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Abstract
The gravity field maps of the satellite gravimetry missions Gravity Recovery and Climate Experiment (GRACE ) and GRACE
Follow-On are derived by means of precise orbit determination. The key observation is the biased inter-satellite range, which
is measured primarily by a K-Band Ranging system (KBR) in GRACE and GRACE Follow-On. The GRACE Follow-On
satellites are additionally equipped with a Laser Ranging Interferometer (LRI), which provides measurements with lower
noise compared to the KBR. The biased range of KBR and LRI needs to be converted for gravity field recovery into an
instantaneous range, i.e. the biased Euclidean distance between the satellites’ center-of-mass at the same time. One contributor
to the difference between measured and instantaneous range arises due to the nonzero travel time of electro-magnetic waves
between the spacecraft. We revisit the calculation of the light time correction (LTC) from first principles considering general
relativistic effects and state-of-the-art models of Earth’s potential field. The novel analytical expressions for the LTC of KBR
and LRI can circumvent numerical limitations of the classical approach. The dependency of the LTC on geopotential models
and on the parameterization is studied, and afterwards the results are compared against the LTC provided in the official
datasets of GRACE and GRACE Follow-On. It is shown that the new approach has a significantly lower noise, well below
the instrument noise of current instruments, especially relevant for the LRI, and even if used with kinematic orbit products.
This allows calculating the LTC accurate enough even for the next generation of gravimetric missions.

Keywords GRACE follow-on · Light time correction · General relativity · Laser interferomery · K-band ranging

1 Introduction

The twin GRACE satellites observed Earth’s gravity field
and, more importantly, the monthly time variations of it
from the launch in 2002 until their reentry in 2017. These
variations reflect the mass transport on large scale in and
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on Earth. The measurement principle is based on low-low
satellite-satellite tracking (LL-SST), i.e. measuring distance
variations between the orbiters, which are separated on the
same polar orbit by approx. 200km [29]. The inter-satellite
range variations were measured by the K-Band Ranging sys-
tem (KBR) with a noise level of approx. 1µm/

√
Hz at a

Fourier frequency of 0.1Hz, and with elevated noise towards
lower frequencies.

Due to the enormous success of GRACE, a successor mis-
sion called GRACE Follow-On (GFO) was launched onMay
22, 2018. Its payload, an evolved version of the original
GRACE, is comprised of, among others, GNSS receivers
for precise orbit determination, accelerometers for the mea-
surement of non-gravitational accelerations, star cameras
and inertial measurement units for attitude determination
and the aforementioned KBR system [14]. In addition,
GRACE Follow-On hosts the novel Laser Ranging Inter-
formeter (LRI) which is a technology demonstrator, and
it is the first inter-satellite laser interferometer in space.
It has demonstrated an excellent performance and reli-
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ability of all subsystems and exhibits a noise level of
approx. 1nanometer/

√
Hz at a Fourier frequency of 0.1Hz,

well below the requirements [1]. The novel LRI and conven-
tional KBR are operated in parallel and, since both should
measure the same Euclidean distance variations after some
post-processing corrections that are described below, inter-
comparisons and cross-calibrations can be performed in
order to characterize the instruments and their behavior.

Both instruments rely on the transmission of electro-
magnetic radiation, back and forth, between the satellites.
The LRI operates at an optical frequency of ≈281THz
in a so-called active transponder configuration [25], while
the KBR, often also called the microwave ranging instru-
ment (MWI), uses two microwave frequencies, one in the
K and one in the Ka band, in the so-called dual one-
way ranging (DOWR) scheme [12,30]. Both instruments
rely on tracking the phase of a beatnote signal at low
radio frequencies (≤ 18MHz). The tracked phase is—up
to an unknown offset—proportional to the travel time of the
radiation between the orbiters, thus, proportional to the inter-
satellite distance variations from an initial epochwhere phase
tracking started. When the phase measurements are rescaled
to a displacement, they are usually referred to as biased range
observations in the official data products.

The gravity field recovery algorithms usually are based on
the corrected (i.e. instantaneous Euclidean) biased range or
on its time derivative called range rate [18]. The former one
means the Euclidean biased distance between both satellites’
center-of-mass at the same epoch, which differs from the
measured biased range due to effects from the finite speed of
light anddue to the fact that themeasurements are not referred
to the center-of-mass. The difference between biased and cor-
rected instantaneous range is usually expressed as the sum of
three terms: the light-time correction, the ionospheric correc-
tion, and the antenna phase center correction—often called
tilt-to-length coupling in the context of laser interferometry.

The LRI was designed to have a minimal tilt-to-length
coupling, which has been confirmed by in-flight measure-
ments to be below 150 µm/rad [33]. The coupling is signifi-
cantly lower than for theKBR [35], where the reference point
for the range measurement is offset by approx. 1.4m from
the center-of-mass. The ionospheric effect is also insignifi-
cant in the case of the LRI due to the shorter wavelength of
the optical radiation. The ionospheric correction for the KBR
is briefly addressed in this paper, mainly to show that there
is a cross-coupling of ionospheric effect and light time cor-
rection (LTC), but it is highly suppressed to a level below
picometers in the employed two-way measurements. The
main focus of this paper lies on the LTC, which is relevant
for KBR and LRI and which was mentioned first for the
GRACEsatellites in [30]. Later,Kim [12] described amethod
to analytically calculate the light time correction based on
absolute spacecraft velocities, i.e. only the special relativis-

tic contribution. Turyshev et al. [32] established an extensive
description of general relativistic observables in GRACE-
like missions, which includes an analytical model for the
light time correction, among others. However, in our opin-
ion, it is not straightforward to apply the formalism to actual
flight data, because the relevant LTC expressions are derived
under the assumption of nearly-matched Keplerian orbits for
the satellites and approximations are used to derive closed-
form expressions for the LTC. This enables the authors to
understand and discuss the individual terms, but is also a
restriction with regard to generality.

Thus, we derive the light time correction from first prin-
ciples, and stay close to the data products and processing
strategy in gravimetricmission, such that the results are easily
applicable. The potential of Earth’s gravity field is expressed
in terms of Stokes coefficients of a spherical harmonic (SH)
expansion and the equations are formulated with quantities
available from the official public data of the missions. In the
following Sect. 2, the equations of motion are introduced in
the general relativistic context, which are needed to describe
the propagation of electro-magnetic waves. The propaga-
tion time of light between satellites is derived and split into
the contributions from relativity (Sect. 3) and atmosphere
(Sect. 4). However, actual calculations require a solution of
an implicit equation (Sect. 5), which can be solved iteratively
or by means of an analytical approximation. The analyti-
cal approach offers some advantages, since it allows us to
replace some orbit product quantities that drive the numer-
ical precision with more precise ranging observations. The
analytical solution is combined in Sect. 6 into the dual-way
light time corrections for KBR and in Sect. 7 into the round-
trip LTC for LRI. Section 8 addresses the sensitivity of the
ranging instruments and sketches a potential goal for the pre-
cision of the analytical equations and background models for
the LTC. In the subsequent section 9, the analytical expres-
sions for the one-way LTC are verified against numerical
results and a parameter study is performed regarding back-
ground model accuracy and degree of approximations. We
compare our results for the LTC against the results from offi-
cial datasets for GRACE andGRACE Follow-On in Sect. 10,
while Sect. 11 addresses further potential improvements in
the light time correction calculation.

2 Equations of motion in general relativity

In order to derive a precise light time correction, the travel
time of light between satellites is needed in a general rel-
ativistic context. For this, it is convenient to describe the
light or microwaves in terms of mass-less particles, the pho-
tons, which move on geodesics according to the equations of
motion in general relativity. We denote the coordinates of an
object in the Geocentric Celestial Reference System (GCRS)
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as:

xα = (c0 · t, x, y, z) = (c0 · t, r) =
(
x0, x1, x2, x3

)�
(1)

where the common four-vector notation from relativity is
used, and c0 is the proper speed of light for vacuum in a local
Lorentz frame with a numerical value of 299 792 458 m/s, r
is the three dimensional spatial vector.

We employ the sign convention γαβ = diag{−1,+1,+1,
+1} for the Minkowski metric as used, for instance, by
Kopeikin et al. [13]. The Greek indices such as α and β

range from 0 to 3, while Latin letters like m and n denote
spatial components and range from 1..3. cn is the coordinate
speed of light.

The metric tensor gαβ of the Earth in the GCRS is approx-
imated by a Post-Newtonian expansion as [26] and [32]:

g00 = γ00 + 2W

c20
− 2W 2

c40
+ O

(
c−6
0

)

g0m = gm0 = −4Vm

c30
+ O

(
c−5
0

)

gmm = γmm + 2W

c20
+ O

(
c−4
0

)
(2)

with

W = We +
∑
i

Wcb,i (3)

where We is the classical Newtonian potential due to the
mass distribution of the Earth. Moreover, W contains a sum
of potentials Wcb,i giving rise to the direct tidal acceleration
towards other celestial bodies, in particular the Sun and the
Moon. The vector potential V in Eq. (2) accounts for Earth’s
spin moment with Vm denoting the mth component of V.

We describe the potential We as the sum of a central term
WPM = GMe/r and of higher moments of the gravity field
WHM, i.e.

We = WPM +WHM = WPM +WG +Wtidal +Wnon-tidal, (4)

wherebyWHM is formed by the higher moment of static mass
distribution potential WG , by the potential Wtidal describ-
ing the distortion of the mass distribution due celestial
bodies such as Moon and Sun, and by the non-tidal poten-
tial Wnon-tidal describing small variations in the atmosphere,
oceans, hydrology, ice and solid earth (AOHIS). These non-
tidal variations contain highly interesting information for
Earth sciences and the measurement of them is the main
objective of GRACE-like missions.

The potentials describing higher moments of the gravity
field are usually expressed in terms of a SH expansion [9]:

WHM(r ,Θ, λ) = GMe

Re

∞∑
l=1

(
Re

r

)(l+1) l∑
k=0

(
Clk cos(kλ)

+Slk sin(kλ)
)
Plk(cosΘ) (5)

where G is the gravitational constant, Me is the mass of the
Earth, Re is Earth’s average radius, (r ,Θ, λ) are the spher-
ical position coordinates, Plk are the normalized Legendre
functions of the second kind, l and k are the degree and order
of the series expansion, and Clk and Slk are the normalized
dimensionless Stokes coefficients. The Stokes coefficients of
the static, tidal and non-tidal models given in Table 1 can be
summed up in order to yield the total field WHM.

The direct acceleration towards a celestial body, which
is often called direct tidal acceleration, has in the Earth-
centered frame the potential Wcb,i [16]:

Wcb,i = GMcb,i

Rcb,i

∞∑
l=2

(
r

Rcb,i

)l

Pl(cos ςi ) (6)

where G is the gravitational constant, Mcb,i is the mass the
of i-th celestial body, Rcb,i is the distance between Earth and
celestial body, r is the distance between Earth center and the
satellite, Pl are the normalizedLegendre functions of the first
kind, ςi is the angle between Rcb,i and the satellite position
vector rs , and l is the degree of the series expansion. In this
paper we consider only the Sun and the Moon, since they are
dominating the direct tidal acceleration.

The vector potential V in Eq. (2) is usually approximated
as [32]:

V(t, r) ≈ GMe

2 · r3 · S × r + O
(
x−4, c−2

)
(7)

whereS is Earth’s spinmoment, or its angularmomentumper
unit of mass. It can be approximated by the angular momen-
tum of a homogeneous sphere:

S ≈ 2

5
· R2

e · ωe (8)

where ωe is Earth’s angular velocity vector.
The equations of motions of a point particle, e.g. satellites

or light read in the context of General Relativity (GR) as [13]:

d2xk

dt2
= −Γ k

αβ · dx
α

dt
· dx

β

dt
+ 1

c0
Γ 0

αβ · dx
α

dt
· dx

β

dt
· dx

k

dt
with k = 1..3,

(9)

where t is the coordinate time, and Γ k
αβ are the Christoffel

symbols, which depend on derivatives of the metric tensor
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Table 1 List of background
models used in calculations

Potential Abbreviation Parameters or model

Static gravity field STG GGM05s [22]

Solid earth tides SET IERS 2010 [19]

Ocean tides OT EOT11a [23]

Pole tides PT IERS 2010 [19]

Ocean pole tides PT Desai 2003 [19]

Atmospheric tides (S1, S2) AT Bode-Biancale 2003 [4]

Atmosphere and Ocean Dealiasing AOD AOD1B RL06 [5]

Celestial Body SunMoon DE421 [7]

gαβ . It is straightforward to numerically integrate these dif-
ferential equations in order to obtain a trajectory for a given
set of initial conditions. For a photon, the trajectory appears
bentwith approximately twice the classicalNewtonian accel-
eration towards Earth’s center, consistent with one of the very
early results of GR [6,27]. The selection of the initial veloc-
ity of a photon requires the coordinate speed of light, which
depends on the metric tensor and on the propagation direc-
tion. It can be derived from the following ansatz for the four
velocity:

dxα

dt
= (c0,d0.cn)T (10)

where cn is the coordinate speed of light in a vacuum in
the GCRS, d0 is the normalized propagation direction of the
photon and t is the coordinate time of the GCRS.

The interval ds2 of a world line or trajectory of a massless
particle vanishes [13]:

ds2 = gαβ(t, r) · ∂xα · ∂xβ = 0. (11)

After dividing by dt2 and plugging Eq. (2) into Eq. (11), one
obtains a quadratic equation for cn

0 = gαβ(t, r) · dxα/dt · dxβ/dt

= c20 · g00 + G.d0 · cn · c0 + c2n · gmm,
(12)

where G = 2(g01, g02, g03)T = −8V/c30 and gmm = g11 =
g22 = g33. The post-Newtonian effect is very small, such that
g00 and gmm are close to unity. The quadratic equation can
be solved and the solution with positive propagation velocity
is taken for the coordinate speed of light:

cn = c0 ·
√

− g00
gmm

+ (G.d0)2

4 · (gmm)2
− c0 · G.d0

2 · (gmm)

=
√√√√c60 − 2 · c20 · W 2 + 4 · W 3 + 16 · (V.d0)2(

c20 + 2 · W )2

+ 4 · V.d0
c20 + 2 · W . (13)

The infinitesimal propagation timedt of a photon is related
to the coordinate pathlength ds through

dt = n

cn
·ds = 1 + 2 · W/c20 − 4 · V.d0/c30

c0
·n·ds+O

(
c−5
0

)
,

(14)

where n denotes the refractive index at the location of the
photon.

For a one-way rangingmeasurement, the propagation time
Δt of a photon traveling along path P can be written as

Δt =
∫

P

n

cn
(
t, rph

)ds ≈
∫

P

1

cn
(
t, rph

)ds
︸ ︷︷ ︸

Δtrel

+ 1

c0

∫

P
(n − 1) ds

︸ ︷︷ ︸
Δtmedia

,

(15)

where rph is the position of the photon on the path P and
t is the coordinate time. Since cn is close to c0 and since
the effect of the refractive index due to the ionospheric and
neutral atmosphere is small, such that (n−1) is close to zero,
it is possible to approximate the integral as the sum of the
relativistic effect (Δtrel) and a contribution from the refractive
index of the media (Δtmedia). Both effects are analyzed in
more detail in the next two subsections.

3 Light time correction1trel due to relativity

The light path P between satellites in a gravimetric mission
can be assumed as a straight line in the three-dimensional
coordinate system, which can be parameterized by a param-
eter λ ∈ [0, 1]:

rph(λ) = re + (rr − re) · λ (16)

where rr is the three-dimensional position of the photon
reception and re is the three-dimensional position of the pho-
ton emission.

This neglects the relativistic light bending, which arises
from an apparent acceleration ac of the photons towards
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the geocenter with twice the Newtonian acceleration [13],
i.e. ac = 2GMe/r2. The displacement of a photon in radial
direction w.r.t. a straight line is of the order of ac · (Δt)2/2 ≈
4 µm, where a propagation time of Δt = 200 km/c0 ≈
0.66 msec and a satellite position of r = 6731 km was
assumed. Temporal variations of the displacement due to
higher moments of the gravity field are much smaller. In
the domain of phasefronts, the light-bending yields a negli-
gible static phasefront tilt of the order of 4 µm/200 km ≈
2 · 10−11rad.

Thus, one can anticipate that the light-time correction
derived from the bent light path will differ only insignifi-
cantly from a correction derived on the straight line. The
approximation is further justified in Sect. 9, where our sim-
plified analytical results are compared to results obtained via
numerically integrating Eq. (9) and thus, accounting for the
full GR effects.

Evaluating the propagation time Δtrel in Eq. (15) with the
photon path P yields:

Δtrel =
∫ 1

λ=0
c−1
n

(
t, rph

) ·
∣∣∣∣
drph
dλ

∣∣∣∣ dλ = |re − rr | ·
∫ 1

λ=0
c−1
n

(
t, rph

)
dλ

(17)

≈ |rr − re|
c0︸ ︷︷ ︸

ΔtSR

+ 2 · ΔtSR ·
∫ 1

λ=0

GMe

c20 · ∣∣rph(λ)
∣∣ dλ

︸ ︷︷ ︸
TPM

+ 2 · ΔtSR ·
∫ 1

λ=0

WHM
(
t(λ), rph(λ)

)

c20
dλ

︸ ︷︷ ︸
THM

+ ΔtSR ·
∫ 1

λ=0

−4 · V (
rph(λ)

)
.d0

c30
dλ

︸ ︷︷ ︸
TSM

, (18)

where terms with the order of c−4
0 and smaller were omitted

andwhere the normalizedpropagationdirectionof the photon
d0 was abbreviated by

d0 = rr − re
|rr − re| . (19)

In upper Eq. (18), the first term ΔtSR is the propagation
time from special relativity in flat space-time, the second
term TPM is the time delay due to Earth’s central field, the
third term THM is the time delay from higher moments of the
gravitational potential due to Earth’s mass distribution and
due to other celestial bodies, and the fourth term TSM is the
time delay due to Earth’s spin moment.

The term TPM is commonly called Shapiro time delay and
it has a closed analytical form [32]

TPM = 2 · GMe

c30
· ln

( |rr | + d0.rr
|re| + d0.re

)

= 2 · GMe

c30
· ln

( |rr | + |re| + |rr − re|
|rr | + |re| − |rr − re|

)
. (20)

The THM integral can be readily approximated using the
N -point trapezoidal rule,

T (N−1)
HM ≈ 2

c20
·
N−1∑
n=0

WHM
(
t̃n , rph (λn)

) + WHM
(
t̃n+1, rph

(
λn+1

))

2

· (
t̃n+1 − t̃n

)
(21)

= 2 · ΔtSR
c20 · N ·

⎛
⎝

N∑
n=1

WHM
(
t̃n , rph (λn)

)

+WHM
(
t̃N , rph (λN )

) + WHM
(
t̃0, rph (λ0)

)

2

)
(22)

with time t̃n = t(λ0) + ΔtSR · λn = t(λ0) + ΔtSR · n

N
, 0 ≤ n ≤ N ,

(23)

with (N − 1) being the number of segments in the uniform
grid sampling of the light path P . Finally, the gravito-
magnetic effect, the TSM term, can be approximated with
a two-point trapezoidal rule as

TSM ≈ −2GMeR2
e

5c30
· (ωe × re) .d0 ·

(
1

|re|3
+ 1

|rr |3
)

·ΔtSR.

(24)

Anticipating the result, it is beneficial to separate the
special relativistic contribution into a delay Δtinst from the
instantaneous inter-satellite range at the reception time tr and
into a special relativistic correction TSR, i.e.

ΔtSR = |rr − re|
c0

= |rB(tr) − rA(te)|
c0

= |rB(tr) − rA(tr)|
c0

+ TSR = Δtinst + TSR, (25)

where it was assumed without loss of generality that the light
is received by satellite B after being emitted by satellite A
at time te = tr − Δt . In summary, the light propagation time
Δtrel can be written as

Δtrel = Δtinst + T (26)

with the light-time correction T containing special and gen-
eral relativistic contributions

T = TSR + TGR = TSR + TPM + THM + TSM. (27)
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In order to compute all these terms, the emission position
and emission time of the photon is needed, which depend
on the light-time corrections. This yields an implicit light-
time equation, which is solved in Sect. 5, after discussing the
remaining correction for the atmosphere.

4 Light time correction1tmedia due to
atmosphere

At orbit heights below approx. 500km, such as the low Earth
orbits of the GRACE and GRACE Follow-On satellites, the
residual atmospheremay alter the speed of light due to refrac-
tion. A deviation of the refractive index n from unity arises
due to the neutral atmosphere and due to free electrons in the
ionosphere. The former effect is negligible for interferomet-
ric range measurements, i.e. for the time-delayΔtmedia, since
the fluctuations are estimated to be below 2 nm/

√
Hz/c0

for mHz frequencies, and with sinusoidal variations below
1nm/c0 amplitude at once and twice the orbital frequency
[17].

However, the propagation of electromagnetic waves needs
to bemodeled according to propagation laws in plasma due to
the charged particles in the ionosphere between 75..1000km
height. The main correction to the propagation time is the
first-order ionospheric delay, which is commonly expressed
as [10,19]

Δtmedia = 1

c0

∫

P
(n − 1) ds ≈ −40.3Hz2/m

c0 · f 2em
· TEC

1 e−/m2

= −40.3Hz2

f 2em
· 〈η〉
1 e−/m3 · ΔtSR, (28)

where fem is the frequency of the electromagnetic wave and
TEC is the total electron content on the photon path with
units of electrons per square-meter. The ionospheric delay
is actually an advancement, since the correction is always
negative, which is known from GNSS, where the code delay
is positive, while the phase delay is negative. Due to the fre-
quency dependence, it is possible to estimate variations of the
TEC with interferometric range measurements at two differ-
ent frequencies, but the absolute value of the TEC, and hence,
the absolute value of Δtmedia is not measurable, because the
ranging instruments can determine only a biased range.

However, in order to simulate the effect, the TEC can
be expressed as the product of the mean electron density
〈η〉 between the satellites and the geometrical inter-satellite
distance ΔtSR · c0. For satellites at a height of 400km, the
electron density can reach values of up to 〈η〉 = 1012 e−/m3

[11], which translate in worst-case to an absolute delay of
−13mm/c0 for a microwave frequency of f = 24.5GHz
andΔtSR ≈ 200 km/c0. The effect of such a non-measurable
absolute delay onto the instantaneous biased KBR range is

assessed through the LTC in Sect. 6. On this occasion, we
point out that ionospheric effects are negligible for laser
ranging with an optical frequency of 281 THz, since the con-
tributions in propagation time or biased range are reduced by
the factor

(
24.5GHz

281THz

)2

≈ 7.6 · 10−9 (29)

compared to the microwave K-band.

5 Solving the light-time equation

The propagation time Δt of electromagnetic waves or pho-
tons between the two satellites has been described so far as a
function of the photon path, or more precisely, as a function
of the emission time te, emission position re, reception time
tr and reception position rr.

We may assume that the satellite trajectories are known,
in particular, the satellite position rA/B , velocity ṙA/B and
acceleration r̈A/B at the time of reception tr. The acceleration
can be derived with a kinematic approach as time-derivative
or by dynamic means using force models. Without loss of
generality, we may assume that satellite B is the receiver
such that the reception position becomes rr = rB(tr) and
that satellite A is the emitter.

Using Taylor expansion, the satellite’s trajectory can be
approximated in the vicinity of tr as

rA(tr − ε) ≈ rA(tr) − ṙA(tr) · ε + r̈A(tr) · ε2/2, (30)

which allows us to write the position at the event of photon
emission as re = rA(tr − Δt). In order to solve for Δt one
has to solve the implicit equation

Δt(tr) = |rB(tr) − rA(tr − Δt)|
c0

+ TGR(re = rA(tr − Δt))

+ Δtmedia(re = rA(tr − Δt)) (31)

A solution can be obtained by iterative means using

Δt(n+1)(tr) = |rB (tr) − rA(tr − Δt(n))|
c0

+ TGR(re = rA(tr − Δt(n)))

+ Δtmedia(re = rA(tr − Δt(n))) (32)

with start value Δt (0) = Δtinst = |rA(tr) − rB(tr)|/c0. The
three summands on the right hand side have an amplitude
of approximately 200km/c0, 300µm/c0 and in case of the
K-band -13mm/c0, respectively.

The vectors in the first term have typically a magnitude
of 7 · 106 meters, which limits direct numerical solutions of
rA−rB in Eq. (32) to a precision of the order of nanometer/c0
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due to the ≈15 digits precision of 64-bit (double) floating-
point arithmetic. One way to overcome this limitation is to
derive an analytical closed-form solution forΔt . This can be
achieved by substituting Eq. (30) into Eq. (32), taking into
account the relation in Eq. (25), and evaluating the first few
iterations using an algebraic manipulation software. If terms
with negligible magnitude are omitted in the lengthy expres-
sion1, the solution for Δt (2) (and higher iteration numbers)
reads

Δt(tr) = Δtinst(tr) + TSR(tr) + TGR(tr) + Δtmedia(tr) (33)

TSR = Δtinst
d0.ṙA
c0

+ Δt2inst
d0.r̈A
2 · c0

+ Δt2inst · (−d0.r̈A · d0.ṙA − ṙA.r̈A/2) + Δtinst/2 · ((d0.ṙA)2 + |ṙA|2)
c20

+ Δtinst · d0.ṙA · |ṙA|2
c30

+ (TGR + Δtmedia)
d0.ṙA
c0

+ O
(
10−12 m/c0

)
(34)

TGR = TGR(re = rA(t − Δtinst − Δtinst · d0.ṙA/c0))

≈ TGR(re = rA(t − Δt)) (35)

where all quantities, also the one used for calculating d0 with
Eq. (19), are evaluated at the photon reception time tr. Thus,
the equation can be directly applied with orbit data from
GRACE or GRACE Follow-On.

The overall light-time correction T = TSR + TGR is
dominated by the first term in Eq. (34), which has an ampli-
tude of the order of −5m/c0 for Δtinst ≈ 200 km/c0 and
d0.ṙA ≈ −7.6 km/s. The derivation of T assumed so far
a single path of a photon from one satellite to the other,
i.e. an one-way ranging approach. However, the ranging
systems in GRACE and GRACE-Follow-On exchange light
in both directions and the light-time correction becomes a
linear combination of two (LRI) or four (MWI) one-way
corrections (T ). As will turn out subsequently, these linear
combinations have a significantly lower magnitude due to a
high common-mode rejection.

6 Light time correction in dual one-way
ranging (DOWR)

The dual-one way ranging concept is used by the microwave
ranging systems in GRACE and GRACE Follow-On [34],

1 We evaluated all individual terms using GRACE-FO orbit data and
omitted terms with a magnitude 10−12 m/c0. One can reproduce our
set of relevant terms by using the book-keeping parameter εn and
exploiting the replacement rules: c0 → c0 · ε−2, Δtinst → Δtinst · ε1,
(TGR + Δtmedia) → (TGR + Δtmedia) · ε4, ṙA.ṙA → (ṙA.ṙA) · ε−1.
Equations (33)–(35) is a series expansion up to order ε6 of Eq. (32) for
Δt (2). Using this expansion or threshold magnitude, the result does not
change for higher iteration numbers.

where the ionospheric effect needs to be removed using mea-
surements at two frequencies, namely at the K-band with
24.5GHz and at the Ka-band with 32.7GHz frequency. Each
satellite (A and B) records two phase measurements (ΦK

A ,
ΦKa

A , ΦK
B and ΦKa

B ) using heterodyne interferometry and
phase tracking,which represent the phase difference between
a local (LO) and a received (RX) electromagnetic field at
reception time tr, i.e. ([12], eq. 2.14)

Φ
K/Ka
B (tr) = Φ

K/Ka
Br = − (

ϕRX,B − ϕLO,B
)

= −
(
f̂ K/Ka
A · τUSOA (tr − Δt K/Ka

AeBr ) − f̂ K/Ka
B · τUSOB (tr)

)
(36)

≈ −
(
f̂ K/Ka
A · τUSOA (tr) − f̂ K/Ka

B · τUSOB (tr)
)

+ f̂ K/Ka
A · dτ

USO
A
dt

· Δt K/Ka
AeBr + const. (37)

= −
(
f̂ K/Ka
A · τUSOA (tr)− f̂ K/Ka

B · τUSOB (tr)
)

+ f K/Ka
A (tr) · Δt K/Ka

AeBr +const. (38)

Φ
K/Ka
A (tr) = Φ

K/Ka
Ar = + (

ϕRX,A − ϕLO,A
)

= +
(
f̂ K/Ka
B · τUSOB (tr − Δt K/Ka

BeAr ) − f̂ K/Ka
A · τUSOA (tr)

)
(39)

≈ +
(
f̂ K/Ka
B · τUSOB (tr) − f̂ K/Ka

A · τUSOA (tr)
)

− f̂ K/Ka
B · dτ

USO
B
dt

· Δt K/Ka
BeAr + const. (40)

= +
(
f̂ K/Ka
B · τUSOB (tr) − f̂ K/Ka

A · τUSOA (tr)
)

− f K/Ka
B (tr) · Δt K/Ka

BeAr + const. (41)

The phases ϕ... of the electro-magnetic fields are given as
the product of a static nominal frequency f̂ K/Ka

A/B and USO

time τUSOA/B , which differs from the proper time τA/B due to
clock errors. These clock errors account for noise and errors
sources, in particular for deviations of the USO frequency
from the nominal or design values: f̂ KA = 5076 ·4.832MHz,
f̂ Ka
A = 6768 · 4.832MHz, f̂ KB = 5076 · 4.832099MHz and
f̂ Ka
B = 6768 · 4.832099MHz [34]. The clock errors can be

estimated during precise orbit determination (see CLK1B
and USO1B data products in GRACE-FO) and allow to
derive the apparent frequencies f A/B(t) = f̂ A/B ·dτUSOA/B /dt ,
which are relevant for the ranging and contain effects from
relativistic time dilation and clock errors, e.g.USO frequency
deviations. For the purpose of calculating the light-time-
correction, which is significantly smaller than the actual
ranging signal, it is usually sufficient to drop the time-
dependency and use a (daily) mean value 〈 f A/B〉, since the
deviations of f A/B(t)/〈 f A/B〉 from unity are below 10−10 in
magnitude for both, the daily clock drifts and the relativistic
modulation.2

2 A typical spectrum of the proper time τ(t) for a GRACE-like
satellite is shown in ([17], Fig. 2.14), which has a dominant peak
with a rms-amplitude of approx. 10−7 s/

√
Hz at the orbital fre-

quency (≈ 0.18mHz). Using the provided equivalent noise bandwidth
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Fig. 1 Minkowski diagram of
the light path (red arrows) in a
dual-one way ranging (DOWR)
scheme at a particular frequency
(left plot) and in the two-way
ranging (TWR) scheme (right
plot). For the DOWR, the
emission (e) and reception (r)
events are located at the antenna
phase centers (grey trajectories)
of the two satellites (A and B).
In the TWR case, these events
occur at the center-of-mass
(solid black lines) of the master
(M) and transponder (T)
satellite. The reflection event on
the transponder side is denoted
as Tp

The first part of Φ in line (38) and (41) is proportional to
f̂ B ·τUSOB (tr)− f̂ A ·τUSOA (tr) and describes a constant positive
phase ramp with a slope of approx. 500kHz and 670kHz for
the K- and Ka-band, respectively. The frequency order is
reversed between the spacecraft. Usually, phase trackers are
not aware of the frequency order and return a positive slope,
whichmeans that the sign of the second term (Δt) is reversed
between both S/C. This sign convention is consistent with
the usual description of phase-tracking in the laser ranging
instrument (see next section). However, it is opposite to the
usual literature for microwave ranging (see [34]), where the
phase ramps on satellite A (GFO-C) have negative slope. The
term ΔtAeBr in above eq. describes the propagation time of
the microwaves from satellite A to B, while ΔtBeAr denotes
the opposite path. The last summand const. represents the fact
that the phase measurement always have an unknown bias,
which is constant unless the phase-tracking is interrupted
or cycle slips occur. The MWI measures distance variations
between the antenna phase center (APC), which are offset on
each satellite by approx. 1.4m in the direction of the distant
satellite.

By subtracting the two phase observations in the K- or Ka-
band, and dividing with the sum of the measured apparent
frequencies f K/Ka

A/B,meas (cf. [12], eq. 2.16), one can obtain a
range observation at the K- and Ka-band, i.e

ρ
K/Ka
DOWR(t) = c0 ·

∫ t

0

d
(
Φ

K/Ka
Br (t ′) − Φ

K/Ka
Ar (t ′)

)
/dt ′

f K/Ka
A,meas(t

′) + f K/Ka
B,meas(t

′)
dt ′ (42)

≈ c0 · Φ
K/Ka
Br − Φ

K/Ka
Ar

〈 f K/Ka
A,meas〉 + 〈 f K/Ka

B,meas〉

= c0 · f K/Ka
A (t) · Δt K/Ka

AeBr + f K/Ka
B (t) · Δt K/Ka

BeAr

〈 f K/Ka
A,meas〉 + 〈 f K/Ka

B,meas〉
+ const.

(43)

of 24µHz, one can convert the value to an amplitude for dτ/dt ,
i.e. 10−7 s/

√
Hz · √

24µHz · (2π · 0.18mHz) · √
2 ≈ 10−12.

≈ c0 · Δtinst,APC

+ c0 · 〈 f K/Ka
A 〉 · T K/Ka

AeBr + 〈 f K/Ka
B 〉 · T K/Ka

BeAr

〈 f K/Ka
A 〉 + 〈 f K/Ka

B 〉

+ c0 · 〈 f K/Ka
A 〉 · Δt K/Ka

media + 〈 f K/Ka
B 〉 · Δt K/Ka

media

〈 f K/Ka
A 〉 + 〈 f K/Ka

B 〉
+ const. (44)

= ρinst,APC + c0 · T K/Ka
DOWR + ρ

K/Ka
media + const., (45)

which can be written as the sum of instantaneous distance
between APC ρinst,APC, light time effect T K/Ka

DOWR and iono-

spheric delay ρ
K/Ka
media . The light paths in the DOWR scheme

are shown for a single frequency in the left plot of Fig. 1.
Equation (42) is suited to convert the measured phases to
the DOWR ranges ρ

K/Ka
DOWR. For the derivation of the much

smaller light-time and ionospheric corrections, the approx-
imations in Eqs. (43)–(45) are usually sufficient, where the
distinction between true apparent andmeasured apparent fre-
quency, as well as their time-dependencies, are omitted.

One can remove the ionospheric effect by a linear combi-
nation ofρK

DOWR andρKa
DOWR,which yields theDOWRbiased

range as

ρDOWR = aKa · ρKa
DOWR + aK · ρK

DOWR

= ρinst,APC + c0 · TDOWR + const. (46)

where the light-time effect TDOWR is, in general, a function
of four T K/Ka

... terms arising from two photon paths at two
frequencies:

TDOWR = aK · T K
DOWR + aKa · T Ka

DOWR (47)

= bKAeBr · T K
AeBr + bKa

AeBr · T Ka
AeBr + bKBeAr · T K

BeAr

+ bKa
BeAr · T Ka

BeAr (48)

with aK/Ka
... and bK/Ka

... coefficients given in Table 2.
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The biased dual-one way range ρDOWR is apportioned in
Eq. (46) into the instantaneous range ρinst,APC and an effect
due to thefinite speedof light c0·TDOWR. In order to obtain the
instantaneous range, one has to remove this light-time effect
using an estimate or correction T̂DOWR, which can be derived
from orbit data. Moreover, an antenna offset correction is
applied in order to transform the biased range between APC
into a biased range between the center-of-mass that is usually
used for gravity field recovery.

The cross coupling of Δtmedia into the light-time correc-
tion TDOWR is usually omitted (cf. Eq. (34)), i.e. the K and
Ka superscripts of T are dropped

T̂DOWR ≈ bAeBr · TAeBr + bBeAr · TBeAr , (49)

because the absolute value of the ionospheric delay Δtmedia

is difficult to estimate and the effect on the final correction
TDOWR iswell below themicrowave instrument resolution. In
other words, the LTC computation neglects any atmospheric
effect, i.e. the photons at K- and Ka-Band have the same
emission time as in vacuum and travel along the same path.
However, this approximation does not affect the phase delay
as determined and corrected for with the ionospheric correc-
tion (cf. Sect. (4)). The omission error in the LTC is at the
sub-picometer level and can be assessed using Eqs. (28) and
(34), i.e.

∣∣c0TDOWR,media
∣∣ =

∣∣∣∣∣
40.3Hz2

c0
· TEC

1 e−/m3

·
(
bKAeBr · d0.ṙA

( f KA )2
− bKBeAr · d0.ṙB

( f KB )2

+ bKa
AeBr · d0.ṙA

( f Ka
A )2

− bKa
BeAr · d0.ṙB

( f Ka
B )2

)∣∣∣∣∣ (50)

≈
∣∣∣∣−2 · 10−13 m − 8 · 10−18 m · ρ̇inst

1m/s

∣∣∣∣ < 10−12 m

(51)

where d0 = (rB − rA)/|rB − rA|, d0.ṙA = −7.6 km/s, and
d0.ṙB = 7.6 km/s + ρ̇inst were used as values. The range
rate ρ̇inst is usually below 1m/s, hence, the modulation due
to ρinst is insignificant. The same holds for variations of the
TEC, which can be expected to be well below the used upper
bound estimate TEC = 1012 e−/m3 · 200 km.

The leading terms of the DOWR light-time correction in
the range domain, which has to be subtracted from the mea-
sured biased range ρDOWR to obtain the instantaneous range,
reads

c0T̂DOWR = Δtinst · (bAeBr · d0.ṙA − bBeAr · d0.ṙB ) + const. + . . .

= −|rB − rA| · ρ̇inst,OD

2 · c0 + const. + · · · , (52)

where both shown terms have a typical magnitude of a few
hundred micrometers (cf. Table 5). The ρ̇inst,OD denotes the
instantaneous range rate from orbit data (OD). This leading
term describes approximately 99.9% of the LTC at once and
twice the orbit frequency, which may be sufficient in some
cases. However, the analyses in this paper consider the full
expression, not just the leading term.

7 Light time correction in two-way ranging
(TWR)

The laser ranging instrument aboard GRACE-Follow-On is
based on amaster-transponder scheme, which is also called a
twoway ranging scheme. The role of master and transponder
is inter-changeable between the satellites. As shown on the
right plot in Fig. 1, themaster satellite emits a photon at event
Me using a frequency-stabilized laser source. The optical
phase (in cycles) of this photon can bemodelled as a function
of the coordinate time t

ϕM(t) =
∫ t

0
f̃M (t ′) · dτM (t ′)

dt ′
dt ′ (53)

where f̃M is the instantaneous optical laser frequency that
would be measured in a rest-frame at the laser source and
τM refers to the proper time of the master satellite. Imper-
fections of the laser or cavity, i.e. frequency variations, can
be accounted for by the time-dependent f̃M .

The photon emitted by the master satellite propagates to
the transponder craft. The transponder utilizes a frequency-
locked loop with 10MHz frequency offset. This means the
laser phase ϕLO,T(t), more precisely the time-derivative of it,
is controlled such that the beatnote phaseΦT (t), given as the
phase difference between received (RX) and local oscillator
(LO) light, becomes

ΦT (t) = ϕLO,T − ϕRX,T = ϕLO,T(t) − ϕM(t − ΔtMeTp(t))

= +10MHz · τUSOT (t) + ϕε(t) + const., (54)

where τUSOM is the time of the ultra-stable oscillator clock,
which may differ from the proper time τM due to noise or
errors sources. The beatnote phaseΦT implies that the optical
phase of the transponder laser with units of cycles is

ϕLO,T(t) = ϕM(t − ΔtMeTp(t)) + 10MHz · τUSOT (t) + ϕε(t) + const.,
(55)

where ϕε(t) was used to account for phase-variations that
were not fully suppressed by the feedback control loop,
e.g. due to finite gain and bandwidth. These aremuch smaller
than the phase rampwith a slope of 10MHz. The loop ensures
a constant phase relation between emitted and received light
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Table 2 Numerical values for
coefficients introduced to
describe the light time
correction in dual one-way
ranging, which are based on
carrier frequencies in the K and
Ka band for the microwave
ranging system

Name Formula Nominal Value ( f = f̂ )

aK − f KA · f KB /( f Ka
A · f Ka

B − f KA · f KB ) −9/7

aKa f Ka
A · f Ka

B /( f Ka
A · f Ka

B − f KA · f KB ) 16/7

bKAeBr
( f KA )2· f KB

( f KA + f KB )( f KA f KB − f Ka
A f Ka

B )

−43488000
67648693 ≈ −0.642851

bKa
AeBr − ( f Ka

A )2· f Ka
B

( f Ka
A + f Ka

B )( f KA f KB − f Ka
A f Ka

B )

77312000
67648693 ≈ 1.1428454

bKBeAr
f KA ·( f KB )2

( f KA + f KB )( f KA f KB − f Ka
A f Ka

B )

−43488891
67648693 ≈ −0.642864

bKa
BeAr − f Ka

A ·( f Ka
B )2

( f Ka
A + f Ka

B )( f KA f KB − f Ka
A f Ka

B )

77313584
67648693 ≈ 1.142869

bAeBr bKAeBr + bKa
AeBr ≈ 0.499995

bBeAr bKBeAr + bKa
BeAr ≈ 0.500005

on the transponder side, in other words, the transponder
seems to reflect the received light at event Tp, however, with
enhanced light power and slightly different frequency.

Eventually, the transponder photon returns to the master
side at the reception event Mr. The phase of the beatnote on
the master satellite ΦM reads

ΦM (tr) = ϕRX,M − ϕLO,M = ϕLO,T(tr − ΔtTpMr) − ϕM (tr) (56)

= ϕM(tr − ΔtTpMr − ΔtMeTp) − ϕM (tr)

+ 10MHz · τUSOT (tr − ΔtTpMr) + ϕε(tr − ΔtTpMr) + const.
(57)

≈ − dϕM

dτM
· dτM

dt
· (ΔtTpMr + ΔtMeTp) + 10MHz

· τUSOT (tr − ΔtTpMr) + ϕε(tr − ΔtTpMr) + const. (58)

= − fM (tr) · (ΔtTpMr + ΔtMeTp) + 10MHz

· τUSOT (tr − ΔtTpMr) + ϕε(tr − ΔtTpMr) + const. (59)

The ranging information is encoded in the term containing
the product of true apparent optical frequency ( fM = f̃M ·
dτM/dt ) and photon time of flight Δt.... It can give rise to
Doppler shifts of up to a few MHzover one orbital revolution.

Subtracting both phase observations, when the transpon-
der phase is temporally aligned to the master using an
estimated one-way light travel time ΔtTpMr,est, removes the
10MHz phase ramp and the phase residuals ϕε . Then, the
phase difference is converted to a biased range observ-
able using an estimate of the apparent optical frequency3

fM,est(t), as in the DOWR case (cf. Eq. (42)), i.e.

ρTWR(t) = c0 ·
∫ t

0

d
(
ΦT (t ′ − ΔtTpMr,est) − ΦM (t ′)

)
/dt ′

2 · fM,est(t ′)
dt ′ (60)

≈ c0 · (〈 fM 〉 + δ fM (t)) · (ΔtTpMr + ΔtMeTp)

2 · 〈 fM,est〉 + const. (61)

3 The LRI optical frequency fM,est(t), i.e. the scale factor, is deter-
mined on a daily basis by comparing LRI andMWI range in the official
GRACE-FO RL04 dataset.

=
(
1 + 〈 fM 〉 − 〈 fM,est〉

〈 fM,est〉 + δ fM (t)

〈 fM,est〉
)

· c0 · (2 · Δtinst + TMeTp + TTpMr)

2
+ const. (62)

= (1 + κ + δκ(t)) ·
(

ρinst +
TMeTp + TTpMr

2

)
+ const. (63)

= ρinst(t) + c0TTWR(t) + κ · ρinst + δκ(t) · ρinst(t)

+ (κ + δκ(t)) · c0TTWR(t) + const. (64)

The precise Eq. (60) can be used to convert the phase
observables to a non-instantaneous biased range ρTWR,
even with a time-dependent frequency estimate fM,est(t).
Under the assumption of a static estimate 〈 fM,est〉, and with
Eqs. (59), (54) and ΔtTpMr,est ≈ ΔtTpMr, the expression can
be approximated as Eq. (64), which illustrates the coupling
of frequency errors and the light-time correction effect. The
first terms are the instantaneous range ρinst and the light-
time correction TTWR = (TMeTp + TTpMr)/2, respectively.
The third term describes a static scale factor error κ =
(〈 fM 〉 − 〈 fM,est〉)/〈 fM,est〉 in the conversion from phase to
range, while the term proportional to δκ = δ fM (t)/〈 fM,est〉
accounts for laser phase variations, commonly known as laser
frequency noise [1]. The coupling of κ or δκ with the LTC
in the fifth term is negligible compared to the same coupling
with ρinst, because the magnitude of c0TTWR is below the
millimeter level (cf. Table 5). The relevant aspect for the fol-
lowing sections is that the final Euclidean biased range can
be computed as ρinst,TWR = ρTWR − c0TTWR.

In order to compute the propagation time ΔtMeTp from
the master emission event (Me on right plot of Fig. 1) to the
transponder reception (Tp in Fig. 1), the result of ΔtTpMr is
needed, as apparent from the following iterative equation

Δt(n+1)
MeTp (tr) =

|rT (tr − ΔtTpMr) − rM (tr − Δt(n)
MeTp − ΔtT pMr )|

c0

+ TGR(rr=rT (tr−ΔtTpMr), re=rM (tr−Δt(n)
MeTp−ΔtTpMr))

(65)
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which we rigorously approximate, with the same approach
as utilized for Eq. (33), as

ΔtMeTp = Δtinst + TSR,MeTp + TGR,MeTp (66)

TMeTp =
Δtinst(d0.ṙT − 2d0.ṙM ) + Δt2inst

(
2d0.r̈M − d0.r̈T

2

)

c0

+Δtinst
(|ṙT − 2ṙM |2 + (d0.ṙT )2

)

2c20

+Δt2inst (−2d0.r̈M (d0.ṙM − d0.ṙT ) − 4ṙM .r̈M + 2ṙT .r̈M − d0.r̈T · d0.ṙT + r̈T .ṙM − ṙT .r̈T /2)

c20

+Δtinst
(
d0.ṙT

(
2 |ṙM |2 + |ṙT |2 − 2ṙT .ṙM

) − 2 |ṙM |2 d0.ṙM
)

c30
(67)

+TGR,TpMr · d0.ṙT − (TGR,TpMr + TGR,MeTp) · d0.ṙM
c0

+ O(10−12 m/c0). (68)

The satellite state vectors, Δtinst and d0 = (rM −
rT )/|rM −rT | are evaluated at the reception time (tr) and are
the same as those needed to compute TTpMr with Eq. (34).
The delay due to the atmosphere Δtmedia was omitted. The
general relativistic contributions TGR = TPM + THM + TSM
are evaluated at

TGR,TpMr = TGR(rr = rM (tr), re

= rT (tr − Δtinst − Δtinstd0.ṙT /c0)) (69)
TGR,MeTp = TGR (rr = rT (tr − Δtinst − Δtinstd0.ṙT /c0), re

= rM (tr − Δtinst · (2c0 + d0.ṙT − d0.ṙM ) /c0)) , (70)

with the help of the Taylor expansion in Eq. (30).
It is noteworthy that the leading term in the TWR light-

time correction

c0T̂TWR = c0
TMeTp + TTpMr

2
= −|rB − rA| · ρ̇inst,OD

c0
+ const. + . . .

(71)

differs by a factor of two compared to the DOWR correction
(cf. Eq. (52)), whereby the static part has a similar magnitude
(cf. Table 5).

8 Requirements on light time correction
precision

It is sensible to require that the light time corrections c0TTWR

and c0TDOWR are precise enough to not limit the precision
of the instantaneous range, which is the measured biased
range with subtracted light time correction. The precision
of the instantaneous range ρinst should ideally be limited by
instrument noise and errors. Noise is driven by stochastic

processes and can be described with spectral densities in the
frequency domain. For instance, the noise requirement for

the laser ranging instrument on GRACE FO is defined in
terms of the amplitude spectral density (ASD), which is the
square root of the power spectral density, as [1]

ASD[ρLRI,req] = 80
nm√
Hz

√
1 +

(
3mHz

f

)2
√
1 +

(
10mHz

f

)2
,

2mHz ≤ f ≤ 100mHz (72)

while the corresponding requirement of the MWI reads [14]

ASD[ρKBR] = 2.62
µm√
Hz

√
1 +

(
3mHz

f

)2

. (73)

Deterministic or systematic errors manifest often as sinu-
soidal variations, so called tone errors. These should not
exceed δρ = 1µm peak amplitude in GRACE FO mea-
surements. This value is specified for the MWI at twice
the orbital frequency ( f = 2 forb ≈ 0.35mHz) and for
the LRI between 10 forb ≤ f ≤ 200 forb [14]. The 2 forb
KBR requirement is likely inherited and adopted from the
GRACE mission ([28], p. 23), while the higher LRI require-
ment band (10 forb..200 forb) could be justified by the fact
that other error sources like accelerometer or background
model deficiencies limit the gravity field accuracy at lower
frequencies. The authors recommend that both requirements
are revised in future missions. Although not strictly speci-
fied by the instruments, it is reasonable to require that the
LTC has no sinusoidal errors above 1µm magnitude for all
frequencies.

In the next sections, we illustrate the frequency content of
time-domain signals with ASD plots, where the y-axis has
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Table 3 The mean value and
peak amplitudes at once and
twice the orbital frequency
( forb = 0.18mHz) of the
difference
GRA_KBR1B_LTC−c0TDOWR,
where TDOWR is computed with
different accuracy levels

Constituents Mean forb 2 forb

T = TSR 27nm 0.2nm 1nm

T = TSR + TPM −331µm 934nm 90nm

T = TSR + THM 105nm 0.5nm 234nm

T = TSR + TSM 27nm 0.2nm 1nm

T = TSR + TPM + THM + TSM −331µm 934nm 325nm

See also Fig. 3

units of m/
√
Hz. These plots show the peak amplitude δρ of

a sinusoidal variation with an amplitude of

δρ√
2
√
ENBW

, (74)

where ENBW is the equivalent noise bandwidth with units of
Hertz. The ENBW depends on many parameters such as the
length of the time-series, the sampling rate and the window
function [8]. Since many gravity field recovery methods are
using range rates, we recall that ASD values at a Fourier
frequency f with units of m/

√
Hz can be converted into the

range rate domain with units m/(s
√
Hz) by a multiplication

with 2π f .
The actual in-orbit ASD of the LRI is well below the

80nm/
√
Hz requirement as shown in [1], i.e.

ASD[ρLRI] =
{
15 nm/

√
Hz, f = 35mHz

0.3 nm/
√
Hz, f = 0.85Hz

(75)

which imposes stricter goals for the LTC precision at high
frequencies.

9 Validation of the analytical
approximations for1t

In order to verify the equations for the light propagation
time and our implementation of the software code, we per-
formed a closed-loop (i.e. backward-forward) simulation
using reduced-dynamic orbit data of both GRACE Follow-
On satellites in the Geocentric Celestial Reference Frame
(GCRF) from 5th February 2019 (GNI1B Release 04). One
of the two satellites is designated as receiver with position
r(tr). At each epoch tr of the data, which has a sampling rate
of 1Hz, the light propagation time Δt = Δtinst +TSR +TGR
between the satellites is computed according to Eqs. (33)–
(35), whichmake use of Eqs. (20)–(25).With the propagation
time Δt , we compute the photon emission position re and
emission time tr − Δt . Afterwards, we determine the vecto-
rial coordinate speed of light cn · d0 pointing to the receiver
(Eqs. (13), (19)), which serves as the initial condition for a
numerical integration of the equations of motion for photons

(Eq. (9)) using the Adams–Bashforth–Moulton method [24].
The metric tensor used is based on a high-fidelity geopo-
tential field, computed according to the models shown in
Table 1, and takes into account the vector potential due to
Earth’s spin. The integration is performed for a duration of
Δt , which yields the photon path with an end position r′

r. If
the analytical expressions to compute Δt are correct, r′

r and
rr should be identical. Hence, we define the error ε in the
analytically-derived Δt as

ε = (
r′
r − rr

)
.
ṙ′
r

|ṙ′
r |

≈ (
r′
r − rr

)
.d0 ≈ (Δt ′ − Δt) · c0 (76)

which takes into consideration only the error in the propa-
gation direction of the photon, since this contributes to the
phase measurement in microwave or laser ranging. In other
words, ε is the error of the computed Δt with respect to the
more accurate Δt ′.

The lateral part of the displacement r′
r−r is of the order of

4µm and arises due to the light bending (cf. Sect. 3), which
has been omitted in our analytical approximation. By evalu-
ating ε, it can be shown that the bending—and omission of
the bending in the analytical approximation—has a negligi-
ble effect on the phase measurement, since the longitudinal
offset in propagation direction is very small and since the
phasefront is, in good approximation, planar in the vicinity
of r′

r, i.e., the offset r
′
r − r vanishes when projected onto the

propagation direction.
Due to the limited precision of double floating-point arith-

metic, we perform the numerical integration in uniform
co-moving coordinate frames, in order to have state vectors
with small numerical values. This allows us to resolve even
minor contributions within the light time correction.

The result of the one-way ranging validation, i.e. the time
series of ε, is shown in the spectral domain in Fig. 2a). The
upper-most trace in red shows the error ε, if special and gen-
eral relativistic effects are omitted in the calculation of the
light travel time Δt , which means Δt = tinst. Considering
TSR yields the blue trace. The general relativistic contribution
to the light propagation shows two sinusoidal variations at
once and twice the orbital frequency and a continuous spec-
tral content decaying towards higher frequencies. The peak
at the orbital frequency is caused by the radially symmet-
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(a) (b)

(c) (d)

Fig. 2 Amplitude spectral density plots of the model error ε and of
the term THM. a The first six traces show the model error ε for dif-
ferent contributors in the light time correction T . The model error ε

as a function of the number of sampling points N of the path integral
(Eq. (22)) is shown in subfigure b, while the influence of the truncation
degree for the SH expansion of the gravitational potential is illustrated

in c. Subfigure d shows the ASD of a time series of THM, where only a
single gravitational potential model from Table 1 was used. All subfig-
ures use the Nuttall4a window function. The equivalent peak height of
a sinusoidal variation with 1 picometer amplitude is visualized as green
dashed line in all four plots

ric gravity field (TPM), while the higher moments cause the
twice per revolution peak and the continuous part.

Since the spectral plots conceal the DC component, the
mean value of ε is provided in the legend. The figure confirms
that the different contributions in the propagation time indeed
reduce the error ε down to a mean level of 2.5 · 10−13m/c0,
with fluctuations well below 1 pm/

√
Hz/c0. The remaining

peaks apparent at once and twice the orbital frequency from
sinusoidal variations (tones) are not described properly with
units of a spectral density plot (cf. Sect. 8). These varia-
tions have a peak magnitude in the time-domain of less than
1picometer (green dashed line in Fig. 2a), if TPM and THM
are considered .

The contribution of the general relativistic correction TSM
due to Earth’s spin moment is present predominantly at once

and twice the orbital frequency, but with a negligible mag-
nitude (difference between brown and black trace). Hence,
TSM can be safely omitted from now on.

The dependence of the model error ε on the sampling
point number N in Eq. (22) is shown in Fig. 2b), while
Fig. 2c) visualizes the effect of the truncation degree for the
SH expansion of the gravitational potential. The actual sig-
nal THM for different individual models of the gravitational
potential (cf. Table 1) is depicted in Fig. 2d). In general,
Fig. 2 can be used to decide which models and parameters
are required for a particular accuracy level in the computation
of the light time correction.

Although this section showed only one-way ranging
results, most of the findings are also applicable for the TWR
andDOWRcombinations, since these are formedby the aver-
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Table 4 The mean value and
peak amplitudes at once and
twice the orbital frequency
( forb = 0.18mHz) of the
differences
GFO_KBR1B_LTC − c0TDOWR
and
GFO_LRI1B_LTC − c0TTWR
for different accuracy levels of
TDOWR and TTWR

Constituents GFO/KBR GFO/LRI
Mean forb 2 forb Mean forb 2 forb

T = TSR 246µm 1.3µm 56nm 246µm 1.3µm 56nm

T = TSR + TPM −35pm 3.6pm 6.6pm 2.1pm 14pm 16pm

T = TSR + TPM + THM 57nm 331pm 172nm 57nm 550pm 172nm

T = TSR + TPM + TSM −35pm 3.6pm 6.6pm 2.1pm 14pm 16pm

T = TSR + TPM + THM + TSM 57nm 331pm 172nm 57nm 550pm 172nm

See also Fig. 4

Table 5 The mean value and peak amplitudes at once and twice the orbital frequency ( forb = 0.18mHz) of different constituents in the LTC (c0 ·T )

Constituents one way ranging dual-one way ranging two way ranging
mean forb 2 forb mean forb 2 forb mean forb 2 forb

TSR 4.8m 26cm 4.5cm −172µm 209µm 62µm −123µm 419µm 124µm

TPM −246µm 1.3µm 55nm −246µm 1.3µm 55nm −246µm 799nm 50nm

THM 57nm 1.7nm 169nm 57nm 323pm 171nm 57nm 805pm 171nm

TSM 2.4pm 19fm 85 fm −83am 0.8am 5.2am −63am 0.4am 0.07am

The values were computed using GRACE-FO GNI1B orbit data from 2019-02-05

age of two one-way ranging results. Only TSM and some
terms in TSR flip signs between the two opposite directions,
which means they are canceling to a large extent in the TWR
and DOWR case.

A result of this analysis is that the following parameters
of THM are sufficient to meet the precision requirements for-
mulated in Sects. 10 and 11: SH degree of the static gravity
should be ≥ 50, while a Solid Earth Tide (SET) model with
degree 4 is sufficient; the path integral should be approxi-
mated with N≥ 10 and direct tidal accelerations should be
taken into account at least from Sun and Moon.

10 Comparison with GRACE and GRACE FO
light time correction

We compared the method to derive the light time correction
presented herein with the light time correction values in the
level-1b data of the GRACE and GRACE Follow-On mis-
sions. These values are provided in the KBR1B and LRI1B
datasets alongside with the actual biased range. The most
recent version of the GRACE data is release 03 (RL03),
which is available only for the SCA1B and KBR1B data
products, while for all other products RL02 is themost recent
version [20]. Details on the processing of GRACE data can
be found in Wu et al. [35]. The GRACE Follow-On data is
available in version RL04 by the time of the writing [21].

For the GRACE data, the GNV1B orbit data is rotated
from the terrestrial to the celestial frame by a rotational
matrix formed according to the IAU-2000 standard using
Earth orientation parameteres [19]. The sampling rate of the

orbit data is 0.2Hz, hence, it is directly compatible with the
KBR1B data. Since the LTC for microwave ranging needs
to be referred to the antenna phase center (APC), the posi-
tion of the phase center in the satellite frame, as provided
by VKB1B,4 is rotated using the star camera SCA1B prod-
uct into the GCRF. The COM-APC offset in the GCRF is
added onto the rotated GNV1B data in order to obtain the
position and velocity of the APC on each SC in the GCRF.
The acceleration vector of the APC is approximated by the
center-of-mass acceleration from force models, which is jus-
tified, since the angular motion of the APC on time scales of
the light propagation time is negligible. The APC state vec-
tors are used to derive the one-way LTCs TAeBr and TBeAr

(Eq. (34)), which are further combined using Eq. (49) into
TDOWR with K- and Ka-band frequencies from the USO1B
dataset.

The difference between the light time correction from
GRACE level-1b KBR data (GRA_KBR1B_LTC) and c0 ·
TDOWR (Eq. (49)) with four different degrees of accuracy is
shown in Fig. 3. The data used spans the GPS time between
00:00 and06:00onDecember 1st, 2008. Since thedifferences
are minimal when only the special relativistic correction TSR
is used (red trace), it is reasonable to assume that general rel-
ativistic contributions were omitted in the GRACE level-1b
light time correction. The omission error is dominated by the
sinusoidal variation at the orbital frequency, however, with an
amplitude of approx. 1micrometer, i.e. close to the tone error
requirement discussed in Sect. 8 for GRACE Follow-On.

4 Value from the year 2012 in the sequence of events file.

123



Revisiting the light time correction in gravimetric missions like GRACE and GRACE follow-on Page 15 of 19 48

The GRACE level-1b LTC shows some artifacts above
10mHz (magenta trace on the right subplot in Fig. 3). How-
ever, these are well below the KBR noise level and should
not impede the gravity field recovery.

For GRACE Follow-On, an additional orbit data product
called GNI1B is available, which provides the satellite state
in the GCRF and can be used instead of the transformed
GNV1B data. The sampling rate is 1Hz, which means that
results need to be downsampled to the KBR and LRI rates
of 0.2 and 0.5Hz, respectively. A comparison with different
degrees of accuracy for the light time correction is shown in
Fig. 4 for February 5th, 2019. It is evident that the LTC in
GRACE Follow-On takes into account the general relativis-
tic effect TPM due to the central field (degree 0), but not the
higher moments THM. The omission error is present predom-
inantly at twice the orbital frequency with a peak amplitude
of approx. 0.1µm (blue trace), thus well below the discussed
requirement from Sect. 8. The differences between c0 ·TTWR

and the RL04 LTC in Fig. 4 are limited to a level of a few
nm/

√
Hz, which is well below the LRI noise requirement.

However, the actualLRI in-orbit noise is close to 1nm/
√
Hz

atFourier frequencies around0.1Hz, hence,we study the lim-
its of the LTC precision and propose potential improvements
for the LTC in the next section.

11 Enhancing the light time correction
accuracy

In order to understand the current limit of the LTC precision
of a few nm/

√
Hz, we reproduced the light time corrections

provided in the GRACE Follow-On RL04 data. In a first
step (step 1), the classical light time equation was solved
iteratively to obtain the absolute light travel timeΔt , and, in a
second step (step 2), the instantaneous contribution (Δtinst =
|rA−rB |/c0)was removed fromΔt in order to obtain the one-
way corrections T , which are further combined into TDOWR

or TTWR.
We noted a slight inconsistency in the instantaneous

Euclidean inter-satellite distance betweenGNI1BorGNV1B
products, which shows rms differences three times higher
compared to our method to rotate the GNV1B data into the
GCRF (cf. left panel in Fig. 5). The precision limit of our
method is the resolution of the double floating-point arith-
metic, i.e. the computation error of the product of rotation
matrix and position vector.

We could reproduce the light time correction of RL04
data with smallest deviations, if we used different orbit sets
in step 1 and for the calculation of Δtinst in step 2 (cf. green
dashed trace on right subplot of Fig. 5). However, using con-
sistent orbit sets for both steps results in a slightly lower noise
for the light time correction (solid blue trace). The consistent
data sets could be GNI for both steps (denoted as orbit data

OD2 in the plot), or the rotated GNV data (denoted as orbit
data OD3). A difference between both cases is not apparent
in the spectrum, hence, the plot shows a single solid blue
trace for both cases. The dashed black trace on the right plot
of Fig. 5 depicts the actual in-orbit measurements of the LRI
[1], which contains the instrument noise but also some vari-
ations due to non-gravitational accelerations (nga) for the
shown frequencies [15].

The LTC accuracy can be improved further -well below
the sensitivity of the LRI - by using the analytical expressions
for T as discussed in Sect. 6 and 7, where the dominating
terms in the single-path are proportional to d0.ṙA/B , or in the
finalDOWRandTWRcombinationTDOWR/TWR ∝ d0.(ṙA−
ṙB) ∝ ρ̇inst,OD (cf. Eqs. (52) and (71)). If the satellite velocity
vectors ṙA/B are derived as the time-derivative of the satellite
position state vector, the accuracy of the LTC is limited to
the nm/

√
Hz level. However, if the velocity state vectors of

GNI1B are used, the LTC noise is highly reduced as shown
by the blue traces in left and right plot of Fig. 6. This results
from the fact that GNI and GNV data is based on reduced-
dynamic orbit determination, where the variational equations
include the velocity state [2,3].

It is noteworthy that the instantaneous range rate ρ̇inst,OD,
which appears in the first-order approximation of the LTC
(Eqs. (52) and (71)), dominates the noise in the LTC. For-
tunately, the instantaneous range rate is approximately the
same as the more precise measured range rate from LRI or
KBR with only a minor light time correction from an orbit
product, i.e.

ρ̇inst,TWR ≈ ρ̇TWR − d

dt

|rA − rB | · ρ̇inst,OD

c0
,

ρ̇inst,DOWR ≈ ρ̇DOWR − d

dt

|rA − rB | · ρ̇inst,OD

2c0
. (77)

Thus, if ρ̇inst,OD from the orbit product is replaced with
ρ̇inst,TWR or ρ̇inst,DOWR in the dominating termof the LTC, the
resulting LTC becomes almost independent of the orbit prod-
uct. The result exhibits very low noise at high-frequencies
(red trace on the right plot in Fig. 6) that is comparable to
the pure GNI LTC (dashed blue trace). The deviations below
2mHz are caused by differences between ranging and orbit
data, and it is reasonable to assume that the results using
Eq. (77) are more accurate than the LTC based purely on
orbit data.

Moreover, the above replacement allows us to use even
kinematic orbit products for the LTC calculationwith accept-
able high frequency noise (cyan blue trace in Fig. 6 for
GRACE data [36]). For that trace, the high frequency noise
above 25mHz is driven by the KBR ranging noise. Kine-
matic orbits are sometimes regarded as more appropriate for
gravity field recovery [18], since they do not rely on a-priori
gravity field information.
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Fig. 3 Comparison between GRACE level-1b light time correction
and TDOWR (Eq. (49)) using different degrees of accuracy in the time
(left) and spectral (right) domain. The traces on the left plot have been
centered around zero by subtracting a bias shown in the legend. The

difference is minimal when only the special relativistic effect is con-
sidered in TDOWR. The dominating amplitudes and the mean values are
provided Table 3

Fig. 4 Comparison between GRACE Follow-On level-1b KBR/LRI light time correction and TDOWR (left) and TTWR (right) using different degrees
of accuracy. The dominating amplitudes and the mean values for the different traces are provided Table 4

Finally, we note that the most accurate way to determine
the instantaneous biased range ρinst is to update the LTC
in the process of combined orbit determination and grav-
ity field recovery with the most current orbit estimate in
each iteration. In other words, one can consider to use the
non-instantaneous biased range as observation and shift the
conversion by means of the LTC into the process of precise
orbit determination and gravity field recovery, where the LTC
is updated iteratively.

12 Summary and conclusions

The Laser Ranging Interferometer aboard GRACE Follow-
On demonstrated for the first time laser ranging between
satellites in a gravimetric satellitemission. This enables inter-

satellite biased range observations with an unprecedented
noise level of 1nm/

√
Hz at the highest frequency in the

level-1b data (0.25Hz), or even 0.2nm/
√
Hz at the highest

frequency of the level-1a data (5 Hz).
The biased range observation needs to be corrected for the

effect of the finite speed of light in order to obtain the instan-
taneous range between the spacecraft, which is the quantity
utilized in the gravity field recovery process. It is natural
to seek methods to compute the light time corrections with
a higher precision in order to not limit the observations of
the GRACE Follow-On LRI, and potentially also of future
instruments and missions.

In this paper, we revisited the calculation of the light time
correction from first principles within the Post-Newtonian
approximation of general relativity, taking into account state-
of-the-art geopotential models. We have separated the total
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Fig. 5 (Left plot:) Difference in inter-satellite distance between satel-
lite C and D for different orbit data products. GNI and GNV are the
RL04 datasets, while rotGNV denotes a dataset, which has been rotated
by the authors from ITRF to GCRF. (Right plot:) Spectral density of
the LTC signal (red and blue traces) and LTC differences for different
orbit data sets. The LTCs have been computed in four different cases

(OD1..OD4), which are based in different orbit data sets for step 1 (iter:
solving for Δt iteratively) and step 2 (calculating Δtinst and computing
T = Δt − Δtinst). This plot was created with a log-scale amplitude
spectral density (LASD) method, which produces smooth traces also at
high frequencies [31]

Fig. 6 Amplitude spectral density (ASD) of the differences of the LTC
with different inter-satellite range rate data for one day in August 1
2019 with logarithmic scaled frequency axis. (Left:) comparison for

the LTC range of KBR, (Right:) comparison for the LTC range of LRI.
In addition, the cyan blue trace in the right subplot shows the LTC from
a kinematic orbit of GRACE (December 1, 2008)

light time correction T into the contribution from special
relativity TSR and the general relativistic component into
the effect from the scalar central field of the Earth (TPM,
SH degree 0), from higher moments of the gravity potential,
which includes direct tidal accelerations, THM, and from the
much smaller vector potential due to Earth’s spin moment
TSM. The analytical formulas were verified against the light
travel time obtained by numerically integrating the equations
of motion of photons.

We studied in Sect. 9 the influence of different geopo-
tential models onto THM, showing that to reach tone-errors
below 1pm amplitude in the LTC, one should consider the
effect from the Sun and the Moon, as well as from Solid

Earth tides. In order to achieve a noise level in the light time
correction below 100pm/

√
Hz, the SH degree of the static

gravity field should be above 50 and the light path between
satellites needs to be sampled with more than 10 points.

We showed that the GRACE light time correction in RL02
does not consider general relativistic effects, while GRACE
Follow-On RL04 data takes into account general relativity
with a radial-symmetric field (TPM). The omission of THM
causes predominantly a sinusoidal error with a peak ampli-
tudewell below 1µmat twice the orbital frequency. The LTC
in the official RL04 data is limited to a noise level of a few
nm/

√
Hz arising from numerical floating point precision and

due to the fact that two slightly inconsistent orbit products
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(GNI and GNV) are used in each step. This level of LTC
precision is comparable to the LRI instrument noise at the
highest frequencies in the level-1b data.

The numerical accuracy can be easily improved to
1nm/

√
Hz at high frequencies by using the same orbit prod-

uct in both steps. However, we recommend to use the here
proposed analytical formulas as these are numerically a few
orders ofmagnitudemore accurate, as the absoluteLTCaccu-
racy depends on the models and on the orbit product quality.

In the end it was pointed out that, if the analytical formulas
are employed, the dominating term of TTWR or TDOWR can
be rewritten in terms of the measured range rate from LRI or
KBR, which means the LTC becomes to first-order indepen-
dent of the orbit product. Hence, kinematic orbit products
that suffer higher noise can be used to compute the LTC as
well.

The here presented methods to calculate the light time
correction for microwave and laser ranging can be readily
applied to simulated and available flight data. The analytical
approximations were truncated at picometer level, which is
well below the requirements for the current GRACE Follow-
On mission, but may be of interest in studies for future
missions.
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