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Abstract
The establishment of the terrestrial laser scanner changed the analysis strategies in engineering geodesy from point-wise
approaches to areal ones. During recent years, a multitude of developments regarding a laser scanner-based geometric state
description were made. However, the areal deformation analysis still represents a challenge. In this paper, a spatio-temporal
deformationmodel is developed, combining the estimation of B-spline surfaces with the stochastic modelling of deformations.
The approach’s main idea is to model the acquired measuring object by means of three parts, similar to a least squares
collocation: a deterministic trend, representing the undistorted object, a stochastic signal, describing a locally homogeneous
deformation process, and the measuring noise, accounting for uncertainties caused by the measuring process. Due to the
stochastic modelling of the deformations in the form of distance-depending variograms, the challenge of defining identical
points within two measuring epochs is overcome. Based on the geodetic datum defined by the initial trend surface, a point-
to-surface- and a point-to-point-comparison of the acquired data sets is possible, resulting in interpretable and meaningful
deformation metrics. Furthermore, following the basic ideas of a least squares collocation, the deformation model allows
a time-related space-continuous description as well as a space- and time-continuous prediction of the deformation. The
developed approach is validated using simulated data sets, and the respective results are analysed and compared with respect
to nominal surfaces.

Keywords B-spline surfaces · Deformation modelling · Laser scanning · Locally homogeneous stochastic processes ·
Prediction

1 Introduction

Deformation analysis has always been part of a large range
of application fields: the monitoring of an object’s change
over time is of high interest in gas and oil production,
civil and mechanical engineering, hydrology or environmen-
tal sciences (Velsink 2015). Classical geodetic approaches
like levelling, GNSS or total station measurements allow
a point-based determination of deformations by repeatedly
measuring representative points of an object. The evaluation
of the resulting coordinate differences represents the object’s
deformation (Wunderlich et al. 2016). Although there exists
a variety of sophisticated analysis strategies for such point-
based approaches, they also entail some drawbacks: the
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appropriate choice of representative points requires some
prior knowledge of the expected deformations and the needed
signalization of those points makes such approaches only
applicable for accessiblemeasuringobjects. Furthermore, the
resulting information is always sparse. Finally, point-based
approaches can be very expensive aswell as time- and labour-
intensive, especially for large measuring objects (Paffenholz
et al. 2017; Shamshiri et al. 2014; Li et al. 2015).

With the development of the terrestrial laser scanner
(TLS), a measuring instrument which allows a fast, efficient
and contactless data acquisition even of inaccessible mea-
suring objects moved into focus of engineering geodesy. The
acquired data are of high resolution giving a quasi-continuous
description of the measuring object (Paffenholz et al. 2017).
All in all, TLS provides the best conditions for an areal
deformation analysis, overcoming the drawbacks of classical
approaches.

However, when performing a laser scanner-based defor-
mation analysis, new challenges occur (cf. Wunderlich et al.
2016; Mukupa et al. 2016; Holst and Kuhlmann 2016). The
impossibility of reproducing measured points in different
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epochs and the resulting question of how to compare two
point clouds in an appropriate way have to be mentioned in
this context. Furthermore, the lack of an appropriate error
model for laser scanner may result in a superimposition of
actual deformations and systematics caused by the measur-
ing process. These challenges are the reason why—although
laser scanning has established as a measuring technique—
there is still a lack of appropriate analysis strategies and
of significance tests regarding an areal deformation analy-
sis (Wunderlich et al. 2016).

A first step for meeting these challenges was made by
defining three possibilities to compare different point clouds
(Mukupa et al. 2016): the point-to-point-based comparison,
the point-to-surface-based comparison as well as the surface-
to-surface-based comparison. Approaches belonging to all
of these three classes can be found in the literature: in Little
(2006), the points of two different point clouds are directly
compared in order to determine the deformations of a slope.
However, as it is impossible to measure the same point twice
(Zamecnikova and Neuner 2017), advanced approaches to
define point correspondences are needed. In Paffenholz et al.
(2017), the Multiscale Model to Model Cloud Comparison
(M3C2) algorithm (Lague et al. 2013) is used to determine
deformations of a historic bridge. A stochastic approach to
define point correspondences can be found inWujanz (2018).

When using the second strategy, one of the point clouds is
approximated by a surface (either amesh or a fitted analytical
function) and the deformation is reflected by the distances of
the second point cloud to this surface (Mukupa et al. 2016).
Examples can be found in Ioannidis and Valani (2006), Holst
et al. (2015) and Erdélyi et al. (2017). In these three publica-
tions, the point clouds are compared to analytical functions
like non-uniform rational B-splines (NURBS), paraboloids
or planes, whereas in Serantoni and Wieser (2016) a mesh is
used as a reference surface.

One common way to use the surface-to-surface-based
approach is the comparison of the estimated parameters
characterizing the respective analytical functions over time.
Examples can be found in Vezočnik et al. (2009) or Linden-
bergh and Pfeifer (2005).

In this contribution, an approach to an areal deformation
analysis is developed which allows a point-to-surface-based
comparison of laser scanning point clouds with respect to an
initial and undistorted reference surface as well as a point-
to-point-based comparison between two distorted states of
the measuring object. Furthermore, the approach allows a
prediction of the deformation within a measured epoch as
well as into a non-measured epoch. Thus, unlike the defor-
mationmodels introduced so far, the developedmodel allows
a time-continuous areal description of deformations. A first
step towards a time-continuous areal deformation analysis
was made in Kutterer et al. (2009) by applying time series
analysis to laser scanning profiles.

Thebasis of the approachdeveloped in this paper is formed
by an initial approximation of the point cloud of the first mea-
suring epoch by means of a B-spline surface. This surface
serves as a reference surface which is assumed to repre-
sent the undistortedmeasuring object. The deformationswith
respect to this reference surface are modelled stochastically
similar to the signal in a least squares collocation.

The paper is structured as follows: Sect. 2 provides the
methodological basics for the development of the presented
approach. In Sect. 3 the data sets, on which the devel-
oped approach is applied, are introduced. As the simulation
process motivates the developed analysis approach, Sect. 3
provides the basis for Sect. 4, which is the main part of this
contribution. It deals with the development of a space- and
time-continuous areal deformationmodel and the application
to simulated data sets. The results of different data sets are
analysed, evaluated and compared in Sect. 5. In Sect. 6, the
prediction of the deformations within a measured epoch as
well as into a non-measured epoch is presented and applied
to simulated data sets. Finally, a conclusion is drawn and
the limitations of the developed approach as well as future
investigations are discussed in Sect. 7.

2 Methodological basics

2.1 Estimation of B-spline surfaces

A B-spline surface of degree p and q is defined by:

Ŝ(u, v) =
nP∑

i=0

mP∑

j=0

Ni,p(u)N j,q(v)Pi j . (1)

According to Eq. (1), a surface point Ŝ(u, v) is expressed
as the weighted average of the (nP + 1) × (mP + 1)
control points Pi j (Piegl and Tiller 1995, p. 100 ff.). The
corresponding weights are defined by the functional values
of the B-spline basis functions Ni,p(u) and N j,q(v), which
can be recursively computed (Cox 1972; de Boor 1972). Two
knot vectors, one in direction of the surface parameter u (U =
[u0, . . . , ur ]) and one in direction of the surface parameter
v (V = [v0, . . . , vs]), split the B-spline’s domain into knot
spans. As a consequence, the shifting of one control point
changes the surface only locally.

Usually, only the location of the control points is esti-
mated in a linear Gauß–Markov model when estimating a
best-fitting B-spline surface. The choice of the optimal num-
ber of control points to be estimated (nP + 1) and (mP + 1),
respectively, is a model selection problem and can be solved
by classical model selection criteria or by structural riskmin-
imization (Harmening and Neuner 2016a, 2017). In order
to obtain a linear relationship between the 3nl observations
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lk = S(uk, vk) = [xk, yk, zk]T with (k = 1, . . . nl) and the
unknown control points Pi j , the B-spline’s knots as well as
its degrees are usually specified a priori. In this study, the
use of cubic B-splines with p = q = 3 is applied as it
covers the geometric continuity properties of a large amount
of real-world man-made structures. Methods for determin-
ing appropriate knot vectors can be found in Schmitt and
Neuner (2015) or Bureick et al. (2016). Furthermore, conve-
nient surface parameters u and v, locating the observations
on the surface to be estimated, have to be a-priori allocated
to the observations (Harmening and Neuner 2015).

2.2 Least squares collocation

Least squares collocation (LSC) was originally developed
for purposes of physical geodesy (cf. Borre and Krarup
2006; Moritz 1989), but it is also applied in other fields of
geodesy and geostatistics nowadays (Mysen 2014; Holst and
Kuhlmann 2015). The extension of the functional model of
the classical least squares adjustment leads to the functional
model of LSC (Heunecke et al. 2013, p. 204 ff.):

l = Ax + Rs + ε. (2)

The observed phenomenon is modelled as the sum of a deter-
ministic trend Ax, characterized by the vector of unknowns
x, and the component Rs. The stochastic signal s carries
information about the phenomenon in the form of stochastic
relationships and is assumed to be normally distributed with
expectation 0 and covariance matrix Σ ss :

s ∼ N (0,�ss) with �ss = σ 2
0 · Qss . (3)

The discrepancy of the measurements l and the phenomenon
is described by the stochastic measurement noise ε, which is
also assumed to be normally distributed:

ε ∼ N (0,�εε) with �εε = σ 2
0 · Qεε . (4)

Correlations between signal and noise are excluded:

�εs = �sε = 0. (5)

The aim of LSC is threefold (Höpcke 1980, p. 210 f.): in an
adjustment, the parameter vector x is estimated with respect
to an optimality criterion. The filtering reduces the noise in
themeasured points. Finally, theprediction aims to determine
trend and signal in unobserved locations.

In order to combine those three tasks, Eq. (2) is comple-
mented by the signal values to be predicted s′.

l = Ax + [
R 0 I

]
︸ ︷︷ ︸

BT

⎡

⎣
s
s′
ε

⎤

⎦

︸ ︷︷ ︸
v

. (6)

Equation (6) corresponds to aGauß–Helmertmodel resulting
in the following formulas for the filtering and the prediction:

⎡

⎣
ŝ
ŝ′
ε̂

⎤

⎦ =
⎡

⎣
QssRT

Qs′sRT

Qεε

⎤

⎦ k̂, (7)

with the Lagrange multipliers

k̂ = (RQssRT + Qεε︸ ︷︷ ︸
H

)−1(l − Ax̂). (8)

and the estimated trend

x̂ = (ATH−1A)−1 · ATH−1l. (9)

The respective cofactor matrices arise from variance covari-
ance propagation to

Qx̂x̂ =
(
ATH−1A

)−1
(10)

Qŝŝ = QssRT(H−1 − H−1AQx̂x̂A
TH−1)RQss (11)

Ql̂l̂ = ATQx̂x̂A
T + RQŝŝR

T. (12)

For a detailed derivation of these formulas, we refer to Heu-
necke et al. (2013, p. 205 ff.).

2.3 Spatio-temporal stochastic processes

The observations of a LSC are interpreted to be a realization
of a stochastic process Z . Such a process can either be a pure
function of time Z(t), a function of the phenomenon’s loca-
tion in space Z(x) with the three-dimensional space vector x
or a spatio-temporal function Z(x, t).

Time series analysis provides computational tools for
analysing data dependent on time,whereas geostatistics deals
with the analysis of stochastic processes dependent on posi-
tion and their extension by the time domain (Cressie and
Wikle 2015;Matheron 1963). Spatio-temporal kriging is one
of the geostatistical main tools. It is used in hydrological
applications to model rainfall (Bargaoui and Chebbi 2009)
or to combine data from different altimetry missions (Boer-
gens et al. 2017), in environmental applications to forecast
irradiance (Aryaputera et al. 2015) aswell as in soil science in
order to predict soil water content (Snepvangers et al. 2003).
A geodetic application of kriging to determine a regional
ionospheric model can be found in Abdelazeem et al. (2018).
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2.3.1 Properties of stochastic processes

Classical methods to estimate statistical moments of the
observed process require several realizations of the stochas-
tic process. However, in practice only one single realiza-
tion is available, making additional assumptions necessary
(Schlittgen and Streitberg 2013, p. 100 f.): a stochastic pro-
cess is defined to be stationary if its statistical moments are
constant over time and if its joint statistical moments depend
only on the time lag τ between two observations. Special
cases among stationary processes are ergodic processes: dif-
ferent realizations of an ergodic process result in identical
mean values and autocorrelation functions (Bendat and Pier-
sol 2010, p. 12).

The transfer of these definitions to the space domain leads
to the definition of homogeneity (location-invariant statistical
moments and distant-depending joint statistical moments).
Furthermore, a spatial stochastic process is called isotropic
if the joint statistical moments are direction-independent.

In some literature, stochastic processes with location-
invariant statisticalmoments are also defined to be stationary.
However, this paper follows the definition ofBendat andPier-
sol (2010), allowing a clear distinction between space and
time domain.

2.3.2 Modelling dependencies of stationary/homogeneous
stochastic processes

Dependencies of a detrended (z = 0) and equidistantly
acquired time series

{
z(t j )

}
with j = 1, . . . , nl are analysed

by means of autocovariance functions. Assuming stationar-
ity, this function can be biasedly estimated (Koch et al. 2010):

Ĉt (τ ) = 1

nl

nl−κ∑

j=1

z(t j ) · z(t j+κ), (13)

with τ = t j+κ − t j .
In order to ensure a stable estimation, the parameter κ is

chosen to be κ = 0, 1, . . . , nl/10.
A covariogram Cs(d) is the geostatistical analogon to

autocovariance functions with d being a spatial distance
(Matheron 1963). However, the majority of the geostatistical
literature put emphasis on the calculation and interpretation
of variograms (e.g. Aryaputera et al. 2015; Snepvangers et al.
2003; Tapoglou et al. 2014):

γ̂ (dk) = 1

2|Nk |
∑

(xi ,x j )∈Nk

(z(xi ) − z(x j ))
2, (14)

averaging the squared differences over all point pairs whose
distances di j = ||xi − x j || are contained in the interval Nk

(k = 1, . . . , nN ) (Cressie and Wikle 2015, p. 131). The sub-

division of the range of separation distances di j into nN
consecutive intervals Nk is necessary as equidistant data
cannot be taken for granted in the spatial domain. As a con-
sequence, the variogram is a function of the mean separation
distance dk of all point pairs belonging to interval Nk .

Contrary to temporal data, spatial data may be anisotropic
(Matheron 1963). In these cases, the above-described group-
ing of the point pairs has to be realized according to the
absolute distance di j , but also according to the orientation
θi j of the separation vector di j = xi − x j , resulting in direc-
tional variograms.

As the estimation of variograms is more stable than the
estimation of covariograms (cf. Smith 2016, p. 4–29 ff.),
solely variograms are estimated to describe spatial relation-
ships in the following. Afterwards, the estimated variograms
are transformed into covariograms:

Ĉs(dk) = σ 2 − γ̂ (dk), (15)

with σ 2 being the variance of the process.
Standardizing the autocovariance (either Ĉt (τ ) or Ĉs(dk))

by the data sets’ variance σ 2 = Ĉt/s(0) gives the estimator
of the autocorrelation function/correlogram:

ρ̂t (τ ) = Ĉt (τ )

Ĉt (0)
, ρ̂s(dk) = Ĉs(dk)

Ĉs(0)
. (16)

Equation (13) canbegeneralized to the crosscovariance func-
tion, describing the similarity of two different detrended time
series (Heunecke et al. 2013, p. 348):

Ĉz1z2,t (τ ) = 1

nl

nl−|κ|∑

j=1

z1(t j ) · z2(t j+κ), (17)

κ = −nl/10, . . . , nl/10. Standardizing Eq. (17) results in
the crosscorrelation function:

ρ̂z1z2,t (τ ) = Ĉz1,z2,t (τ )√
Ĉz1,t (0)Ĉz2,t (0)

. (18)

The respective transfer to the space domain is straightforward
and results in cross(co)variograms and crosscorrelograms:

γ̂z1,z2(dk) = 1

2|Nk |
∑

(xi ,x j )∈Nk

(z1(xi ) − z2(x j ))
2, (19)

Ĉz1,z2,s(dk) = σz1,z2 − γ̂z1,z2(dk), (20)

ρ̂z1z2,s(dk) = Ĉz1,z2,s(dk)√
Ĉz1,s(0)Ĉz2,s(0)

. (21)

When analysing the estimated empirical covariances, it has to
be taken into account that, usually, the observed phenomenon
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Fig. 1 Empirical covariograms of a white noise process (top left), of
correlated random variables (bottom left) and of a combined process
(right). The estimation of an analytical covariogram excluding the value
of Ĉ(0) (solid line in the right figure) directly separates the twoprocesses

is a superimposition of two different stochastic processes:
The first one is represented by the measuring noise ε and,
in this study, is initially assumed to be a white noise process
(top left picture in Fig. 1). The second process causes the
correlated random variables of the signal s. A typical covari-
ogram of such a process can be seen in the bottom left picture
in Fig. 1. The estimation of empirical correlations of such a
combined process results in a covariogram which is the sum
of both individual covariograms (blue dots in the right picture
in Fig. 1) (Smith 2016, p. 4–6 ff.).

One possibility to account for this superimposition is the
estimation of an analytical covariance function based on the
empirical values with the exception of the first one. The
resulting analytical function directly separates the two pro-
cesses as can be seen in Fig. 1. Alternatively, the Dirac
function can be used to model the superimposition of the
two models (cf. Koch et al. 2010).

2.3.3 Locally stationary stochastic processes

In reality, stationary/homogeneous processes occur quite
rarely and the assumptions of stationarity and homogene-
ity are only approximations, allowing for the use of a wide
range of computation tools (Bendat and Piersol 2010, p. 344).
Among the variety of non-stationary processes, there exists
the special case of locally stationary processes (Silverman
1957): considering two zero-mean non-stationary random
processes Z1(t) and Z2(t), the autocorrelation functions
as well as the crosscorrelation function are time-dependent
(Bendat and Piersol 2010, p. 358 ff.). The transformations

τ = t2 − t1, t = t1 + t2
2

(22)

lead to the crosscorrelation function:

ρZ1Z2(t1, t2) = ρZ1Z2

(
t − τ

2
, t + τ

2

)
(23)

= ρ∗(τ, t). (24)

If this function can be split up into a product

ρ∗(τ, t) = ρμ(t)ρΔ(τ), (25)

the process is said to be locally stationary. In equation (25),
ρμ(t) is a slowly varying scale factor, whereas ρΔ(τ) is a
stationary correlation function.

The class of locally stationary processes is of great impor-
tance as these processes are usually a good approximation to
non-stationary processes.

2.3.4 Confidence bands for spatial dependent data

Usually, bootstrap methods are used to estimate confidence
bands for correlograms. However, classical bootstrap meth-
ods are based on strong assumptions such as independently
and identically distributed data and, therefore, are not suitable
to estimate confidence bands in case of highly correlated data.
An overview of alternative methods can be found in Clark
and Allingham (2011). In this article the parametric spatial
bootstrap introduced in Tang et al. (2006) is used: the basis
for this bootstrapping approach is formed by an uncorrelated
data set ε∗ ∼ N (0, 1). In each of B bootstrapping steps, a
bootstrap sample ε∗

B is drawn with replacement. The initial
independent data are correlated according to the estimated
correlation structure of the actual data set, represented by the
estimated covariance matrix Σ̂ using its Cholesky decompo-
sition Σ̂ = L̂ · L̂T:

Z∗
B = L̂ · ε∗

B . (26)

Each of these B correlated data sets is afterwards used to
estimate a correlogram. The resulting variance over these
estimated replicates is used to establish confidence bands.
Even a misspecified covariogram model for setting up Σ̂

leads to appropriate confidence bands (Tang et al. 2006).

3 Data simulation

The deformation model developed in Sect. 4 is applied to
two types of data sets: the stochastically simulated data sets
help to understand the general procedure of the developed
approach, as it is a “backwards” application of the simulation
process,whereas the functionally simulated data sets are used
to demonstrate the applicability of a stochastic approach to
deterministically deformed data sets.
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Fig. 2 B-spline surface and its control points (black dots), providing
the basis for the data simulation. The red control point is shifted to
obtain functionally provoked deformations

Fig. 3 Uncorrelated (blue dots) and correlated time series (red dots)
generated by the correlation functions in Fig. 4

The basis for both simulation processes is provided by
a B-spline surface with 63 control points ((n p + 1) = 9,
(mp + 1) = 7) and with dimensions of approximately
40cm x 40cm x 18cm (cf. Fig. 2).

3.1 Stochastically simulated data sets

The basic idea of the developed approach is that the obser-
vations consist of three parts as defined in Eq. (2):

Fig. 4 Exponential correlation functions with different correlations
lengths: ρ1(τ ) = e−0.5·τ (top); ρ2(τ ) = e−0.05·τ (middle); ρ3(τ ) =
e−0.005·τ (bottom)

Fig. 5 Uncorrelated time series with constant variance (blue dots) and
correlated ones (red dots) caused by the correlation functions in Fig. 4
in combination with a slowly varying variance

– The trend component Ax presents the undistorted mea-
suring object and, thus, is identical in all measuring
epochs. In this study, three measuring epochs are sim-
ulated and the B-spline surface in Fig. 2 serves as the
trend surface. In order to simulate the TLS measuring
process, this surface is sampled with a spatial resolution
of approximately 6mm.

– The signal component Rs is of particular importance as
it captures the deformation. Because of the signal’s great
significance, it will be treated in detail subsequent to this
listing.
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– The measuring noise ε presents the uncertainty which
is caused by the measuring process. Due to missing or
incomplete realistic models to describe the stochastic
behaviour of a laser scanner’s measuring process, white
noise with a standard deviation of σε = 1mm is used in
the following. This simplifying assumption is only a first
step in the development of a spatio-temporal deformation
analysis and will be adapted in future investigations.

Themain idea how to provoke a deformation bymeans of the
signal component Rs and, thus, purely caused by stochas-
tic relationships between observed points can be seen in
Figs. 3, 4 and 5. The basis of this example is formed by
a one-dimensional time series of normally distributed and
uncorrelated random variables Z ∼ N (0, I) (blue dots in all
three subplots of Fig. 3). Three positive definite exponential
correlation functions of the type

ρ(τ) = C0e
−bi |τ |;C0, bi > 0, (27)

which differ in their correlation length due to the choice
of the parameter bi (see Fig. 4), are used to set up covari-
ance matrices Σ i with i = 1, 2, 3. Computing the Cholesky
decompositions Σ i = GT

i Gi , the random variable Z can be
transformed to a normally distributed and correlated random
variable Xi ∼ N (0,Σ i ) (Koch 1997, p. 167):

Xi = GT
i Z, i = 1, 2, 3. (28)

The resulting three correlated time series can also be seen
in Fig. 3 (red dots). Comparing those three time series, it
becomes apparent that the stronger the correlations, the less
pronounced the stochastic behaviour within the time series
and the slower the fluctuation around the expectation value
of zero. In case a section of the time series, whose length is
considerably smaller than the correlation length, is observed,
strong correlations can lead to a situation in which the corre-
lated time series seems to be shifted away from the respective
expectation value. This situation occurs in the lower picture
in Fig. 3 when observing the time interval between 200 and
350 s. While in this simulation study the expectation value
of zero is guaranteed by Eq. (28), another indicator for an
expectation value of zero is the (possibly very slow) conver-
gence of the square root of the correlation function towards
the random variable’s expectation valueμ. This convergence
has not necessarily to happen within the observed interval,
but only for τ → ∞ (Bendat and Piersol 2010, p. 20):

μ =
√

ρ̂(∞). (29)

In order to stochastically convert this pure translation into
amore general shapeof a deformation, the principle of locally
stationary stochastic processes (see Sect. 2.3.3) is utilized,

which are characterized by a stationary correlation function
and a slowly varying variance (cf. Eq. 25). Thus, a time-
dependent variance is assigned to the original time series
values, while the respective stationary correlation structures
given by Fig. 4 are maintained over the entire time series.

The results of thismodified simulation process can be seen
in Fig. 5, depicting only the 150 s-time interval between 200
and 350 s. The variance level was chosen to be a tenth of the
original variance level for the main part of the presented time
interval. In these parts, the red points in Fig. 5 scatter min-
imally around the expectation value of zero. In the interval
240–260 s the variance level is linearly increased with the
maximum value at 250 s and afterwards decreased again to
the minimal variance level. This section is clearly noticeable
in all three time series by the increased variation range of
the resulting values. However, only in case of a very slowly
decaying correlation function an effect occurs which can be
interpreted to be a typical deformation. The example in Fig.
5 (bottom) can be interpreted to represent the bending of a
beam, observed at one single point over time. After 240 s an
increasing load is starting to act on the beam, resulting in a
deflection of the beam which is represented by the red curve.
When the load decreases after 250 s, the beam slowly returns
to the initial state. The type of deformation (elastic, plastic,
linear, periodic, etc.) is to a large extent controlled by means
of the variance level’s behaviour.

In order to stochastically simulate areal deformations, this
principle is extended to the spatio-temporal domain, inter-
preting the entirety of observations in allmeasuring epochs as
a single realization of a stochastic process: with the exception
of the point cloud of the first measuring epoch, the sampled
trend surface is divided into a distorted and a non-distorted
part for each measuring epoch. The former is subsequently
subdivided into areas with constant variance, whereas the
latter is no longer considered in the simulation of the stochas-
tic deformation. For reasons of simplicity and due to the
definition of the coordinate system, the deformation is real-
ized solely in direction of the z-coordinate in this study.
Thus, autocorrelograms for the z-coordinate of the second
and third measuring epochs as well as crosscorrelograms
between the z-coordinates of the second and third measur-
ing epochs are set up. Based on these correlograms and the
a-priori defined variance levels, a normally distributed and
uncorrelated signal can be transformed into a normally dis-
tributed and correlated signal describing a spatio-temporal
deformation.

Adding this deformation to the noisy trend surface leads to
the data set which can be seen in Fig. 6. The blue point cloud
presents the undistorted measuring object, which is superim-
posed by the measuring noise. A clearly visible deformation
which is simulated solely by means of stochastic relation-
ships occurs in the other two measuring epochs (red and
yellow point clouds).
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Fig. 6 Stochastically simulated data set

3.2 Functionally simulated data sets

In order to functionally simulate deformations, the shape of
the B-spline surface is directly changed by linearly moving
the control point P4,5 (encircled in red in Fig. 2) in the direc-
tion of the z-coordinate, following the equation of motion

P4,5(t) =
⎡

⎣
Px (0)
Py(0)

Pz(0) + 0.025 m
t .u.

· t [t .u.]

⎤

⎦ . (30)

The resulting surfaces at defined points of times in arbitrary
time units (t .u.) t1 = 0, t2 = 1, t3 = 1.5, t4 = 1.75,
t5 = 2 represent various states of the deformed measuring
object, with the surface at t1 = 0 representing the undis-
torted object. In Fig. 7, two of these states can be seen: due
to the local support of B-spline functions, the movement of
a single control point affects the surface only locally.

We assume that four of the states mentioned above are
acquired by means of a terrestrial laser scanner. The scan-
ning is realized by sampling the respective surfaces and by
subsequently adding uncorrelated noise with σ = 1mm to
the sampled point clouds (PC). The sampling resolution was
chosen to be approximately 6mm, resulting in 2500 points
for each measuring epoch. The non-measured surface at
t4 = 1.75 is only used as a verification of the prediction
step.

In the following, particular emphasis is put on the stochas-
tically simulated data set PCs , whereas the functionally
simulated data set PC f is used to demonstrate the appli-
cability of a stochastic modelling to functionally simulated
deformations. Thus, unless otherwise stated, the discussions

Fig. 7 Functionally simulated data sets, generated by linearly moving
one control point. Opaque: non-distorted surface (t1 = 0), transparent:
distorted surface (t5 = 2)

Table 1 Simulated data sets: the indices of each point cloud (PC)
indicate whether the deformation is stochastically (s) or functionally
provoked (f). The superscript represents the measuring epoch. The sign
of the maximum deformation illustrates whether the deformation is
directed downwards (−) or upwards (+) with respect to the z-direction

Abbr. t Defo. type Meas. Max. Defo. (cm)

PC(1)
s 0 Stochastic Yes 0.0

PC(2)
s 1 Stochastic Yes − 1.8

PC(3)
s 2 Stochastic Yes − 3.0

PC(1)
f 0 Functional Yes 0.0

PC(2)
f 1 Functional Yes 1.2

PC(3)
f 1.5 Functional Yes 1.8

PC(4)
f 1.75 Functional No 2.0

PC(5)
f 2 Functional Yes 2.2

on the empirical issues always refer to data set PCs . Both
data sets are summarized in Table 1.

4 A spatio-temporal point cloud-based
deformationmodel

In this section, an approach similar to LSC is developed and
used to describe spatio-temporal deformations of an object.
For the sake of clarity, the representation of the theoretical
developments of the single steps is accompanied by imple-
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mentation issues and by the results obtained for the simulated
data sets, which were introduced in the previous section.

4.1 Definition of the approach’s framework

The approach developed in the following is placed into the
last step of the process chain of a laser scanner-based defor-
mation monitoring (cf. Wujanz 2018; Holst and Kuhlmann
2016) and, therefore, deals solely with the quantification of
deformations. All foregoing steps are assumed to be solved
in a satisfying manner so that no systematics due to different
scanning conditions, the registration process or an incorrect
error model occur. The point clouds of the different measur-
ing epochs are assumed to be available in the same geodetic
datum, making a comparison possible.

When using the term “deformation”, it has to be distin-
guished between rigid bodymovements (the object underlies
solely rotations and translations) and distortions (the object
changes in shape) (Heunecke et al. 2013, p. 92 ff.). In this
contribution, the focus lies on distortions. Thus, unless oth-
erwise stated, the term “deformations” always refers to a
change of shape in this study.

4.2 Basic ideas of the developed approach

The basic ideas of the developed approach can be summa-
rized as follows:

– The major assumption of this approach is that the deter-
ministic trend describes the initial geometry of the object,
captured in the first measuring epoch. This trend solely
refers to the space domain and is the same for each epoch.
Consequently, the flexibility and approximation power of
B-spline surfaces can be used tomodel the object’s initial
geometry.

– The deformation process is interpreted to be a Gaussian
multivariate spatio-temporal stochastic process (Genton
and Kleiber 2015)

S
(
x(l)

)
=

{
. . . , S(l)

x

(
x(l)

)
, S(l)

y

(
x(l)

)
, S(l)

z

(
x(l)

)
. . . ,

}

with:

x(l) =
[
x(l), y(l), z(l)

]

l = 1, . . . , k; k : number of epochs. (31)

Hence, the deformation process is exclusively modelled
by means of a stochastic signal similar to a least squares
collocation. In principle, the signal’s definition in the
space of the surface parameters u and v is imaginable.
However, as the deformation itself has to be expressed in
the Euclidean space to be meaningful and interpretable,
in this study, the signal is defined in the Euclidean space.

– It has to be noted that a functional modelling of the defor-
mations by approximating the point clouds with different
B-spline surfaces and by expressing the deformations
in terms of the B-spline surfaces’ parameter groups’
changes is possible in principle. However, the proposed
approach of a stochastic modelling of the deformation
offers two advantages: on the one hand, the challenge of
a consistent surface parametrization, which is necessary
to compare different B-spline surfaces (cf. Harmening
and Neuner 2017), is circumvented. On the other hand,
only in a unified B-spline-based framework for handling
rigid body movements and distortions, the former can be
a-priori eliminated according to Harmening and Neuner
(2016b). This elimination requires trend surfaces with
fixed number of control points in each measuring epoch.
In this interpretation of the deformation process, the
B-spline surfaces with fixed number of control points
correspond to the reference potential of the gravitational
field in the classical interpretation of a least squares collo-
cation established in physical geodesy (cf. Moritz 1989,
p. 99; Koch 1997, p. 241).
Remaining systematics in the point clouds when having
subtracted the trend surfaces are deliberately accepted in
order to exploit these advantages.

– In order to circumvent the problem of missing identical
points between different measuring epochs, the mod-
elling of the stochastic relations is purely based on spatial
considerations: The inner-epochal correlations for each
measuring epoch aremodelled bymeans of correlograms
[(Eqs. (14)–(16)]. In order to model the intra-epochal
correlations, crosscorrelations [Eqs. (19)–(21)] are used,
with the spatial distance d being the only influencing
variable. This indirectmodelling of the temporal relation-
ships does not require corresponding points and results
in stable estimates of the respective correlations even if
only few measuring epochs are available.

– Consequently, this approach allows amodelling of defor-
mations for discrete points of the point cloud which is
a comprehensive and interpretable measure for distor-
tions, while the combination of B-spline surfaces and
(cross)covariograms can be seen as a compact represen-
tation of the point clouds.

– Similar to LSC, a prediction of deformations at unmea-
sured locations and into unmeasured epochs allows a
space- and time-continuous description of the observed
phenomenon.

Although the deformation process is per se a deterministic
phenomenon, a treatment within a stochastic framework can
be justified: in systems theory, a distinction is made between
causal models and descriptive ones. Up to now, the develop-
ments concerning the former models, which are based on a
physical model of the processes causing the deformations,
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are still far from being applicable to a space-continuous
deformation analysis. The latter ones usually require point
correspondences in order to functionally describe the defor-
mation. An alternative to the functional description is the
treatment within a stochastic framework which does not
require explicit point correspondences and can be seen as
a good approximation of the deterministic phenomenon.

Following these considerations, the deformation process
is interpreted to be mean-homogeneous with

E
{
S

(
x(l)

)}
= 0. (32)

This assumption is valid in the elastic deformation domain,
where most deformation activities take place. It implies
that in expectation no deformations occur. This complies
with the well-established null hypothesis of the congruence
model, stating that no deformations occur (cf. Heunecke et al.
2013, p. 252). Furthermore, it covers the lack of knowl-
edge regarding the direction of the deformation. In case of
the stochastically simulated data sets, this assumption corre-
sponds to a mean value of s = 0 with respect to the entirety
of realizations, whereas one single realization expresses the
deformation (cf. Moritz 1989, p. 99 ff. for a similar interpre-
tation of the signal’s expectation value).

Consequently, the deformations, expressed as residuals
with respect to the estimated trend surface, are character-
ized by the (co)variances of the spatio-temporal stochastic
process. As the magnitude of these residuals may strongly
change over the whole distorted area and over the entire
measuring period, the process is furthermore interpreted as
variance-inhomogeneous. However, when excluding discon-
tinuous deformations, a locally homogeneous model is a
reasonable choice. Thus, in this model the correlation struc-
ture is identical over the entire surface, whereas the variance
is a slowly varying function of the location, resulting in the
spatio-temporal extension of Eq. (25), following (Genton and
Kleiber 2015):

C
(
x(l1)
1 , x(l2)

2

)
(33)

= cov
{
S

(
x(l1)
1

)
,S

(
x(l2)
2

)}
(34)

=
{
C (l1,l2)
i, j

(
x(l1)
1 , x(l2)

2

)}
(35)

=
{
σ

(l1)
i

(
x(l1)
1

)
· σ

(l2)
j

(
x(l2)
2

)
· ρ

(l1,l2)
i, j

(
d(l1,l2)
1,2

)}
(36)

with:

i, j = Sx , Sy, Sz .

4.3 Derivation of a spatio-temporal deformation
model

Starting point of the deformation model is the functional
model of a least squares collocation [Eq. (2)], which is
extended by k epochs. Choosing the matrixR to be the iden-
tity matrix leads to:

⎡

⎢⎢⎢⎣

l(1)

l(2)
...

l(k)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

A(1) 0 . . . 0
0 A(2) . . . 0
...

...
. . .

...

0 0 . . . A(k)

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x(1)

x(2)

...

x(k)

⎤

⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎣

s(1)

s(2)
...

s(k)

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎢⎣

ε(1)

ε(2)

...

ε(k)

⎤

⎥⎥⎥⎦ .

According to the idea of a stochastically modelled defor-
mation, the trend can be estimated once and is afterwards
excluded from the functional model:

⎡

⎢⎢⎢⎣

l(1)

l(2)
...

l(k)

⎤

⎥⎥⎥⎦ −

⎡

⎢⎢⎢⎣

A(1)

A(2)

...

A(k)

⎤

⎥⎥⎥⎦ x(1) =

⎡

⎢⎢⎢⎣

s(1)

s(2)
...

s(k)

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎢⎣

ε(1)

ε(2)

...

ε(k)

⎤

⎥⎥⎥⎦ . (37)

Hence, the actual observations of the newly developed
approach are the measurements’ residuals with respect to
the trend:

⎡

⎢⎢⎢⎣

e(1)

e(2)

...

e(k)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

s(1)

s(2)
...

s(k)

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎢⎣

ε(1)

ε(2)

...

ε(k)

⎤

⎥⎥⎥⎦ . (38)

The extension by the predicted signal gives:

⎡

⎢⎢⎢⎣

e(1)

e(2)

...

e(k)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
e

=

⎡

⎢⎢⎢⎣

s(1)

s(2)
...

s(k)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
s

+0

⎡

⎢⎢⎢⎣

s′(1)
s′(2)
...

s′(k)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
s′

+

⎡

⎢⎢⎢⎣

ε(1)

ε(2)

...

ε(k)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
ε

(39)

which can be written more compactly:

e = [
I 0 I

]
︸ ︷︷ ︸

B
T

⎡

⎣
s
s′
ε

⎤

⎦

︸ ︷︷ ︸
v

(40)

= B
T · v. (41)
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Fig. 8 Processing chain for deriving trend, signal and noise. Green
rectangles: input; yellow rectangles: intermediate results; red rectan-
gles: output; and blue ellipses: processing steps. The grey rectangles
illustrate the affiliations to the respective sections of the paper

This conditional model as a special case of the Gauß–
Helmert model results in the following formulas for estimat-
ing signal and noise:

⎡

⎢⎣
ŝ

ŝ
′

ε̂

⎤

⎥⎦ =
⎡

⎣
�ss
�s′s
�εε

⎤

⎦ k̂ (42)

with

k̂ = (�εε + �ss)
−1e. (43)

Although the starting point of this approach is equal to
that of a LSC, the strict separation of trend (equals the undis-
torted object) and signal (equals the deformation) results in
an approach which is only similar to a LSC. Nevertheless,
the common indications like “trend”, “signal”, “filtering” and
“prediction” used in LSC are maintained in the following.

The formulas above indicate that the application of the
developed deformation model can be divided into three main
parts: the modelling of the trend, resulting in the estimated
parameter vector x̂(1), the modelling of the signal, which is
fully described by means of its covariance matrix Σ ss as
well as the modelling of the noise which is represented by
the covariance matrix Σεε .

The determination of those parts is a backward application
of the simulation process described in Sect. 3.1. It is sum-
marized by means of the flowchart in Fig. 8 and is described
and illustrated in detail in the following sections.

4.4 Modelling of the trend

Based on the ideas presented in Sect. 4.2 and the method-
ological basics given in Sect. 2.1, the point cloud of the
first measuring epoch is used to estimate the B-spline sur-
face’s control points P(1) = x(1) in a linear Gauß–Markov
model. For the sake of simplicity, the remaining B-spline
parameter groups (degrees of the B-spline basis functions,
number of control points, surface parameters, knot vectors)
are chosen to be the nominal ones, which are known due
to the simulation process. Based on the surface parameters
ui and vi (i = 1, . . . , nl ), which locate the observations
l(1) = [x (1)

1 , y(1)
1 , z(1)1 , . . . , x (1)

nl , y(1)
nl , z(1)nl ]T on the surface

to be estimated, the design matrix A(1) can be computed,
containing the corresponding values of the B-spline basis
functions [cf. Eq. (1)].With the stochasticmodel of the obser-
vations being the identity matrix

�
(1)
ll = I. (44)

The control points can be estimated:

P̂(1) = (A(1)TA(1))−1A(1)T l(1). (45)

Afterwards, these control points are used to estimate the
observations describing the undistorted object in each mea-
suring epoch:

l̂(i) = A(i)P̂(1), with i = 1, . . . , k. (46)

For this step, it is assumed that the surface parameters (u,
v) endure during all measuring epochs.

The residuals of the trend estimation, introduced in equa-
tion (38),

e(i) = l(i) − l̂(i) (47)

are then composed of themeasurement noise and the object’s
distortion.

In Fig. 9, the estimated point cloud P̂C
(3)
s can be seen.

The colouring of the estimated observations corresponds to
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Fig. 9 Estimated point cloud P̂C
(3)
s , coloured according to the residuals

e(3)
z

the magnitude of the residuals of the trend estimation in the
z-direction.

As can be seen, the object is divided into a distorted part
in the middle of the object with dimensions of approximately
10cm x 15cm and with solely negative residuals as well as a
non-distorted part with randomly scattering residuals.

Although the simulation of the deformation is realized by
provoking the signal solely in the z-direction, the residuals
of the B-spline estimation also reveal a distortion in x- and
y-direction.

4.5 Detection of distorted regions

As the signal solely occurs in distorted regions, its modelling
requires a distinction between distorted and non-distorted
regions. Especially the inspection of the residuals of the func-
tionally simulated data sets reveals that the extents of the
distorted regions are not identical for the three coordinate
directions. This is caused by the coordinate-wise estimation
of the B-spline surface. Thus, for reasons of consistency,
the detection of the distorted regions is also performed
coordinate-wise. For the sake of simplicity, in the follow-
ing the equations are specified solely for the z-coordinate,
which is indicated by the index z. Naturally, the respective
computations are performed for x and y, too.

The detection is based on the knowledge that there do
not exist any distortions in the first measuring epoch. Conse-
quently, the point cloud of this epoch contains information
about the magnitude of the measurement noise. In the fol-
lowing, the variance of the first measuring epoch is used as
a threshold to detect distortions:

σ
(1)2

z,0 = e(1)T
z e(1)

z

n(1)
l − (nP + 1) · (mP + 1)

. (48)

Fig. 10 Distorted region (z-direction) of point cloudPC(3)
s . Blue points:

point cloud; red crosses: points detected to belong to the distorted region

Assuming that regions, in which the discrepancy between
observations and estimated trend is by a certain amount larger
than the measurement noise, are distorted, each coordinate
whose residual fulfils

|e(i)
z, j | > 1.5 · σ

(1)
z,0 , i = 1, . . . , k; j = 1, . . . , n(i)

l (49)

is marked to belong to the distorted region. The choice of
this heuristic threshold has a serious impact on the filtering
results. It is chosen according to equation (49) in order to
keep the type II error low. A detailed justification can be
found in Sect. 4.6.5.

Due to the choice of the relatively small threshold, there
is a relatively high probability of type I errors. Such points
are automatically detected and allocated to the non-distorted
area in a post-processing step.

This threshold consideration results in a rough distinction
between distorted and non-distorted regions for each coordi-
nate direction, which can be seen in Fig. 10 for the z-direction
of point cloud PC(3)

s .
It has to be noted that the method is only applicable if the

measuring process does not affect the measuring noise ε that
is to say that a changed measuring configuration does not
lead to an increase of ε.

An alternative way to determine the noise level by setting
up synthetic covariancematrices can be found inKauker et al.
(2017).

4.6 Modelling of the signal

The complete modelling of the object’s distorted parts
requires an estimation of the signal, which includes the
determination of the locally homogeneous variances and the
modelling of the homogeneous correlation structure. This is
a multi-stage procedure, which is introduced in the following
subsections.
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Fig. 11 Exemplary clustering of the z-coordinate of point cloud PC(3)
s .

The colouring reflects the points’ belonging to the respective clusters
(nc = 12)

4.6.1 Creating locally homogeneous areas

In order to account for the signal’s local homogeneity, in a
first step the distorted part is subdivided into areas in which
the corresponding signal can be considered homogeneous.
This subdivision is achieved by a k-means clustering (Lloyd
1982). The only parameter of the algorithm is the number of
clusters nc and has to be chosen strategically in dependence
on the size of the distorted area. In Fig. 11, the result of the
clustering can be seen for the z-coordinate of the point cloud
PC(3)

s , when the number of clusters is chosen to be nc = 12.
The choice of the number of clusters will be justified in Sect.
4.6.5. In these areas, the first factor in Eq. (33), the variance of
the mean-homogeneous process, is assumed to be constant.
In compliance with Fig. 5, the discrepancies with respect to
the trend are solely determined by the locally homogeneous
standard deviations which can be computed for each cluster
c j in accordance with the 3-sigma rule:

σ
(i)
z, j = 1

3
max(|e(i)

z, j |) (50)

with

e(i)
z, j ∈ c j ,

j = 1, . . . , nc indicating the cluster and

i = 2, . . . , k indicating the epoch

| · | = absolute value.

These standard deviations are composed by the signal’s and
the noise’s standard deviations as sketched in Fig. 1.

Fig. 12 Empirical autocorrelations within point cloud PC(3)
s (top).

Empirical spatial crosscorrelations within point cloud PC(3)
s (bottom)

4.6.2 Establishing global homogeneity

In order to determine the homogeneous correlation structure,
the residuals of epoch (i)with respect to the trend are normal-
ized for each cluster c j bymeans of the linear transformation:

ẽ(i)
z, j = e(i)

z, j

σ
(i)
z, j

. (51)

Due to the homogeneous magnitude of these residuals, they
are used in the following to compute empirical correlograms
according to Sect. 2.3.2.

4.6.3 Estimation of empirical correlograms

After having standardized the residuals according to equation
(51), a variety of empirical correlograms can be estimated:

The autocorrelograms ρ̂x (i)x (i) , ρ̂y(i)y(i) and ρ̂z(i)z(i) (i =
2, . . . , k) of each measuring epoch reflect the stochastic
relationships between the same coordinate types within
this epoch. In order to maintain consistency with the B-
spline estimation, these computations are also performed
coordinate-wise according to Eqs. (14)–(16). In Fig. 12 (top),
these empirical correlograms can be seen for the point cloud
PC(3)

s . As could be expected from the simulation process in
Sect. 3.1 (cf. Fig. 4), the autocorrelograms show a very slow
decay from full correlation and especially the autocorrelo-
grams in the direction of y- and z-coordinate are far from
reaching the expectation value of zero within the observed
area. Comparing the curves of ρxx , ρyy and ρzz , the differ-
ent lengths of the curves attract attention. This behaviour is
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Fig. 13 Empirical temporal crosscorrelations between point cloud
PC(2)

s and PC(3)
s

caused by the coordinate-wise considerationswhen detecting
distorted areas resulting in areas with different sizes.

Due to the coordinate-wise approach, spatial crosscor-
relograms ρ̂x (i)y(i) , ρ̂x (i)z(i) and ρ̂y(i)z(i) (i = 2, . . . , k) can
be computed (cf. Eqs. (19)–(21)), reflecting the stochastic
dependencies between the three coordinate directions within
each measuring epoch. Figure 12 (bottom) shows the respec-
tive results for point cloudPC(3)

s . All three crosscorrelograms
reveal strong correlations between the residuals of the differ-
ent coordinate directions.

Following the ideas of Sect. 4.2, crosscorrelograms are
also used to model the correlations between two different
epochs. Although the time dimension is only indirectly taken
into account, those crosscorrelograms ρ̂x (i)x ( j) , ρ̂y(i)y( j) and
ρ̂z(i)z( j) (i, j = 2, . . . , k, i �= j) are denoted as temporal
crosscorrelograms from now on. In Fig. 13, those temporal
crosscorrelations between the point clouds PC(2)

s and PC(3)
s

can be seen: The three curves behave very similarly to the
autocorrelations in Fig. 12 (top), with the exception that they
do not start at ρ = 1.

An important property of spatial data is its directionality.
The correlation structure causing the deformation is assumed
to be isotropic in this study (cf. Genton and Kleiber 2015).
Nevertheless, anisotropies can be taken into account by using
directional correlograms (cf. Sect. 2.3.2).

4.6.4 Setting up the stochastic model of the signal

In order to set up the stochastic model, the empirical cor-
relations are modelled by means of analytical functions (cf.
Fig. 1). The respective selectionwas accomplished according
to the requirement of their positive semi-definiteness (Koch
et al. 2010). For the available data sets, simple functions have
been proven to be sufficient. The analytical functions used
are listed in Table 2. Due to the coordinate-wise definition
of the signal, the one-dimensional forms of these functions
are used. In addition to their positive semi-definiteness, all
functions satisfy equation (29) with μ = 0. Thus, the use of
these functions guarantees the modelling of a signal with an
expectation value of zero.

Table 2 Analytical correlograms

Name Functional form

Exponential function ρ(d) = C0e−b|d|; C0, b > 0

Gauß function ρ(d) = C0e−b2d2 ; C0, b > 0

Sinc function ρ(d) = C0 sin(bd)/(bd); C0 > 0

Damped oscillation ρ(d) = C0e−b|d| · cos(cd); C0, b > 0

Fig. 14 Empirical auto- and crosscorrelations (crosses) of the z-
coordinate of data set PCs and the respective analytical functions (solid
lines)

It has to be noted that the modelling of crosscorrelations
is an extensively studied field. (see, for example, Genton and
Kleiber 2015 and the references herein.) As the correspond-
ing in-detail analysis is far beyond the scope of this paper, in
this first step towards a spatio-temporal deformation analysis
the relatively simple models in Table 2 are used. The valid-
ity is proven by checking the resulting variance covariance
matrix for positive definiteness.

In Fig. 14, the empirical autocorrelations and the empirical
temporal crosscorrelations of the z-coordinate of data setPCs

can be seen (crosses).
The solid lines represent the estimated analytical func-

tions. For all three illustrated correlograms, the Gauß func-
tion was chosen, which, obviously, is an appropriate choice.

By means of these analytical correlation functions, the
correlation matrix Rss, consisting of k x k submatrices, can
be set up:

Rss =

⎡

⎢⎢⎢⎣

Rss
(1)(1) Rss

(1)(2) · · · Rss
(1)(k)

Rss
(2)(1) Rss

(2)(2) · · · Rss
(2)(k)

...
...

. . .
...

Rss
(k)(1) Rss

(k)(2) · · · Rss
(k)(k)

⎤

⎥⎥⎥⎦ . (52)

The submatrices on the main diagonal reflect the corre-
lations within one measuring epoch, whereas the remaining
submatrices model the temporal correlations between two
measuring epochs. Each of these submatrices of dimensions
3nl × 3nl is structured according to the following schema:
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R(i)( j)
ss =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
x (i)
1 x ( j)

1
ρ
x (i)
1 y( j)

1
ρ
x (i)
1 z( j)1

. . . ρ
x (i)
1 z( j)nl

ρ
y(i)
1 x ( j)

1
ρ
y(i)
1 y( j)

1
ρ
y(i)
1 z( j)1

. . . ρ
y(i)
1 z( j)nl

ρ
z(i)1 x ( j)

1
ρ
z(i)1 y( j)

1
ρ
z(i)1 z( j)1

. . . ρ
z(i)1 z( j)nl

...
...

...
. . .

...

ρ
z(i)nl x

( j)
1

ρ
z(i)nl y

( j)
1

ρ
z(i)nl z

( j)
1

. . . ρ
z(i)nl z

( j)
nl

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (53)

For reasons of clarity, the number of observations nl is not
equipped with the superscript defining the epoch. Never-
theless, the number of observations may vary between the
measuring epochs.

The correlations ρ = ρ(d) are computed by means
of the respective analytical correlation function, the three-
dimensional Euclidean distance d between the respective
points being the only input of the correlation function.

The resulting submatrices in Eq. (53) and, in further con-
sequence, the correlation matrix in Eq. (52) have an epochal
block-wise structure and are sparse, as a large part of the
matrix covers the stochastic relationships between two obser-
vations of the non-distorted parts, which are modelled by
zero-correlations.

Having set up the correlation matrix Rss, it has to be con-
verted into the covariance matrix Σss by taking into account
the locally stationary variances computed by means of Eq.
(50) (see Heunecke et al. 2013, p. 144).

Due to the “regularisation” by means of Σεε before
inverting Σss [cf. Eq. (43)], the slowly decaying correlation
functions do not lead to numerical instabilities.

4.6.5 In-depth considerations of the assumptions adopted
for the deformation modelling

In the subsections, above three essential assumptionswere
made. This inserted section justifies these assumptions and,
therefore, is an important building block for the development
of this approach.

– The normal distribution of the signal [Eq. (3)] is a basic
assumption of the general LSC-approach, allowing for
the complete modelling of the signal by means of the
first two statistical moments, the mean vector μ and the
variance–covariance matrix Σ ss.
When interpreting deformations as a stochastic signal,
this assumption is very restrictive and not necessarily
met. However, the simulation process in Sect. 3.1 has
illustrated that a normal distributed signal may cause typ-
ical deformation patterns.
Reversely, a normal distributed signal can be adopted as
an approximation of typical deformation patterns.

– In Eq. (49), the threshold for distinguishing between
distorted and non-distorted parts of the object was
heuristically chosen. In order to justify this choice, the

Fig. 15 Empirical autocorrelograms of point cloud PC(1)
s (top) and of

the stable areas of point cloud PC(3)
s (bottom). In both pictures, the

dashed lines indicate the 97.5%-confidence intervals

autocorrelograms of the non-distorted parts are computed
and analysed for each epoch. In Fig. 15, the autocorrel-
ograms of all three coordinate directions can be seen for
the point cloud of the initial geometry (upper picture) as
well as for the stable areas of point cloud PC(3)

s (lower
picture).
The correlograms in the upper picture decrease immedi-
ately from ρ(0) = 1 to ρ(0.005) ≈ 0. With increasing
distance d, the correlograms show minimal fluctuations
around zero. All in all, these three correlograms show the
typical behaviour of a white noise process and, therefore,
indicate the stochastic independence of the data (Heu-
necke et al. 2013).
The correlogram of the z-coordinate in the lower picture
shows a similar behaviour, indicating that those regions
which show distortions in the z-coordinate were success-
fully detected. Contrary, the correlograms of the x- and
y-coordinate do not immediately decrease to ≈ 0, but to
ρx (0.005) ≈ 0.4 and to ρy(0.005) ≈ 0.3. With increas-
ing distance d, these correlations gradually decrease and
reach their minimum at d ≈ 0.13, showing a periodic
behaviour. Although the magnitude of these correlations
does not significantly differ from zero as indicated by the
97,5%-confidence intervals, these correlograms show the
existence of remaining correlations in those areas which
were classified to be non-distorted.
These systematics are caused by the relatively simple
approach to detect the distorted parts of the object: the
threshold consideration has difficulties to find a strict
distinction between distorted and non-distorted areas as
there is a smooth transition between those two areas.
When choosing a larger threshold, a larger part of the dis-
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torted areas is allocated to the non-distorted part. This is
reflected by a slower decrease in the correlograms. How-
ever, when decreasing the threshold, the non-distorted
area is more and more polluted by small areas which are
classified to belong to the distorted area. For this rea-
son, the choice of Eq. (49) is an appropriate compromise
between these two cases: there do not exist any pollutions
in the non-distorted parts, and the remaining systematics
in the non-distorted areas are small.
Nevertheless, the limits of this procedure are revealed by
this example: in case of small deformations, which can
hardly be distinguished from the noise, a simple threshold
consideration might not work sufficiently well. However,
for this study, which has to be considered as a first step
towards an areal and time-continuous deformation anal-
ysis, the threshold considerations will be maintained.

– The purpose of the standardization using Eq. (51) is
to represent the homogeneous correlation structure by
the resulting homogeneous pseudo-residuals. In order to
prove its feasibility, the correlogram is repeatedly cal-
culated, while in each calculation one of the clusters is
excluded. Afterwards, an assessment ismadewhether the
resulting correlograms differ significantly. This strategy
is chosen, because in case of homogeneity the correlation
structure does not change when individual sub-areas of
the homogenized distorted region are excluded from the
correlogram’s estimation.
The correlograms’ similarity analysis is based on the con-
fidence band of the correlogram of the whole distorted
area which is computed according to the parametric spa-
tial bootstrap introduced in Sect. 2.3.4.
In case the correlograms of all sub-areas lie within this
confidence band, the effectiveness of this approach is val-
idated.
In the upper picture of Fig. 16, the respective results can
be seen for the z-coordinate of point cloud PC(3)

s in case
the number of clusters is chosen to be nc = 12. Apart
from small variations, all 12 correlograms are almost
identical and lie within the estimated 90%-confidence
bands. Thus, the standardized residuals can indeed be
assumed to represent the homogeneous correlation struc-
ture.
The validation of homogeneity is closely linked to the
choice of an appropriate number of clusters. This is a crit-
ical issue as the number of clusters has a strong influence
on the filtering results: in case the number of clusters is
chosen too small, the homogeneity assumption is not ful-
filled as can be seen in the lower picture of Fig. 16 which
shows the resultswhenonly twoclusters are created.Both
correlograms differ significantly. In case the number of
clusters is chosen too large, the cluster size becomes so
small that ameaningful standardization is not longer pos-
sible. The smallest possible number of clusters leading to

Fig. 16 Empirical correlograms of the whole distorted area (circles),
empirical correlograms of the sub-regions (crosses) and the estimated
90%-confidence interval over the whole area (dashed lines): 12 clusters
(top), two clusters (bottom)

homogeneous standardized residuals is therefore chosen
to be appropriate.

4.7 Modelling of the noise

The remaining quantity to be determined before being able
to filter the observations is the covariance matrix of the
noise Σεε . As this study is the first step towards an areal
deformation analysis, the noise is initially assumed to be non-
correlating and, thus,Σεε ismodelled to be adiagonalmatrix.
The variances of the non-distorted parts result from the trend
estimation, whereas for the computation of the variances of
the distorted parts the considerations depicted in Fig. 1 have
to be taken into account. Theoretically, the wanted variances
of the noise would directly result from the estimation of the
analytical covariance functions as the difference of the ana-
lytical variance and the empirical one. However, due to the
normalizationof the residuals, no covariance functions canbe
computed when assuming locally stationary processes. Nev-
ertheless, knowing the ratio of the analytical correlations and
the empirical ones for d(0) (cf. Fig. 14) and the local vari-
ances of the signal, the respective variances of the noise can
be computed.

5 Filtering results

With the establishment of the stochasticmodels, the approach
introduced in this section can be used to filter the measured
point clouds and, therefore, to describe the deformations.
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Fig. 17 Point cloudPC(3)
s coloured according to the filtering’s residuals

in direction of the z-coordinate

5.1 Filtering results for the stochastically simulated
data sets

In order to evaluate the results, the residuals of the filter-
ing, which, optimally, solely contain the measuring noise,
are analysed in a first step. The residuals’ spatial distribution
for the z-coordinate of point cloud PC(3)

s can be seen in Fig.
17.

Evidently, the magnitude of the residuals randomly varies
from approximately −3mm to 3mm with few exceptions
in the transition zone between the distorted and the non-
distorted part of the object (dark blue points). Thus, apart
from those outliers, the residuals lie within the 3-σ range of
the measuring noise used for the data simulation.

For a more detailed analysis, the residuals of the filtering
of point cloud PC(3)

s are plotted in the form of histograms
(see Fig. 18). It has to be noted that both the residuals of the
distorted and those of the non-distorted areas are included
in the histograms, whereas the three largest residuals (the
outliers coloured dark blue in Fig. 17) are ignored in this
representation. The respective residuals in direction of the
z-coordinate can be approximated very well by means of a
normal distribution, whereas in case of the other two coor-
dinate directions the kurtosis is much too large compared to
that of a normal distribution.

A closer look at the statistical moments of the filter-
ing’s residuals over time in Table 3 reveals that in case of
the non-distorted object (PC(1)

s ), the residuals closely fol-
low the normal distribution which was used to generate the
noisy data. For the remaining two data sets, this statement is
approximately valid for the residuals in the direction of the
z-coordinate as the respective standard deviations are only
slightly smaller than 1mm. Skewness and kurtosis give an
idea about how close the respective distributions are to a
normal distribution (skewness = 0, kurtosis = 3). As already
indicated by Fig. 18, kurtosis and skewness confirm a very
good approximation of the residuals by means of a normal

Fig. 18 Histograms of the residuals of the filtering for point cloudPC(3)
s

and the best-fitting normal distribution (red curve): residuals in the x-
direction (top), residuals in the y-direction (middle) and residuals in the
z-direction (bottom)

Table 3 Statistical moments of the estimated residuals ε̂ of the filtering
for data set PCs

PC(1)
s PC(2)

s PC(3)
s

Mean (ε̂x) (mm) 4.3e−13 0.00 0.07

Mean (ε̂y) (mm) 4.7e−13 − 0.03 0.01

Mean (ε̂z) (mm) 1.4e−13 0.01 0.01

Std (ε̂x) (mm) 0.98 0.45 0.54

Std (ε̂y) (mm) 1.00 0.48 0.51

Std (ε̂z) (mm) 1.00 0.90 0.89

Skewness (ε̂x) −0.01 0.19 0.72

Skewness (ε̂y) −0.02 0.15 0.41

Skewness (ε̂z) 0.04 − 0.00 − 0.33

Kurtosis (ε̂x) 2.9 9.3 9.1

Kurtosis (ε̂y) 3.1 9.1 10.3

Kurtosis (ε̂z) 2.8 3.9 5.1

distribution in the z-direction, whereas this does not hold for
the residuals in x- and y-direction.

The residuals’ behaviour is caused by the definition of
the coordinate system (see for example Fig. 7): as x- and
y-direction correspond to the two principal components of
the surface, the data sets are very insensitive for determining
deformations in these directions.

Comparing the statistical moments of the residuals in the
z-direction over time, a decrease in similarity with respect to
a normal distribution can be observed when the deformation
increases.

The use of simulated data allows a comparison of the
filtered data with respect to nominal surfaces, aiming to high-
light systematic residual errors. A graphic representation can
be seen in Fig. 19 showing the discrepancies between the fil-
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Fig. 19 Point cloud PC(3)
s coloured according to the discrepancies with

respect to the nominal surface in the direction of the z-coordinate

tered data and the nominal surface for the z-coordinate of
point cloud PC(3)

s .
Due to the different treatments of the two areas, a dis-

tinction between the distorted and the non-distorted part of
the point cloud by means of the values’ magnitude is pos-
sible: the precision of the measurements is increased by the
trend estimation, whereas it is maintained by the filtering.
However, the discrepancies behave randomly within these
two parts and no pattern corresponding to the deformation
can be recognized. It is noticeable, though, that the majority
of the points showing the largest discrepancies accumulate
in the transition zone between distorted and non-distorted
areas. Apart from that, the systematics caused by the defor-
mation process are compensated by means of the stochastic
modelling in a satisfying way.

In analogy to the residuals’ analysis, the discrepancies to
the nominal surfaces are plotted in the form of histograms
(Fig. 20). As can be seen, the distribution of the discrepan-
cies can be approximated very well by means of a normal
distribution in x- and y-direction, whereas the histogram of
the residuals in the z-direction shows a relatively large kur-
tosis. As, optimally, the discrepancies to the nominal surface
equal zero, a large kurtosis is an indicator for a successful
modelling of the deformation.

The empirical statistical moments characterizing the dis-
tributions of the discrepancies are summarized in Table 4.
For all measuring epochs and for all coordinate directions,
the distribution of the discrepancies is centred close to zero.
Thus, there does not exist a significant bias with respect to
the nominal surface.

The standard deviations of the discrepancies give some
insight into the discrepancies’ variation. The respective val-
ues of the first measuring epoch are significantly smaller than
the standard deviation of the measuring noise as, due to the
estimation of the B-spline surface, the precision is increased.
As already indicated by Fig. 19, the precision is maintained
rather than increased in the distorted region.That is the reason

Fig. 20 Histograms of the discrepancies between the nominal surface
and the filtering results for point cloud PC(3)

s as well as the best-fitting
normal distribution (red curve): x-coordinate (top), y-coordinate (mid-
dle) and z-coordinate (bottom)

Table 4 Statistical moments of the discrepancies d between the filtered
point cloud and the nominal surfaces for data set PCs

PC(1)
s PC(2)

s PC(3)
s

Mean (dx ) (mm) 0.01 0.01 0.04

Mean (dy) (mm) − 0.00 − 0.04 0.02

Mean (dz) (mm) − 0.01 − 0.02 − 0.02

Std (dx ) (mm) 0.15 0.95 1.01

Std (dy) (mm) 0.15 0.94 0.95

Std (dz) (mm) 0.16 0.67 0.70

Skewness (dx ) − 0.60 − 0.12 0.01

Skewness (dy) 0.06 0.03 0.03

Skewness (dz) − 0.24 − 0.25 − 0.34

Kurtosis (dx ) 6.2 3.1 3.5

Kurtosis (dy) 5.2 3.3 3.6

Kurtosis (dz) 6.8 6.8 6.5

why the standard deviations of the second and third mea-
suring epochs are considerably larger than those of the first
epoch. In compliance with Table 3, the standard deviations
in x- and y-direction are larger than the standard deviation
in z-direction, indicating that a detection of the deforma-
tion is only successful in the direction perpendicular to the
object’s surface. This statement is supported by the values of
the kurtosis, which are considerably larger for the residuals
in direction of the z-coordinate.

Finally, the comparison of the statistical moments of the
three distorted epochs does not reveal a relationship between
the parameters’ magnitude and the size of the deformation.
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Table 5 Mean values and standard deviations of the first two statistical
moments of the discrepancies d between the filtered point cloud and
the nominal surfaces for data set PCl1 based on 500 data sets

PC(1)
s PC(2)

s PC(3)
s

mean (dx ) (mm) 0.001 0.012 0.048

mean (dy) (mm) 0.001 − 0.011 0.016

mean (dz) (mm) − 0.001 − 0.038 − 0.035

σ (mean (dx )) (mm) 0.021 0.019 0.021

σ (mean (dy)) (mm) 0.020 0.020 0.018

σ (mean (dz)) (mm) 0.020 0.021 0.020

std (dx ) (mm) 0.157 0.962 0.993

std (dy) (mm) 0.157 0.942 0.955

std (dz) (mm) 0.158 0.726 0.722

σ (std (dx )) (mm) 0.014 0.027 0.024

σ (std (dy)) (mm) 0.014 0.027 0.020

σ (std (dz)) (mm) 0.015 0.182 0.113

For a more meaningful analysis, the filtering computa-
tions for data set PCs are repeated 500 times using different
realizations of this data set each time.

The results in terms of the mean values and the standard
deviations of the first two statistical moments over the 500
repetitions are summarized in Table 5.

The averaged mean values are almost identical with the
respective values of point cloud PCs in Table 4 with the aver-
aged mean values in the direction of the z-coordinate being
slightly larger in case of the Monte Carlo simulation. How-
ever, as the deviation clearly falls within the range defined
by the threefold standard deviation, the mean values in Table
4 can be seen to be representative. The small standard devia-
tions of the means being almost equal to the averaged mean
values indicate an unbiased reproducibility of the results.

The mean values of the standard deviations take similar
values to the standard deviations of data set PCs in Table 4,
too. With the mean values of the standard deviation being
more than an order of magnitude larger than the standard
deviation σ , the results of Table 4 can be seen to be repre-
sentative.

A deeper analysis reveals that the variation in the results
is not only caused by the different data sets, but also by the
random choice of the initial cluster centres of the k-means
algorithm: even when using the same data set, this random
choice leads to a variation in the respective results.

5.2 Filtering of the functionally deformed data sets

The computations are repeated using data set PC f . In anal-
ogy to the results in the previous section, the results of this
computation are summarized by means of Tables 6 and 7 as
well as Figs. 21 and 22.

Table 6 Statistical moments of the estimated residuals ε̂ of the filtering
for data set PC f

PC(1)
f PC(2)

f PC(3)
f PC(5)

f

Mean (εx) (mm) 3.3e-13 − 0.02 − 0.01 − 0.01

Mean (εy) (mm) 2.8e-13 − 0.01 0.02 0.01

Mean (εz) (mm) 1.4e-13 0.10 0.11 0.07

Std (εx) (mm) 0.98 0.46 0.46 0.48

Std (εy) (mm) 0.99 0.51 0.52 0.50

Std (εz) (mm) 0.96 0.90 0.86 0.91

Skewness (εx) 0.04 − 0.50 0.32 0.01

Skewness (εy) 0.02 − 0.20 − 0.20 − 0.27

Skewness (εz) −0.04 0.11 0.14 − 0.05

Kurtosis (εx) 2.9 7.5 11.3 6.9

Kurtosis (εy) 2.8 6.4 8.2 8.5

Kurtosis (εz) 2.9 3.8 3.9 3.6

Table 7 Statistical moments of the discrepancies d between the filtered
point cloud and the nominal surfaces for data set PC f

PC(1)
f PC(2)

f PC(3)
f PC(5)

f

Mean (dx ) (mm) −0.008 − 0.018 − 0.015 − 0.015

Mean (dy) (mm) 3.8e-4 − 0.020 − 0.024 − 0.020

Mean (dz) (mm) 0.008 − 0.134 0.115 0.111

Std (dx ) (mm) 0.26 0.29 0.30 0.33

Std (dy) (mm) 0.26 0.31 0.32 0.32

Std (dz) (mm) 0.18 0.54 0.58 0.65

Skewness (dx ) 0.02 − 0.33 − 0.26 − 0.33

Skewness (dy) 0.09 − 0.08 − 0.21 − 0.42

Skewness (dz) 0.06 0.38 0.47 − 0.26

Kurtosis (dx ) 2.3 3.5 3.4 6.5

Kurtosis (dy) 2.6 4.6 5.0 5.2

Kurtosis (dz) 5.0 10.0 10.5 11.6

The residuals of the filtering show a similar behaviour as
in case of the stochastically simulated data set. The statisti-
cal parameters in Table 6 reveal a centring of the respective
distributions close to zero and standard deviations which, in
case of the residuals in the direction of the z-coordinate, are
very close to that one which was used to generate the data.
Kurtosis and skewness indicate a good approximation of the
residuals’ distribution by means of a normal distribution in
the direction of the z-coordinate, whereas the distributions
corresponding to x- and y-coordinate are leptokurtic.

The residuals’ spatial distribution is presented in Fig.
21. As in case of the stochastically simulated data set, the
residuals show a random pattern both in the distorted and
in the non-distorted parts of the surface and attain maxi-
mal values of approximately±4mm.However, the transition
area between distorted and non-distorted zone is more pro-

123



26 Page 20 of 25 C. Harmening, H. Neuner

Fig. 21 Point cloudPC(5)
f coloured according to the filtering’s residuals

in direction of the z-coordinate

Fig. 22 Point cloud PC(5)
f coloured according to the discrepancies with

respect to the nominal surface in the direction of the z-coordinate

nounced. It is recognizable in terms of a yellow coloured
outline of the distorted region which contains the majority of
residuals being larger than 3 mm in absolute value.

This outline is even more apparent in the discrepancies
to the nominal surface represented in Fig. 22. This systemat-
ics demonstrate the limits of the threshold-based detection of
distorted regions. Apart from that, the discrepancies vary ran-
domly and attain smaller values in the non-distorted region
and larger values, which are, however, within the scope of
the measuring accuracy, in the distorted area.

The resulting statistical parameters are listed in Table 7
showing the same characteristics as the corresponding val-
ues for the stochastically simulated data set: on average, the
discrepancies are close to zero. The relatively small standard
deviation as well as the large kurtosis demonstrates the appli-
cability of the stochastic deformation model to functionally
simulated deformations.

Fig. 23 Sketched illustration of the initial transformation in order to
obtain information about the deformation in the point to be predicted.
Trend surface (black), measured points on the deformed surface (grey
points), point to be predicted lying on the trend surface (lower red point)
and initially predicted point (upper red point)

6 Prediction

Usually, not only the filtering of the data is of impor-
tance, but also the prediction of values at locations where
no measurements were performed, allowing a space- and
time-continuous description of the deformation as well as
the construction of identical points. The prediction into the
non-distorted parts is straightforward by determining the
respective position on the B-spline surface. Thus, in the fol-
lowing only the prediction into the distorted parts is treated.

6.1 General procedure

Due to the situation’s set-up, two cases have to be distin-
guished: the prediction of the signal in a measured epoch
and the prediction of the signal into a non-measured epoch.

The challenge in both cases is that the spatial location
on the deformed surface, where the deformation shall be
predicted, cannot be specified (x, y, z in equation (31)).How-
ever, this information is required for deriving the stochastic
relationships which are a function of the spatial distance in
case of the correlations and a function of the point’s location
in case of the variance.

– In case of a prediction into a measured epoch i , the
measured point cloud gives information about the defor-
mation. The relationship between the measured points’
Cartesian coordinates (x, y, z)(i) and their known posi-
tion on the trend surface (u, v)(i) is used to determine
an approximate position of the point to be predicted. For
this purpose, the assumption of small deformations with
respect to the surface’s dimension is relevant. Starting
point is the location on the trend surface defined by the
surface parameters u p and vp (lower red point in Fig.
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23). Based on these surface parameters, the four near-
est neighbours in terms of the measured and projected
points are determined (black points in Fig. 23). The rel-
ative position of the point to be predicted with respect
to these four neighbours is defined by an inverse bilin-
ear interpolation (lower green lines). Applying the same
bilinear interpolation to the measured correspondences
of the four nearest neighbours defining the deformed sur-
face of epoch i (grey points and upper green lines) yields
the initial position of the point to be predicted (upper red
point). It has to be noted that this strategy does not yield
an orthogonal projection with respect to the trend sur-
face.
Based on this position, on the one hand, the point to be
predicted is allocated to the cluster of the nearest mea-
sured neighbour. This allocation simultaneously defines
the point’s locally homogeneous variance defined by
equation (50). On the other hand, the correlations with
respect to all the measured points can be computed
by means of the analytical auto- and crosscorrelograms
defined in Sect. 4.6.4. Afterwards, the covariance matrix
Σs′s is set up, and the signal is predicted using equation
(42). Adding the values of the predicted signal to the ini-
tial positions on the B-spline surface results in the final
prediction into a measured epoch.

– In case of a prediction into a non-measured epoch i , no
direct information regarding the object’s deformation in
this epoch is available. However, as the deformation pro-
cess is assumed to be continuous, the deformation of the
neighbouring epochs is used to derive information about
the deformation in the non-measured epoch. For this rea-
son, in a first step, the auto- and crosscorrelograms as
well as the locally stationary variances which are needed
to predict into the twoneighbouring andmeasured epochs
i −1 and i +1 are determined. Afterwards, they are used
to derive the stochastic relationships of the unmeasured
epoch. Figure 24 sketches the case of three measured
epochs 1, 2 and 4: two crosscorrelograms are given rep-
resenting the stochastic dependencies between epoch 1
and epoch 2 (blue curve) as well as between epoch 1 and
epoch 4 (green curve).
The continuous nature of these curves allows the identi-
fication of functional values corresponding to the same d
on these curves and, thus, the analysis of how these cor-
respondences change over time (indicated by the black
lines). Therefore, in this example, the required crosscor-
relogram between epoch 1 and the unmeasured epoch 3
results as the linear interpolant between the two given
correlograms (red curve).
This strategy is applied to the entirety of auto- and cross-
correlograms, which are needed to describe the signal, as
well as on the locally stationary variance information.
More complex relationships than the linear interpolation

Fig. 24 Derivation of crosscorrelograms in case of the prediction into
an unmeasured epoch

Fig. 25 Discrepancies in the z-direction (mm) between the nominal
surface of PC (5)

f and the results of the prediction

are imaginable in case a larger number of measuring
epochs is available. In these cases, the change of the
resulting correlograms over time has to be analysed.

6.2 Prediction results

Due to the better controllability of functionally simulated
deformations, data set PC f is used in the following to eval-
uate the prediction process.

In order to illustrate the prediction results, 2500 locations
on the estimated B-spline surface are randomly chosen. The
prediction of those points into three measured epochs (t = 1,
t = 1.5 as well as t = 2) and into the non-measured epoch
(t = 1.75) is realized according to Sect. 6.1. In Fig. 25,
the discrepancies of the prediction into the last measuring
epoch with respect to the nominal surface can be seen for
the z-coordinate. As can be expected, the prediction into the
non-distorted part of the object is very precise as this part is
described very accurately bymeans of the trend. The discrep-
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Table 8 Statistical moments of the discrepancies dp between the pre-
dicted point cloud and the nominal surfaces for data set PC f

PC(2)
f PC(3)

f PC(4)
f PC(5)

f

Mean (dp,x ) (mm) − 0.02 − 0.03 − 0.02 − 0.01

Mean (dp,y) (mm) − 0.02 − 0.02 − 0.01 − 0.02

Mean (dp,z) (mm) 0.12 0.10 0.10 0.08

Std (dp,x ) (mm) 0.28 0.29 0.28 0.29

Std (dp,y) (mm) 0.29 0.30 0.29 0.30

Std (dp,z) (mm) 0.43 0.44 0.37 0.45

Min (dp,x ) (mm) − 1.47 − 1.41 − 1.17 − 1.50

Min (dp,y) (mm) − 1.46 − 1.41 − 1.34 − 2.09

Min (dp,z) (mm) − 1.32 − 1.64 − 1.45 − 1.66

Max (dp,x ) (mm) 0.74 0.74 0.77 1.08

Max (dp,y) (mm) 1.47 1.34 1.22 1.77

Max (dp,z) (mm) 3.25 3.28 2.12 3.13

Skewness (dp,x ) − 0.20 − 0.14 − 0.20 − 0.19

Skewness (dp,y) − 0.31 − 0.25 0.31 − 0.42

Skewness (dp,z) 1.78 1.23 0.74 1.54

Kurtosis (dp,x ) 3.2 3.1 2.7 3.4

Kurtosis (dp,y) 4.1 4.5 3.7 6.1

Kurtosis (dp,z) 9.8 8.4 6.8 10.0

ancies in the distorted part of the object range between −1.5
and 3mm. Similar to the filtering results in Fig. 22, a slightly
systematic behaviour of the discrepancies is noticeable in the
transition zone between distorted and non-distorted regions.
However, over the remaining part of the measuring object,
the discrepancies behave randomly.

The results for all epochs and all coordinate directions are
summarized in Table 8.

Comparing the parameters of the non-measured epoch
PC(4)

f with those of the measured ones, it can be seen that the
former is seamlessly integrated into the measuring sequence:
mean values and standard deviations are almost identical for
all epochs. As the standard deviation is computed over the
entirety of the object and as the distorted parts of the object
vary in size, this parameter has only limited relevance. Thus,
the table is extended by the minimum and maximum val-
ues of the discrepancies, which always refer to the distorted
part of the object. These parameters indicate an asymmetric
distribution, especially in the direction of the z-coordinate,
which is also supported by the values of the skewness. These
parameters reflect the systematics which are already indi-
cated in Fig. 25. In spite of these systematics, the prediction
results are very promising: the large kurtosis and the stan-
dard deviation being significantly smaller than the noise’s
standard deviation reveal a very satisfying approximation of
the nominal surface.

However, it has to be noted that the repetition of the com-
bined filtering and prediction with the same data set happens

to yield the non-satisfying results with discrepancies to the
nominal surface in the magnitude of 10–15mm. Due to the
random choice of the cluster centres during the k-means
clustering, a clustering which does not reflect the variance’s
locality in an appropriate way is possible. A deterministic
approach which selects the cluster centres using the variance
information would provide a remedy.

7 Conclusion

7.1 Summary

In this contribution, an areal deformation model for laser
scanning data was developed which allows the filtering of
measured data as well as the prediction of non-measured
data.

The approach’s basis is provided by the estimation of a
B-spline surface which represents the non-distorted object.
Similar to a least squares collocation, the deformation is
modelled solely stochastically, allowing for the a-priori deter-
mination of rigid body movements based on the B-spline’s
control points. Due to the introduction of the non-deforming
B-spline surface, the optimization problem is solved in the
conditional adjustment model, which constitutes a major dif-
ference with regard to a least squares collocation.

The deformation is interpreted to be a locally homoge-
neous process with homogeneous mean values and correla-
tion structures as well as location-dependent variances. Its
description requires a multi-step procedure consisting of the
distinction between distorted and non-distorted regions, the
determination of local variances as well as the estimation of
a homogeneous correlation structure.

Due to the stochastic interpretation of the deformation, the
challenge of finding identical points in different measuring
epochs is circumvented. The developedmodel allows a point-
to-surface-based comparison with respect to the undistorted
object as well as a point-to-point-based comparison between
two distorted states of the measuring objects. The resulting
deformation measures in the form of distances are inter-
pretable and meaningful. Furthermore, the combination of
filtering and prediction allows a space- and time-continuous
description of the deformed surface.

The approach was applied to different simulated data sets
in order to filter them and in order to predict unmeasured val-
ues. The comparison of the results with nominal surfaces are
promising: even when, as in these simulated cases, the defor-
mation is relatively large compared to the object’s dimension,
the deformation is modelled with an accuracy in the order of
the measuring noise both, in case of the filtering and in case
of the prediction.
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7.2 Limitations of the approach and future
investigations

In spite of the promising results, there do exist some limita-
tions which have to be investigated in future.

First of all, it is assumed that the non-distorted measuring
object has a continuous surface which can be approximated
sufficiently well by means of a B-spline surface.

Furthermore, the approach is based on the strong assump-
tion that the deformation process can be described by means
of a locally homogeneous stochastic process in a satisfying
manner. However, there do exist some types of deformations,
such as fractures and other discontinuous deformations,
which cannot be assumed to meet this assumption. In those
cases, the approach is only applicable with limits, for exam-
ple, by segmenting the distorted area into sub-areas which
can be assumed to represent locally homogeneous deforma-
tion processes. The same applies for continuous deformation
processes, for which the assumption of a homogeneous cor-
relation structure is too restrictive.

Based on these thoughts, the relationship between differ-
ent types of deformations (periodic, linear, fractures, etc.)
and the resulting correlograms will be investigated in future.
These investigations are closely connected to the assessment
of the correlograms’ influence on the respective filtering and
prediction results.

In order to keep the deformation interpretable, the signal
is defined in the Euclidean space in this study. Nevertheless,
further investigations are required whether the values of the
covariance function need to be computed in the domain of
the surface parameters.

Apart from these general issues, the approach’s implemen-
tation posed some concrete problems, which will be solved
in future and which should further reduce the current dis-
crepancies between filtered/predicted values and the nominal
surfaces:

– The simple threshold consideration for detecting dis-
torted regions is applicable only in limited situations.
Thus, a more sophisticated approach for distinguishing
between distorted and non-distorted areas will be devel-
oped in future.

– The randomness of the k-means clustering causes the
non-reproducible—and invery fewcases unsatisfactory—
results. A deterministic approach for defining the locally
stationary areas promises more stable results and, as a
consequence,moremeaningfulMonteCarlo simulations.

– The computation and definition of suitable crosscorre-
lation functions are wide topics for themselves, which
require an in-detail analysis.

– In this study, only a brief glance was taken at the predic-
tion and the applicability was demonstrated solely for a
linear deformation process. In future, the influence of a

linear treatment of nonlinear deformation processes will
be investigated. These investigations will also devote the
question whether it is possible to use the timely change
of the correlograms in order to derive information about
the nonlinearity of the deformation process.

Furthermore, for these initial investigations, the framework
was restricted by using simulated data. Thus, in further stud-
ies, the approach will be tested on real measuring data which
poses new challenges:

– The simulated data sets allow the use of nominal values
for the B-spline’s surface parameters, knot vectors and
degrees. When using real measuring data, those parame-
ter groups have to be determined in an appropriate way.

– Up to now, no attention was given to the stochastic mod-
elling of the measuring noise: in the simulation process,
white noise was generated so that the identity matrix
was an appropriate choice. However, in reality the mea-
suring process itself induces systematics into the point
clouds which have to be modelled in an appropriate way
by means of Σεε , as otherwise the signal absorbs these
systematics and the modelling of the deformation is dis-
torted.

Finally, the observation of large measuring objects over long
periods of time results in a huge amount of data. A sequential
variant of the proposed approach is one possibility to deal
with such a huge amount of data.
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