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Abstract
We use global data from the Lunar Orbiter Laser Altimeter (LOLA) to retrieve the lunar tidal Love number h2 and find
h2 = 0.0387 ± 0.0025. This result is in agreement with previous estimates from laser altimetry using crossover points of
LOLA profiles. The Love numbers k2 and h2 are key constraints on planetary interior models. We further develop and apply
a retrieval method based on a simultaneous inversion for the topography and the tidal signal benefiting from the large volume
of LOLA data. By the application to the lunar tides, we also demonstrate the potential of the method for future altimetry
experiments at other planetary bodies. The results of this study are very promising with respect to the determination of
Mercury’s and Ganymede’s h2 from future altimeter measurements.
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1 Introduction

Geodeticmeasurements of a planetary body’s reaction to tidal
forces, expressed by the tidal Love numbers k2 and h2, pro-
vide a key constraint on its interior. The Love numbers k2
and h2 characterize the response of the gravity field and the
shape to the tidal potential, respectively. Measurements of k2
have contributed to the determination of theMoon’s core size
(Williams et al. 2014), the detection of a subsurface ocean
on Titan (Iess et al. 2012), and the rheological properties of
Mercury’s mantle (Padovan et al. 2014; Genova et al. 2019).
Measurements of h2 would reveal the size ofMercury’s solid
inner core (van Hoolst et al. 2007; Steinbrügge et al. 2018a)
and the thicknesses of Europa’s and Ganymede’s ice shells
(Wahr et al. 2006; Kamata et al. 2016).
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Our understanding of the interior of theMoon has recently
greatly improved through a re-analysis of seismic data from
the Apollo era (Weber et al. 2011; Garcia et al. 2011) and the
Gravity Recovery and Interior Laboratory (GRAIL) mission
which determined the gravity field, the moment of inertia,
and k2 with unprecedented accuracy (Zuber et al. 2013). Fur-
thermore, the lunar h2 has been determined by Lunar Laser
Ranging (LLR, Williams et al. 2013; Pavlov et al. 2016;
Viswanathan et al. 2018 and by laser altimetry (Mazarico
et al. 2014), making the Moon the only planetary body other
than Earth, for which measurements of both h2 and k2 exist
(Fig. 1).

Williams et al. (2014) created a family of lunar interior
models which satisfy all GRAIL-based geodetic parameters,
including in particular the value of the k2 Love number with
a quoted uncertainty of 0.9%. At the same time, they retained
the density profile derived from seismic constraints byWeber
et al. (2011), but adjusted inner and outer core radii and the
radius of the low-velocity zone in the lowermantle. Allmem-
bers of this model family give h2 = 0.0424. Because h2
and k2 are closely related, in particular for an object with
a small core and rather uniform mantle density, this value
represents arguably the best available estimate for the lunar
h2. Three groups which determined h2 from LLR (Williams
et al. 2013; Pavlov et al. 2016; Viswanathan et al. 2018) each
used slightly different data sets and their own ephemerides.
Williams et al. (2013) first incorporated the new gravity field
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Fig. 1 Love number h2 results
and their accuracies from this
study and literature values.
Williams et al. (2014) do not
report an accuracy, but we
assume a linear propagation of
the 0.9% error of their observed
k2 value. For planets such as the
Moon, with a small core and
fairly uniform density in the
mantle, h2 and k2 are rather
tightly related

and k2 results from the GRAIL mission into their DE430
ephemerides to find h2 = 0.0476 ± 0.0064. Pavlov et al.
(2016) notably compared two different Earth tidal models
and found h2 = 0.0430±0.0010 and h2 = 0.0410±0.0010
for the DE430 model and a model recommended by the
International Earth Rotation and Reference Systems Service
(IERS), respectively. Viswanathan et al. (2018) first pre-
sented results including new infrared LLR data and found
h2 = 0.0439±0.0002.Mazarico et al. (2014) used altimetric
data and a method where the radial displacement is deter-
mined through interpolation of intersecting ground tracks at
crossover points which yields h2 = 0.0371± 0.0033. There
are thus significant differences between the h2 value derived
from k2 measurements (Williams et al. 2014; Williams and
Boggs 2015) and the results of LLR (Williams et al. 2013;
Pavlov et al. 2016; Viswanathan et al. 2018) on the one
hand, and the h2 value derived from laser altimetry using
the crossover method (Mazarico et al. 2014) on the other
hand, as also previously noted by Matsumoto et al. (2015)
and Harada et al. (2016).

This study uses laser altimetry to determine the lunar h2,
but instead of relying on crossover points it applies a different
method which simultaneously solves for h2 and coefficients
which represent the global topography of the Moon on an
equirectangular grid, as originally proposed by Koch et al.
(2008, 2010). The parameterization of the topography into
2D cubic B-splines provides an advantage over themethod of
Koch et al. (2010) who only used cubic splines in longitude
direction.

For the retrieval of h2, we use data from the Lunar Orbiter
LaserAltimeter (LOLA).LOLA is amulti-beam laser altime-
ter with a ground pattern of five spots with a distance of
approximately 25m from each other. The primary objective
of LOLA is the generation of topographic maps of the lunar
surface with appropriate resolution and accuracy for future
robotic and human exploration (Smith et al. 2010a). Laser

pulses are fired at a frequency of 28Hz. While the measure-
ment precision on a flat surface is 10 cm (Smith et al. 2017),
knowledge of the spacecraft position and orientation limit
the radial accuracy to about 1m (Mazarico et al. 2018). For
a review of LOLA’s achievements see Smith et al. (2017).
LOLA is a payload of the Lunar Reconnaissance Orbiter
(LRO), which has been orbiting the Moon since June 2009.
From September 2009 to December 2011, it was in a near-
circular 50 km mapping orbit and entered an elliptical orbit
afterward (Mazarico et al. 2018).

On other solar systembodies, such asMercury (vanHoolst
et al. 2007; Steinbrügge et al. 2018a), Ganymede (Moore and
Schubert 2003; Jara-Orué and Vermeersen 2016; Kamata
et al. 2016; Kimura et al. 2019), and Europa (Moore and
Schubert 2000; Wahr et al. 2006; Steinbrügge et al. 2018b),
h2 might be retrievablewith a higher accuracy due to stronger
tides, with amplitudes on the order of one to several meters
compared to 15 cm at the Moon. With increasing accuracy,
tighter constraints can be emplaced on the respective inte-
rior structures. Due to the lack of seismic data and highly
accurate k2 measurements from dedicated gravity missions
like GRAIL on those bodies, a determination of h2 is cru-
cial. Futuremissions strive to detect the body tide ofMercury
(BepiColombo; Koch et al. 2008, 2010; Thor et al. 2020) and
Ganymede (Jupiter Icy Moons Explorer Steinbrügge et al.
2015; Steinbrügge et al. 2019) by laser altimetry.

The goal of this study is thus twofold: Further constrain the
lunar h2; and demonstrate the utility of the applied method
for future application to other solar system bodies.

2 Theory

The tidal potential at any point on the surface of the Moon
due to the Earth is given by (Murray and Dermott 1999)
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V2,tot(θ, λ, t) = −μEarthR2

2r3(t)
(3 cos2 ψ(θ, λ, t) − 1), (1)

where μEarth = 398,600.435436 km3s−2 (Folkner et al.
2014) is the gravitational parameter of the Earth, R =
1737.4 km (Archinal et al. 2018) is the radius of the Moon,
r is the distance between the centers of mass of the Earth
and the Moon, ψ is the Moon-centric angle between the
point on the surface and the center of mass of the Earth, θ is
colatitude, λ is longitude, and t is time. Eq. 1 only considers
the second degree of the potential because each higher degree
is smaller by a factor R/r ≈ 220.Using precise ephemerides,
r(t),ψ(θ, λ, t), and subsequently V2,tot(θ, λ, t) can be deter-
mined to high accuracy for any given location on the Moon’s
surface. Figures 2 and 3 show the tidal potential as a func-
tion of time and its range over the period of the LRO
circular orbit phase, from which measurements are used
in this study, considering also the potential exerted by the
Sun from the analog description to Eq. 1 using μSun =
132,712,440,041.9394 km3 s−2. The potential exerted by
the Sun is about 70 times weaker than the potential exerted
by the Earth. The asymmetry in Fig. 3 is due to the integra-
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Fig. 2 The tidal potential at selected locations on theMoon as a function
of time, computed from Eq. 1 using the DE421 ephemerides (Williams
et al. 2008)

Fig. 3 The range of the tidal potential exerted on the Moon by the
Earth at each location on the surface over the period of the LRO circular
orbit phase (September 2009 to December 2011), computed using Eq. 1
and the DE421 ephemerides (Williams et al. 2008). The determination
of the range uses a time discretization of 105 s. The equivalent radial
tidal displacements are computed with Eq. 9 assuming h2 = 0.0371
(Mazarico et al. 2014)

Fig. 4 The static component of the tidal potential computed using the
analytical approximation of Eq. 6

tion time of 2.24years, which is short compared to the axial
precession period of 18.6years.

Kaula (1961, 1964) transformed Eq. 1 into Keplerian ele-
ments. Then, using the fact that theMoon is in a 1:1 spin–orbit
resonance with Earth, the tidal potential can be written as

V2,tot(θ, λ, t) = −μEarthR2

a3
( f1P20(cos θ)

+ f2P22(cos θ) cos(2λ)

+ f3P22(cos θ) sin(2λ)) , (2)

where

f1 = −1

2

∞∑

q=−∞
G21q(e) cos(qM(t)) (3)

f2 = 1

4

∞∑

q=−∞
G20q(e) cos(qM(t)) (4)

f3 = −1

4

∞∑

q=−∞
G20q(e) sin(qM(t)), (5)

a is the semi-major axis, e is the eccentricity, Plm are the
unnormalized associated Legendre polynomials of degree l
and order m, Glpq(e) are eccentricity polynomials given by
Kaula (1961), Eqs. 23–26, and M(t) is the mean anomaly
of the Earth in its orbit around the Moon. The derivation of
Eq. 2 neglects the 6.7◦ obliquity of the Moon with respect to
its orbital plane (Ward 1975).

Because of the locked rotation of the Moon, the tidal
potential can be decomposed into a static and a dynamic
part. The static part can be obtained either from a spectral
analysis of a numerical evaluation of the tidal potential over
long periods of time or from regarding the q = 0 component
of Eqs. 2–5. The latter gives a time-independent component

V2,stat(θ, λ, t) = −μEarthR2

a3

(
−1

2
G210(e)P20(cos θ)

+ 1

4
G200(e)P22(cos θ) cos(2λ)

)
. (6)
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This analytic approximation to the static component of the
lunar tidal potential is shown in Fig. 4 for a = 384,400 km
and e = 0.0554 (Standish 2001). Slightly different solutions
are obtained from numerical evaluations, depending on anal-
ysis method and evaluation period.

The dynamic part of the lunar tidal potential

V2,dyn = V2,tot − V2,stat (7)

derives from the eccentricity of the Moon’s orbit, its obliq-
uity, its non-uniform rotation, and solar tides. Its frequency
spectrum lies in the range of days to several years, with the
highest amplitude at the 27.2 dmonthly period (Williams and
Boggs 2015).

The Love numbers characterize the response of the planet
to the tidal potential exerted on it by other celestial bodies.
The k2 Love number describes the resulting secondary grav-
itational potential

V ′(θ, λ, t) = k2V2(θ, λ, t) (8)

caused by internal mass re-distribution due to tidal forcing.
The h2 Love number describes the radial displacement of the
surface

ur(θ, λ, t) = h2
V2(θ, λ, t)

g
, (9)

where g = μMoon/R2 = 1.62ms−2 is the gravitational
acceleration at the surface andμMoon = 4902.800066 km3s−2

is the gravitational parameter of the Moon (Folkner et al.
2014). The Love numbers are functions of the spatial distri-
bution of material properties in the planet’s interior and can
be computed from radial profiles of density, shear modulus,
and viscosity (Segatz et al. 1988; Moore and Schubert 2000).
Equations 8 and 9 are the simplest description of tidal defor-
mation and neglect viscoelasticity, lateral heterogeneities,
and the frequency dependence of the Love numbers. A more
detailed description would use different Love numbers for
each of the frequency components in the tidal potential.
However, most of the power of the tidal potential is concen-
trated within a tight band around the 27.2 d monthly period,
as is evident from Eq. 2, when considering that terms with
|q| > 1 are second-order effects in eccentricity. Therefore,
the descriptions in Eqs. 8 and 9 with a single Love number,
which have been frequently applied in previous studies (e.g.,
Mazarico et al. 2014), are good approximations to the real
secondary gravitational potential and radial surface displace-
ment.

A special case of the frequency dependence of the Love
numbers is the reaction at zero frequency.When inserting the
dynamic potential V2,dyn as V2 in Eq. 9, the resulting radial
displacement is the tidal deformation with a maximum peak-
to-peak amplitude< 30 cm (Fig. 3). When inserting the total

potential as V2 in Eq. 9, while using the same h2 valid for
the tidal frequency band, the resulting radial displacement
would contain an additional static bulge with a maximum
deformation of∼ 50 cm, proportional to the potential shown
in Fig. 4. The actual deformation of the Moon in response to
the static component of the tidal potential is of course much
larger, because this forcing acts at a much larger time scale,
where the Moon reacts as a fluid. It cannot be described by
the same h2 Love number used to express deformation in
the tidal frequency band. Furthermore, the actual static tidal
bulge of the Moon was frozen in early in its history when
the Moon was on a closer orbit and had a weaker lithosphere
(Keane and Matsuyama 2014; Qin et al. 2018).

3 Methods

We simultaneously extract the lunar solid body tide and the
static global topography. A single LOLA observation of the
topographic elevation consists of the static, time-invariant
topography Tstat at that location, the radial displacement ur
of the surface due to tides at time tk (Eq. 9), andmeasurement
and model errors, contained in the term ek :

Tk(θk, λk, tk) = Tstat(θk, λk) + ur(θk, λk, tk) + ek . (10)

Here, k = 1, ..., K is the index of the individual topographic
observations, of which there can be up to 5 per laser shot.
Modeling the topography only serves the purpose of remov-
ing it from the measured signal and limiting the size of the
error term ek . Accurate models for the topography of the
Moon that are suitable for further analysis are available from
LOLA data (Smith et al. 2010b) and from LOLA and pho-
togrammetric data (Barker et al. 2016).

The static part of the topography is usually simply referred
to as the shape of the Moon. Here, we parameterize the static
topography as an expansion in 2D cubic B-spline basis func-
tions. The expansion can be written as

Tstat(θk, λk) =
I∑

i=1

J∑

j=1

ci j Si j (θk, λk)

where Si j are the spline basis functions depending on posi-
tion, ci j are their coefficients, and I and J are the number
of splines that are used in latitude and longitude direction,
respectively, with N = I · J being their total number. For
the definitions of the spline functions Si j , see Koch et al.
(2010), Eq. 9, 11, 14–17. 2D cubic B-spline basis functions
have the property that at any point (θk, λk) on the surface,
only 16 functions are nonzero. The splines are defined on
the equirectangular projection of the spherical surface onto
a (θ, λ)-plane. Each spline function is centered at one grid
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point (i, j) on the map and is nonzero in the two adjacent
grid intervals in longitude and latitude in both directions.
The projections of the grid cells back onto the sphere are
squares at the equator (J = 2I ) and evolve over trapezoids
in higher latitudes to triangles right at the poles. Approaching
the poles, the splines become shorter in longitudinal direc-
tion, while staying the same length in latitudinal direction.
However, the usage of an equirectangular projection is nec-
essary to accommodate the 2D cubic B-spline basis functions
on a sphere and to provide an efficient computation scheme
(Koch et al. 2010). Any topographic signal with awavelength
smaller than the grid cell size 360◦/J cannot be modeled
by the splines and contributes to the model error term ek .
Our approach is to assume that the topography at smaller
scales is independent and identically distributed (i.i.d.). The
parameterization using 2D cubic B-splines is advantageous
over, e.g., a spherical harmonic expansion because locality
is retained while still allowing for a high smoothness of the
solution. Additionally, an expansion in spherical harmonics
would be computationally too expensive (Koch et al. 2010).
Our method is an improvement over that developed by Koch
et al. (2010), who used cubic splines only in longitudinal
direction and step functions in latitudinal direction. Their jus-
tification for using step functions in latitudinal direction was
the denser data coverage in that direction and a reduction in
computational cost. However, seeing that using cubic splines
instead of step functions in longitudinal direction provided a
crucial improvement for their retrieval accuracy of h2, they
recommended doing the same in latitudinal direction in a
further study. As the involved computational challenge has
become manageable by now, we apply cubic splines, which
are smooth enough to model planetary topography well, in
both coordinate directions.

We gather the spline coefficients ci j and h2 in a parame-
ter vector x and use a least-squares adjustment to solve the
observation equation (Eq. 10) for x. The resulting normal
equation system is highly sparse, band-structured, and has
N + 1 equations and 51N + 1 nonzero elements, which can
be reduced to 26N + 1 elements due to symmetry. Because
of the inhomogeneous coverage of the lunar surface with
measurements, it can occur that some grid cells are poorly
sampled or not sampled at all. Such data gaps cause insta-
bilities in the solution. The linear inverse ill-posed problem
must therefore be regularized, minimizing

(Ax − T )�(Ax − T ) + αx�Rx

in a least-squares sense, where the vector T contains the K
observations Tk , A is the design matrix derived from Eq. 10,
α is a regularization parameter, and R is the regularization
matrix which constrains the adjustment by minimizing the

second derivative of the topography at the grid points (θi , λ j )

∇ · ∇Tstat(θi , λ j )

=
i+1∑

r=i−1

j+1∑

s= j−1

crs∇ · ∇Srs(θi , λ j )

=
i+1∑

r=i−1

j+1∑

s= j−1

crs

(
∂2

∂θ2
Srs(θi , λ j )

+ 1

sin2 θ

∂2

∂λ2
Srs(θi , λ j )

)
. (11)

In Eq. 11, we have applied a Cartesian Laplace operator with
a correction term for the change of cell width as a function
of latitude for simplicity. The estimated parameters are given
by

x̂ = (A�A + αR)−1A�T (12)

and the adjustment residuals are

ê = T − Ax̂. (13)

The regularization enables a trade-off between smoothing the
topography solution and minimizing the inevitable biases in
the results. The bias can be approximated as (Xu 1992)

bias(x̂) ≈ (A�A + αR)−1αRx̂, (14)

where x̂ is the biased parameter solution. We apply random-
ized generalized cross-validation (Kusche and Klees 2002)
to determine the regularization parameter causing the lowest
bias, and find that it is always the smallest possible regu-
larization parameter that still stabilizes the normal equation
matrix enough for it to be solvable. The value of the smallest
possible α depends on both, the number of observations K ,
and the number of parameters N . We empirically derived the
relation α ≈ 10−8K/N , which simplifies the cumbersome
procedure of determining an optimal regularization for each
pair of N and K . Computing the estimated bias from Eq. 14
for each solution assures us that the chosen regularization
was not too strong. To compromise between obtaining an
unbiased h2 result and a smooth topography solution, we set
α = 10−3K/N . While this represents a stronger regulariza-
tion than required for a stable solution, it does not cause any
significant bias on the final h2 result (see Sect. 5.4). A parallel
direct sparse solver solves the normal equation system.

To determine the formal accuracy of the resulting h2 value,
we estimate its variance from the adjustment residuals. The
variance of unit weight (e.g., Xu et al. 2006) can be estimated
from the adjustment residuals as

σ̂ 2 = 1

K − (N + 1)
ê� ê.
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The estimated covariance of estimated parameters is then
given by

Q̂x̂ = σ̂ 2(A�A)−1. (15)

The normal equationmatrix actually used in the computation
of the covariance augments A�A by the regularization term
αR. Since this regularization is small, its influence on the
variance is negligible.

In the context of this study, it is irrelevant for the esti-
mation of h2, whether the dynamic or total potential (or, in
fact, the dynamic potential plus any constant term) is used in
Eq. 9. This is because h2 is the only parameter in our model
that is sensitive to temporal variations. Whether the defini-
tion of the tidal deformation ur includes some of the static
topography (namely the aforementioned ∼ 50 cm bulge) or
not, only affects the parameters that model the static topogra-
phy, but the result for h2 will be the same in both cases. The
static effect contained in the time-dependent topography is an
extremely smooth global signal (see Fig. 4) and therefore can
be described precisely by the high-resolution parameteriza-
tion of the static topography Tstat. In this study, we have used
both the total and the dynamic potential. LikeMazarico et al.
(2014), we have computed the total potential caused by the
Earth and the Sun from the DE421 ephemerides and masses
as given by Spacecraft, Planet, Instrument, Camera-matrix,
Events (SPICE) kernels (Williams et al. 2008; Acton et al.
2018). To compute the dynamic potential, we have subtracted
the analytic approximation of Eq. 6 shown in Fig. 4. Both
approaches have yielded identical results for h2, but topog-
raphy results which differ by the ∼ 50 cm time-invariant
part. In order to compare the static topography derived from
the total potential with other topographic models, one would
have to correct for this missing part by adding the displace-
ment caused by the static part of the tidal potential first.

Only data which are located in a region containing
measurements from different tidal phases contribute to the
determination of h2. These regions usually, but not neces-
sarily, contain one or multiple crossovers. With finer grid
resolution, the size of these regions, and thereby the amount
of contributingmeasurements, decreases.Measurements out-
side of such regions do not contribute to the determination
of h2, but they do not bias it either, because they have suffi-
cient freedom to fit any value of h2. Only in the theoretical
case where no sufficiently small regions with measurements
of different tidal phases exist, will the topography coeffi-
cients attempt to model the tidal signal and cause a bias in
the h2 result. This would be the case when the grid cell size
is smaller than the typical shot-to-shot distance.

4 Data

We work with a subset of the over 7 × 109 range mea-
surements that have been recorded and published on the
Planetary Data System (PDS, Neumann 2009a). As a first
filtering step, we only include LOLA shots within a pre-
defined topographic range of ±13 km and observed at solar
phase angles of < 90◦. This ensures that extreme outliers in
height and LOLA shots that were recorded during the night
where the so-called LOLA thermal blanket anomaly occurs
do not enter the evaluation (Smith et al. 2010b, 2017). As
a second step, we divide the surface of the Moon in 16 tiles
and for each derive a coarse 400m/pixel LOLA Digital Ter-
rain Model (DTM) compiled from all available tracks from
all mission phases. Each track is then co-registered to the
16 tiles (Gläser et al. 2013, 2018). At each tile, we sort
out the entire track segment if the mean height difference
or the standard deviation to the DTM tile is > 100m or if
less than 500 points were co-registered to the tile. As a third
step, to ensure a homogeneous spatial distribution, we select
onlymeasurements from the near-circular orbit phase ofLRO
extending over the 27months between September 2009 and
December 2011 (orbit numbers 1005–11,403), when LOLA
achieved global data coverage. As a fourth step, we run a first
adjustment as described in Sect. 3. Visual inspection of the
spatial distribution of adjustment residuals ê (Eq. 13) reveals
five further outlier orbits (orbit numbers 1803, 2351, 7756,
10,302, 11,226) which we removed for a remaining total of
K = 3,686,466,983 measurements from 10,016 orbits.

5 Results

5.1 Complete data set

First, we use the complete data set to assess the sensitivity
of the h2 estimate on the resolution for the static topography
by varying the number N of base spline functions. Results
for resolutions between 5 and 31 grid points per degree are
shown in Fig. 5. For example, a resolution of 16 grid points
per degree needs N = 2I 2 = 2 · (16 · 180)2 = 16, 588, 800
splines and is equivalent to a cell size of 1.9 km · 1.9 km
at the equator. Results for h2 from low-resolution models
scatter widely, but this scatter decreases drastically at high
resolutions. The maximum resolution is limited by the com-
putational expense. Any topographic signal at smaller scales
than the distance between two grid points cannot be modeled
and contributes to the model error ek of a specific mea-
surement Tk . A resolution of five grid points per degree
corresponds to 6.1 km ·6.1 km at the equator. The increase in
themodel errorwith decreasing resolution is also reflected by
the increase in the formal error ofh2 (Eq. 15), from3×10−4 at
31 grid points per degree to 0.0014 at 5 grid points per degree.
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Fig. 5 Love number h2 from complete data set (blue) and reduced data
set, only using every sixth data point (red), as a function of resolution of
the topographic grid. For better visibility, data points are plotted with a
slight offset from the integer value for resolution. The error bars indicate
the formal error of the adjustment. The blue horizontal line and shaded
area show the weighted mean and uncertainty of the results from the
complete data set

These formal errors are clearly smaller than the variation of
the results with changing resolution. They are therefore to be
understood as an indication of precision rather than of accu-
racy. From the decrease in both scatter and formal uncertainty
with increasing resolution, it becomes clear thatmodeling the
topography at high resolution is necessary to achieve reliable
results.

To obtain an additional check on the results, we compute
the residuals of the adjustment ê (Eq. 13). We then compute
the root mean square (RMS) of the residuals over one grid
cell and display the result in Figs. 6 and 7 for two regions of
the lunar surface. Regions with a smooth topography, such
as maria and crater plains, show small adjustment residuals,
whereas high values are found in rougher regions, such as the
highlands in general, crater rims, and small craters within the
maria. The residuals depend on the resolution of the topogra-
phy. The RMS residual decreases from 111 m at a resolution
of 5 grid points per degree to 9.1 m at a resolution of 31 grid
points per degree (see also Fig. 8). Dedicated DTMs obtain
lower residuals with respect to the LOLA measurements.
For example, SLDEM (Barker et al. 2016) achieves RMS
vertical residuals of ∼ 3 m. This is possible because of their
much higher resolution of 512 pixels per degree.With a∼ 16
times coarser resolution, we achieve a residual that is only
∼ 3 times larger. This indicates that our spline model for the
topography fits the LOLA measurements very well.

We also compare our topographic solution with a DTM
derived from laser altimetry (Figs. 6, 7). Again, we notice a
correlationwith the smoothness of the terrain. The two terrain
models agreewell in smooth terrain and have larger disagree-
ments in rougher terrain, where the impact of the choice of
interpolation methods is large. The global RMS difference
between the two models is 61m and the mean difference is
46 cm. We emphasize that the topographic model produced
in this study is merely a by-product. It serves to show a good

Fig. 6 Top: Topography overlain by a hillshade. Middle: RMS of the
adjustment residuals at a resolution of 16grid cells per degree, computed
over one grid cell. The global RMS residual is 24.8 m at this resolution.
Bottom: Difference between the topography of the LOLAGriddedData
Record (GDR) V2 data set (Neumann 2014) and the topography model
derived in this study at each 1/16◦ · 1/16◦ grid cell. The color gray
indicates grid cells without measurements. For clarity, only a region on
the lunar surface is shown

agreement with the actual topography of the Moon. For fur-
ther geological or geophysical analysis, we recommend the
usage of dedicated terrain models such as SLDEM (Becker
et al. 2016) or the LOLA GDR (Neumann 2014).

5.2 Reduced data set

To carry out tests on synthetic data for further characteriza-
tion of the error sources, we first define a reduced set of real
data containing only every sixth measurement. It consists
of 614,411,186 measurements while maintaining a represen-
tative geometry and distribution of used receiver channels.
Again, we solve for h2 and vary the resolution of the topo-
graphic grid (Fig. 5), revealing a difference with respect to
the complete data set of ≤ 1.5 × 10−4 for h2 and a for-
mal error that is larger by a factor of approximately 2.5. The
detection of tidal displacement with an amplitude� 10 cm in
the presence of much larger adjustment residuals and RMS
differences to topography models is only possible due to the
large amount of observations and the time-dependence of the
tidal signal.
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Fig. 7 Like Fig. 6, but for different region on the Moon centered at
35◦ N, 20◦ E

Fig. 8 Histogram of the K = 3,686,466,983 adjustment residuals ê
for different resolutions of the topographic model

5.3 Synthetic data set

We synthetically generate 100 datasets that use the actual
footprint positions and epochs of the reduced dataset and
simulated topography measurements. This allows the evalu-
ation of the actual measurement geometry in the most direct
way. Since the difference between the results of the com-
plete and the reduced datasets is small, conclusions drawn
from a reduced synthetic dataset can be applied to the com-
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Fig. 10 Power spectra of the topography of the Moon from the LOLA
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l = 300 to l = 7999 (yellow). The simulated spectrum is constrained
by a power law which fits the LOLA SHADR power spectrum from
l = 300 to l = 2050, the maximum degree of the spherical harmonic
expansion of the LOLA SHADR. The difference between the LOLA
SHADR and SLDEM spectra is barely discernible below l ≈ 1000

plete dataset. Each simulated measurement consists of four
parts:

1. A spherical harmonic model of the observed lunar topog-
raphy up to degree 299 (equivalent to a resolution of
18.2km at the equator).We use the LOLASHADRmodel
exclusively using LOLA data (Neumann 2009b; Smith
et al. 2017). We also calculated a power spectrum from
the SLDEM by complementing it with the LDEM (Neu-
mann 2014) at latitudes polewards of 60◦. Their power
spectra are very similar up to l ≈ 1000 (Fig. 10).

2. A synthetic spherical harmonic model of the lunar topog-
raphy from degree 300 to 7999 (equivalent to a resolution
of 680m at the equator) according to a power law alb. The
coefficients of the power law are chosen as a = 3×109 m2

and b = −2.8 to approximate the observed topography
at higher degrees and to allow at the same time to vary its
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detailed structure for test purposes (Fig. 10). Each spheri-
cal harmonic coefficient of degree l is randomly generated
according to a normal distribution with zero mean and
variance σ 2 = alb(2l + 1)−1. We do not extend the
synthetic model to higher degrees than 7999 due to the
computational expense. The spherical harmonic model is
transformed into the spatial domain (Schaeffer 2013) and
sampled at the laser spot coordinates using second-order
Lagrangian interpolation.

3. The lunar topography at the smallest scales generated
using Gaussian process regression. Each measurement’s
expectancy and variance are computed based on the
topography values of previous nearby measurements and
reflect the measurement error and the power contained
in the topography at smaller scales than in the spherical
harmonic model. The expectancy and variance are given
as SUK S−1

KK T ss and σ 2
ss + σ 2

re − SUK S−1
KK S�

UK , respec-
tively, where T ss are the small-scale topography values
of previous observations, SKK is the covariance matrix
of previous observations, SUK is a vector containing the
covariances between the new and all previous observa-
tions, σ 2

ss is the variance of the small-scale topography,
and σre is the range error. The covariance is assumed
isotropic and following aMatérnmodel. TheMatérn class
of covariance functions provides a flexible description
(Matérn 1986; Handcock and Stein 1993; Guttorp and
Gneiting 2006; Guinness and Fuentes 2016). It is given
by

cov(ψ) =

⎧
⎪⎨

⎪⎩

σ 2
ss + σ 2

re, if ψ = 0

σ 2
ss
21−ν

Γ (ν)

(
2
√

ν

ρ
ψ

)ν

Kν

(
2
√

ν

ρ
ψ

)
, if ψ > 0,

where ψ is the spherical distance between the two
observations, ν is the smoothness parameter, ρ is the
decorrelation distance, Γ is the gamma function, and Kν

is themodified Bessel function of the second kind of order
ν. Its spectral form

Ml = σ 2
ss

Γ (ν + 1
2 )√

πΓ (ν)(2l + 1)

(
4ν

ρ2

)ν (
4ν

ρ2 + l2
)−ν− 1

2

is asymptotic to a power lawwith exponent b = −2(ν+1)
for large l (Guinness and Fuentes 2016). We assume
σre = 1m for the LOLA range error (Mazarico et al.
2018). The topographic power at small scales is obtained
by an integration of the power law from l = 8000 to
infinity and amounts to σss = 12.6m. We derive the
smoothness parameter ν = 0.4 from the power law expo-
nent b = −2.8 to be consistent with the assumption made
for the large-scale topography. For the decorrelation dis-
tance, the resolution of the spherical harmonic model in
the latitudinal direction 0.01125◦ (341m) is assumed.
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Fig. 11 RMSE and bias of h2 obtained from 100 synthetically gener-
ated data sets using the footprint positions of the reduced data set, as a
function of the resolution of the topographic grid

We only consider previous measurements of the same
ground track to significantly reduce the computational
load by ignoring the correlation of the small-scale topog-
raphy between different ground tracks. Due to the linear
nature of the locations of known footprints that are consid-
ered, the expectancy andvariance of the newmeasurement
mostly depends on a handful of previous measurements.
We consider all previous measurements with a covariance
cov(ψ) ≥ 10−3σ 2

ss, which is reached for at most 47 obser-
vations.

4. The radial displacement due to tides (Eq. 9) using an a
priori h2 of 0.04.

We determine h2 from each of the 100 synthetically gen-
erated sets of 614,411,186 measurements, which are based
on the reduced data set. From the 100 results, we com-
pute the root-mean-square error (RMSE) which describes
the spread around the a priori value for h2. The RMSE gen-
erally decreases with increasing resolution (Fig. 11), from
0.0238 at 5 grid points per degree and reaching a minimum
of 0.0014 at 30 grid points per degree. We also compute
the bias, defined as the difference between the mean of the
results from the 100 realizations and the a priori value for
h2, and find that it ranges from − 0.0017 to 0.0023. How-
ever, the fact that the bias spreads evenly around zero for
different resolutions, with a mean of − 0.0003 and a stan-
dard deviation of 0.0009, indicates that it is caused rather by
the specific geometry associated with a certain grid resolu-
tion, than by the data themselves. The observed bias likely
originates from ignoring the autocorrelation of topography
betweenmeasurements of different tracks, as this causesmis-
matches of several meters within the crossover region. We
tested this statement by simulating both cases, considering
and ignoring the mutual correlation of different tracks, for a
single crossover. The recovery of a constant offset between
the two tracks, representing a time-dependent signal, yields
a bias which is ∼ 30 times larger in the case without mutual
correlation after averaging the results of 100 random real-
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izations. This supports that the observed retrieval bias from
synthetic data is only an artifact of the pessimistically sim-
plified simulation and should not be present in the results
obtained from real data.

The formal errors of the complete dataset, which indicate
the precision of themeasurement, always remain smaller than
the RMSE obtained from the synthetic data set. Due to the
simplified simulation of small-scale topography and neglect
of other potential error sources, the RMSE still provides an
overly optimistic measure of accuracy of the results obtained
from real data. However, it gives an indication of the depen-
dence of the h2 accuracy on the resolution of the topographic
grid.

5.4 Final h2 result

We use the inverse square of the RMSE as weights to com-
pute a weighted mean and weighted standard deviation of
the h2 values obtained from the complete data set for each
resolution from 5 to 31 grid points per degree, resulting in
h2 = 0.0387±0.0016,where the error bar indicates one stan-
dard deviation. This value captures the accuracy indicated
by the scattering h2 results for different resolutions. We add
to this weighted standard deviation the standard deviation
of the bias obtained from the synthetic data set, 0.0009, in
order to incorporate the additional uncertainty this implies.
This results in a final h2 = 0.0387 ± 0.0025. This result is
robust with respect to the chosen topography resolutions. For
example, considering resolutions from 11 to 31 grid points
per degree leads to a final h2 = 0.0387 ± 0.0021.

6 Discussion

Figure 1 compares the result of this study with results from
previous studies. The result obtained in this work is in
agreement with a previous study using LOLA data and the
crossover method (Mazarico et al. 2014). This demonstrates
that the method presented in this study is capable of repro-
ducing results achieved using the same data set.

However, neither of the LOLA-based values agree with
the result from lunar interior structure models constrained
by the Love number k2 (h2 = 0.0424, Williams et al. 2014)
within their respective error bars. On the one hand, this could
indicate deficiencies in the LOLA data or their processing.
Unaccounted perturbations due to thermal or instrumental
effects acting at the tidal frequencyof 27.2 dmaycause biases
in the results.While themethod presented in this study excels
at filtering out random noise due to the large amount of mea-
surements, such systematic errors would bias the result. On
the other hand, the discrepancy could also indicate problems
with the GRAIL measurements of k2 or the modeling.

LLR as a different range measurement technique cannot
alleviate this problem either. Three different studies have
used different sets of LLR data, ephemerides, and tidal mod-
els to retrieve h2 (Williams et al. 2013; Pavlov et al. 2016;
Viswanathan et al. 2018), but only the result of Williams
et al. (2013) with its large error bar and the result of Pavlov
et al. (2016) using the Earth tidal model of Williams et al.
(2013) agree with the modeling result based on k2 (Williams
et al. 2014). In total, the differences between the various
h2 results from LLR are larger than the uncertainty of h2
retrieved from LOLA data. Viswanathan et al. (2018) needed
to treat low-degree coefficients of the lunar gravity field as
free parameters in order to be able to fit a lunar interior model
to their LLRmeasurements. Thismay also indicate a low reli-
ability of the k2 result by GRAIL, which could potentially
explain the discrepancy between the h2 result of this study
and the modeled result of Williams et al. (2014).

Laser altimetry is more sensitive than LLR to the radial
tidal displacement itself (Mazarico et al. 2014). One possible
issue with the retrieval of h2 from LLR is that all mea-
surements are taken on the near side of the Moon. If the
hemispheric dichotomy of the Moon’s surface (e.g., Wiec-
zorek et al. 2006) extends into the elastic properties in its
interior, a Love number determined using only near-side
measurements could be biased (Zhong et al. 2012). LLR
determination of solid body tides may also be biased by ther-
mal expansion of retroreflectors on theMoon and the regolith
which acts on monthly frequencies and has an amplitude in
the millimeter range (Williams and Boggs 2015).

The crossovermethod employed byMazarico et al. (2014)
has previously been the only method to successfully deter-
mine h2 of any planetary body from laser altimetry and has
also found wide application in simulations (Mazarico et al.
2010, 2015; Steinbrügge et al. 2015, 2018c; Hussmann et al.
2016). However, a disadvantage of that method is that in a
near-polar orbit, crossovers occur mainly at high latitudes
where the tidal signal is weaker than at the equator. Both
on the Moon and on Mercury, the tidal displacements at the
poles are up to ∼ 70% weaker than at low latitudes. Further-
more, if a single-beam laser altimeter were to be used, the
grazing angles at which the few crossovers at lower latitudes
occur would be unfavorable for an accurate retrieval (Koch
et al. 2008; Mazarico et al. 2014). Fortunately, this limitation
does not affect multi-beam laser altimeters like LOLA. How-
ever, the upcomingBepiColomboLaserAltimeter (BELA) at
Mercury (Thomas et al. 2007; Hussmann et al. 2018; Thomas
et al. 2019) and Ganymede Laser Altimeter (GALA, Kimura
et al. 2019; Hussmann et al. 2019) will be single-beam laser
altimeters. Furthermore, the amount of crossovers of these
missions will be limited by larger orbital periods and short
mission durations due to hostile radiation environments. In
the case of BELA, another limitation is the lower pulse rep-
etition rate of only 10Hz (Kallenbach et al. 2013). Using
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the reduced data set, we have achieved a result that differs
by less than 1% when omitting 83.3% of the data, which is
promising with respect to future application of the presented
method to experiments which provide smaller data sets than
LOLA.

The resolution of the topography achieved by an expan-
sion in spherical harmonics is significantly lower than the
resolution achieved here.While Koch et al. (2008) and Stein-
brügge et al. (2019) solved to spherical harmonic degree
L = 64 and L = 60, equivalent to a lunar topographic
resolution of 85 or 91 km, respectively, the splines used in
this study can resolve topography down to scales of 0.98 km.
However, the crossover method interpolates topography over
the even smaller scale of the shot-to-shot distance, which is
approximately 25 m (Mazarico et al. 2010).

For the solution, we had to make the assumptions that the
error term ek , which is dominated by the unmodeled small-
scale topography, is uncorrelated and has equal variance. In
practice, these assumptions are violated because topography
at the typical spot-to-spot distance of ∼ 25 m is correlated
and the variance is expected to be significantly lower in
regions with smoother topography because the spline model
can better fit smooth topography. However, when generating
synthetic measurements, we take the correlation of small-
scale topography into account, and still obtain a high retrieval
accuracy for the h2 results. Small-scale topography down to
a wavelength of ∼ 680 m is synthetically generated as cor-
related topography by the spherical harmonic model with
degree L = 7999. Gaussian process regression models the
autocorrelationof topography at even smaller scales. Thebias
obtained when evaluating synthetic measurements is likely
due to the incomplete consideration of the correlation of
small-scale topography, which is a pessimistic assumption.
Since neglecting the autocorrelation of topography in the
solution produces satisfactory results using synthetic data,
the same should be the case using real data.

7 Conclusions

Koch et al. (2008, 2010) developed amethod for the retrieval
of h2 from laser altimetry data which does not use crossovers
directly, but instead solves simultaneously for the global
topography and h2 in a least-squares adjustment. This study
advances this method further by implementing 2D splines
as basis functions and making the solution strategy more
robust. Koch et al. (2008, 2010) tested theirmethod onlywith
synthetic data. Here, we apply it for the first time to actual
data, choosing the enormous dataset produced by LOLA.
The result of h2 = 0.0387 ± 0.0025 agrees with a previous
result from the same data set using a crossovermethodwithin
its standard deviation (Mazarico et al. 2014), but is approx-
imately 10% smaller than the probably most reliable value

based on a lunar structure model that satisfies the observed
value of the k2 Love number, which is known with an esti-
mated accuracy of 1% (Williams et al. 2014). Nonetheless,
the results in this work suggest that the method is capable
of retrieving the h2 Love number of other Solar System
objects with much larger tidal amplitudes than the Moon,
such as Mercury and Ganymede, by laser altimeters to suffi-
cient accuracy (Steinbrügge et al. 2019). Further studiesmust
examine the influence of systematic orbit and pointing errors
on the retrieved h2 and should target the retrieval of additional
geophysical parameters such as the tidal lag, forced libration
amplitudes, or regionally varying elastic properties.
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