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Abstract
As the KTH method for geoid determination by combining Stokes integration of gravity data in a spherical cap around the 
computation point and a series of spherical harmonics suffers from a bias due to truncation of the data sets, this method is 
based on minimizing the global mean square error (MSE) of the estimator. However, if the harmonic series is increased to 
a sufficiently high degree, the truncation error can be considered as negligible, and the optimization based on the local vari-
ance of the geoid estimator makes fair sense. Such unbiased types of estimators, derived in this article, have the advantage 
to the MSE solutions not to rely on the imperfectly known gravity signal degree variances, but only the local error covari-
ance matrices of the observables come to play. Obviously, the geoid solution defined by the local least variance is generally 
superior to the solution based on the global MSE. It is also shown, at least theoretically, that the unbiased geoid solutions 
based on the KTH method and remove–compute–restore technique with modification of Stokes formula are the same.
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1  Introduction

Today ultra-high Earth Gravitational Models (EGMs) allow 
detailed geoid determination all over the Earth. However, 
the higher-order harmonics of the EGMs are typically much 
less accurate than the low-to-medium wavelengths, which 
calls for improving the geoid estimator by using additional 
terrestrial gravity data in a combined local/regional solu-
tion. This is the case for some versions of the remove–com-
pute–restore (RCR) method (e.g., Forsberg 1993; Sansò and 
Sideris 2013) and the least-squares modification of Stokes’ 
formula (LSMSF; Sjöberg 1980, 1984a, b, 1991, 2003, 
2005a). Due to truncations of the EGM series and the area 
of Stokes integration, such solutions have an inherent bias, 
and, in case of the LSMSF technique, the optimum solution 
is provided for the minimum of the expected global mean 
square error (MSE). However, Sjöberg (2005a) set forth 
the idea of optimizing the LSMSF method by minimizing 
the local MSE. While the LSMSF method implies that the 
EGM and gravity anomaly data are combined by spectral 

weighting at spherical harmonic degrees, Sjöberg (2011, 
Sect. 3) presented a method for local geoid determination 
by spectral combination and weighting by degree and order, 
being unbiased in case the truncation error is negligible. 
Similarly, Klees et al. (2018) tested the use of single- and 
multi-scale spherical radial base functions for local spectral 
combination of different sets of gravity-related data in geoid 
determination, but the result shows that the method needs 
further test and development before being suitable for practi-
cal application.

Here we will consider the LSMSF method in the case 
that Stokes’ integral covers a sufficiently large region, such 
that the remote zone effect becomes negligible, in which 
case the solution can be regarded as unbiased (provided that 
all data are unbiased) from a statistical point of view. This 
implies that each solution (not necessarily the least-squares 
combination) will be (at least practically) unbiased, so that 
the MSE solution can be replaced by a local minimum vari-
ance solution.

Sjöberg and Bagherbandi (2017, Sect. 4.4.6) shortly 
discussed the possibility of modifying Stokes’ formula 
with a very high-degree EGM, but the strategy was still 
to include the estimation bias in the model and minimiz-
ing the MSE. In contrast, here we will assume that the 
bias is negligible, implying that the minimum variance 
solution is optimal. Hence, both the unbiased LSMSF 
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and Remove–Compute–Restore (RCR) solutions will be 
derived in Sects. 2 and 3, and the results are shortly dis-
cussed in Sect. 5. Section 6 concludes the study.

Although all of the above methods need direct and indi-
rect corrections for topography, atmosphere and ellipsoidal 
shape of the Earth as well as for downward continuation 
of gravity observations to the sphere of integration, only 
the topographic effects are shortly discussed in Sect. 4 (but 
are more extensively treated in Sjöberg and Bagherbandi 
2017, Sect. 6.2).

2 � The LSMSF solution

2.1 � Spectral combination

Consider the geoid height model

where � is the unit sphere, c = R∕(2�) , � being normal grav-
ity on the reference ellipsoid, R is the mean Earth radius, 
ΔgT is the terrestrial gravity anomaly observation, ΔgEGM

n
 

is the EGM derived gravity anomaly Laplace harmonic of 
degree n, and L is the upper degree of the EGM as well as 
upper degree of the modification of Stokes’ kernel function 
S(�) by parameters sk , i.e.:

where Pk are Legendre’s polynomials and � is the geocentric 
angle of integration w.r.t. the computation point.

The spectral form of Eq. (1a) reads:

where �n = 2∕(n − 1) , Δgn is the true gravity anomaly, �T
n
 

and �EGM
n

 are the random errors of ΔgT
n
 and ΔgEGM

n
 , respec-

tively, and

Assuming that all error components are uncorrelated with 
vanishing expectations, and by subtracting the true geoid 
height
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Ñ = c

∞∑

n=2

(
𝜆n − s∗

n

)(
Δgn + 𝜀T

n

)
+ c

L∑

n=2

sn
(
Δgn + 𝜀EGM

n

)
,

(2b)s∗
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0 otherwise.

from Eq. (2a), the following error and variance of Ñ  are 
obtained:

and

where E{} is the statistical expectation operator, and �2
n
 and 

dc2
n
 are the error degree variances of the terrestrial and EGM 

gravity anomalies, respectively.
From Eq. (4), one notices that the geoid error is unbiased, 

and from Eq. (5) follows that the minimum variance related 
with the least-squares solution 

(
N̂
)
 becomes

for the modification parameters

The spectral weights given by Eq. (7) were first presented 
by Sjöberg (1980) and (1981) and by Wenzel (1981), who 
named this technique spectral combination.

We now generalize the initial geoid model (1a) by assum-
ing that the terrestrial gravity and also the EGM errors are 
internally correlated with covariance matrices � and � , 
respectively, (but gravity and EGM data are assumed as 
mutually uncorrelated). Then the geoid model (1a) is still 
unbiased, but now its variance becomes:

or

where we have decomposed the infinite matrix � into four 
parts with �LL and �∞∞ on the diagonal and �L∞ = �T

∞L
 

off-diagonal, of dimensions (L,L), (∞,∞) and ( L,∞ ), 
respectively. (In practice, the infinite dimensions must be 
approximated by some finite degree.) Differentiating 𝜎2
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choice of �:
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Ñ
= c2(� − �∗)

T
�(� − �∗) + c2�T��,

(8b)𝜎2

Ñ
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with the variance of the geoid height estimator

2.2 � Solutions for a small integration cap size

We now allow for a high-degree maximum (M) of the EGM, 
such that M ≥ L , and we limit the Stokes integration in 
Eq. (1a) to a cap �0 of spherical radius �0 . Then the general 
estimator becomes:

where

and

are the so-called Molodensky truncation coefficients with

In this case, the geoid estimator can be written in the spectral 
form as

and the geoid height error becomes

Here it will be assumed that M, the maximum degree of the 
EGM, is so large, that the bias, the last term of Eq. (12), is 
negligible at the cm-level already for integral cap sizes of a 
few degrees (see Note 1 at the end of this section). Sjöberg 
(2005b, Sect. 5) reported that by selecting the modification 
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Ñ = c

∞∑

n=2

(
𝜆n − QL

n
− s∗

n

)(
Δgn + 𝜀T

n

)
+ c

M∑

n=2

(
QL

n
+ s∗

n

)(
Δg + 𝜀EGM

n

)
,

(12)

dN = c

∞∑

n=2

(
�n − QL

n
− s∗

n

)
�T
n

+ c

M∑

n=2

(
QL

n
+ s∗

n

)
�EGM
n

− c

∞∑

n=M+1

QL
n
Δg

n
.

parameters according to Molodensky’s method (Molodensky 
et al. 1962), which is specifically designed to minimize the 
truncation error, with L = M = 360, the RMS truncation error 
is within 1 mm already for a cap size of 2°. However, in the 
LSMSF technique the bias will be larger as it is balanced 
with other error components in a minimum MSE solution.

Disregarding the bias and assuming that the errors of ΔgT 
and ΔgEGM are uncorrelated, the following variance of the 
general geoid estimator of Eq. (10a) follows:

where the infinite number of elements of vector q are 
qn = Qn

(
�0

)
 , � and � are matrices of dimensions (∞,L) 

with � = E −
(
� �

)T , � with elements Enk and � being a 
unit matrix of dimension (L,L), and �M and DM are the first 
M rows of q and D.

The least-squares choice of the modification parameters 
� can be obtained by differentiating the variance of Eq. (13) 
by � and equating to zero. The result is:

or

where

and the solution for s becomes:

Finally, by substituting �̂ for � in Eq. (13), one arrives at the 
following variance for the least-squares geoid estimator:

where

Note 1  The significance of the bias term in Eq. (12) can be 
controlled by the approximation

where cn are the components of a gravity anomaly (signal) 
degree variance model.
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Note 2  If the aim were to find the minimum MSE solu-
tion, the square of the bias must be added to the variance in 
Eq. (13) for differentiation w.r.t. s. However, this is not the 
goal of this study.

3 � The RCR solution

Using the remove–compute–restore technique, the geoid 
estimator corresponding to Eq. (1a), where L = M, can be 
written

where

and the spectral form of this estimator becomes

which, after some rearrangements of terms, equals Eq. (2a).
Similarly, using the spectral representation, the more 

general Eq. (10a) for the KTH approach with L ≤ M can be 
rewritten in its RCR- form as

That is, from a theoretical point of view the RCR technique 
yields the same set of estimators as the straightforward mod-
ification of Stokes’ formula. In particular, the least-squares 
modification parameters and geoid variance become the 
same for the two methods.

4 � Topographic corrections

As stated at the end of Sect. 1, the corrections for topography 
are treated only sparsely in this study. The KTH approach 
uses analytical continuation of the external disturbing poten-
tial to point level and geoid level in applications for quasi- 
and geoid determination, respectively, and there is no fur-
ther topographic correction in quasigeoid estimation, while 
geoid estimates need also corrections for the topographic 
bias. In the RCR method, firstly one removes the effect of 
the topography on the observables as the direct topographic 
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effect on the Molodensky type of surface gravity anomalies 
( 
(
ΔgT and ΔgEGM

)
 . Then the gravity anomalies are down-

ward continued in one way or another to the sphere of com-
putation, a secondary indirect topographic effect on ΔgT is 
applied, and after Stokes integration, the first indirect topo-
graphic effect on the geoid is added (e.g., Sjöberg 2018). The 
interested reader is also referred to Sjöberg and Bagherbandi 
(2017, Sect. 6.2) to find that also these corrections theoreti-
cally agree in the KTH and RCR approaches when properly 
applied. See also Sjöberg (2005b).

5 � Discussion

It must be emphasized that the above modification param-
eters and least-squares solutions are local, implying that the 
modification parameters change with position on the mean 
Earth sphere. However, in practice, one can expect small 
changes in a small region, implying that only one set of 
modification parameters is needed there. As all solutions 
are unbiased, any choice of modification parameters yields 

an unbiased solution (if the truncation bias vanishes). Hence, 
the weight relation between terrestrial and EGM gravity data 
will not be critical for the solution, but, as is known from 
any least-squares adjustment, the error estimation will be 
more dependent on the choice of error covariance models. 
An important advantage of the unbiased solutions is that the 
gravity anomaly signal degree variance model needed in the 
MSE solutions is not required.

A similar approach for geoid determination was outlined 
in Sjöberg (2005a), but the principle difference is that there 
the geoid bias term was included in the optimization, which 
leads to a least-squares solution based on the (local) MSE. 
Hence, if the bias term is small, the two solutions should be 
practically the same.

6 � Concluding remarks

Unbiased minimum variance estimators are usually preferred 
to biased/MSE solutions, demanding less a priori informa-
tion for practical applications. The spectral combination 
without assuming correlations is the most simple solu-
tion, but not very realistic as there are mostly correlations 
among the data that should be taken into account. Doing so 
in the strict sense lead to huge, even infinite dimensional, 
covariance matrices, which, of course, in practice must 
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be restricted to a suitable resolution/dimension. Here one 
should also remember that approximate/simplified covari-
ance models also lead to unbiased, even if not optimal, 
solutions.

We have shown that the unbiased LSMSF and RCR solu-
tions are theoretically the same, although there may be some 
differences in their practical implementations.
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