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Abstract
A harmonic scalar field has a Laplacian (i.e., both source-free and curl-free) gradient vector field and vice versa. Despite the
good performance of spherical harmonic series on modeling the gravitational field generated by spheroidal bodies (e.g., the
Earth), the series may diverge inside the Brillouin sphere enclosing all field-generating mass. Divergence may realistically
occur when determining the gravitational fields of asteroids or comets that have complex shapes, which is known as the
complex-boundary value problem (CBVP). To overcome this weakness, we propose a new spatial-domain numerical method
based on the equivalence transformation which is well known in the fluid dynamics community: a potential-flow velocity field
and a gravitational force vector field are equivalent in a mathematical sense, both referring to a Laplacian vector field. The
newmethod abandons the perturbation theory based on the Laplace equation, and, instead, derives the governing equation and
the boundary condition of the potential flow from the conservation laws of mass, momentum and energy. Correspondingly,
computational fluid dynamics (CFD) techniques are introduced as a numerical solving scheme. We apply this novel approach
to the gravitational field of the comet 67P/Churyumov–Gerasimenko which has an irregular shape. The method is validated in
a closed-loop simulation by comparing the result with a direct integration of Newton’s formula. Both methods are consistent
with a relativemagnitude discrepancy at the percentage level andwith a small directional difference root-mean-square value of
0.78◦. Moreover, the Laplacian property of the potential flow’s velocity field is proved mathematically. From both theoretical
and practical points of view, the new numerical method is able to overcome the divergence problem and, hence, has a good
potential for solving CBVPs.

Keywords Gravitational field modeling · Finite volume method · CFD techniques · Potential flow · Comet 67P/Churyumov–
Gerasimenko

1 Introduction

Agravitational field is the influence that a mass body extends
into the space around itself, producing a force on another
mass body (Feynman et al. 2011). The external gravitational
field is curl-free, i.e., it is conservative, and it is divergence-
free, i.e., it has no sources or sinks. The main objective of
physical geodesy is to establish a gravitational model, on the
Earth’s surface and in outer space, to the extentmade possible
by existing data, mathematical analytical tools and numerical
computational tools (Sansò et al. 2012).
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By far, the external gravitational field modeling methods,
in terms of boundary value problem solutions, can be classi-
fied into two categories: analytical ones and numerical ones.

The analytical methods mainly refer to harmonic series
expansions in different coordinate systems, e.g., spherical
harmonic series (e.g., Heiskanen and Moritz 1967; Sneeuw
1994; Sansò and Sideris 2013 and references therein),
spheroidal harmonic series (e.g., Jekeli 1988;Thong andGra-
farend 1989; Fukushima 2014), ellipsoidal harmonic series
(e.g., Garmier and Barriot 2001; Garmier et al. 2002; Hu
and Jekeli 2015; Park et al. 2014), rectangular harmonic
series (Alldredge 1981, 1982) and bispherical harmonic
series (Andert et al. 2015). Among them, spherical harmonic
series are the common tool of choice for building advanced
geopotential models. For example, the Earth Gravitational
Model 2008 (EGM2008; Pavlis et al. 2012) is such a poten-
tial model developed from a comprehensive set of terrestrial
measurements, satellite altimetry, airborne gravimetry and
topographic data. Spherical harmonics are widely used in
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Fig. 1 Mass distributions with increasing complexity. a Mass point; b
mass ball with homogeneous density; cmass ball with inhomogeneous
density; d spheroidal mass body; e and f irregular shaped mass bodies.

Red dashed spheres denote Brillouin spheres, i.e., the minimum spheres
encompassing the mass bodies

Earth gravitational field modeling due to the consistency
between the shapes of the coordinate sphere and the Earth.
In general, applications of harmonic series depend on the
shape of a mass body, aiming at narrowing possible diver-
gence regions, i.e., the free space between the mass surface
and the Brillouin surface (i.e., sphere, spheroid or ellipsoid
enclosing the field-generatingmass in cases of corresponding
coordinates; Hu and Jekeli 2015). For example, the conver-
gence of spherical harmonics is guaranteed outside Brillouin
sphere. However, when it comes to irregularly shaped mass
bodies such as asteroids or comets, the series at points near
the surface of the body might diverge due to the discrep-
ancy between the shape of the body and the Brillouin sphere
(Fig. 1d, e, f). This indicates that spherical harmonics are
adequate for representing gravitational fields of sphere-like
bodies, rather than those of irregular shaped bodies (Rei-
mond and Baur 2016). Recently, the divergence behavior of
harmonic series expansions of gravitational field function-
als has been intensively studied for irregularly shaped bodies
(e.g., Takahashi et al. 2013; Takahashi and Scheeres 2014;
Hu and Jekeli 2015; Hirt and Kuhn 2018). These studies
reveal a great challenge to completely overcome the diver-
gence of analytical series, because for most cases a realistic
mass surface seldom coincides with its corresponding Bril-
louin surface. This open problem can be briefly summarized
as the modeling of gravitational fields generated by irregu-
larly shaped bodies (corresponding to the cases in Fig. 1e,
f). In this study, it is denoted as complex-boundary value
problem (CBVP), which has not beenwell solved so far com-

pared to other boundary value problems, e.g., those solvable
by Newton’s formula (Fig. 1a, b), Stokes’s integral (Fig. 1c)
and Molodensky’s series (Fig. 1d).

Complementary to analytical methods, numerical app-
roaches are characterized by the powerful capacity of solving
nonlinear problems. They subdivide a large problem into
smaller and simpler parts (i.e., it is a way of lineariza-
tion), each one corresponding to a set of linear algebraic
equations. This advantage makes numerical schemes widely
used in solving nonlinear problems, and consequently, they
play important roles in different fields. For example, the
finite element method is able to analyze strain/stress distri-
butions of highly complex engineering structures, which is
usually impossible for analytical solutions. Similarly, geode-
tic researchers appeal to numerical schemes for solving the
CBVPs, in view of the high-degree nonlinearity of gravita-
tional fields with complex mass distributions. However, this
has not been realized up to now, despite various attempts
applying various numerical methods, e.g., the finite element
method (FEM; Meissl 1981; Bian and Chao 1991; Fašková
et al. 2010), the boundary element method (BEM; Klees
1995; Lehmann and Klees 1999; Čunderlík et al. 2008) and
the finite volume method (FVM; Macák et al. 2012, 2015;
Medl’a et al. 2018).

Historically, the state of the art of gravitational field
determination seems to experience a bottleneck, blocked by
the CBVP. The tremendous efforts on addressing this open
problem versus the somewhat unsatisfactory advancement
implies a possible lack of information within the scope of
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geodesy on solving this problem, which may need to draw
onknowledge fromother researchfields.Computational fluid
dynamics (CFD) offers such a chance. CFD is the analysis
of systems involving fluid flow, heat transfer and associated
phenomena by means of computer-based simulation (Ver-
steeg andMalalasekera 1995). Benefiting from the increasing
computer power, CFD techniques developed rapidly in the
past decades. The fundamental basis of almost all CFD prob-
lems is the Navier–Stokes equations defining single-phase
(gas or liquid) fluid flows. Imposed with specific constraints
(e.g., setting parameters or removing terms), the fundamen-
tal equations of a general flow can be simplified to formulate
various fluid flows, among which the potential flow is an ide-
alized one that occurs in the case of incompressible, inviscid
and irrotational fluid particles. In particular, the velocity field
of potential flow is Laplacian, i.e., source-free and curl-free.

The above analysis shows that the gravitational vector
field and the potential flow velocity field are equivalent in
the sense that both are Laplacian vector fields. For this rea-
son, we propose to utilize potential flow theory as well as
the CFD technique to model gravitational fields, especially
the CBVPs. The governing equation of the potential flow is
adopted as an alternative to the Laplace equation when mod-
eling the gravitational field.

This paper has two objectives: (1) to illustrate the prin-
ciple and workflow of the new gravitational field model-
ing method; (2) to give a proof-of-concept by applying
the new method to the very irregularly shaped comet
67P/Churyumov–Gerasimenko (hereafter referred to as co-
met 67P). The two parts are arranged in Sects. 2 and 3,
respectively. In Sect. 2, first, the principle of the equivalence
transformation is outlined (Sect. 2.1), involving the issues of
the three-dimensional potential flow, theCFD techniques and
thepipe transformation; then, the three issues are addressed in
Sect. 2.2–2.4, respectively. In Sect. 3, a computational work-
flow is devised to model the gravitational field of the comet
67P and the result is validated in a closed-loop simulation.
The advantages and potential applications of the newmethod
are discussed in Sect. 4, and a conclusion is given in Sect. 5.

2 Methodology

2.1 Equivalence transformation

The main idea of our method is based on the equivalence
transformation between the gravitational vector field and the
potential flow velocity field. Table 1 compares the two phys-
ical objects regarding their common and different points.
Although belonging to different research areas, both vec-
tor fields are Laplacian and thereby mutually equivalent.
The gravitational potential, the gravitational vector and the
plumb line correspond to the potential flow velocity poten-

tial, the potential flow velocity vector and the stream line,
respectively. The gravitational vector g and the potential
flow velocity vector v are interchangeable when formulating
either vector field. For example, the governing equations and
boundary condition of the potential flow can be used for the
gravitational field modeling, with the velocity v replaced by
the gravitational vector g. In Sects. 2.2–2.4, we first derive
the mathematical expressions (i.e., the governing equations
and the boundary condition) of the potential flow, then intro-
duce the principle of the CFD techniques exemplified with a
pipe flow, and then transform the potential-flow pipe to make
it suitable for gravitational field modeling. Finally, after sub-
stituting the velocity term v with the gravitational term g in
the derived equations, the framework of our new method is
established.

2.2 Three-dimensional potential flow

Potential flow is an idealized flow of steady, irrotational,
inviscid and incompressible fluid particles. The velocity field
of the potential flow is Laplacian for two reasons. On the one
hand, there is no loss or gain of either mass or kinetic energy
for the entire flow system, making the velocity field source-
free. On the other hand, the smooth interfaces between fluid
particlesmake the particles torque-free and thereby the veloc-
ity field curl-free. In the following content, we first give the
mathematical description of the three-dimensional Newto-
nian flow and then impose it with the constraints listed in
Table 2, to build the fundamental equations of the potential
flow.

2.2.1 Governing equation

The governing equations of Newtonian flow include:

• Continuity equation:

∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

• Momentum equations (Navier–Stokes equations):

∂ (ρv)

∂t
+ ∇ · (ρv ⊗ v) = ∇ · τ + B − ∇ p (2)

where τ is the stress tensor

τ = μ
(
∇v + (∇v)T

)
+ λ (∇ · v) I (3)

Equations (1) and (2), respectively, state the conservation
laws of mass and momentum under Eulerian description.
The variables involved in the two equations are functions
of space and time: v denotes the velocity vector comprising
three components v1, v2 and v3; ρ is density; p is pressure;
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Table 1 Equivalence and difference between the gravitational vector field and the potential flow velocity field

g

the dynamic viscosity μ and the bulk viscosity λ are the
Lamé parameters which control the flow behavior due to
friction; B is a body force (e.g., gravitation, Coriolis force
or electromagnetic force). Among these variables, the three
velocity components v1, v2 and v3 and the pressure p are the
unknowns to solve for (see the SIMPLE algorithm in Sect.
2.3.2). In Eq. (2), the operator ⊗ denotes the outer product,
and the outer product of two vectors u and v is a matrix w

given by wi j = uiu j . With this definition, the second term
on the left hand side of Eq. (2) can be expanded as follows:

∇ · (ρv ⊗ v) = ρ (∇ · v) v + ρv · ∇v (4)

Inserting the above term into Eq. (2), one obtains

∂ (ρv)

∂t
+ ρ (∇ · v) v + ρv · ∇v = ∇ · τ + B − ∇ p (5)

Then, applying the first two constraints listed in Table 2 (i.e.,
ρ = 1.0 kg/m3 and ∂

∂t (·) = 0), Eqs. (1) and (5), respectively,
transform into

Table 2 Constraints imposed onNewtonian flowand the corresponding
functions

Constraint Function

ρ = 1.0 kg/m3 Incompressible (constant density)
∂
∂t (·) = 0 Steady state

μ = λ = 0 Pa · s Frictionless

Bi = 0 (i = 1, 2, 3) Body force free (� = const.)

∇ · v = 0 (6)

and

v · ∇v = ∇ · τ + B − ∇ p (7)

Note that, on account of Eq. (6), the second term of the left
hand side of Eq. (5), ρ (∇ · v) v, does not exist in Eq. (7)
anymore. Further, imposing on Eq. (7) as well as Eq. (3) the
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other two constraints given in Table 2 (i.e., μ = λ = 0 Pa · s
and B = 0) yields

v · ∇v = −∇ p (8)

Taken together, the combination of Eqs. (6) and (8) serve as
the governing equations of the three-dimensional potential
flow as follows:

{∇ · v = 0
v · ∇v = −∇ p

(9)

2.2.2 Boundary condition

The Bernoulli equation is a statement of the conservation of
energy for an inviscid flow, which implies an increase in the
speed of a fluid simultaneously with a decrease in pressure.
The Bernoulli equation for unsteady inviscid flows has the
following form:

− ∂φ

∂t
+ v2

2
+ p

ρ
+ � = C (10)

where φ is the velocity potential, C is a constant number,
and � is the conservative body force potential defined as
∇� = B. Because the body force is not considered in
this study (i.e., B = 0), the body force potential is a con-
stant as well (i.e., � = const .). Applying the constraints
given in Table 2, Eq. (10) transforms into the following
formula:

p = −1

2
v2 (11)

which holds throughout the potential flow and is particularly
used for calculating the boundary condition in our method.
Note that the constants involved in Eq. (10) have been set to
zero, i.e., � = C = 0, and such treatment has no influence
on the final solution in a vector form.

2.3 CFD techniques

CFD is an interdisciplinary research field involving numer-
ical analysis, fluid mechanics and computer science. As
shown in Fig. 2, it mainly includes four modules: problem
identification, preprocessing, solving and post-processing.
The goal of the first step is to analyze the feasibility of the
three subsequent steps. In CFD the finite volume method is
a method for representing and evaluating partial differen-
tial equations in the form of algebraic equations (LeVeque
2002; Toro 1999). This section mainly focuses on the basic
steps of the finite volume method, illustrated with a three-
dimensional pipe flow (see Fig. 3a). On account of brevity

Fig. 2 Workflow of the CFD techniques

and clarity, the control volumes for the illustration purpose
are hexahedrons.

2.3.1 Step 1: Grid generation

The first step in the finite volumemethod is to divide the com-
putation domain into discrete control volumes (a.k.a. cells,
elements) where the variable of interest (i.e., velocities and
pressure) is located at the nodal point (i.e., the centroid of
the control volume). Assume that a number of nodal points
are located inside the domain, that the faces of control vol-
umes are positioned mid-way between adjacent nodes, and
that each node is surrounded by a control volume.

A system of notation is established as follows. Figure
3b shows a general nodal point identified by P with six
neighboring nodes in a three-dimensional geometry iden-
tified as west, east, south, north, bottom and top nodes
(W , E, S, N , B, T ). The lowercase notation,w, e, s, n, b and
t is used to refer to cell faces in the corresponding directions.
The x1-, x2- and x3-components of the coordinate system
are aligned with the directions of WE , SN and BT , respec-
tively. The distances between two geometrical elements are
denoted as δx��

1 , δx��
2 and δx��

3 , with the superscripts
�� occupied by the node or face notations. For example,
the distances between the nodes P and T , between the node
P and the face t and between the faces b and t , are identified
by δx PT3 , δx Pt3 and δxbt3 , respectively. By contrast, the area
A of a given face t can be denoted as At .
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Fig. 3 Illustration of the finite
volume method. a Discretization
of a pipe flow domain. b
Notations of a finite control
volume

2.3.2 Step 2: Discretization

Acritical operation of the finite volumemethod is the integra-
tion of the governing equation set (9) over a control volume
to yield a discretized equation at its nodal point P . For the
control volume defined in Fig. 3b, this gives

⎧
⎪⎨
⎪⎩

∫
�V

∇ · vdV = 0

∫
�V

∇ · (vvi ) dV = ∫
�V

(
− ∂ p

∂xi

)
dV , (i = 1, 2, 3)

(12)

where �V is the integral volume of each cell. Note that
the integrand in the above second equation, ∇ · (vvi ), is
equal to the left hand side of the potential flow’s momen-
tum equation (i.e., the second constituent of equation set
(9)), v · ∇v, by jointly considering the identity, ∇ · (vvi ) =
v · ∇vi + (∇ · v) vi , and the potential flow’s continuity equa-
tion (i.e., the first constituent of equation set (9)), ∇ · v = 0.
The equation set (12) represents the flux balances of the
mass and the momentum for potential flows through a con-
trol volume. The left hand side gives the net convective flux
of the property (mass or momentum), and the right hand side
contains the generation or destruction of the corresponding
property within the control volume.

Applying Gauss’ theorem to the left hand side terms of
equation set (12), one can obtain

⎧⎪⎨
⎪⎩

∫
A
n · vdA = 0

∫
A
n · (vvi ) dA = ∫

�V

(
− ∂ p

∂xi

)
dx1dx2dx3, (i = 1, 2, 3)

(13)

where n is the unit normal vector of the control volume face
element d A, and the terms relating to the volume integration
are defined as follows:

⎧⎨
⎩

AP
1 = dx2dx3, �pP1 = pe − pw

AP
2 = dx1dx3, �pP2 = pn − ps

AP
3 = dx1dx2, �pP3 = pt − pb

(14)

Expanding equation set (13) with the help of Eq. (14) yields

(
Aeve1 − Awvw

1

) + (
Anvn2 − Asvs2

) +
(
Atvt3 − Abvb3

)
= 0

(15)

and

(
Aeve1v

e
i − Awvw

1 vw
i

) + (
Anvn2v

n
i − Asvs2v

s
i

)

+ (
Atvt3v

t
i − Abvb3v

b
i

) = −AP
i �pPi , (i = 1, 2, 3)

(16)
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Note that in Eq. (16) the unknowns of velocity components
with lowercase superscripts are defined at the control volume
faces, rather than at the nodal points where the final solution
should be defined. Therefore, the velocity components at the
control volume faces must be expressed by those at the nodal
pointswith a specific interpolation scheme.Taking the central
differencing scheme for example, the interpolated values at
the faces are given by

⎧⎪⎨
⎪⎩

vw
i = 1

2

(
vWi + vP

i

)
, vei = 1

2

(
vP
i + vE

i

)

vsi = 1
2

(
vS
i + vP

i

)
, vni = 1

2

(
vP
i + vN

i

)
, (i = 1, 2, 3)

vbi = 1
2

(
vB
i + vP

i

)
, vti = 1

2

(
vP
i + vTi

)
(17)

Inserting Eq. (17) into Eq. (16) followed by reorganization
yields the linear form that is solvable by matrix inversion:

aPvP
i − aW vWi − aEvE

i − aSvS
i − aNvN

i − aBvB
i − aT vTi

= −AP
i �pPi , (i = 1, 2, 3) (18)

where

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

aW = 1
2 A

wvw
1 , aE = − 1

2 A
eve1

aS = 1
2 A

svs2, aN = − 1
2 A

nvn2

aB = 1
2 A

bvb3 , aT = − 1
2 A

tvt3

aP = −
(
aW + aE + aS + aN + aB + aT

)
(19)

Note that for different interpolation schemes the form of Eq.
(19) varies. Since the coefficients of the linear equation (18)
still contain the unknown variables (i.e., velocities; refer to
Eq. (19)), an iterative algorithm is needed to solve this equa-
tion system, which is the main topic of Sect. 2.3.3.

2.3.3 Step 3: Solution of equations

The aim of the finite volume method is to solve for the veloc-
ities and the pressure based on the discretized governing
equations (15) and (18). Specifically, the discretized equation
(18)must be set up at each nodal point in the flow domain; for
the nodal points adjacent to the domain boundaries, bound-
ary conditions can be incorporated. After constituting the
discretized momentum equations (18) for all the control vol-
umes, one can solve for the velocities vP

i (i = 1, 2, 3) and
the pressure p at the nodal points. At the same time, the
continuity equation (15) needs to be satisfied as well.

However, the algebraic equation system (15) and (18) is
not easy to solve due to the following two reasons:

(1) The momentum equations contain nonlinear quantities.
For example, the coefficients of the momentum equa-

tions, Eq. (19), involve the velocities on cell faces,which,
however, are quantities estimated from the unknowns.

(2) There is no transport equation for the pressure which
is also one unknown variable in the flow problem. The
pressure is coupled with the velocities in the momentum
equations (18) while not in the continuity equation (15).

In CFD, the SIMPLE algorithm developed by Patankar
and Spalding (1972) is a widely used numerical method of
solving theNavier–Stokes equations. SIMPLE is an acronym
for semi-implicit method for pressure linked equations. It is
essentially based on a guess-and-correct procedure. Figure 4
shows the basic steps of theSIMPLEalgorithm.Theprinciple
is introduced as follows.

Starting with the rewritten form of the momentum equa-
tions (18) as follows:

aPvP∗
i −

∑
anbvnb∗i = −AP

i �pP∗
i , (i = 1, 2, 3) (20)

where the superscript * marks the guessed quantities and the
superscript nb denotes the neighboring nodes of the node
P , e.g., those marked by E , W , N , S, B, and T , in Fig. 3b.
The coefficients of Eq. (20), depending on the interpolation
type, can be calculated with the guessed quantities and with
formulae similar to equation set (19). For the pressure field
and the velocity field, the differences between the corrected
and the guessed quantities are, respectively, defined as

δ p = p − p∗ (21)

and

δvi = vi − v∗
i , (i = 1, 2, 3) (22)

Due to the linearity, the pressure and the velocity terms in Eq.
(20) can be substituted, respectively, with their corrections,
yielding

aPδvP
i −

∑
anbδvnbi = −AP

i �
(
δ pPi

)
, (i = 1, 2, 3)

(23)

in which the coefficient matrix of the velocities is diagonal
dominant. In order to improve the computational efficiency,
the non-diagonal terms are omitted, which is the main
approximation of the SIMPLE algorithm (Versteeg and
Malalasekera 1995). Then, one obtains

δvP
i = dP

i �
(
δ pPi

)
, (i = 1, 2, 3) (24)

where

dP
i = − AP

i

aP
i

(25)
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Fig. 4 Workflow of the
SIMPLE algorithm

Inserting Eq. (24) into Eq. (22) and rearranging gives the
corrected velocities:

vi = v∗
i +δvi , (i = 1, 2, 3) (26)

In order to ensure the continuity of the solution, the continuity
equation is incorporated by inserting Eq. (26) into Eq. (15),
together taking into consideration Eqs. (14) and (24). This
generates

aPδ pP − aEδ pE − aW δ pW − aN δ pN − aSδ pS

−aT δ pT − aBδ pB = δbP (27)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aE = (Ad)e, aW = (Ad)w

aN = (Ad)n, aS = (Ad)s

aT = (Ad)t , aB = (Ad)b

aP = aE + aW + aN + aS + aT + aB

δbP = (
v∗A

)w − (
v∗A

)e

+ (
v∗A

)s − (
v∗A

)n + (
v∗A

)b − (
v∗A

)t

. (28)

Once the pressure corrections at all nodes are obtained by
solving the linear equations (27) built for all control volumes,
the corrected pressure can be calculated by

p = p∗+δ p (29)

After that, with the corrected velocities from Eq. (26) and the
correctedpressure fromEq. (29), the algorithm is able to enter
into the next step: either the next iteration or termination, as
shown in Fig. 4. The SIMPLE algorithm does not stop until
the balances ofmass and themomentums of the three velocity
components are satisfied.

2.4 Pipe transformation

Up to this point, the Laplacian velocity field of a three-
dimensional pipe flow can be solved with the CFD tech-
niques. To model the gravitational field of one mass body,
the pipe needs to be transformed following the procedure
shown in Fig. 5. In this way, one can obtain a special pipe
that only contains one inlet and one outlet (Fig. 5g). The inlet
is a sphere with the center located at the center of mass (here-
after referred to as outer sphere), and the outlet is the mass
surface. Due to the interchangeability of the gravitational
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Fig. 5 Geometrical transformation of a pipe containing potential flows.
a and g are the initial and end shapes, respectively. The potential flow
velocities in g are equivalent to the gravitational vector field of a mass
body whose surface is the outlet. In g, the center of the outer sphere
(i.e., the inlet) is identical with the center of the mass, and the scalar

gravitation on the outer sphere is calculated with a point mass assump-
tion, in which the mass is condensed at the center as a mass point, when
the radius is large enough, e.g., ten times the average size of the mass
body in this study

vector g and the potential flow velocity v, the fundamental
equations of the gravitational field determination problem
are given by Eqs. (9) and (11)

• Governing equations:

{∇ · g = 0
g · ∇ g = −∇ p

(30)

• Boundary condition:

p = −1

2
g2 (31)

Note that to calculate the boundary value p, only the scalar
gravitation, g = |g|, is needed. The scalar gravitation on the
outer sphere, whose radius is set to be ten times the aver-
age size of the mass body, is assumed to be homogeneous
and calculated with Newton’s formula, GM

r2
, by viewing the

mass body as a condensed point with the total mass M . The
outer sphere as well as the homogeneous boundary value is
a boundary condition more practical than the regularity con-
dition at infinity, and they are consistent to each other when
the radius of the outer sphere approaches infinity. For the
proof and explanation on this issue, see “Appendix A”. In
parallel, the scalar gravitation on the mass body surface can
be obtained through two ways, either by direct measurement
or by integration from an assumed density distribution.

3 Example: Comet
67P/Churyumov–Gerasimenko

There are two goals for the case study. One is to derive a fully
convergent gravitational field solution of the comet 67P with
the CFD techniques, and the other is to validate the perfor-
mance of the new method in solving the CBVPs. The comet
67P is chosen as the case study, because few previous CBVP-
solving methods are able to solve the gravitational field of
such a complex-shaped mass body for its fully convergent
solution, and demonstrating the validity of the CFD tech-
nique in such a highly challenging environment should create
trust in the methodology.

3.1 Data

The comet 67P has an irregularly shaped body like a “rub-
ber duck” and has been the target of ESA’s comet-chasing
Rosetta mission. The Rosetta spacecraft obtained spectac-
ular images with the narrow angle camera (NAC) and the
wide angle camera (WAC) (Sierks et al. 2015), in order
to build the shape model of the comet 67P. The shape
model we adopt is developed by ESA’s Rosetta archive
team, consisting of 104207 faces, matching NVC image
data gathered up to October 2016, and released under the
Creative Commons licence of ESA/Rosetta/NAVCAM -
CC BY-SA IGO 3.0. Figure 6 shows the double-lobed
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Fig. 6 Shape model of the
comet 67P/Churyumov–
Gerasimenko

Table 3 Basic informationof the comet 67P/Churyumov–Gerasimenko
(ESA 2016)

Size of nucleus

Overall dimensions 4.34 km × 2.60 km × 2.12 km

Small lobe 2.50 km × 2.14 km × 1.64 km

Large lobe 4.10 km × 3.52 km × 1.63 km

Mass 1.0 × 1013 kg

Volume 18.0 km3

Density 533.0 kg/m3

comet model, and Table 3 gives the basic information
of the two-lobe nucleus. The shape model can be down-

loaded from https://imagearchives.esac.esa.int/index.php?/
page/navcam_3d_models. Additionally, since gravitational
measurements do not exist on the comet surface, observations
are simulated on the basis of an assumed constant density
ρ = 533.0 kg/m3 (Paetzold et al. 2016).

3.2 Scheme

The case study is conducted in a closed-loop simulation. As
shown in Fig. 7, two solutions (i.e., one obtained from the
new method and the other a benchmark) are derived through
two branches, starting from the common input (i.e., the shape
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Fig. 7 Workflow of the comparison between the CFD solution and
the Newton integration. Both branches are simulated from two input
data: the shape and the density models. The interior and the exterior

meshes are generated separately. The mass of each interior tetrahedron
is assumed to be condensed as a point mass at the centroid for the
subsequent Newton integration

and the density models) and finally compared to each other.
For the branch of the CFD method, firstly the scalar surface
gravitation, g = |g|, is simulated by integrating the assumed
density, ρ = 533.0 kg/m3, and then the boundary value (i.e.,
pressure) is calculated with Eq. (31), p = − 1

2g
2, and finally

the gravitational solution is derived with the CFD techniques
(see Sect. 2). Note that the radius of the outer sphere is taken
to be ten times the average size of the comet, and the scalar
gravitation on it is generated homogeneously with Newton’s
formula, GM

r2
, by viewing the comet as a point with the

total mass of M . The reason for the radius determination
is explained in “Appendix A”. For the benchmark solution,
a direct integration is performed with Newton’s formula, in
which the interior region of the comet is meshed into 261628
control volumes, each with an average size of ∼100m, and
the exterior region is meshed into 457793 control volumes,
with an increasing size from the comet’s surface to the outer
sphere. Figure 8b shows an example of the interior mesh
with large size for the illustration purpose. Both the interior

and the exterior meshes adopt unstructured tetrahedrons in
the case study, due to their better performance on meshing
irregular bodies (Fig. 8a), compared to the structured ones as
illustrated in Sect. 2.3. Themesh generator and the numerical
solver used in this study are ICEM CFD 18.2 and ANSYS
FLUENT 18.2, respectively.

The benchmark solution in this study is not the true grav-
itational field but an approximated one of the comet 67P,
with the errors coming from three sources: the geometrical
model, the homogeneous density assumption and the inte-
gration scheme. The former two are data/model errors, while
the last one is due to the inherent property of the numer-
ical integration. That is, the benchmark gravitational field
(defined at the exterior centroids of the tetrahedrons as shown
in Fig. 8a) is generated by integrating the attractions of the
integral interior mass elements, each condensed at its cen-
troid as a mass point. Only if all integral mass volumes
tend to become infinitesimal, the overall benchmark grav-
itational field would approach the true value. However, the

123



68 Page 12 of 22 Z. Yin, N. Sneeuw

Fig. 8 Unstructured mesh
configuration for the purpose of
result comparison between the
new method and the Newton
integration. a The exterior mesh
and b the interior mesh of the
comet 67P. In b, the interior
region of the comet is meshed
with large cells for
demonstration; the actual
number of the interior mesh
cells used in the case study is
261 628

approximated gravitational field is a valid benchmark exam-
ple in this case study for three reasons. First, the benchmark
keeps the main feature of the true gravitational field and has
little influence on the investigation goal of the case study.
Second, the benchmark is analytical, albeit in an integral
form, so that it is easy to be calculated. Third, the bench-
mark is generated in a closed-loop validation scheme, and
the workflow has no relation to the true gravitational field
(Fig. 7).

3.3 Results

With the input data and a proper CFD configuration, the
SIMPLE algorithm takes ∼10 min (corresponding to 600
iterations) to converge to anoptimal solution.We thenplot the
three-dimensional gravitational vector field (Fig. 9) together
with its four cross sections (Fig. 10), the plumb line distri-
bution (Fig. 11) and the surface scalar gravitation (Fig. 12).
Note that the boundary information of the comet 67P (e.g.,
the scalar gravitation) remains unchanged before and after
the CFD calculation.

The resulting gravitational field is qualitatively consis-
tent with the real-world experience. For example, the vector
magnitudes decrease with increasing distance from the mass
surface, with an approximately reciprocal relation, while not
as simple as that revealed by the Newtonian gravitational
inverse square law (see Fig. 10). The complexity of the
gravitational field can be observed from the plumb-line dis-
tribution (Fig. 11), showing a prominent curvature near the
body’s surface. The realization of such a complex gravita-
tional field, especially the gravitational structure close to the
body surface, may have several applications in the future,
e.g., the landing trajectory determination for a deep-space
probe. Refer to Sect. 4.2 for a detailed discussion on this
topic. Further interesting and natural characteristics of the
comet’s gravitational field are the locations of maximum and
minimum gravitation. The points of maximum gravitations
are located at both ends of the comet (in the long dimension of

the mass; see Figs. 10c, d, and 12a, d), because for either face
all the masses are located on one side thereby maximizing
the attraction thereon; the minimum gravitation is located at
the neck between the two lobes (see Figs. 10c, d and 12b, c),
because the gravitational forces caused by the two lobes can-
cel out to a maximum extent compared to other parts. These
features are consistent with the qualitative analysis based on
Newton’s law.

In order to compare the CFD solution (velocity vectors
denoted as v) and the integration benchmark (gravitational
vectors denoted as g), we use the following three indicators:

• Absolute magnitude error

�g = ||v| − |g|| (32)

• Relative magnitude error

�e =
∣∣∣∣
|v| − |g|

|g|
∣∣∣∣ (33)

• Angular difference

�θ = arccos
v · g
|v| |g| (34)

The above three indices evaluate the differences of abso-
lute magnitude, relative magnitude and relative direction
between the CFD solution and the benchmark example, with
smaller values indicating a better consistence of them. Fig-
ure 13 shows the histograms for a total of 457793 checking
points as defined at the centroids of the exterior finite volume
elements (see Fig. 8a). As shown in Fig. 13, the gravita-
tional magnitude of the comet 67P ranges between 0 and
∼25mGal, with a mean value of 8.03mGal (Fig. 13a), and
the root-mean-square (RMS) of the absolute magnitude dif-
ferences is merely 0.19mGal (Fig. 13b), indicative of the
consistence of the two solutions. The consistence can also
be observed from the histograms of the relative magnitude
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Fig. 9 Gravitational field of the
comet 67P. In a to d, the vectors
are potential-flow velocities in
the fluid domain. The velocities
are solved for with the CFD
techniques and are equivalent to
the gravitational vectors of the
comet 67P in value

error and the directional difference. As shown in Fig. 13c,
d, the overall magnitude of the relative errors is smaller than
0.10, i.e., at a few percent level, and the angular difference
is within 5◦. Their RMS values are 0.02 and 0.78◦, respec-
tively.

4 Discussion

The new method of this study established an equivalence
between the gravitational field and the potential flow, imply-
ing that the gravitational field can be viewed as a stationary
potential flow. Interestingly, in the CFD community, such an
ideal fluid flow is thought impossible to occur in the real
world, because realistic fluid flows are more or less vis-
cous; however, the potential flow model is a great concept
for solving the challenging CBVPs in geodesy. To support
this viewpoint, we discuss two aspects of the new method:
key success factors for solvingCBVPs and its potential appli-
cations in asteroid exploration.

4.1 Key success factors for solving CBVPs

This study derives a new mathematical formulation for grav-
itational field modeling, i.e., the governing equation (30) and
the boundary condition (31). They serve as a new theoretical
basis for the gravitational field modeling problems, instead
of the regular ones, i.e., the Laplace equation and the funda-
mental equation of physical geodesy. The governing equation
of the new method has a mathematical form more complex
than that of the Laplace equation, while the expression of the
boundary condition is simpler than that of the fundamental
equation of physical geodesy, only containing scalar gravi-
tation. The observability of scalar gravitation allows the new
method to be free of perturbation theory and is a critical suc-
cess factor for solving the CBVPs. The reason is illustrated
as follows.

As shown in Fig. 14, all of the solvable gravitational fields
form a solution space (denoted as S), with each interior
point representing a gravitational field. A specific gravita-
tional field modeling method corresponds to a subsolution
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Fig. 10 Gravitational cross
sections of the comet 67P. In a
to d, the colored arrows indicate
the gravitational vectors located
in each cross-section plane, as
determined by three clockwise
numbers 1–3 in the sketch inset
for each panel

space, which covers the optimal point g̃⊥ (i.e., the projec-
tion point of the true gravitational field g̃) if it is able to
derive the optimal solution. Perturbation methods need a ref-
erence gravitational field, g0, of an analytical form, such as
the gravitational field of a ball, a revolution ellipsoid or a
triaxial ellipsoid with a homogeneous density. Exemplified
with the spherical harmonics inversion method (see Table 1),
during the series convergence process, an estimated spherical
harmonic solution ĝ initiates from the reference gravitational
field g0 and approaches the optimal solution g̃⊥. In general,
the complexity of the true gravitational field g̃ is arbitrary,
indicated by the difference between the optimal gravitational
solution and the reference gravitational field,

∣∣ g̃⊥ − g0
∣∣. The

hyperball with the center point of g0 and the radius of r0 rep-
resents the linearity valid region of the perturbation method.
Anypoint (denoting a gravitational field)within the hyperball
can be linearly expanded from the reference point (i.e., the

reference gravitational field g0). In other words, a specific
perturbation method is only applicable to the gravitational
fields within its solution space (i.e., a hyperball like that in
Fig. 14). Under this framework, the gravitational field deter-
mination problem can be understood as to find an estimated
solution ĝ, as close as possible to its optimal value g̃⊥.
Depending on the complexity of the unknown (true) grav-
itational field g̃, the location of the optimal gravitational
field g̃⊥, with respect to the reference model g0, has two
possibilities:

∣∣ g̃⊥ − g0
∣∣ ≤ r0 or

∣∣ g̃⊥ − g0
∣∣ > r0. The for-

mer corresponds to cases applicable with the perturbation
theory, while the latter does not. Figure 14 shows that the
interior region of the hyperball occupies a small portion of
the solution space, indicating a limited power of perturbation
methods in solving CBVPs, although they are widely used
in current geodetic methodology.
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Fig. 11 Plumb lines of the
comet 67P. In a to d, each
colored line represents one fluid
particle’s path, as well as a
stream line, derived with the
CFD techniques. According to
the conceptual mapping listed in
Table 1, the stream lines of the
potential flow are equivalent to
the plumb lines of the
gravitational field

The limited capability of solving CBVPs is an obstacle
met by the existing gravitational field modeling methods,
especially those based on the Laplace equation. In fact, the
gravitational fieldmodelingmethods founded on the Laplace
equation, in both analytical and numerical forms, are in a
dilemma currently, regarding whether or not to abandon the
perturbation theory when dealing with CBVPs. On the one
hand, as analyzed above, the perturbation theory limits the
ability of solving CBVPs. To overcome this weakness, it
seems one needs to abandon the perturbation theory. On the
other hand, the perturbation theory serves as a hinge of the
gravitational field modeling workflow, because it helps to
incorporate gravitation observations by constructing gravity
disturbance δg or gravity anomaly�g as the boundary value.
From this point, it seems one needs to insist on the pertur-
bation theory. Without better choices to solve the CBVPs,
the dilemma pushes geodetic researchers to make efforts in
modifying or improving the Laplace equation based meth-
ods, albeit built on the perturbation theory. We consider this
as an important reason for the current unsatisfying state of

addressing the CBVPs. Hopefully, the new method has a
potential to break the dilemma due to the following reasons.

From the theoretical perspective, the new method is not
a perturbation method and is able to solve the CBVPs. The
continuity, momentum and energy equations of the poten-
tial flow are derived as the fundamental equations of the
new method, employing the gravitational vector g, instead
of gravity disturbance δg or gravity anomaly �g, as the
unknown, which frees the new method from the perturbation
theory. Then, applying theSIMPLEalgorithm to the potential
flow problem, one can obtain a Laplacian velocity field, i.e.,
the equivalent solution of the gravitational vector field. As
illustrated in Fig. 14,when solving the potential flowproblem
with the SIMPLE algorithm, the estimated solution ĝ is able
to get out of the hyperball (perturbation theory valid region)
to approach the optimal solution g̃⊥, for the CBVP cases,
i.e.,

∣∣ g̃⊥ − g0
∣∣ > r0. For the proof of the Laplacian property

of the potential flow velocity field, refer to “Appendix B”.
From the technical point of view, two factors are thought

to be critical. First, the numerical scheme (i.e., the CFD
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Fig. 12 Scalar gravitation of the
comet 67P. In a to d, the colored
surface is the distribution of the
scalar velocity of the potential
flow which is equivalent to the
scalar gravitation on the surface
of the comet 67P. In this study,
the scalar gravitation of the
comet surface is obtained with
the Newton integration,
assuming the comet has a
homogeneous density of 533.0
kg/m3

Fig. 13 Histograms of a the
gravitational field magnitude, b
the absolute magnitude error, c
the relative magnitude error and
d the directional difference
between the CFD solution and
the Newton integration. Red
lines mark their mean/RMS
values. For the mathematical
expressions of the four
indicators, refer to Eqs.
(32)–(34)
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Fig. 14 The convergence
process of an estimated
gravitational field starting from
the reference gravitational field
to an optimal solution. The grey
disk corresponds to a hyperball
whose inner points represent the
gravitational fields that can be
solved only with the
perturbation theory. By contrast,
the new method of this study is
able to break the limit of
perturbation methods and solves
more complex gravitational
fields, i.e., those outside the
hyperball

techniques) is adopted, which facilitates not only the defi-
nition of the computational domain (i.e., the exterior space
of a complex shaped mass body) but also the assignment
of the boundary value. Additionally, as pointed out in Sect.
1, numerical methods are better at solving highly nonlin-
ear problems compared to analytical methods, and, in this
study, the CFD techniques demonstrate a powerful capabil-
ity in solving the CBVPs. Second, an intuitive figure of the
gravitational field is constructed with the concepts of the
potential flow. This is realized by building the conceptual
equivalence between the potential flow and the gravitational
field. With this idea, the abstract gravitational field can be
better understood and the theories (e.g., Bernoulli’s theo-
rem) and tools (e.g., the SIMPLE algorithm) from the CFD
community can be introduced for solving the CBVPs of the
gravitational research field. It is worth mentioning that the
relevant theories and tools have cost great efforts of the CFD
research community and it is fortunate to introduce them into
geodesy. The discovery of the link between the two seemly
unrelated research fields may be one important contribution
of this study.

4.2 Potential applications in asteroid exploration

It is the first time to derive a fully convergent gravitational
field for the complex-shaped comet 67P, in terms of a bound-
ary value problem solution, which is different from those
integration schemes in either spatial or spectral domains (e.g.,
Andert et al. 2015; Reimond and Baur 2016; Fukushima
2017, 2018;Hirt andKuhn 2018;Wu et al. 2019, etc.). In the-
ory, the newCBVP solvingmethod can be applied to asteroid
explorationmissions, in which the target mass bodies usually
have irregular shapes.

Asteroid exploration is an activity that represents the
state of the art of deep space technology. In the past two
decades, several advanced spacecraft have been launched
to investigate small celestial bodies (including asteroids and
comets). For example, European Space Agency (ESA) and
Japan Aerospace Exploration Agency (JAXA) have success-
fully performed exploration missions for a comet (target:
the comet 67P; spacecraft: Rosetta; project duration: 2004–
2016) and an asteroid (target: the asteroid Itokawa; space-
craft: Hayabusa; project duration: 2003–2010), respectively.
Currently, two asteroid exploration programs are ongoing:
Hayabusa2 from JAXA (target: the asteroid Ryugu; project
duration: 2014–2020) andOSIRIS-REx fromNational Aero-
nautics and Space Administration (NASA) (target: the aster-
oid Bennu; project duration: 2016–2023). The small celestial
bodies have irregular shapes and generate gravitational fields
that are weak and complex. A gravitational field model with
a high precision plays an important role in an asteroid explo-
ration mission, e.g., it can be used to determine hovering
orbits or landing tracks of a probe. However, the geometri-
cal information of the asteroid to be investigated is usually
unknown until a spacecraft reaches it, making it a chal-
lenge to model a timely gravitational field during an asteroid
exploration. Hopefully, the new method of this study has the
potential to be applied in future asteroid exploration mis-
sions, for its two advantages:

(1) High computational efficiency
For the sake of explanation, the spherical harmonic (SH)

inversion method is taken for a comparison analysis. The
SH function has an analytical form and is computationally
efficient when modeling gravitational fields of sphere-like
bodies. However, when dealing with the gravitational field
of a complex-shaped asteroid (i.e., solving the CBVP), the
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new method of this study, although as a numerical solving
scheme, is superior to the SH inversion method in compu-
tational efficiency. This can be understood in the following
way.

Taking the comet 67P for illustration, imagine that its two-
lobe shaped mass body (see Fig. 1f for a schematic profile)
can be transformed continuously from a ball (Fig. 1c). If the
gravitational fields shown in Fig. 1c–f are applied with the
SH inversion method, the truncation orders of the SH har-
monics are expected to increase, because of the increasing
complexity of the mass shape. Correspondingly, the calcula-
tion amounts increase as well. For example, the gravitational
field of an inhomogeneous ball (Fig. 1c) only has a few num-
ber of harmonic components; however, for the comet 67P
(Fig. 1f), it approaches infinity for the truncation order as
well as the calculation amount, because the SH function is
divergent. The SH series divergence implies that the comet
67P has a gravitational field whose complexity is already
beyond the solving power of the SH inversion method. By
contrast, our new method is not only able to model the grav-
itational field of the complex-shaped comet 67P, it also takes
limited time, specifically, ∼10 min on a PC with the config-
uration of Windows 10 OS, Intel Core i7 and 64 GB RAM.
In this sense, the new method has a high computational effi-
ciency in solving the CBVPs and thus has a good application
potential for asteroid exploration.

(2) Intuitive geometrical meaning
This study provides an intuitive perspective to view the

gravitational field. With the conceptual mapping listed in
Table 1, the abstract gravitational field can be visualized as
a stationary potential flow, e.g., in terms of vectors or plumb
lines (see Figs. 9, 10, 11). These geometrical elements are
complementary to the equipotential surfaces as widely used
in the Laplace equation based methods. The intuitive visu-
alization of the gravitational field is expected to facilitate
some tasks involved in an asteroid exploration mission, such
as the design of a probe’s orbits around the body or landing
tracks, the determination of an asteroid height system, the
gravitational field modeling for multi-bodies, etc. The three
potential applications are briefly outlined below.

• Design of a probe’s orbits or landing tracks
Designing precise orbits or landing tracks of a probe is
critical for the activities in an asteroid exploration mis-
sion, such as surface mapping, geometrical modeling
and rock sampling, etc. The new method deals with the
gravitational field modeling problem in spatial domain,
thereby enabling a visual devise of a probe’s orbits or
landing tracks. It is more convenient to design orbits or
tracks in the spatial domain than in the spectral domain,
due to two reasons. First, the convergence and accuracy
of a gravitational field solution can be assessed directly
in the spatial domain, which is usually hard for spectral-

domainmethods (e.g., the SH inversionmethod). Second,
the spatial gravitational field solution, in either vectorial
or plumb-line form, enables a convenient analysis of the
probe’s force state at transient positions, followed by the
determination of its moving paths.

• Determination of an asteroid height system
Determining a precise asteroid height system is expected
to benefit exploration activities. In general, a height sys-
tem consists of two key factors: (1) a reference surface
(i.e., the zero-level equipotential surface) and (2) height
continuation paths. For conventional height systems, the
reference surface usually adopts a geoid, which is mostly
beneath the body surface (e.g., the Earth), and the rele-
vant continuation algorithms are of upward type.
The geoid determination problem for a spheroid mass
body (e.g., the Earth) is already rather challenging in
physical geodesy, and building height systems for irreg-
ularly shaped asteroids should be even more difficult. We
believe that the new method provides a possible solv-
ing scheme, for example, to take the outer sphere (see
Fig. 5) and the plumb lines (see Fig. 11) as the reference
(equipotential) surface and the downward continuation
paths, respectively. However, the realization of this idea
needs far more analysis.

• Gravitational field modeling for multi-bodies
Prior to this study,modeling the gravitational field caused
by one complex-shaped mass body (i.e., the single-body
CBVP) is already tricky enough, not to speak of the
multi-body CBVP. In theory, the multi-body CBVP can
be solved with our new method, because, from the per-
spective of the potential flow, the single- and multi-body
CBVPs are fundamentally the same except for the num-
ber of outlets, each representing one mass body surface.
Solving the multi-body CBVP may contribute to deep-
space exploration missions in the future.

5 Conclusion and outlook

A new gravitational field modeling method is proposed in
this research, elaborated in both theoretical and application
aspects:

• A new mathematical formulation for modeling grav-
itational fields is derived from potential flow theory,
including the governing equations (30) and the bound-
ary condition (31). The new fundamental equation set
is equivalent to the Laplace equation when expressing a
gravitational field, both referring to harmonic potential
fields or Laplacian vector fields. The Laplacian property
of the potential flow’s velocity field is mathematically
proved. The new formulation is analytical, and the way
of solving the BVP is numerical. It has the great advan-
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tage of circumventing perturbation theory which is the
theoretical basis of conventional methods.

• CFD techniques are introduced as numerical tools to
solve the new fundamental equation set, and aCFDwork-
flow is devised for the gravitational field modeling. To
validate the new method, the challenging gravitational
field of comet 67P is taken as example. It is the first time
to solve a gravitational field with the complexity level of
comet 67P and without any divergence problem. A CFD
solution is derived based on our method, and a direct
integration of Newton’s formula is generated as a bench-
mark. Their comparison shows a magnitude difference at
the level of a few percent and the directional difference
RMS value of 0.78◦.

It should be emphasized that a conceptual bridge (i.e.,
a conceptual mapping) between the gravitational field and
the potential flow is proposed in this study, and the proof-
of-concept, from both theory and application aspects, is
provided. To realize a relatively quick proof-of-concept, the
commercial (academic) version of theCFD softwareANSYS
FLUENT is used in this study. However, it limits the mesh
number up to 512000, almost reached in the case study.
Hence, the gravitational field of the comet 67P derived in
this study still can be improved in terms of accuracy. To
break the mesh number limit, one promising scheme is to
develop an open-source code with the free CFD software
OpenFOAM. In that way, the new method can be studied
in flexible ways and on various aspects, such as precision
improvement, spatial resolution optimization, and computa-
tional efficiency enhancement. In addition, the integration of
measurements from other boundaries (e.g., the observations
from satellite gravimetry) may also be a necessary improve-
ment for the new method.

In summary, this study derives a new CBVP solving
method, and, from both theoretical and practical points of
view, it has a good performance on solving the CBVPs, over-
coming the divergence problem of conventional approaches.
Moreover, a large number of follow-on studies can be defined
for the perfection of the newmethod and we have a confident
outlook on its future applications.
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Appendix A

Proof of the regularity condition at infinity

Conventional gravitational field modeling methods are usu-
ally formulated in terms of an exterior boundary value
problem. The Laplace equation is solved in a perturbative
approach, in which the unknown disturbing potential satis-
fies twoboundary conditions: (1) the fundamental equationof
physical geodesy on an approximative surface (e.g., a geoid
or a mass body surface, respectively, involved in the Stokes
and theMolodensky solutions) and (2) the regularity at infin-
ity. By contrast, the CFDmethod of this study treats the exte-
rior space of a mass body as the interior region of a pipe and
manipulates the potential flow problem with the CFD tech-
niques. In the potential flow problem, there are two bound-
aries, i.e., the body surface and the outer sphere (see Fig. 5),
both subject to the boundary condition defined in Eq. (31).

Comparing conventional methods with the one of this
study, a common point is that the near-body surface is taken
as one boundary, while the distant boundaries of them are dif-
ferent. For conventional methods, the distant boundary refers
to an infinite surface on which the gravitational potential is
zero, but for the new method, the distant boundary is the
outer sphere with the boundary value of Eq. (31). In fact, as
the radius of the outer sphere approaches infinity, the scalar
gravitation g as well as the boundary value − 1

2g
2 on it tends

to be zero, indicating that the gravitational field solved with
the new method satisfies the regularity condition at infin-
ity as well. However, it should be noticed that the variables
involved in the two regularity conditions are different (i.e.,
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the gravitational potential and the scalar gravitation) and they
govern different aspects of a gravitational field.

From a theoretical point of view, the new method should
adopt an outer sphere with an infinitely large radius, which,
however, is impractical because of the unrealistic amount
of meshes as well as computation. Instead, an outer sphere
with a limited radius is constructed in the new method, with
the gravitation thereon calculated with Newton’s formula,
GM
r2

, which is actually the zero-degree radial gravitation of a
gravitational field:

g (r , θ, λ) = GM

r2
+

∞∑
n=2

n + 1

R

(
R

r

)n+2

Vn (θ, λ) (A.1)

where V (r , θ, λ) and g (r , θ, λ) denote the gravitational
potential and the radial gravitation, respectively, defined at
points in spherical coordinates (r , θ, λ), and R is the radius
of a reference sphere, which is taken to be the average size
of the mass body in this study. Note that the first-degree har-
monic component (i.e., n = 1) does not exist in Eq. (A.1)
because the origin of the coordinate system is already placed
at the center of mass.

In this study, the setup of the outer sphere as well as its
boundary value is essentially a substitute of the regularity
condition at infinity, although an approximation is involved,
i.e., the sumof the high-degree gravitational components (see
Eq. (A.1)) is omitted as if it is an error. The approximation
effect can be suppressed with a large enough radius of the
outer sphere, because, as the radius increases, the high-degree
components decrease faster than the zero-degree one, each

with a decay depending on the factor
( R
r

)n+2
.

As can be seen from the above analysis, the radius of
the outer sphere can be neither too large nor too small, on
account of the balance between the computational amount
and the approximation influence. Therefore, determining a
proper radius for the outer sphere is critical, and in this study
we set it to be ten times the average size of the mass body
(i.e., r = 10R; see Fig. 7) for the following two reasons.

First, from the theoretical side, we draw on Saint-Venant’s
principle to determine the minimum value of the radius. In
elastic theory, the Saint-Venant principle states that high-
ordermoments ofmechanical load (i.e.,momentswith orders
higher than torque) decay so fast that they never need to
be considered for regions far from the short boundary. The
Saint-Venant principle can be applied to gravitational prob-
lems in theory, because a gravitational field is equivalent to
a potential flow, and potential fluids can be regarded as an
extreme case of elastic material (i.e., it is incompressible and
frictionless). In terms of Saint-Venant’s principle, the inho-
mogeneous effect of a gravitational field only concentrates
near a mass body, and the distant observations are like those
generated by a mass point. Empirically, in elastic theory, one
often takes for the large distance three times the average size

of the mechanical load. Therefore, for gravitational prob-
lems, the radius of the outer sphere should be at least three
times the average size of the mass body.

Second, from the practical side, tests have been conducted
for validating the chosen radius. We take the radius of the
outer sphere as ten times the average size of the mass body
and calculate two sets of boundary values. One is inhomoge-
neous, based on the gravitational integration, and the other is
homogeneous, calculated with Newton’s formula. The two
sets of boundary values show a good consistency and only
differ from the third valid digit, which is thought to be accept-
able for the concept-of-proof goal.

In summary, it is a robust strategy to set the radius of the
outer sphere to be ten times the average size of the mass
body. However, it is also worth noticing that a very large
outer sphere radius may cause the testing indices (33) and
(34) to become artificially small, due to the inclusion of sim-
ilar gravitational vectors in distant regions. Therefore, the
determination of a more rigorous radius for the outer sphere
needs further investigations in the future.

Appendix B

Proof of the Laplacian property of the potential-flow
velocity field

In Sect. 2.2 of the main text, imposing the constraints listed
in Table 2 on Newtonian flow yields the fundamental equa-
tions of the potential flow, and the Laplacian property (i.e.,
source-free and curl-free) of the potential flow velocity field
is analyzed from the physical perspective. In this part, wewill
give a rigorous mathematical proof of the statement that the
velocity solution of the potential-flow fundamental equation,
solved with the SIMPLE algorithm, is Laplacian. Mathemat-
ically, one needs to prove the following relation:

⎧⎨
⎩

∇ · v = 0
v · ∇v = −∇ p
p = − 1

2v
2

⇒
{ ∇ · v = 0

∇ × v = 0
(B.1)

in which the former equation set contains the fundamental
equations of the potential flow, to be solvedwith the SIMPLE
algorithm in this study, and the latter one defines Laplacian
vector fields.

Proof First of all, it is necessary tomake clear the proof logic.
A regular way of proving relation (B.1) is to prove the set

inclusion relation, SPF ⊂ SL, where SPF is the potential-flow
solution set and SL is the Laplacian vector set, respectively,
corresponding to the two equation sets in relation (B.1). As
will be seen later, the set relation, SPF ⊂ SL, is not satisfied,
but the opposite one, SL ⊂ SPF, holds. Hence, if relation
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Fig. 15 Illustration of the Laplacian property (i.e., source-free and
curl-free) of the potential-flow velocity field derived with the SIMPLE
algorithm

(B.1) is correct, additional constraints should be considered,
and consequently the following three facts need to be proved.

1) The research objects to be solved (i.e., gravitational vector
fields) exist and be Laplacian;

2) The Laplacian vector space belongs to the potential-flow
solution space, i.e., SL ⊂ SPF;

3) The potential flow solution derived with the SIMPLE
algorithm is unique.

The proof logic is explained in Fig. 15, in which if the
above three facts are true, the unique potential-flow velocity
solution, derived with the SIMPLE algorithm, has to be the
gravitational vector solution which is Laplacian.

The fact of the first item is evident because the research
objects of this study are existing gravitational fields and
they can be projected into the Laplacian vector space. The
statement of the third item is true, on account of the well-
posedness of the SIMPLE algorithm, as well as the fact that
no additional artificial constraints are introduced, when solv-
ing the potential flow problem.

As for the second item, the set inclusion relation, SL ⊂
SPF, holds because of the identity (Schey 1973)

v · ∇v − ∇
(
1

2
v2

)
≡ −v × (∇ × v) = 0 (B.2)

to which the curl-free property of Laplacian vector fields,
∇ × v = 0, is applied. Note that the derived identity, v ·
∇v = ∇ ( 1

2v
2
)
, is a combination of the momentum equation,

v · ∇v = −∇ p, and the boundary condition, p = − 1
2v

2, of
the potential flow.

Up to this point, the three facts have been proved, and
hence, the Laplacian property of the potential flow’s vector
field solved with the SIMPLE algorithm has been proved as
well.

Before ending this appendix, an explicit form of the
potential-flow solution space, SPF, is given below by solv-
ing the fundamental equation set of the potential flow (i.e.,
the first equation set in relation (B.1)). To achieve this goal,
one needs to solve the following equation

v × (∇ × v) = 0 (B.3)

The above equation is correct because of Eq. (B.2), to which
the identity, v·∇v = ∇ ( 1

2v
2
)
, of the potential flow is applied.

Then, according to the calculation rule of cross products, Eq.
(B.3) can be rewritten as

|v| |∇ × v| sin θ = 0 (B.4)

where θ is the angle between the velocity v and its curl∇ × v.
Solving Eq. (B.4) yields

S = S1 ∪ S2 ∪ S3 (B.5)

where S1 = {v| v = 0}, S2 = {v| ∇ × v = 0} and S3 =
{v| v ‖ ∇ × v}. Redividing the above solution space and tak-
ing into account the continuity equation, SC = { v| ∇·v = 0},
generates the potential-flow solution space as follows:

SPF = S1PF ∪ S2PF = [SC ∩ (S1 ∪ S2)] ∪ [SC ∩ S3] (B.6)

where S1PF= { v| ∇·v = 0 ; ∇×v = 0} and S2PF= { v| ∇·v =
0 ; v ‖ ∇ × v}. Figure 15 shows the potential-flow solution
space, SPF, and its relation to other solution spaces. It is
worth noticing that one subsolution space of the potential
flow is actually the Laplacian vector space, i.e., S1PF = SL,
so that SL ⊂ SPF, which is consistent to the second fact
aforementioned. ��
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