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Abstract
The study intercompares three stochastic interpolation methods originating from the same geostatistical family: least-squares
collocation (LSC) known from geodesy, as well as ordinary kriging (OKR) and universal kriging (UKR) known from geology
andother geosciences. The objective of thiswork is to assess advantages and drawbacks of fundamental differences inmodeling
between these methods in imperfect data conditions. These differences primarily refer to the treatment of the reference field,
commonly called ‘mean value’ or ‘trend’ in geostatistical language. The trend in LSC is determined globally before the
interpolation, whereas OKR and UKR detrend the observations during the modeling process. The approach to detrending
leads to the evident differences between LSC, OKR andUKR, especially in severe conditions such as far from the optimal data
distribution. The theoretical comparisons of LSC, OKR and UKR often miss the numerical proof, while numerical prediction
examples do not apply cross-validation of the estimates, which is proven to be a reliable measure of the prediction precision
and a validation of empirical covariances. Our study completes the investigations with precise parametrization of all these
methods by leave-one-out validation. It finds the key importance of the detrending schemes and shows the advantage of LSC
prior global detrending scheme in unfavorable conditions of sparse data, data gaps and outlier occurrence. The test case is
the modeling of vertical total electron content (VTEC) derived from GNSS station data. This kind of data is a challenge for
precise covariance modeling due to weak signal at higher frequencies and existing outliers. The computation of daily set of
VTEC maps using the three techniques reveals the weakness of UKR solutions with a local detrending type in imperfect data
conditions.

Keywords Ionosphere · Total electron content · Least-squares collocation · Simple kriging · Ordinary kriging · Universal
kriging

1 Introduction

An important aspect in TEC estimation at a regional or global
scale is the appropriate interpolation strategy. GNSS dual-
frequency observations provide TEC point measurements at
the so-called ionosphere pierce points (IPPs), whose den-
sity substantially differs across the globe, e.g., due to the
large gaps over the oceans. Therefore, it is expected that any
interpolation method will render some larger differences in
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the modeling over the regions of sparse data. Global TEC
models are often approximated by relatively low degrees of
the spherical orthogonal functions, e.g., spherical harmon-
ics (Alizadeh et al. 2011; Liu et al. 2018) or other empirical
orthogonal functions (Mao et al. 2008). These functions are
very sensitive to data gaps, and additionally, the regions with
denser data suffer from the high-frequency cutoff of the sig-
nal in case of lower-order functions. A better representation
of the resolution, in comparison with spherical harmonics,
may be provided by spherical splines (Schmidt et al. 2011;
Erdogan et al. 2017). However, one should keep in mind that
every sum of orthogonal functions applies signal cutoff at
the spatial resolution equivalent to the maximum degree of
the applied base functions. Together with the development
of GNSS remote sensing, a need has arisen for the employ-
ment of precise modeling techniques in the interpolation
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of atmospheric parameters. Particularly, the local applica-
tions of GNSS positioning rely on the stochastic parametric
methods of the interpolation like least-squares collocation
(LSC) (Odijk 2002; Krypiak-Gregorczyk et al. 2017) or the
ordinary kriging (OKR) (Odijk 2002; Wielgosz et al. 2003).
Sayin et al. (2008) present a comparison of OKR and uni-
versal kriging (UKR) and assess these techniques together,
in a study of local TEC phenomena. Other local studies of
TEC and other parameters related to the ionosphere with the
use of kriging can be found in Stanisławska et al. (1996,
2002). The atmospheric effects like ionospheric or tropo-
spheric delays are nowadays commonly modeled globally,
using a large number of GNSS stations and other additional
data. In order to enhance the spatial resolution and accuracy
of local and global TEC models, Orùs et al. (2005, 2007)
conducted research on the application of the OKR to global
ionosphere mapping. It has been shown there that kriging
based on the assumption of an error decorrelation function
with distance and direction was the optimal interpolation
method for GNSS data. This approach can provide improve-
ments of up to 10%ormore, in comparisonwith other popular
techniques.The evidenceof the stochastic approach improve-
ment is thus demonstrated globally; however, many factors
contribute to compromising this advantage like sparse and
irregular global GNSS data, noise of these data or noise of
the validation data such as altimetry-derived TEC (Li et al.
2019).

Themajority of the stochastic parametric techniques apply
the least-squares (LS) rule in linear models. The advantages
of the parametric techniques of interpolation and extrapola-
tion result from accurate signal covariance models estimated
from real data. These modeling techniques can allocate data
noise in noise covariance matrix, separating it from the
signal. Different kinds of these techniques may have dif-
ferent detrending schemes, correlation approximations and
parametrization methods. This study compares two groups
of methods, which substantially differ with respect to the
detrending rule. These two methods are compared using the
same covariance model and the same parametrization rule,
which preserves detrending rule as the only difference. This
approach enables the comparison of the influence of prior
detrending and synchronous detrending on the modeling
results. Two general names can be found among the para-
metric spatial domain techniques based on the LS rule: LSC
and kriging. The former one originates from geodesy and
gravity field modeling and can be generalized from the inter-
polation/extrapolation alone, to the transformation between
physically dependent quantities, e.g., physical quantities and
their gradients (Moritz 1980, Tscherning and Rapp 1974,
Sansó et al. 1999). The latter term has its roots in geology and
refers to different forms of interpolation, which have differ-
ent detrending schemes and names (Olea 1999;Wackernagel
2003;Diggle andRibeiro 2007; Lichtenstern 2013). LSC and

kriging correspond to each other, in particular when LSC has
only an interpolation form (Hofmann-Wellenhof and Moritz
2005, p. 361) and kriging has a form of simple kriging (SKR)
(Ligas and Kulczycki 2010). Three selected techniques are
assessed in thiswork: LSCas interpolation that is comparable
to SKR, OKR and UKR. Three orders of trends are applied
in LSC, which forms the group of three approaches using
prior detrending. OKR and two orders of trend applied in
UKR compose the second group of methods, which detrend
the data synchronously with the interpolation process.

There are some examples in the literature of the common
assessment and comparison of LSC and kriging, or differ-
ent kinds of kriging. Many of the existing works aiming at
the evaluation of similarities or differences of LSC/SKR and
OKR or UKR are theoretical comparisons. Numerical stud-
ies, in turn, often have no detailed parametrization of the
covariance matrices, regarding especially the noise variance.
Too little attention is also paid to the fact that detrending in
kriging has a local character, when the range of interpola-
tion data is limited, which is common in local applications.
A synthesis of kriging methods is given by Blais (1982) and
includes OKR and UKR theory, as well as an extension to
nonstationary problems and nonlinear modeling. Dermanis
(1984) mathematically compares LSC and kriging, employ-
ing OKR and UKR. His conclusions point to the differences
between LSC and kriging resulting from the difference in the
detrending approach related to the scaled mean in kriging
and differences in linearity conditions. Another theoretical
comparison with a numerical example is given by Reguz-
zoni et al. (2005). That study compares a generalized form
of kriging with LSC and discusses known application areas
of both methods, and also existing limitations of their use
in geodesy and other geosciences. The examples of LSC,
OKR and additional linear methods used for the interpola-
tion of atmospheric effects for real-time kinematic GNSS
positioning can be found in Al-Shaery et al. (2011). The
authors assess horizontal and vertical positioning errors after
the applications of LSC and OKR in spatial interpolation
of the vertical reference station (VRS) data in GNSS real-
time kinematic (RTK) positioning. Theyfind some advantage
of LSC interpolation in the vertical accuracy, but the errors
are not further analyzed. Many geophysical problems suf-
fer from a deficiency of lower-order models of the analyzed
phenomena or from inadequate knowledge of the mean. The
problem of unbiasedness appears, therefore, as one of the
most investigated issues, and it makes a difference between
the LSC/SKR and OKR, which together with UKR applies
constraints for unbiasedness. Thus, kriging with constrained
averages like OKR and UKR is often more willingly applied
(Daya and Bejari 2015;Malvić and Balić 2009;Wackernagel
2003). Malvić and Balić (2009) investigate Lagrange multi-
plier significance in OKR and indicate advantages of OKR
related to the Lagrange multiplier application. They also find
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some rules for the Lagrange multiplier choice in OKR. The
presented study, therefore, completes the above-mentioned
investigations with a precise parametrization of LSC and
kriging prior to their common assessment. Additionally, the
same three selected orders of the polynomial trend are applied
in our investigations, respectively, in both groups of meth-
ods.Wedecided to start the comparisonswith the lowest trend
orders, as they are most often used. The third detrend order,
which is the second-order polynomial, as a curved shape, is
expected to behave in a different way in global detrending
used in LSC and local detrending applied in UKR.

The parametrization, i.e., the estimation of the optimal
parameters of LSC and kriging, is a crucial stage prior to the
modeling. The effects of the parameter change on the mod-
eling results are widely discussed in the literature (Brooker
1986; Arabelos and Tscherning 1998; O’Dowd 1991; Sadiq
et al. 2010). The oldest and well-known method of the
parameter selection is the fitting of analytical model into its
corresponding empirical representation (Posa 1989; Barza-
ghi et al. 2003; Samui and Sitharam 2011). This method
is quite effective for the signal parameters; however, sup-
plementary investigations have been undertaken in order
to determine noise parameters more accurately (Marchenko
et al. 2003; Peng and Wu 2014; Jarmołowski 2016, 2017).
The estimates of signal and noise covariance parameters
are very often achieved by different cross-validation tech-
niques, e.g., hold-out (HO) validation (Arlot and Celisse
2010; Kohavi 1995) or leave-one-out (LOO) validation
(Kohavi 1995; Behnabian et al. 2018). Another solution that
can be applied in the parametrization procedures is maxi-
mum likelihood estimation (MLE) of parameters for kriging
(Pardo-Igúzquiza et al. 2009; Todini 2001; Zimmermann
2010) or for LSC (Jarmołowski 2015, 2017).

This study assesses LSC and kriging (OKR and UKR)
after implementing the same C4-Wendland covariance mod-
els, parametrized in exactly the same way by LOO in case of
all six approaches. Therefore, the only remaining difference
tested in the study is prior detrending in LSC in comparison
with synchronous detrending in OKR and UKR. The data
conditions are far from the ideal distribution, both from the
spatial and from the statistical point of view. By preserving
data gaps and outliers, we expect to reveal weak points of
one or the other method. Particularly, this study can show
strong and weak points of the detrending schemes, as the
most evident differences between the corresponding meth-
ods are their rules of trend removal. The differences between
themodels createdunder rigorous parametrization conditions
are analyzedwith the use of cross-validation techniques, such
as LOO, and comparison with independent data set. Hence,
this work aims at revealing the advantages and drawbacks
of global and local detrending schemes using unfavorable to
severe data conditions.

2 Algorithms and applied covariance

As it was mentioned in Sect. 1, in general LSC and krig-
ing terms may refer to different algorithms, which cannot be
compared, and these terms can also refer to individual appli-
cations. A generalized LSC can employ different data types
in one process of interpolation combinedwith the integration.
For instance, gravity anomalies together with deflections of
the vertical can be used in geoid modeling with the help
of appropriate Stokes kernels (Moritz 1980). Kriging, on
the contrary, is usually modified to various forms that, for
example, handle higher-order trends existing in the data or
work with anisotropic data (Wackernagel 2003). Therefore,
we compare collocation and kriging in their most common
and most comparable forms referring exactly to the same
problem—the interpolation of spatially correlated data with
expected values approximated by lower-order trends and
covariance expressed by an isotropic covariance model. This
kind of interpolation model stems from general LS estima-
tion, typically applied in LS adjustment (Teunissen 2003,
p. 5):

Z � Fβ + e (1)

where Z is the observation vector, F is the design matrix,
which will be explained in the next paragraphs, β is a vec-
tor including parameters and e is the vector of errors also
called noise vector. The stochastic fundamentals of this type
of model are explained in details in Koch (1999 p. 153–161).
The noise vector often stores uncorrelated random values,
and since Fβ is deterministic, in order to interpolate corre-
lated quantities, general LSmust be extended to LSC (Moritz
1980, p. 111):

Z � Fβ + s + n (2)

where s is the vector of correlated signal interpolated by
LSC, OKR or UKR, and n is the vector of uncorrelated
noise. Equation (2) is the representative for LSC, OKR and
UKR. However, the deterministic part Fβ will be separated
from the observations in different ways, which is explained
in Sects. 2.1–2.3. One should keep in mind that SKR is espe-
cially close or even equivalent to LSC, and, therefore, its
results are assumed to be equal to those of LSC (Dermanis
1984). LSC works with detrended data, whereas OKR and
UKRdeterminemean or higher-order trend by the constraints
applied to themodeling process. LSCwith a zero-order trend,
which is simply the mean, corresponds to OKR, which uses
a scaled mean in theory. For instance, the scaled mean is
applied locally in practical formulas. The LSC based on
the residuals after first- and second-order polynomial trends
removal corresponds to UKR, which also uses the same
higher-order polynomials. Nevertheless, there is a slightly
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larger difference in the detrending between LSC and UKR,
than in the former case. The trend in LSC is applied glob-
ally, as based on the whole dataset, whereas UKR applies
the trend locally for the selected data subset defined by the
maximum sampling distance. Also, the approximation of the
signal variance is different for different estimation methods.
The UKR method, in contrast to LSC, applies the detrend-
ing based on the observations in the covariance matrix used
in the single prediction, and therefore it handles the existing
non-stationarity in the analyzed stochastic field to a certain
level. Hence, the aim of this study is the confrontation of
LSC with OKR and UKR in order to empirically inspect the
advantages and drawbacks of detrending prior to the model-
ing or when the trend removal is combined with modeling
process in point prediction.

2.1 Least-squares collocation (LSC)/simple kriging
(SKR)

It is assumed in LSC that the mean or trend of data Z(x) is
known, i.e.,

μ � E(Z(x)), (3)

where E denotes the expectation operator. Furthermore, Z(x)
is assumed to be second-order stationary and having known
covariance function

C(h) � E(Z(x)Z(x + h)) − μ2. (4)

The empirical covariance function calculation rule is
explained in Hofmann-Wellenhof andMoritz (2005, p. 347).
In case of LSC, the unbiasedness condition is assumed to be
provided automatically by the trend removal, i.e.,

E

(
Z̃LSC

(
xp

) − Z
(
xp

)) � μ +
n∑

i�1

ωLSC
i E(Z(xi ) − μ)

− E
(
Z
(
xp

)) � μ − μ � 0, (5)

and therefore any additional constraints on weightsωLSC
i are

not necessary. Z(xi ) denotes the arbitrary data value, Z
(
xp

)
is data in some selected position and Z̃LSC

(
xp

)
is the LSC

estimate at this selected position. The term μ is expanded
later (Eq. 8–10) to the polynomial case, as the detrending in
this study is based on zero-, first- and second-order polyno-
mials removed prior to LSC prediction. However, one should
keep in mind that the trend in LSC can be also derived from
the other sources or functions of higher orders, e.g., spher-
ical harmonic expansion, popular in the case of gravity and
geoid modeling (Sadiq et al. 2010; Jarmołowski 2019). The
assumption of the minimum prediction variance (Hofmann-
Wellenhof and Moritz 2005) provides the condition for LSC

weightsωj
LSC and enables the creation of the system of equa-

tions, which in matrix form reads.

CωLSC � cp, (6)

whereωLSC denotes the vector of LSCweights. Finally, with
the use of matrices, the prediction is

(7)

Z̃LSC
(
xp

) � μ + cTpC
−1 (Z − μI)

� cTpC
−1Z + μ

(
1 − cTpC

−1 I
)

where cp preserves the covariances prediction-data, C is the
data covariance matrix and Z is the data vector of n points.
The variable μ denotes the mean as the simplest form of
the trend function removed in the numerical study. In order
to remove a higher-order trend, we must determine a set of
deterministic functions of the coordinates f0, f1… fL, as fol-
lows:

F �

⎡
⎢⎢⎢⎣

1 f1(x1)
1 f1(x2)

· · · fL(x1)
· · · fL(x2)

...
...

1 f1(xn)
· · · ...
· · · fL(xn)

⎤
⎥⎥⎥⎦ (8)

F is in fact previously introduced design matrix (Eqs. 1–2).
Two successive orders of the trend are applied in the study
as first- and second-order polynomials. They are removed
before LSC interpolation and implemented intrinsically in
theUKRmethod.The second-order polynomial trend applied
locally reads:

F �
⎡
⎣

1 ϕ1 λ1 ϕ2
1 λ21 ϕ1λ1

· · · · · · · · · · · · · · · · · ·
1 ϕn λn ϕ2

n λ2n ϕnλn

⎤
⎦. (9)

Note that the first three columns correspond to first-order
trend. In LSC trend matrix, F can be applied to compose the
so-called projection matrix P (Pardo-Igúzquiza et al. 2009)
or orthogonal projection operator (Koch 1999, p. 65; Teunis-
sen 2003, p. 8).

P � In − F
[
FT F

]−1
FT (10)

which multiplied by the data vector Z replaces Z − μI and
removes a higher-order trend. This removal is principally
related with Eq. (2), and in practice is equal to LS adjust-
ment of the polynomial surface of arbitrary order, determined
by the base functions such as those in Eq. (9). The relation
of P with general LS solution can be found in Koch (1999,
pp. 153–154), where two solutions of the parameter vector β
(Eq. 2) can also be found. The simplified, unweighted pro-
jection operator based on unweighted LS solution is applied
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here. This is because the covariance matrix is not directly
available before detrending process, and because a very sim-
ilar unbiasedness of Eq. (10) with low-order trends was
previously proven in practice (Jarmołowski andBakuła 2014;
Pardo-Igúzquiza et al. 2009). The variance of the prediction,
i.e., a posteriori error at selected point p, can be calculated
from

σ ′
LSC

2 � C0 + ωT
LSCCωLSC − 2ωT

LSCcp � C0 − cTpC
−1cp
(11)

with C0 referring to signal covariance at distance equal to
zero. The above a posteriori error (Eq. 11), in case of noisy
data, is strongly related to a priori noise that together with
the signal covariance contributes to the covariance matrix C.
Therefore, a realistic estimate of a priori noise must be intro-
duced to the noise covariance matrix. In the LSC theory, the
total covariance matrix C is composed of the signal covari-
ance matrix Cs and the noise covariance matrix Cn (Moritz
1980, p. 102):

C � Cs + Cn (12)

where Cs is based on the selected signal covariance model,
and Cn, under the assumption of non-correlated noise, is a
diagonal matrix based on data a priori noise standard devia-
tion (σLSC) in the following way:

Cn � σ 2
LSC · In . (13)

Therefore finally, introducing a priori noise variance of the
data gives an extended form of the a posteriori error (Moritz
1980, p. 105):

σ ′
LSC

2 � C0 + σ 2
LSC − cTpC

−1cp. (14)

Different covariance models and corresponding vari-
ograms can be applied in the modeling process. Isotropic
covariance models are the most popular and easy to apply.
Some theoretical considerations about the positive definite-
ness and other properties of the selected models for the
spheres can be found in Huang et al. (2011), Gneiting (2013)
or in Guinness and Fuentes (2016). This numerical study
applies C4-Wendland covariance function in LSC and C4-
Wendland variogram in OKR and UKR. The C4-Wendland
covariance function applied in LSC is

CC4W (ψ) � C0 ·
(
1 + τ

ψ

αLSC
+

τ 2 − 1

3

ψ2

α2
LSC

)(
1 − ψ

αLSC

)τ

+

(15)

whereψ is the spherical distance, and αLSC is named correla-
tion length in LSC theory (Hofmann-Wellenhof and Moritz

2005). The shape parameter τ has to be≥6 in order to guar-
antee positive-definiteness on the sphere (Gneiting 2013).
Therefore, this parameter is equal 6.5 in the study.

2.2 Ordinary kriging (OKR)

The theory of OKR method starts without the mean or
trend removal before the covariance estimation (Olea 1999;
Wackernagel 2003; Lichtenstern 2013). Instead, the mean is
eliminated by the subtraction in the estimation of the semi-
variogram:

γ (h) � 1

2
E

(
(Z(x + h) − Z(x))2

)
. (16)

The calculation of empirical semivariogram is given by
Wackernagel (2003, p. 47). The unbiasedness of OKR must
be forced by the equality

n∑
i�1

ωOKR
i � 1. (17)

Therefore, the bias in OKR also converges to zero, as
follows:

(18)

E

(
Z̃OKR

(
xp

) − Z
(
xp

))

� E

(
n∑

i�1

ωOKR
i Z (xi ) − Z

(
xp

) n∑
i�1

ωOKR
i

)

�
n∑

i�1

ωOKR
i E

(
Z (xi ) − Z

(
xp

)) � 0.

The system of equations similar to Eq. (6), which leads to
the solution of ωi values, is extended to

�ωOKR + λOKR I � γ p (19)

ωT
OKR I � 1 (20)

where λOKR is the so-called Lagrange multiplier. The solu-
tion must be additionally supported by the condition in
Eq. (17).

Theblockmatrix of variogrambetween the data� anddata
prediction vector of variogram γ p are therefore composed as
follows:

� �

⎡
⎢⎢⎢⎣

Γ

1
...
1

1 · · · 1 0

⎤
⎥⎥⎥⎦ and γ p �

⎡
⎢⎣

γ p
...
1

⎤
⎥⎦, aswell Z �

⎡
⎢⎣
Z
...
0

⎤
⎥⎦.

(21)
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Consequently, the final OKR prediction reads (Olea 1999,
p. 48)

Z̃OKR
(
xp

) � Z
T
�

−1
γ p. (22)

Contrary to LSC, a posteriori error estimate at the selected
point p can be derived from a slightly different equation (Olea
1999, p. 48):

(23)

σ ′
OKR

2 � −ωT
OKR�ωOKR + 2ωT

OKRγ p

� ωT
OKR

(
2γ p − �ωOKR

) � γ T
p�

−1
γ p.

It was mentioned in Sect. 2 that covariance models are
equivalent for all predictions in the study. The C4-Wendland
variogram selected for the analysis of signal model parame-
ters in OKR and UKR reads:

γ C4W (ψ) � C0 ·
(
1 −

(
1 + τ

ψ

αK
+

τ 2 − 1

3

ψ2

α2
K

)(
1 − ψ

αK

)τ

+

)
,

(24)

and all the parameters have the same meaning as in Eq. (15);
however, αK is often called range in relation to kriging meth-
ods. The shape parameter τ in the variograms applied in the
study is also equal to 6.5, as well as in the covariance func-
tion case. The noise is introduced in OKR equations by the
nugget parameter (σK ) and applied in the following way:

γ
(
xi , x j

) � γ C4W + σ 2
K i f i �� j (25)

with σK referring to natural surveying conditions, where the
signal is not the only quantity that contributes to data, as
there is no measurement device that can provide errorless
observations. The signal variance C0 is often called a partial
sill in the kriging theory.

2.3 Universal kriging (UKR)

InUKRmodeling, the signal can be decomposed into a deter-
ministic trend function μ(x) of the order l, and a residual
function Y (xi ), such that

Z(xi ) � μ(xi ) + Y (xi ) �
L∑

l�0

al fl(xi ) + Y (xi ). (26)

The unbiasedness condition is satisfied from

E

(
Z̃UKR

(
xp

) − Z
(
xp

)) �
n∑

i�1

ωUKR
i (E(μ(xi )) + E(Y (xi )))

− (
E

(
μ

(
xp

))
+ E

(
Y

(
xp

)))

�
n∑

i�1

ωUKR
i μ(xi ) − μ

(
xp

) � 0

⇔
L∑

l�0

al

(
n∑

i�1

ωUKR
i fl(xi ) − fl

(
xp

)
)

� 0

(27)

where al are the coefficients of the deterministic trend. If
we denote the vector of this trend by a, and the matrix
of deterministic functions by F, we can apply the first- or
second-order trend based on Eq. (9). The matrix F is imple-
mented intrinsically in UKR for the local correlated data
sample selected for the prediction in point p.

Using thematrix notation,we obtain the following system:

Γ YωUKR + FλUKR � γ Y p (28)

FTωUKR � f p,

where λUKR is Lagrange parameter vector. The block matrix
form of these equations, similarly to OKR, gives the solution
of theUKRprediction (Olea 1999, p. 105,Wackernagel 2003,
pp. 68–69):

[
ωUKR

λUKR

]
�

[
Γ Y F
FT 0

]−1[
γ Y p
f p

]
� �

−1
γ Y p (29)

where matrix Γ Y is based on C4-Wendland variogram and
matrix F is expressed by Eq. (9). γ Y p and f p are vectors
calculated from the variogram and deterministic functions
for the point of interest p, respectively. Summarizing, the
prediction can be written in a similar way to OKR (Olea
1999, p. 103):

Z̃UKR
(
xp

) � Z
T
�

−1
Y γ Y p. (30)

The variance of the prediction error will be then (Olea
1999, p. 103):

σ ′
UKR

2 � −ωT
UKRΓ YωUKR + 2ωT

UKRγ Y p � γ T
Y p�

−1
Y γ Y p.

(31)

The σK parameter is implemented in the variogram in an
analogous way as in the case of OKR in the previous section.

3 LOO validation

LOO validation is based on the prediction in the position of
data point, with exclusion of this point value from the dataset
being used for the prediction (Kohavi 1995). The differences
between n data values and the predictions made in the same
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positions are used as a measure of reliable prediction preci-
sion. The difference in case of LSC is calculated between the
residual Zr

P � Z p−μI in pointP and its estimate excluding
this single compared value, i.e.,

LOOP
(
C0,CL, σ |Zr

n×1

) �

⎧⎪⎪⎨
⎪⎪⎩

Zr
P − Z̃ r

P

∣∣∣
Z̃ r
P � cpT(n−1)×1 · (

Cs(n−1)×(n−1) + Cn(n−1)×(n−1)
)−1

Zr
P /∈ Zr

(n−1)×1

· Zr
(n−1)×1∧

⎫⎪⎪⎬
⎪⎪⎭

, (32)

where Zr
P is the point residual value and Z̃ r

P is the LSC esti-
mate in the same location. The root mean square of all n
differences (RMSLOO) calculated by Eq. (32) is a measure
of the quality of the estimated model. RMSLOO is affected
by the noise present in the dataset, as it comes from the
comparison with noisy data. Therefore, if the prediction is
optimal in least-squares sense, RMSLOO can be assessed
as an empirical measure of the noise. In the proposed study,
LOO differences are calculated for some range of parameters
CL and σ . Equation (32) describes the validation for LSC,
whereas OKR and UKR have analogous rule for comparison
of Z p and its estimates.

4 VTEC test data

The study uses point VTEC values calculated from GNSS
observations from the Crustal Movement Observation Net-
work of China (CMONOC). The CMONOC network
includes around 1000 permanent stations distributed almost
homogeneously over most of China’s territory. This num-
ber of stations provides dense local coverage of ionosphere
piercing points (IPPs) (Chen et al. 2017), which is quite a
challenging dataset for testing of local data modeling by
stochastic techniques.

The estimation of VTEC at IPPs is derived using the pre-
cise point positioning (PPP) approach. The PPP method and
the relatedVTECestimation procedure are based on the same
algorithm as PPP implementation in previous works of the
authors, investigating the calculation of ionospheric maps
(Jarmołowski et al. 2019; Ren et al. 2016). This article, in
turn, is focused on the extended analysis of the paramet-
ric spatial stochastic modeling of the VTEC signal resulting
from the PPPmethod. The noise coming from the PPPVTEC
estimation is a useful property of the data, and it is thoroughly
investigated and estimated by LOO validation in the individ-
ual modeling methods. Additionally, the datasets are cleaned
of large outliers and intentionally sparsed out in relation to
the original set of IPPs with the use of 1° grid for selection
of the closest data. The selected datasets for the successive
data epochs are distributed approximately homogeneously
in the horizontal direction. This is made intentionally for the

purpose of the study on the stochastic methods, in order to
help the parameter estimation, especially if we assume the
stationarity of the process and average uncorrelated value

of the noise. The estimation of the parameters by LOO is
difficult, as we deal with low residual signal variance with
respect to the noise in case of VTEC observations. Most of
the signal referring to equatorial TEC anomaly is preserved
at lower frequencies and removed with the polynomial deter-
ministic trend. Figure 1 shows all epochs of the data used in
the numerical study, separated by 2 h. This relatively large
interval was selected to shorten the time of estimation; how-
ever, it is also known that many of global ionospheric maps
(GIMs) have the same interval (Roma-Dollase et al. 2018).
Figure 1 presents the IPPS after the removal of the outliers
and sparsing with 1° grid, used in LOO estimation of the
parameters. The red line in Fig. 1 separates the rectangular
area of the compact, enclosed region of approximately homo-
geneous spatial distribution, and data at the margins, where
the estimation can suffer from gaps and sparsity. These two
sets of unequal size will be investigated separately in further
numerical tests.

Figure 2a presents the removal of the outliers, which is
done by a specific application of LOO validation (Tschern-
ing 1991). The LSC estimation with some roughly assumed,
overestimated a priori noise variance has been made at data
points. Then, the data values furthest from the predictions
were removed, if these differences extended some assumed
threshold. This threshold was quite rigorous in the study,
and it was set to 3 TECU, as the amount of data was large
enough to allow us to freely discard the outliers. Figure 2b
reveals more clearly the effect of data sparsing, which is
mostly noticeable in the center of the area, as IPPs are always
concentrated mostly in the center due to the GNSS satellites
tracks alignment.

5 Comparison of covariance parameters
and accuracy indicators between LSC, OKR
and UKR

The numerical analysis comprises a few associated items:
LOO estimation of σ and α parameters in LSC with zero-

, first- and second-order polynomial removal, and in OKR
and UKR after first- and second-order polynomial removal
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Fig. 1 Datasets in sample GPS epochs, red rectangle separates approximately homogeneous data from sparse data at the margins of the area

(Figs. 3, 5, and 6). A posteriori errors σ ′ are presented jointly
in Fig. 6.

Empirical covariance and semi-variance calculation for
the same six approaches, and comparative α estimation by
analytical model fitting (Fig. 4).

Comparison of minimum empirical accuracy of the pre-
diction from LOO process, for all six approaches in terms of
RMSLOO (Figs. 7, 8, 9).

Comparison of gridded models predicted with optimal
estimated parameters, including various data conditions, i.e.,
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Fig. 2 Example data epoch
describing sparsing and outliers
removal: a outlier spatial
distribution is visible and
b sparsing effect is better visible
in a horizontal view
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(b) Data selection for LOO, 2016, Jan 1st, 8:00 UTC

sparse data regions, extrapolated regions, outlier occurrences
and different solar conditions (Fig. 10, 11, 12).

This study applies precise LOO parametrization before
the comparison of the two detrending approaches, different in
LSC,OKR andUKR (Fig. 3). The estimation ofαLSC andαK

parameters by the covariance function fitting has been also
compared to that coming from LOO (Fig. 4). The optimal
parameters in the modeling are crucial if we want to be sure
that we analyze and compare the best possible solutions of
LSC to those fromOKRandUKR.TheRMSLOOparameter,
as coming from the best solution, is also a kind of relative
measure of the obtained accuracy. It is also used to find the
most accurate and robust way of the trend removal (Figs. 7, 8,
9). Additionally, the unused data from the dataset remaining
after data selection are applied in additional comparisons and
provide another measures of accuracy differences (Figs. 10,
11, 12). Therefore, the process of the validation can appear

as combined together with the parametrization step, as it uses
similar techniques based on cross-validation.

The parametrizations of LSC, OKR and UKR often
assume homogeneous uncorrelated noise, and therefore a
single value of σLSC or σK is determined for a single sta-
tionary process. The theory of LSC uses a priori noise as a
name of this parameter, while it is named nugget in kriging
techniques. Generally, they are corresponding parameters.
However, technically their implementation in the covariance
matrices differs, and therefore they are denoted by different
symbols in this work: σLSC in LSC and σK in both kriging
methods, as OKR and UKR are based on the same variogram
and noise model (Eqs. 24 and 25). The second pair of param-
eters corresponding one to another is correlation length in
LSC (αLSC) and range in kriging techniques (αK ). There is a
third covariance parameter present in both Eqs. (15) and (24),
denoted as C0. This parameter stands for the signal variance,
and it is approximated by the residual data variance in this
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Fig. 3 Example epoch (January
1, 2016, 8:00 AM) of αLSC/αK
and σLSC/σK parameter
estimation by LOO for: a LSC
after mean removal, b LSC after
first-order trend removal, c LSC
after second-order trend
removal, d OKR, e UKR with
first-order trend, f UKR with
second-order trend. The
contours with interval of 0.02
TECU indicate minima of
RMSLOO. The black dot
indicates minimum RMS in
LOO and corresponding
αLSC/αK and σLSC/σK
estimates. The red dot indicates
alternative αLSC/αK estimate
from the manual covariance
function fitting in Fig. 4
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study. This waywe limit LOO parametrization to two param-
eters and make it more reliable in practical computation.
This simplification introduces some uncertainty of σLSC/σK

parameters. However, its insignificancy on the modeling
results is proven later in this section. The parametrization
of C0 together with σLSC or σK is difficult by LOO, as these
parameters are dependent in the applied kind of covariance
models (Jarmołowski and Bakuła 2014).

This study is based on LOO method of parametrization,
which is composed of interpolation in the positions of data
points with the use of 100 nearest points that are located at
most 20° from the investigation point, excluding the data in
the place of interest. The 60 points are the closest points,
and the remaining 40 points are a sparsed subset selected
from more distant points located up to 20° from the inves-
tigated point. This way we can assure the influence of the
distant signal and limit the calculation time. The spheri-
cal distance of 20° was empirically selected as the smallest
that enables the calculation of the covariance parameters in

case of zero-order trend. This is because it approximately
corresponds to the distance at which the covariance model
for zero-order detrended data is noticeably larger than zero
(Fig. 4a). Subsequently, the estimate is compared to the data
value and renders a single LOO value. Then, the RMS of
all LOO differences (RMSLOO) in data points is calculated
for the selected parameters, and the procedure is repeated for
the selected range of parameters in order to find their best
set with the minimum value of RMSLOO (Behnabian et al.
2018; Krypiak-Gregorczyk et al. 2017; Jarmołowski 2016).
The estimation of C0 in LSC is always based on the whole
set of residual data, so the covariance function (Eq. 15) is
parametrized globally for the whole residual dataset. In the
same way, we estimate C0 and variogram (Eq. 24) in OKR,
as its estimation in OKR is based on the residuals detrended
by the mean value only. This does not change the residuals
variance regardless ofwhether themean is estimated from the
whole dataset or its subset. The residuals of the whole dataset
are more representative from the statistical point of view, as
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Fig. 4 Covariance functions and
variograms for the six modeling
schemes. The dots describe
empirical covariance/variogram
estimates, the black line is the
C4-Wendland model with
parameters from LOO, and the
red line is manual fit of the same
model
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more Gaussian-distributed data can be applied in variogram
parametrization. The C0 parameter in UKR cannot be calcu-
lated for the whole dataset, as detrending is applied locally
in the variogram matrix (Eq. 29), which is created using
local points, and the remaining data cannot be included in
the detrending. Of course, the point prediction could involve
all the data in UKR; however, such inclusion would make
the prediction equivalent to LSC. This study, however, refers
to the local prediction, where the residuals are correlated
within some spatial distance only, and the limitation of the
sampling is crucial for practical implementation in the engi-
neering and science applications. The detailed illustrations of
the parametrizations for the selected time epoch are shown
in Fig. 3, and the estimated parameters for the whole day at
2-h intervals are presented in Figs. 5 and 6.

The minima of the RMSLOO surfaces drawn for the
selected parameters ranges, i.e., αLSC � αK ∈ {0.5:1:24.5}°
and σLSC � σK ∈ {0.1:0.2:5} TECU, indicate the optimal
parameters on the axes of the parameters, depending on the
method (Fig. 3) and also on the epoch (Figs. 5 and 6). How-
ever, the minima of RMSLOO calculated with the use of
these optimal parameters differ significantly only between
the epochs, but not between the methods (Fig. 7). This
strongly indicates a minor difference between the methods,
and the differences in specific cases will be observed later,
in relation to Figs. 8, 9, 10 and 11. It can be noted in Fig. 1
that the removal of the mean cannot produce Gaussian resid-
uals, nor even close to Gaussian from local VTEC data, and
the parametrization and modeling are biased. An insufficient
detrending with the use of mean in LSC and OKR produces
the largest RMSLOO at two edges of the parameter space,
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Fig. 5 αLSC/αK parameter
estimated for, January 1, 2016,
at 2-h intervals. The methods are
in the same order as in Fig. 4
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Fig. 6 σLSC/σK parameter (bars)
and minima (solid line) and
maxima (dashed line) of
σ ′
LSC/σ

′
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′
UKR estimated at

points for January 1, 2016, at
2-h intervals
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i.e., for small αLSC/αK and small σLSC/σK (Fig. 3a, d). This
automatically requires a larger αLSC/αK and σLSC/σK with
the lowest-order trend (mean) in order to keep the same
accuracy as for the higher orders of detrending in LSC or
UKR (Fig. 3b, c, e, f). Additionally, as it seems from all

parametrizations in Fig. 3, it is even better to overestimate
these parameters, rather than underestimate. Moreover, the
surface of RMSLOO in Fig. 3f indicates that the parameters
for UKR with the second-order trend must be determined
with particular accuracy. This is because an overestimation
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Fig. 7 RMSLOO minima
estimated for January 1, 2016, at
2-h intervals. White bars show
the values for data inside the red
rectangle from Fig. 1, black bars
show values at points outside the
red zone
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Fig. 8 Differences of RMSLOO
minima for LSC and between
different six modeling
approaches for the data inside
the red zone from Fig. 1
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Fig. 9 Differences of RMSLOO
minima for LSC and between
different six modeling
approaches for the data outside
the red zone from Fig. 1
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of the noise σK increases the RMSLOO and significantly
decreases the model accuracy. This happens due to the prob-
lems with the local detrending in Eq. (30), when the limited
number of data and the use of large noise cause a significantly
worse fit of the polynomial trend of the second order.

In addition to the LOO parametrization, the calculation
of empirical covariance functions (Hofmann-Wellenhof and
Moritz 2005, p. 347) and empirical semivariograms (Wack-
ernagel 2003, p. 47) is done for the same six approaches as
in Fig. 3. The sampling interval of the empirical functions
was set to 3°, in order to make it larger than average data res-
olution, which is not everywhere close to 1°. The empirical
variograms have been calculated from the residual data, as
well as empirical covariance functions in order to keep them
consistent. This way the covariance (Eq. 15) and semivari-
ogram (Eq. 24) models based on the parameters from LOO
can be compared with the models that fit the empirical val-
ues best (Fig. 4). The shape of empirical covariance function
strongly depends on the sampling rate, especially for smaller
distances, which impedes the assessment of σLSC/σK this
way. Therefore, we assume the determination of αLSC/αK

from the empirical covariances/variograms only. Figure 4
shows various coincidences of LOO and the empirical model
fit. Worse fit of empirical variograms occurring especially in

Fig. 4d, e can originate from the local detrending schemes
in LOO, compared to empirical semivariograms determined
from globally detrended data.

The estimated parameters αLSC/αK in Fig. 5 and σLSC/σK

in Fig. 6 are indicated by theminima of theRMSLOO that are
placed inside the contours visible on the RMSLOO surfaces
drawn for the selected example epoch in Fig. 3. These param-
eters correspond to the best interpolation processes in the
sense of LOO, and only these parameters are further applied
in the calculation of the RMSLOO estimates of the modeling
error in Fig. 7, their differences in Figs. 8 and 9, as well as in
the example predictions in Figs. 10 and 11. The parametriza-
tion of LSC and OKR defines global αLSC (Fig. 5a–c) and
σLSC (Fig. 6a–c) parameters orαK (Fig. 5d) and σK (Fig. 6d),
respectively. This is because C0 is determined for the whole
dataset every time. It is different from UKR, where αK and
σK should differ for different points. So the parameters indi-
cated by the RMSLOO (Fig. 3e, f) in the single analyzed
epoch are in fact a kind of average, which gives optimum fit
of the prediction to the data when applied to all point pre-
dictions. It means that individual point predictions arrive at
the same parameters even though they have various C0 val-
ues calculated from the locally detrended residuals (Eq. 29).
The αK parameters for the whole day are shown in Fig. 5e,
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Fig. 10 Example epoch (January
1, 2016, 8:00 AM) of VTEC
interpolated by six methods and
differences between respective
trend orders in LSC and kriging
for data free of outliers

f in orange, to highlight their average character based on the
variable local trend and the local C0.

The σK parameters determined by the smallest RMSLOO
inUKR are also presented in orange (Fig. 6e, f), as they come
from the same LOO validation with C0 different at every
point. Figure 6 shows the determination ofσLSC/σK for all the
investigated methods, through the whole day at 2-h intervals.
The drawback of the slightly inaccurate C0, as C0 is deter-
mined from the noisy data and consequently affected σLSC
and σK , has no practical influence on the modeling precision
determined by the RMSLOO, which is explained in Pardo-
Igúzquiza et al. 2009 and Jarmołowski and Bakuła (2014).
They show there that C0 and σLSC (or σK ) are dependent on
each other, and the modeling results depend on the relation
between these two parameters. Besides σLSC/σK , Fig. 6 also
presents the minima and maxima of a posteriori error esti-
mates of the individual prediction methods, denoted σ ′

LSC,
σ ′
OK R and σ ′

UKR. The minima of σ ′
LSC, σ

′
OK R and σ ′

UK R are
very close to σLSC or σK for all methods, because at most
of the points a posteriori estimates are close to a priori noise
values, and only some individual values at the margins of the
area obtainworseσ ′ estimates. The estimatesσ ′

LSC,σ
′
OKR and

σ ′
UKR are strongly dependent on σLSC or σK , and therefore

an overestimated C0, which leads to an overestimated σLSC

or σK . In consequence, this provides overestimated a pos-
teriori errors, which are smaller in practice. The especially
large noise indicators (both a priori and a posteriori), in case
of the detrending by the mean (Fig. 6a, d), are suspected to
be related to the bias that comes from insufficient detrend-
ing and the influence of far zone correlation. The removal of
the mean appears as not sufficient for the local areas, espe-
cially in case of TEC data, as its largest anomalies, extending
over tens of degrees, need to be removed in order to obtain
approximately Gaussian residuals.

The LOO validation process within the selected ranges
of αLSC/αK and σLSC/σK parameters enables us to find the
smallest values of the RMSLOO for each epoch, which iden-
tify the optimal covariance parameters. These RMSLOO
minima are presented in Fig. 7a–f, where no apparent dif-
ferences can be found between the methods, despite the
differences in the parametrization (Figs. 5 and 6). Figure 7
describes the RMSLOO calculated for the points inside the
red rectangle from Fig. 1 (white bars) and outside it (black
bars). The differences between the estimates of αLSC/αK

and σLSC/σK are often significant (Figs. 5, 6), whereas the
differences of RMSLOO minima between the methods are
smaller (Fig. 7). This was theoretically provided and justified
in Sansó et al. (1999), who notice that the error estimates are
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Fig. 11 Example epoch (January
1, 2016, 8:00 AM) of VTEC
interpolated by the six methods
and differences between
respective trend orders in LSC
and kriging for data with
restored outliers

more sensitive to parameters change than estimated values. It
is evident at the same time that individual optimal parameters
estimated for particular methods noticeably affect the min-
ima of RMSLOO only at data margins (Fig. 7). This means
that all the predictions are at a similar level of quality if we
apply a precise LOOparametrization for homogeneous dense
data interpolation. Referring to the noise estimates, it must
be concluded that the RMSLOO is a better estimate of the
noise than a priori noise estimates σLSC/σK , and a posteri-
ori errors σ ′

LSC/σ
′
OKR/σ

′
UKR, which are strongly related to a

priori values, due to the above-mentioned error sensitivity.
In order to assess possible smaller-scale advantages of

some methods, the values of RMSLOO minima from krig-
ing are subtracted from the RMSLOO minima from LSC.
Figure 8g–i shows increasing number of negative differences
of the RMSLOO minima, which indicates small advantage
of LSC with respect to UKR, in terms of a smaller aver-
age RMSLOO minimum. This indicates the problems with
higher-order detrending inside UKR variogram matrix, for
locally selected data, which rapidly increase at the margins
of the data, i.e., outside the red zone from Fig. 1 (Fig. 9g–i).

Aside from analyzing the RMSLOO, which is an empir-
ical measure of the accuracy in terms of cross-validation,
the VTEC models are created using different six modeling

schemes for large areas extended to sparse marginal data
regions and extrapolation regions. These grids allow for the
observation of the differences in the worsening conditions,
when we interpolate at the data margins, where the data
lose their homogeneous distribution. Two sets of models are
calculated in 2-h intervals, as well as the covariance param-
eters above: one set without outliers visible in Fig. 2 and the
other including these outliers in the estimation process. The
parametrization used in both cases is based on the same LOO
validation from Figs. 5 and 6. Figure 10 shows the models
calculated without outliers, and Fig. 11 shows the models
including outliers in the estimation. The range of data selec-
tion for the estimation is extended to 40° in order to enable the
covering of the extrapolated areas. Figures 10a and 11a show
the data used in the interpolation and extrapolation in order to
trackwhere the extrapolated regions are. In fact, these regions
obtain most of the signal from the trend restoring process in
LSC, whereas in OKR and UKR they are affected by inad-
equate trend modeling, as they are based on limited data.
The differences between LSC and kriging for the respective
detrending orders do not exceed 1 TECU inside the inter-
polation zone, for the models free of outliers (Fig. 10g, i).
The extrapolations coincide even better for first-order trend
(Fig. 10h) than for the mean removal option (Fig. 10g). The
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Fig. 12 Standard deviations of
comparison between values
interpolated from models
created by the six methods in the
positions of free of outliers data
points and data: a the models
are interpolated from data
without outliers, and b the
models are interpolated from
data including outliers 0 5 10 15 20
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extrapolation fails completely in UKRwith the second-order
trend, as this polynomial obtains improperly exaggerated cur-
vature from the local data, especially at longer distances from
the data points.

The differences between the respective models created
with the restored outliers reach or exceed 1 TECU in case
of UKR (Fig. 11h, i). Of course, every modeling process is
preceded by an effort of outliers elimination; however, there
can appear a case of inefficient outliers detection/elimination
or small data samples, which does not allow for the outliers
removal. These can be the cases for which this extension
of the study can indicate a safer method of the interpolation.
Nevertheless, the differences between themodels in Fig. 11h,
i do not indicate which one fits the potentially good physical
field better.

The only independent source of the information about the
‘true’ physical value ofVTEC, aside from the data points free
of outliers used for LOO and models, is data remaining after
the selection process shown by black circles in Fig. 2. There-
fore, the models from Fig. 10a–f and those from Fig. 11a–f
are interpolated back using simple bilinear interpolation from
1° grids in the positions of previously unused data free of
outliers. Then, the differences between unused data points
and interpolated grids from Fig. 10 are compared to differ-
ences between the same data and grids from Fig. 11 in all
epochs with a 2-h time interval. The results can be viewed
in Fig. 12, which provide three interesting observations. The
models without the outliers fit with the same accuracy for
LSC and kriging across the day (Fig. 12a). The models esti-
mated with outliers fit with similar accuracy for LSC and

kriging only in time where the sun has left the investigated
area (Fig. 12b). When the equatorial anomaly passes the
China region, a predominant number of LSC solutions are
better than UKR solutions based on first- and second-order
local polynomial trends (Fig. 12b). The most suspected rea-
son of LSC advantage is global detrending, which, based on a
large dataset, becomes more robust to the individual outliers
with respect to the local trend fitting.

6 Conclusions

This work investigates LSC, OKR and UKR and proves their
consistency under the conditions of precise parametrization,
homogeneous spatial distribution, lack of outliers and equiv-
alent detrending, which numerically confirms the comments
provided by Dermanis (1984). This consistency is observed
from the minima of RMSLOO, which are comparable for all
sixmethods tested in thisworkwith regard to dense datawith-
out significant outliers and far from data gaps. However, the
margins of the datawhere the gaps start to occur, aswell as the
placeswhere outliers remain among the correlated data, show
a significantly better validation results when modeled with
LSC/SKR. Additionally, the daylight hours and equatorial
anomaly pass turn out to be challenging for UKR TEC mod-
eling. The unbiasedness constraint applied in OKR and UKR
is often hastily considered as a substantial advantage in com-
parison with LSC and SKR. The actual study shows a worse
performance of the local detrending applied in UKR in com-
parison with the global trend removal applied in LSC/SKR.
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The superiority of global detrending in LSC is confirmed
numerically for the sparse data regions and also in case of
the outlier occurrences.

This study investigates the lowest orders of the trend, as
they are most often used in practice, and the aim of this
work was to assess LSC, OKR and UKR together. Extended
data areas and specific properties of the signal in terms of its
variance can, however, require higher-order trends so as to
obtain homogeneous statistical distribution of the residuals.
Otherwise, due to the imperfect distribution of the residuals,
the estimation of the parameters can generate lower accuracy
in some cases, as demonstrated in this paper.

Therefore, unbiased detrending has been proven to be cru-
cial in stochastic modeling. The drawback of UKR is such
that the polynomials fit worse when based on a limited sub-
set of the data, especially if more noisy or distant data are
applied. It is a common practice in gravity field modeling
that detrending is performed in the so-called remove–restore
method, with the use of lower-order trend from spherical
harmonic expansion of geopotential functionals, i.e., using
existing global geopotential models (GGM). In TEC model-
ing, the equatorial anomaly includes the predominant part of
the TEC signal and, therefore, in times of the increasing num-
ber of GIMs, their applicability in VTEC data detrending can
become especially valuable. This is of course associated with
the application of LSC/SKR instead of OKR or UKR. The
drawback of GIMs lies in their relatively low order of spheri-
cal harmonic expansion, which may still introduce some bias
in detrending of local TEC observations.
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