposition to Eq. 9, the letter n for the 
spherical-harmonic degree was exchanged with the letter 
l to reuse n for the order of derivative of uik. Again, it is 
noteworthy that also partial derivatives are expressible as 
outer (Cartesian) products of v × v which allows for effi-
cient evaluation of all pairs over indices i, k. For the sake 
of performance and accuracy, it is advisable to pre-calcu-
late all the necessary derivatives cn,m

G
 of the intermediate 

grid c
G

 (see Eq. 9, in the same fashion as c
G

 is calculated). 
With some additional programming effort, also linear out-
of-scheme quantities (i.e., quantities that are not directly 
expressible as derivative such as, e.g., gravity anomalies) 
can be implemented.
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