
Journal of Geodesy (2020) 94:105
https://doi.org/10.1007/s00190-020-01433-0

ORIG INAL ART ICLE

Quantifying errors in GNSS antenna calibrations

Towards in situ phase center corrections

Sten Bergstrand1 · Per Jarlemark1 ·Magnus Herbertsson1

Received: 18 June 2019 / Accepted: 1 September 2020 / Published online: 12 October 2020
© The Author(s) 2020

Abstract
We evaluated the performance of GNSS absolute antenna calibrations and its impact on accurate positioning with a new
assessmentmethod that combines inter-antenna differentials and laser trackermeasurements.We thus separated the calibration
method contributions from those attainable by various geometric constraints and produced corrections for the calibrations.We
investigated antennas calibrated by two IGS-approved institutions and in the worst case found the calibration’s contribution
to the vertical component being in excess of 1 cm on the ionosphere-free frequency combination L3. In relation to nearby
objects, we gauge the 1σ accuracies of our method to determine the antenna phase centers within± 0.38 mm on L1 and within
± 0.62 mm on L3, the latter applicable to global frame determinations where atmospheric influence cannot be neglected. In
addition to antenna calibration corrections, the results can be used with an equivalent tracker combination to determine the
phase centers of as-installed individual receiver antennas at system critical sites to the same level without compromising the
permanent installations.

Keywords Antenna · Calibration · GNSS · Local tie · Phase center offset · Phase center variation · Terrestrial reference
frame · PCC · PCO · PCV · TRF

1 Introduction

In a geodetic system where VLBI provides connection to the
celestial reference frame and SLR to the center of the ter-
restrial frame, GNSS ground stations play a key role in the
implementation on the observational level (Plag and Pearl-
man 2009; United Nations 2015; Altamimi et al. 2016). The
space geodesy focus lies in the location of the antenna, and
particularly its phase center, i.e., the mathematically best
fitted non-physical point that relates the incoming electro-
magnetic signals’ time of arrival to the tangible structure. In
other fields of interest, the calibration tables and diagrams
used to characterize antennas are dedicated to establish gain
characteristics in different directions (e.g., ARRL 2015). As
far as we know, the location objective is unique to geodesy
which might explain why GNSS antenna calibration is still a
field in continual development (Tranquilla andColpitts 1989;
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Wübbena et al. 1996; Schupler and Clark 2001; Akrour et al.
2005; Bányai 2005; Wübbena et al. 2006; Aerts and Moore
2013; Baire et al. 2014; IGS AWG 2017).

From early observations with uncalibrated GPS antennas
at the still operativeCIGNET stations (Schenewerk 1991) via
relative methods (Mader 1999) to the current asserted abso-
lute calibrations (AC) of antennas in the IGS network, the
observational vertical error has decreased from 10 cm to an
order claimed less than 1 cm (Schmid at al 2005). To reduce
the vertical error by another order of magnitude andmeet cli-
mate changemonitoring requirements on the geodetic system
of 1mmaccuracy (Plag andPearlman 2009;NRC2010), reli-
able determinations of the antenna phase center offsets (PCO)
and variations (PCV) combined as phase center corrections
(PCC) with respect to the tangible structure are instrumen-
tal. These PCCs are currently rather weakly constrained by
independent methods, and the lack of on-site phase center
model tests in particular is a primary source of systematic
errors and biases in GNSS processing (Dilssner et al. 2008;
Gross and Herring 2017; Johansson et al. 2019). The IGS
currently approves AC tables generated with two different
principles—robotic vis-à-vis anechoic chamber, compared in
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(Görres et al. 2006)—from four service providers (IGSAWG
2017), but the methods have been shown to produce different
results at an order of 2 mm in the horizontal and 5 mm in
the vertical components (Baire et al. 2014). This difference
obviously does not match the reference frame requirements
and IGS lacks established procedures to prove equivalence
between the calibrations (cf. CIPM 2003). To conform the
terminology, JCGM (2012) defined calibration as an

operation that, under specified conditions, in a first
step, establishes a relation between the quantity
values with measurement uncertainties provided
bymeasurement standards and corresponding indi-
cations with associated measurement uncertainties
and, in a second step, uses this information to estab-
lish a relation for obtaining a measurement result
from an indication

where also the included terms are explicitly defined. Adher-
ing to this, it is clear that the conditions are an essential part of
the operation, and also that the provided uncertainties should
be made with respect to measurement standards and not only
as a distribution around an arbitrarily estimated mean. Refer-
ring to the condition aspect, it is implicit that the validity of
the calibration deteriorates the more the calibration differs
from the conditions of use to a level where the calibration
results eventually become irrelevant, and also that this deteri-
oration is accelerated if the measurement uncertainties aren’t
well understood in all parts of the operation.

Applied to a GNSS realm, an important condition is the
antenna phase patterns, which result from interactions with
the surrounding electromagnetic near field, i.e., the reactive
and radiative/Fresnel regions where the distance (r ) from
the phase center expressed in observation wavelengths (λ)
typically is r < λ. A good practice is therefore to keep
even mildly disturbing objects in the far field, i.e., r � 2λ.
To achieve and provide a geodetic reference frame which
is accurate to 1 mm and not only precise, the calibration
method characteristics of the L1 and L2 frequencies need to
be explored and understood in detail. According to a rule of
thumb, individual uncorrelated errors should be less than one
third of this value, i.e.,≤ 0.3mm,which is a looser constraint
than the 0.1 mm requirement on local ties set out in Plag and
Pearlman (2009). The calibration method’s influence on the
AC tables was acknowledged in Wübbena et al. (2006), but
the electromagnetic interaction between the antennas and the
near-field surroundings, as well as the transfer function from
calibration to deployment, remains to be quantified.

As the discrepancy between different calibration meth-
ods exceeds metrologically traceable measurement method
uncertainties (JCGM 2008) between physically manifested
antenna reference points (ARP) by at least two orders of
magnitude and antennas are deployed in totally different

environments to where they were calibrated, the AC tables
need to be used with precaution for the most demanding
applications. It is therefore of great importance to develop
an on-site traceable antenna calibration method that can be
utilized for system critical reference antennas when they are
installed in their final position (Baire et al. 2014; Gross and
Herring 2017).

In this paper, we present an assessment that utilizes a
combination of inter-antenna differentials and high-precision
geometric measurements to determine the unbiased phase
center offset from the geometric ARP. To achieve this objec-
tive, we examine the AC tables for antennas calibrated by
two IGS-approved service providers and examine the differ-
ences between their results. We then show how geometric
constraints and the similarity between duplicate antennas,
i.e., of same design and similar characteristics, can be com-
bined to quantify the error function (ε) of the AC tables
with independent means. In the subsequent step, we connect
the vector between the electromagnetic phase centers to the
physical structure of the antennas using laser tracker mea-
surements and thus quantify the AC table error functions in
two parallel investigations of the service providers’ results.
Having characterized the AC table errors, we determine the
extent to which these alias as tropospheric delay and antenna
height/reference frame scale errors in the geodetic analysis.
Finally, we validate the assessment by reprocessing the data
with the obtained correction factors.

2 Examination of AC table differences

In two separate projects (SIB60 2017; Johansson et al. 2019),
we have had six antenna samples in three pairs of dupli-
cates individually calibrated with both robotic and anechoic
chamber methods by two different service providers who
applied one method each on their premises. From the service
providers, we were supplied with ARP-referenced calibra-
tion table values (⊗C) in azimuth (α) and elevation (ε) but
found these to be different to a level that raises doubt of their
validity. Although neither of the providers is accredited, we
expected to get the AC table measurement uncertainties in
accordance with ISO/IEC 17025 (ISO 2017 and earlier eds.)
but to no avail.

Recognizing that systematic errors result from a com-
bination of the procedures and the hardware applied by
each service provider, it is impossible to make an a poste-
riori separation between these two categories from the AC
tables. ’Service provider’ and ’method’ could therefore be
used interchangeably in our investigation, but as the assess-
ment outlined in Sect. 3 is general and does not provide
any information on robotic or chamber calibrations per se,
we decouple the providers and the robotic chamber princi-
ples from the investigation and relate to them generically as
’methods’ (Mi ).
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Fig. 1 Differences between the
M1 and M2 AC tables for the
broadcast frequencies L1 and L2
for three duplicate antenna pairs
displayed as polar plots. #1–#4
are choke ring antennas, #5–#6
are rover antennas, Δ⊗CM12

L1 in
the top row and Δ⊗CM12

L2 below

Fig. 2 Mean and standard
deviation of the Δ⊗CM12

L1
differences for L1 in the AC
tables. Antennas #1–#6 are
grouped from left to right in the
5◦ elevation lanes. The
differences between the
methods’ results are close to
0 mm for #1, #2 and #3 and are
elevation dependent with high
internal correlation between #5
and #6

In Fig. 1, we display the differences Δ⊗CM12
L j (α, ε) =

⊗CM2
L j (α, ε) − ⊗CM1

L j (α, ε) between M1 and M2 at fre-
quency (L) for the duplicate antenna pairs #1–2, #3–4 and
#5–6 to illustrate the differences between the AC tables;
antennas #1–4 are classic reference station choke ring anten-
nas JNSCR_C146-22-1, #5–6 are surveying/rover antennas
LEIAS10 (NGS 2017).

To facilitate a quantitative evaluation of themethod differ-
ences,we present the elevation dependence ofΔ⊗CM12

λ (α, ε)

in Figs. 2 and 3. In Fig. 2, we notice that the difference
between the methods at L1 is close to zero and almost iden-
tical for the choke ring antennas (particularly for #1, #2 and
#3) and that the difference between the methods is eleva-

tion dependent for the rover antennas. In Fig. 3, we observe
that the difference between the methods at L2 differs from
zero with internally repeatable patterns for similar anten-
nas, indicating larger differences between the methods at L2,
and an elevation dependence for both antenna types. From
this, we conclude that the differences between the meth-
ods in our AC tables are reproducible and to a high degree
dependent of elevation, frequency, and antenna design. We
identify the similarity between antennas as a key component
in the assessment method presented in this study and focus
on the #1 and #2 duplicates, using #1 as the individual show-
case.
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Fig. 3 Mean and standard
deviation of the Δ⊗CM12

L2
differences between M1 and M2
for L2 AC tables, #1–#6
grouped from left to right in the
elevation lanes. The general
correlation features correspond
to those in Fig. 2 but with loss of
method equality for #1–#4 at L2

Fig. 4 Variations in #1’s AC
tables for the two methods M1
(black) and M2 (red); L1 at the
top, L2 at the bottom. The AC
table values are presented as 72
individual lines that connect the
elevation values in each
azimuth. The left column
displays the AC table values and
the right column the variation
around the mean for all 5◦ × 5◦
cells

To this end, we present the 5◦ × 5◦ AC table contents
for #1 in Fig. 4, with the delivered values (⊗CMi

L j ) and the

distributions (⊗sMi
L j ) the latter here extracted and centered

around the individually computed mean ⊗C̄Mi
L j (ε) at each

elevation. The offset between the two methods at the same
frequency—particularly visible between ⊗CM1

L1 and ⊗CM2
L1

in the top left panel—depends on different definitions of the
PCCs,which are handled later in the processing and therefore
have no actual impact on the results; the calibration values
(C) used fromhere on are adjusted to zero offset in the zenith.

The adjusted differences ΔCM12
L j = CM2

L j − CM1
L j are

shown in Fig. 5. Considering that

|ΔCM12
L1 | ≥ 0.3 mm , ε < 65◦; and

|ΔCM12
L2 | ≥ 0.3 mm , ε < 80◦;

neitherΔCM12
L1 norΔCM12

L2 satisfies the rule of thumb objec-
tive to be less than one third of the targeted 1 mm between
the methods for any practical purposes. Nevertheless,
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Fig. 5 AC table differences
between M1 and M2 for antenna
#1, individual lines connect the
elevation values with the same
azimuths. ΔCM12

L1 (red) are
generally within 1 mm
agreement, whereas ΔCM12

L2
(green) approach 5 mm

|ΔCM12
L1 | ≤ 1 mm , ε ≥ 15◦; and

|ΔCM12
L2 | < 4.5 mm , ε ≥ 25◦;

indicate better agreement on L1 than on L2, and from com-
paring the tables it appears as if the L1 results fulfill the 3mm
requirement set out by Ray and Altamimi (2005).

We note that it is impossible to draw any conclusions on
the accuracy of eithermethod from thisAC table examination
as the differences only relate the methods to each other. Fur-
thermore, with both service providers making tacit claims of
zero uncertainty, an attempt to retrieve a realistic estimate of
the true value is futile. However, thriving on the similarities
between selected antenna samples, we outline a differential
analysis to examine the calibration methods’ contribution to
the errors in position estimates.

3 Isolating calibrationmethod errors using
external constraints

Between two antennas separated sufficiently to be in each
others receiving far field, say r > 20λ, the observed
phase difference (ΔΦraw) to any particular satellite can be
expressed

ΔΦraw = ΔAtm + G + T2 − T1 + τ + Nλ + ν (1)

with the sum of the neutral and dispersive atmospheric dif-
ferences (ΔAtm), the geometric conditions of the setup (G),
the individual true antenna patterns (Ta), the intrinsic clock

and hardware errors (τ ), a phase integer (N ), and the noise
components of the observations (ν).

Whereas atmospheric differences at short distances can
be approximated by a deterministic function of the height
difference (ΔH ) and the elevation angle, i.e.,ΔAtm(ΔH , ε),
G is characterized by the projections on the baseline in the
direction of the propagating wave, the phase wind-up (Φ̃a)
resulting from different orientations (Ψa) with respect to the
vertical and satellite direction, the satellite trajectory induced
Doppler correction (Δt ρ̇) and the atmospheric difference,
and may be expressed

G = f (Δx,Δy,Δz, Φ̃1(Ψ1), Φ̃2(Ψ2),Δt ρ̇, ΔAtm(ΔH , ε))

(2)

Identifying the terms of G that can be determined inde-
pendently of the phase solution (G⊥) reduces the uncer-
tainties involved in determining ΔΦraw and consequentially
also ΔT . The purely geometric components in G, i.e.,
Δx,Δy,Δz, Ψi and ΔAtm , can be determined accurately
with, e.g., a laser tracker and an inclination sensor, whereas
G⊥(Φ̃i ) and G⊥(Δt ρ̇) can be gauged accurately from code
measurements and orbital data (Wu et al. 1993). In this work,
we have represented the antenna orientations Ψi as a set of
Euler angles.

For anymethodM , the calibration valuesCaM (α, ε) in the
antenna-oriented reference frame are associatedwithmethod
errors (εaM (α, ε)) with respect to the true value Ta(α, ε)

εaM (α, ε) = CaM (α, ε) − Ta(α, ε) (3)
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Fig. 6 Illustration of the assessment that separates the calibration error
function ε from the true antenna pattern Ta . Top: Duplicate antennas
oriented at different inclinations Ψi are positioned with geometrical
constraintsΔx ,Δy,Δz between theARPs. Satellite signals (parallel red
arrows) are received at the antenna phase centers in the antenna-oriented
elevation εi with the resulting phase wind-up Φ̃i and a small time shift
Δt ρ̇ (intentionally omitted in the diagram). Middle: The observations
are used to create an elevation-dependent error map with respect to
the true pattern Ta , which is displayed as a baseline but in itself has
variations that are not discernible in this diagram. Every observation
adds information to the error map at the positions where the signals are
received in the two separate antenna oriented frames. The polar plot
relates only to angles with respect to the phase center point, not the
antenna dimensions. Bottom: The errors with respect to Ta are added
at two positions in the elevation error-oriented projection

Utilizing that the phase patterns of duplicate antennas are
both largely azimuth independent and near identical between
selected individuals, we generalize an elevation-dependent
method error (εM (ε))

εaM (α, ε) ≈ εaM (ε) ≈ εM (ε) (4)

By deliberately orienting the antennas differently with
respect to the satellites, we can force the received signals into
different apparent elevation angles in the individual frames,
as illustrated in the top part of Fig. 6. Applying the externally
determined G⊥ from which the N integers are determined
unambiguously, we use Eq. 4 and substitute Eqs. 3 into Eq. 1
to express the difference between the calibrated phase obser-
vations (ΔΦC )

ΔΦC = ΔΦraw − (C2M (α2, ε2) − (C1M (α1, ε1) + G⊥ + N )

(5)

= εM (ε2) − εM (ε1) + τ + ν (6)

This difference can therefore also be expressed as the dif-
ference between the calibration method’s error at different
elevation angles as observed by two duplicate antenna sam-
ples, plus clock/hardware and noise.

As the AC tables provide CaM at discrete grid points in
azimuth and elevation, the side lobes of εM (ε) are distributed
to preset equiangular elevation cells (E j , E j+1) through an
ordinary moment equation with the fraction ( f ) so that

εM (ε) = f εE j + (1 − f )εE j+1 . (7)

With a 5◦ cell separation, the method error for a satellite
observed at ε1 = 41◦ and ε2 = 28◦ is then distributed with
0.8 weight in E40◦ and 0.2 weight in the E45◦ due to antenna
1, and with 0.4 weight in E25◦ and 0.6 weight in E30◦ due to
antenna 2. From the table cells {0◦, 5◦, . . ., 90◦}we construct
a sparse elevation design matrix (Hεti ) for the ni commonly
observed satellites at epoch ti . The matrix has two, three, or
four nonzero elements on each row, dependingonwhether the
apparent elevation angles at the two antennas for a satellite
are located in the same cell, adjacent cells, or isolated cells.
Labeling the combination of antennas and satellites in Eq. 7
with ( f Sa ) yields a structure of the matrix as follows:

Hεi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

··· f Γ
1 1- f Γ

1 ··· - f Γ
2 f Γ

2 -1 ···
··· - f Λ

2 f Λ
2 -1 ··· f Λ

1 1- f Λ
1 ···

f Θ
1 1- f Θ

1 - f Θ
2 f Θ

2 -1 ···
··· f Ξ

1 - f Ξ
2 f Ξ

2 - f Ξ
1 ···

··· - f Υ
2 f Υ

2 + f Υ
1 -1 1- f Υ

1 ···
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

Operating on the antenna differentials, we lock observations
to the zenith observation cell, i.e., ε90◦ = 0. This corresponds
to removing the rightmost column of Hεi , yielding an [ni ×
18] matrix to produce an error table for elevations at every
5◦ over 0 − 85◦.

The clock and hardware errors τ are identical for all obser-
vations in an epoch, but differ between epochs. We construct
a corresponding set of [ni × 1] clock phase design matrices
(Hτ i ) for i = 1, ..., m

Hτ i = (
1 · · · 1)	

(9)

and concatenate the Hεi and Hτ i blocks to complete the
design matrices
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Table 1 Laser tracker
inclinometer constraints on
Euler angle orientations
(Tait–Bryan)

Antenna Yaw Pitch Roll
No. (◦) (◦) (◦)

#1 − 9.2533 ± 0.0030 18.6034 ± 0.0003 − 1.7785 ± 0.0030

#2 − 2.4493 ± 0.0030 − 19.8603 ± 0.0003 − 0.2104 ± 0.0030

Hε =

⎛
⎜⎜⎜⎝

Hε1

Hε2
...

Hεm

⎞
⎟⎟⎟⎠ and Hτ =

⎛
⎜⎜⎜⎝

Hτ1 0 · · · 0
0 Hτ2 0
...

. . .
...

0 0 · · · Hτm

⎞
⎟⎟⎟⎠ .

(10)

It is then possible to solve

ΔΦ = [
Hε Hτ

] · [
X

]
(11)

for the regression vector X of ε j and τi

X = (
ε0◦ · · · ε85◦ τ1 · · · τm

)	
(12)

in a least squares sense, where an elevation-dependent func-
tion of the noise standard deviation (σν) can be derived
from the post-fit residuals. Weighing data by 1/σ 2

ν (ε) yield a
weight matrix (W) which is diagonal provided that the noise
terms are uncorrelated. We solve these separately for various
combinations of methods M and frequencies λ, including the
individual weight matrices and write

X̂M,λ = (
H	WM,λH

)−1
H	WM,λΔΦM,λ (13)

where H = [
Hε Hτ

]
. The weighted least squares solutions

also provide the noise-related uncertainties (uM,λν) of the
estimates as the square root of the main diagonal of the error
covariance (CovM,λ) where

CovM,λ = (
H	WM,λH

)−1
. (14)

4 Antenna setup and externally measured
constraints

The duplicate antennas #1 and #2weremounted on surveying
tribrachs on wooden tripods to reduce the amount of perturb-
ing material in the electromagnetic near field. The antennas
were then tilted with the tripod heads and aligned prelimi-
nary with a magnetic compass, declination 3.4◦ E imposing
only minor influence. The geometric parameters G⊥ to con-
stitute the constraints for the analysis were measured with
a combination of a laser tracker and an inclinometer (Leica
Geosystems 2003, 2005) to provide accurate measurements
and relations to the local plumb line.

Table 2 Laser tracker constraints on the baseline between ARPs,
including rotation

East North Up
(mm) (mm) (mm)

− 7181.6 ± 0.45 37.2 ± 0.63 18.5 ± 0.05

The measurements were then used to relate the individual
antenna-fixed (E, N, U) orientations to the local frame using
Tait–Bryan Euler angles (Table 1) and the tracker measure-
ments to determine the baseline vector between the ARPs
(Table 2). As a mean of aiding the determination of the
baseline vector, a subset of the GNSS observation data were
processed several times with small changes in the azimuth
angle of the vector. The standard deviations of the residuals
were calculated, and from the minima displayed in Fig. 7
the azimuth of the baseline vector was found to be 90.297◦.
The azimuth angles of all minima in Fig. 7 deviate from this
value on a 0.005◦ level, corresponding to the 0.63 mmNorth
component uncertainty on the baseline displayed in Table 2.

5 GNSS observations and calibration table
corrections

We performed GNSS observations for one week and a
posteriori chose a two-minute sample interval to ascertain
uncorrelated noise in the satellite observations. With the
geometric constraints known to the accuracy of Tabs. 1, 2
and Fig. 7, we used the individual AC tables introduced in
Sect. 2 to determine the differences between GNSS process-
ing and the geometrically determined phase centers, utilizing
the method described in Sect. 3. While signals are broadcast
at the L1 and L2 frequencies, the ionosphere-free L3 is a
synthetic frequency combination of L1 and L2 and cannot
be calibrated in itself. Nevertheless; L3 is essential for long
baselines and orbit determinations, and the errors that prop-
agate into these solutions are equally important to monitor,
and the effects on L3 are treated with the same pertinence as
the broadcast frequencies.

In a set of simulations, we varied the geometrical parame-
ters in the processing to assess the sensitivity of the AC table
error estimates to the uncertainties in these parameters. To
this end, we used the uncertainties of Tabs. 1 and 2 to assess
the ε uncertainties in the east, north and up directions, as well
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Fig. 7 Baseline orientation
angle iterations from GNSS L1
and L2 data for the two
methods. Zero offset
corresponds to the chosen value
for the vector azimuth: 90.297◦

Fig. 8 Uncertainties uG⊥ of the
calibration error estimates ε due
to uncertainties in the east, north
and up directions individually,
and in combination with the
Euler angles. The Euler angle
effects are barely discernible at
this resolution, but are included
in the “All” containers where the
uncertainties are added in
quadrature

as to the Euler angles. The results are presented in Fig. 8,
where all components are added in quadrature, forming a
total uncertainty due to the geometry (uG⊥). The domination
of the East component in the uncertainty is a consequence of
the main tilt directions of the antennas, one to the east and
the other to the west.

We also show theGNSS observation uncertainties (uM,λν )
in Fig. 9, extracted from the square root of Eq. 14, for a more
detailed picture of themethod uncertainties at different eleva-

tions and frequencies. The higher noise level of L3 compared
to those of the broadcast frequencies is a direct consequence
of the quadratic adding of the contributing components. In
practice, uM1,λν and uM2,λν turn out identical at the 0.01mm
level, and we therefore present them interchangeably here as
uλν without loss of information.

We aim to estimate the systematic method errors in the
M1 and M2 calibration of the choke ring antennas #1 and
#2. Their respective AC tables contain a calibration scatter,
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Fig. 9 Uncertainties uλν of the
calibration error estimates for
M1 and M2 at L1 (red), L2
(green), and L3 (blue). uM1,λν

and uM2,λν are identical at the
0.01 mm level and are therefore
presented here as uλν

Fig. 10 Uncertainties uC of the
method error estimates due to
the stochastic variations in
individual calibration results at
L1 (red), L2 (green), and L3
(blue). The scatter in the
calibration difference results for
antennas #1, 2 and 3 (e.g.,
visible as a spread of the results
in Figs. 2 and 3 for these
antennas) was used to derive
values for these uncertainties.
Lacking information of the
originating uncertainties in M1
and M2, we presume that the
two methods contribute equally
to the scatter and consider
uCM1,λ and uCM2,λ identical

which needs to be quantified in order to derive relevant uncer-
tainty measures for the method errors. We use the AC table
differences for antennas #1, #2, and #3 to derive the typ-
ical calibration scatter (uC ) and presume that both service
providers contribute equally to this uncertainty. The scatter
is presented in Fig. 10, where we used the data from #1–3
in the analysis, but excluded #4 as the AC table differences
for this antenna deviate significantly from the other antennas
and we cannot be certain of the origin of this deviation.

With access to the uncertainties of the geometric con-
straints, the GNSS observations and the calibration scatter,
we use the sum of variances to get a more complete view of
the total uncertainties ( uλ) in the combination

uλ =
√
u2G⊥ + u2λν + 2u2C (15)

where u2C appears twice to account for the contribution of
both antennas. In Figs. 11 and 12, we display the AC table
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Fig. 11 Errors of the assessed
calibration method M1
compared to traceable
measurements. Results are from
one week’s error mapping at L1
(red), L2 (green), and L3 (blue).
The underlying observations are
the same as in Fig. 12

Fig. 12 Errors of the assessed
calibration method M2
compared to traceable
measurements. Results are from
one week’s error mapping at L1
(red), L2 (green), and L3 (blue).
The underlying observations are
the same as in Fig. 11

errors coupledwith the combined uncertainties, εMiL j ±uL j ,
using the geometric measurements as ground truth and all
uncertainties transferred to the AC table error functions. One
should notice in this case that εL3 is a combination of εL1
and εL2 with opposite signs, which results in constructive or
destructive interference of the errors present in the delivered
AC tables depending on how the broadcast errors interact.

Examining the results, we notice that for all practical pur-
poses

|εM1
L1 | <

{
0.1 mm , ε ≥ 45◦
0.3 mm , ε ≥ 10◦ |εM2

L1 | > 0.3 mm , ε < 60◦;

|εM1
L2 | > 1 mm , ε < 50◦ |εM2

L2 | > 1 mm , ε < 55◦;
|εM1
L3 | > 3 mm , ε < 25◦ |εM2

L3 | > 3 mm , ε < 55◦;
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which means that only CM1
L1 is up to our estimate of the

required system standards, but that the specifications set forth
in Plag and Pearlman (2009) have not been met. As expected
from the examination of the AC tables in Sect. 2, the εL1
errors are smaller than the εL2. We also notice the sign of the
derivatives in broad terms and find that

ε′M1
L1 = 0, ε > 10◦ ε′M2

L1 =
{

+, ε < 40◦

−, ε > 40◦ ;

ε′M1
L2 = −, ε > 10◦ ε′M2

L2 =
{

−, ε < 30◦

+, ε > 30◦ ;

ε′M1
L3 =

{
+, ε < 35◦

0, ε > 35◦ ε′M2
L3 =

{
+, ε < 40◦

−, ε > 40◦ ;

the effects of which is examined more closely in Sect. 6.

6 Effects on parameter estimation in GNSS
processing

As mentioned in Sect. 1, PCCs have only been weakly con-
strained with respect to current demands, and AC errors on
the order of Figs. 11 and 12 have therefore unknowingly been
incorporated in the GNSS processing. In an unconstrained
Eq. 1, the errors propagate to the final solutions where they
are distributed among the estimated parameters much as in
communicating vessels. Depending on their general behav-
ior, these parameters can in broad terms be categorized as

εM (ε) ≈ ΣΔ(ε) = Δθ +Δυ +Δκ ,

⎧⎪⎪⎨
⎪⎪⎩

Δθ = P(a/sin ε)

Δυ = P(b sin ε)

Δκ = P(c)

(16)

where the power sets (P) represent general generic terms
for groups of similarly perturbing phenomena. More specifi-
cally, error components that are large at lowelevations alias as
troposphere parameters (Δθ ) those that increase near zenith
alias as height Δυ , whereas those that are insensitive to ele-
vation alias as clock errors Δκ which shifts the observations
uniformly along the Φ-axis in Figs. 11 and 12. Large errors
in Δκ are an inherited property accounted for in the system
design and essentially allowed to run free. We explore the
effect of the calibration errors and fit the residuals

rMi
L j (ε) = −εMi

L j (ε) (17)

with a parameter combination that satisfies Eq. 16.We inves-
tigate two scenarios:

(i) a short baseline without Δθ , relying on L1; and
(ii) a long baseline where Δθ needs to be estimated,
using L3;

to evaluate the end effect of using CM (ε) instead of TM (ε)

and we apply both uniformly weighted and sin ε-weighted
observations to estimate the Δθ

M and Δυ
M contributions that

inevitably affect the geodetic analysis. The L3 results are
shown in Fig. 13, where the M1 fit is achieved by a set of
rather moderate parameters, whereas the corresponding M2

fit needs rather high values of both Δθ
M2 and Δυ

M2 to fit the
data at both low and high elevations. The full parameter eval-
uation is presented in Table 3, where the results reveal that
both M1 and M2 are probably sufficient for L1 on short base-
lines, whereas the L3 results indicate that both methods are
significant error contributors in reference frame determina-
tions. This is particularly true for M2, whose contribution at
L3 is an order ofmagnitude larger than the 1mm frame objec-
tive and evenworsewith respect to the anticipated acceptable
calibration contribution 0.3 mm.

7 Discussion

The outlined assessment method is in all essence indepen-
dent of the antenna designs employed in the evaluation and
should be transferable also to other types of antennas within
the width of the uncertainty bands. However, as is shown in
Sect. 2, the AC table differences vary considerably between
antenna designs, and our results can therefore not be trans-
ferred to other antennas the way they would have been for
methods with inter-model reproducible errors—the a priori
knowledge of the uncertainties in the AC tables is simply too
poor andwe cannot assume that the antenna interactions with
the surroundings at the service provider premises are invari-
able. Nevertheless, assuming that the applied AC tables are
representative for our antennas and that no changes have been
made at the service providers’ facilities, our results should be
applicable to the AC tables delivered for JNSCR_C146-22-1
and similar choke ring antennas.

To verify that our method has not redistributed the param-
eters unjustly, we compare the differences in the estimates
for the twomethodswith the a priori known differences in the
calibration tables and display these in Fig. 14. In the graph,
we present the calculated uncertainties of the differences in
the estimated models as

uδ =
√
u2δν + 2uC (18)

The noise-related uncertainty of the estimation difference
(uδν) is only about one sixth of the uncertainty, uν , presented
in Fig. 9, as a consequence of using the same set of obser-
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Fig. 13 AC table errors’
contribution in Δθ , Δυ and Δκ

estimates at L3. The identified
calibration errors in M1 (black)
and M2 (red) are fitted with an
unweighted (dash dot) and a
sin ε (dash) mapping function,
respectively

Table 3 AC method
contributions to the L1 and L3
analytic solutions for equal
weight and sin ε weight
functions

Alias θM1 υM1 κM1 θM2 υM2 κM2
Map (mm) (mm) (mm) (mm) (mm) (mm)

w(1) : L1 →−� - -0.2 -0.3 - 0.1 -0.4
w(1) : L3 →−� 0.5 2.0 2.4 2.1 -8.1 -11.5

w(sin ε) : L1 →−� - -0.4 -0.4 - -0.2 -0.6
w(sin ε) : L3 →−� 0.8 1.0 1.3 3.0 -12.2 -15.9

vations in the processing for both methods. The geometrical
component, uG⊥, is identical for bothmethods, and its contri-
bution cancels in the difference. The estimation differences,
with accompanyinguncertainties, describe fairlywell the cal-
ibration table differences for antennas #1–3, while antenna
#4 deviates as discussed earlier.

Finally,we formed the correctedAC tables (T̂a(α, ε)) from
the estimated method errors by reversing Eq. 3

T̂a(α, ε) = CaM (α, ε) − εM (ε) (19)

and conducted a verification rerun of the original satellite
data using T̂a(α, ε) instead ofCaM (α, ε). Since identical data
were used in forming the correction models and in the veri-
fication, the newly derived errors (ε̂) should ideally become
zero. As shown in Fig. 15, this holds true for ε̂L1 and ε̂L2,
which both are< 1¯m, with ε̂L3 being slightly larger but typ-
ically below 0.1 mm. We have sought the root cause for the
correlated patterns in ε̂M1L3 and ε̂M2L3, but fail to explain
how these originate without any trace in the broadcast fre-
quencies and anticipate the cause to be imperfections in the
iterative creation of the weight matrix W in Eq. 13.

Broadly categorizing uncertainties as being of geomet-
ric or electromagnetic character, we briefly mention some
factors and dependencies worth addressing and character-
izing in focused investigations ahead. First, we notice that
a comprehensive correction for a full hemisphere can be
obtained by introducing a Δα shift in the characterization
with the same method generics as those applied here. Due to
the non-polar GNSS orbits, all cells were not occupied with
direct observations in our stationary set up, something that
could be amended with common antenna rotations if consid-
ered necessary. Full characterizations are redundant in local
assessments such as the one we performed, where the GNSS
orbits affect the assessed antennas and an adjacent deployed
CORS antenna; similarly, for a complete correction table in
azimuth and elevation, a full characterization would be nec-
essary.

Secondly, as already noted, the uncertainty in baseline
length dominates the current uG⊥. We used the laser tracker
with a probe configuration as generally fit for purpose, and
with all data collected at the end of the analysis it is possible,
but not certain, that a different setup could have improved the
situation slightly. However, with the orientation fitting proce-
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Fig. 14 Model inversion of the
observation data compared to
AC table differences. Solid,
colored lines represent our
observed method differences at
each frequency L1 (red), L2
(green), and L3 (blue). Black
lines represent the differences
between the two supplied AC
tables, L3 being calculated from
L1 and L2

Fig. 15 Error functions ε̂ from a
rerun of the original observation
data, using the obtained T̂a(α, ε)

tables at frequencies L1, L2, and
L3 for M1 and M2; to compare
with Figs. 11 and 12. L1 and L2
(red and green, respectively) are
overlaid in the diagram, as
ε̂L1,L2 → 0

dure in Sect. 4, the length is likely to be the dominant source
regardless of orientation (at least as long as the antennas are
tilted in the direction of the baseline).

Thirdly, we speculate that a smaller ΔΨ could reduce
uλ. While an angular shift between the antennas is needed to
evaluate the differentials,we concede to have been influenced
by the 5◦ equi-angular separation between the cells in the
original AC tables and tilted the tribrach heads as far as we

possibly could during the campaign—in an evolution we are
likely to employ a smaller ΔΨ , and it is possible that an
optimal angle can be found.

For electromagnetic-related uncertainties, the assessment
errors introduced by the approximations in Eq. 4 would obvi-
ously be reduced by using perfect antenna duplicates, but
evaluations of the differences between individual antennas
are not meaningful without metrologically traceable uncer-
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tainties in the AC tables. Looking at perturbations caused
by the antenna positions and rotations with respect to the
tribrach heads and outgoing antenna cables, respectively,
these remain to be investigated for more comprehensive
investigations of the uncertainties in our measurements. As
long as such objects are kept inside the cylinders extend-
ing downwards from the antenna ground planes, we expect
their influence on the results to be negligible. Ultimately, the
minimal required angle separation between the calibration
table cells depends on the GNSS observation repeatability in
each cell and the accuracy in the determination of the G⊥
components—we believe that the 5◦ equiangular separation
is adequate for contemporary applications.

We also note that once a reference antenna has been well
characterized, it is no longer restricted to its duplicate, but
can be used in combination with any antenna. Taking all of
the above into account, differential measurements that relate
the phase center positions of already deployed antennas to
their physical structure are ready to be made without affect-
ing on-site installations. Such measurements could provide
a metrologically traceable on-site antenna calibration that
satisfies (JCGM 2012; Baire et al. 2014; Gross and Her-
ring 2017) with unbiased results at the uncertainty levels
of Figs. 11 and 12. This, thus, promises to reduce system-
atic GNSS errors to a level which satisfy the requirements
on a reference consistent frame (Ray and Altamimi 2005;
Altamimi et al. 2016).

8 Conclusion

GNSS antennas are an essential part of bringing a uni-
fied geodetic observation system on the observation level
to fruition. However, the absolute antenna calibrations cur-
rently approved by IGS disagree on a level which exceeds
the observation system requirements, and the delivered tables
do not fulfill JCGM (2012) calibration standards in terms of
traceability to the related SI unit, sufficient control of uncer-
tainties, or proven degree of equivalence. As a consequence,
the AC tables have so far been allowed to differ to an extent
that exceeds the reference frame requirements without any
means of control.

Utilizing the similarities between duplicate GNSS anten-
nas, we have developed an assessment method based on
geometric laser tracker constraints and antenna differentials
to quantify the systematic errors in existing AC tables. We
applied this method in an elevation-oriented evaluation and
found two IGS-approved service providers’ACcontributions
to the L3 vertical for JNSCR_C146-22-1 choke ring antennas
be of order 1 mm and 1 cm, respectively.

Stating the benchmark values for 30◦ elevation, we gauge
our assessment method being able to determine GNSS
antenna phase centers accuratelywithin±0.38mmonL1 and

within ±0.62 mm on L3. Although larger than the 0.1 mm
requirement set out in Plag and Pearlman (2009), we consider
this sufficient to satisfy the overall 1 mm system objective as
well as the 3 mm set out by Ray and Altamimi (2005).

As this can be done without compromising the charac-
teristics of the existing installations, we advocate that a
combination of well characterized reference antennas and
commensurate geometric instruments is ready to be deployed
at system critical sites to determine the actual phase center
positions of existing GNSS antennas in the global frame.
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