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Abstract The paper is about a methodology to combine a
noisy satellite-only global gravity field model (GGM) with
other noisy datasets to estimate a local quasi-geoid model
using weighted least-squares techniques. In this way, we
attempt to improve the quality of the estimated quasi-geoid
model and to complement it with a full noise covariance
matrix for quality control and further data processing. The
methodology goes beyond the classical remove–compute–
restore approach, which does not account for the noise in
the satellite-only GGM. We suggest and analyse three dif-
ferent approaches of data combination. Two of them are
based on a local single-scale spherical radial basis func-
tion (SRBF) model of the disturbing potential, and one is
based on a two-scale SRBF model. Using numerical exper-
iments, we show that a single-scale SRBF model does not
fully exploit the information in the satellite-only GGM. We
explain this by a lack of flexibility of a single-scale SRBF
model to deal with datasets of significantly different band-
widths. The two-scale SRBF model performs well in this
respect, provided that the model coefficients representing
the two scales are estimated separately. The corresponding
methodology is developed in this paper. Using the statistics
of the least-squares residuals and the statistics of the errors in
the estimated two-scale quasi-geoid model, we demonstrate
that the developed methodology provides a two-scale quasi-
geoid model, which exploits the information in all datasets.
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1 Introduction

In this paper, we investigate the combination of a noisy
satellite-only global gravity model (GGM) with noisy high-
resolution datasets (e.g. terrestrial gravity anomalies) to
estimate a local quasi-geoid model using weighted least-
squares techniques. By considering the satellite-only GGM
as one of the noisy datasets, we expect to improve the quality
of the estimated local quasi-geoidmodel. By exploiting exist-
ing information about the noise variances and covariances in
combination with weighted least-squares techniques, we aim
at making a step forward towards a comprehensive descrip-
tion of the quality of the estimated quasi-geoid model in
terms of a full noise covariance matrix for quality control
and further data processing.

The problem is timely. The quality and spatial resolu-
tion of the most recent satellite-only GGMs, which are
mainly based on data of the Gravity Recovery and Climate
Experiment (GRACE) and Gravity field and steady-state
Ocean Circulation Explorer (GOCE) satellite missions, have
improved dramatically compared to pre-mission models.
Moreover, the GGM’s spherical harmonic coefficients are
now complemented with a full noise covariance matrix.
For models such as GOCO05s (Mayer-Gürr et al. 2015),
the quality of the noise covariance matrix benefits from
(i) a post-fit residual analysis, which provides more real-
istic models of the data noise (e.g. Farahani et al. 2013),
and (ii) numerically efficient algorithms to propagate the
full data noise covariance matrices into the noise covariance
matrix of the estimated spherical harmonic coefficients (e.g.
Farahani et al. 2013). Some progress has also been made
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regarding high-resolution datasets frequently used in local
quasi-geoid modelling. An example is Farahani et al. (2017)
who derived coloured noise models for radar altimeter-
based along-track quasi-geoid height differences, or Slobbe
(2013) who successfully accounted for long-wavelength
errors in terrestrial gravity anomalies (e.g. Heck 1990) by
augmenting the functional model with additional parame-
ters.

Until now, a GGM with full noise covariance matrix has
not been used as one of the noisy datasets in the compu-
tation of a local quasi-geoid model. The standard approach
is remove–compute–restore approach, i.e. the GGM is used
to facilitate a local approach to quasi-geoid modelling by
removing most of the energy in the data at the long wave-
lengths. From a theoretical point of view, the combination of
a local set of terrestrial gravity anomalies with a noisy GGM
has been considered in a number of publications since the
1980s. They all use a modification of Stokes’ formula and go
back to the early work of Sjöberg andWenzel (Sjöberg 1980,
1981; Wenzel 1981). At that time, only error degree vari-
ances of the GGM were used. The modification of Stokes’
kernel was formulated as a global optimization problem, in
which either the variance or the mean square error of the
quasi-geoid heights was minimized. Since then, the stochas-
tic spectral combination methods were applied routinely
when computing local quasi-geoidmodels.An example is the
European quasi-geoid EGG08 (Denker et al. 2008; Denker
2013), which uses the spectral combination method of Wen-
zel (1981). Sjöberg (2005) was the first who derived the
formalism of a local least-squares modification of Stokes’
formula, which uses, among others, the full noise covariance
matrix of the GGM to compute the weights per spherical har-
monic degree. In (Sjöberg 2011), the restriction to weights
per spherical harmonic degree was given up. To our knowl-
edge, this method has not been investigated yet in detail.
Some numerical aspects were studied in Ågren (2004) and
Ellmann (2004), in particular numerical instabilities when
estimating the spectral weights, which naturally arise in local
applications.

Here we follow another approach to local quasi-geoid
modelling, which uses least-squares techniques to estimate
the parameters of a local spherical radial basis function
(SRBF) model of the disturbing potential from the available
datasets. Least-squares techniques have many advantages. In
particular, they allow us to include noise covariancematrices,
improve them using variance component estimation, pro-
vide variance–covariance information about the estimated
parameters and linear functionals of them, and allow the
use of statistical hypothesis testing to test the validity of the
mathematical model. Least-squares local quasi-geoid mod-
elling using SRBFs has been intensively studied by various
authors, see Klees et al. (2008) for a literature overview
until 2007. Since then, a number of studies investigated

various aspects of the use of SRBFs in local quasi-geoid
modelling. This comprises the choice of the type of SRBFs
(e.g. Tenzer and Klees 2008; Bentel et al. 2013a, b), SRBF
network design and numerical optimization (e.g. Wittwer
2009), regularization issues (e.g. Naeimi 2013), and the
optimization of the location of the SRBFs (e.g. Lin et al.
2014). Some aspects related to the combination of data
with different bandwidths have been discussed in Panet
et al. (2011); Naeimi (2013); Bentel and Schmidt (2016);
Lieb et al. (2016); Lieb (2017). However, they do not
cover numerical studies about the combination of a GGM
with full noise covariance matrix with high-resolution noisy
datasets.

An alternative to the use of a GGM as one of the noisy
datasets in local quasi-geoid modelling is to complement the
high-resolution local datasets with the original satellite data
at altitude, e.g. satellite gravity gradients from the GOCE
mission, low–low satellite-to-satellite tracking data from the
GRACE mission, and high–low satellite-to-satellite track-
ing data from GRACE, GOCE, and other low Earth orbiters.
Examples in the context of local quasi-geoid modelling with
SRBFs are Lieb et al. (2015) and Lieb (2017). The major
drawback of this approach is the complexity of the func-
tional model for the low–low satellite-to-satellite tracking
data and the huge amount of data. Thismay be the reasonwhy
numerical studies published so far (e.g. Lieb 2017) do not use
high–low satellite-to-satellite tracking data, limit to a subset
of the available GOCE data (e.g. the second radial derivative
of the gravitational potential), or use GRACE-based along-
track gravity potential differences as pseudo-observations
instead of the original K-band ranging data, often in combi-
nation with simplified noise models. Overall, this approach
does not offer a significant advantage compared to the use of
a GGM that is based on the same data and, therefore, is not
pursued in this study.

The study addresses to main research questions: (i) What
is a suitable functionalmodel for the satellite-onlyGGM? (ii)
How to combine the satellite-onlyGGMwith high-resolution
datasets to obtain a quasi-geoidmodel that optimally exploits
the information content in all datasets?

The remainder of this paper is organized as follows.
First, we introduce local single-scale and two-scale SRBF
models of the disturbing potential and suggest three func-
tional models to be used in a least-squares estimation of
the quasi-geoid model from the satellite-only GGM and the
high-resolution datasets. Following this, we describe the set-
up of the numerical experiments, which were designed to
investigate the performance of the SRBF models and the
functional models. Thereafter, we present and discuss the
results of the numerical experiments.We conclude by empha-
sizing the main findings and identifying topics for future
research.
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2 Parameterization and functional models

2.1 Local parameterization of the disturbing potential

A prerequisite for local gravity field modelling is that the
involved datasets do not contain much long-wavelength
energy, where “long” relates to the size of the data area.
One possibility to achieve this is by reducing all datasets for
the contribution of a global model of the disturbing poten-
tial. Then, the disturbing potential to be parameterized in
local modelling is a residual quantity with little, though
nonzero energy at the long wavelengths. Moreover, there is
an upper limit of the highest attainable spatial resolution,
which depends on the data distribution and signal-to-noise
ratio. This allows us to consider a local model of the dis-
turbing potential which is band-limited to some maximum
degree, say Lmax. From now on, we call this residual and
band-limited disturbing potential simply “disturbing poten-
tial”, denoted T .

In this study, we use SRBFs to model T over an area of
interest. Basically, two models will be used. The first one is
a single-scale model, i.e.

T (x) =
I∑

i=1

ci Φ(x, zi ), (1)

where

Φ(x, zi ) = R

|x |
Lmax∑

l=0

φl

( |zi |
|x |

)l
Ql(x̂ · ẑi ),

x ∈ extσR, zi ∈ intσR, (2)

is a SRBF located at zi , {ci } are the SRBF coefficients, which
are to be estimated from the data using least-squares tech-
niques, Ql is the reproducing kernel of the space of harmonic
functions of degree l, φl is the Legendre coefficient of degree
l, x̂ and ẑi are points on the unit sphere, and σR is the surface
of a sphere of radius R. The model of Eq. (1) is referred to
as a single-scale model.

Alternatively, we may use a multi-scale model involving
several sets of SRBFs representing different scales, i.e.

T (x) =
J∑

j=1

I j∑

i=1

c ji Ψ j (x, z ji ), (3)

where j indicates the scale, {c j ·} are the SRBF coefficients
at scale j , and Ψ j (·, z ji ) is a SRBF of scale j centred at the
point z ji . In the context of a multi-scale analysis, the SRBF
Ψ j may be defined as (e.g. Lieb 2017)

Ψ j (x, z ji )

=

⎧
⎪⎨

⎪⎩

R
|x |

∑l1
l=0 φ

(1)
l

( |z1i ||x |
)l

Ql (x̂ · ẑ1i ) for j =1

R
|x |

∑l j
l=0(φ

( j)
l − φ

( j−1)
l )

( |z ji |
|x |

)l
Ql(x̂ · ẑ j i ) for j =2 . . . J.

(4)

Frequently, the relation l j = 2 j −1 is used to relate the scale
index j to themaximum spherical harmonic degree l j , which
is resolved at scale j , though other choices are possible.

2.2 Functional models

In the framework of this study, we assume that there are
basically two datasets, i.e. a low-resolution dataset and a
high-resolution dataset. The low-resolution dataset d1 is syn-
thesized from the spherical harmonic coefficients of the
GGM as

d1(x1k) =
L1∑

n=0

2n+1∑

m=1

(
ĉnm − c(ref)

nm

)
(F1 Hnm)(x1k),

k = 1 . . . K1, (5)

where {ĉnm} are the spherical harmonic coefficients of the
GGM, {c(ref)

nm } are the spherical harmonic coefficients of the
reference GGM, and Hnm is a solid spherical harmonic of
degree n. The low-resolution dataset is band-limited to a
degree L1 ≤ LGGM, where LGGM is the maximum degree
of the GGM. We assume that the high-resolution dataset
{d2(x2k) : k = 1 . . . K2} allows the resolution of wave-
lengths up to a maximum degree L2 ≤ Lmax, where L2

depends on the point density and the signal-to-noise ratio.
Defining a kernel

δL(x, y) =
L∑

n=0

1

4πR2

( R

|x |
)n+1( R

|y|
)n+1

Qn(x̂ · ŷ),

x, y ∈ extσR, (6)

a spherical convolution of T with δL as

(δL ∗ T )(x) =
∫

σR

δL(x, y)T (y) dσR(y), (7)

and linear functionals F1 and F2 of the disturbing potential
T , we may relate the datasets d1 and d2 to the disturbing
potential T as

E{d1}(x1k) = (
F1(δL1 ∗ T )

)
(x1k), k = 1 . . . K1, (8)

E{d2}(x2k) = (
F2(δL2 ∗ T )

)
(x2k), k = 1 . . . K2, (9)

where E{·} denotesmathematical expectation.Wewill inves-
tigate three functional models to estimate a local quasi-geoid
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model by least squares from the low-resolution dataset d1
and the high-resolution dataset d2.

Functional model no. 1 uses the single-scale model of the
disturbing potential, Eq. (1), and reads:

E{d1}(x1k)=
I∑

i=1

ci

(
F1(δL1 ∗ Φ)

)
(x1k, zi ), k = 1 . . . K1,

(10)

E{d2}(x2k)=
I∑

i=1

ci

(
F2(δL2 ∗ Φ)

)
(x2k, zi ), k = 1 . . . K2.

(11)

The coefficients {ci } are estimated simultaneously from the
two noisy datasets using weighted least-squares techniques.
The weight matrix of each dataset is the inverse of the noise
cofactor matrix.

Functional model no. 2 uses the single-scale model of the
disturbing potential, Eq. (1), and reads

(P ∗ E{d1})(x1k)=
I∑

i=1

ci

(
F1(P ∗ Φ)

)
(x1k, zi ), k=1 . . . K1,

(12)

E{d2}(x2k) =
I∑

i=1

ci

(
F2(δL2 ∗ Φ)

)
(x2k, zi ), k = 1 . . . K2.

(13)

The kernel P of Eq. (12) is defined as

P(x, y) =
∞∑

n=0

1

4πR2

( R

|x |
)n+1( R

|y|
)n+1

hn Qn(x̂ · ŷ), x, y ∈ extσR . (14)

The Legendre coefficients {hn : n = 1, 2, . . .} are equal to 1
for degrees n ≤ p1, taper off between degrees p1 < n < p2,
and are zero for all degrees n ≥ p2. An example is a cosine
taper,

hn =

⎧
⎪⎪⎨

⎪⎪⎩

1, n < p1

0.5 + 0.5 cos
(
π

n−p1
p2−p1

)
, p1 ≤ n ≤ p2 ≤ L2

0, n > p2

.

(15)

This taper will be used in the numerical experiments of
Sect. 3. The coefficients {ci } are estimated simultaneously
from the two noisy datasets using weighted least-squares
techniques. The weight matrix of each dataset is propor-
tional to the inverse of the noise covariance matrix. The noise
covariance matrix of P ∗ d1 is computed from the full noise

covariance matrix of d1 using the law of covariance propa-
gation.

The difference between the functional models no. 1 and
no. 2 is in the functional model of the low-resolution dataset.
Functional model no. 2 uses a tapered SRBF, whereas
functional model no. 1 uses a truncated SRBF. Moreover,
functional model no. 2 applies the same taper to the dataset,
whereas functional model no. 1 uses the original dataset.

Functional model no. 3 uses a two-scale model of the dis-
turbing potential, i.e. Eq. (3) with J = 2:

T (x) =
I1∑

i=1

c1i Ψ1(x, z1i ) +
I2∑

i=1

c2i Ψ2(x, z2i ). (16)

The first term on the right-hand side is a low-resolution
model of T comprising degrees from 0 to L1, i.e. its res-
olution is identical to the resolution of dataset d1. The
second term on the right-hand side complements the low-
resolution model to the maximum resolution L2 of dataset
d2. In the context of a multi-resolution analysis, it represents
a detail space comprising wavelengths from degrees L1 + 1
to L2.

The basis functions Ψ1 and Ψ2 of Eq. (16) are defined as

Ψ1(x, z) = (P ∗ Φ)(x, z), (17)

Ψ2(x, z) = (
(δL2 − P) ∗ Φ

)
(x, z), (18)

with Φ(x, z) of Eq. (2). Inserting the last two equations into
Eq. (16), the two-scale model of the disturbing potential T
is written as

T (x) =
I1∑

i=1

c1i (P ∗ Φ)(x, z1i )

+
I2∑

i=1

c2i
(
(δL2 − P) ∗ Φ

)
(x, z2i ), (19)

with Φ of Eq. (2). The coefficients {c1i } and {c2i } are esti-
mated in two steps. First, we use the functional model

E{d2}(x2k)=
I2∑

i=1

c2i
(
F2(δL2 ∗ Φ)

)
(x2k, z2i ), k=1 . . . K2,

(20)

and estimate the coefficients {c2i } using weighted least
squares. Then, we define a new dataset

d3(x1k) :=
I1∑

i=1

ĉ2i (F1Ψ1)(x1k, z1i ), k = 1 . . . K1, (21)
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where {ĉ2i } denotes the least-squares estimate of {c2i }. The
resolution of the dataset d3 is identical to the resolution of
the dataset P ∗ d1. In that sense, d3 and P ∗ d1 are spectrally
consistent. Then, we use the functional model

(
(P ∗ E{d1})(x1k)

E{d3}(x1k)
)

=
I1∑

i=1

c1i (F1Ψ1)(x1k, z1i )

=
I1∑

i=1

c1i (F1(P ∗ Φ)) (x1k, z1i ), k = 1 . . . K1, (22)

and compute an estimate {ĉ1i } of the coefficients {c1i }, using
weighted least-squares techniques. The noise covariance
matrix of dataset d3 is computed from the noise covariance
matrix of the estimated coefficients {ĉ2i } using the law of
covariance propagation. It is a full matrix. The least-squares
estimate of the disturbing potential is then given by Eq. (19),
with {c1i } and {c2i } replaced by the estimates {ĉ1i } and {ĉ2i },
respectively.

Remarks

1. The motivation of using the functional model of Eq. (10)
is the following. Dataset d1 and its full noise covariance
matrix are band-limited to a degree L1 ≤ LGGM. There-
fore, the right-hand side of the functional model must
also be band-limited to the same degree. To achieve this,
we consider the signal 1·Φ, withΦ of Eq. (2).We expand
this signal on the sphere σR in spherical harmonics and
truncate the expansion at degree L1. The result is iden-
tical to δL1 ∗ Φ. If the right-hand side of the functional
model would not be band-limited to degree L1, the least-
squares estimate of the coefficients {c1i }would be biased
towards zero for the wavelengths above degree L1. This
is due to the fact that a band-limited noise covariance
matrix is equivalent to zero noise and noise correlations
for degrees above L1.

2. The motivation to use the functional model of Eq. (12) is
the result of numerical experiments which are described
in Sect. 3 and discussed in Sect. 4. There, we will
show that |d1(·)−∑I1

i=1 ci
(
F1(δL1 ∗ Φ)

)
(·, zi )| ismuch

larger than the noise in the dataset d1, i.e. the functional
model of Eq. (10) is not accurate enough. Compared to
this, the error of the functional model of Eq. (12) can be
mademuch smaller than the data noise standard deviation
if P of Eq. (14) is chosen as in Eq. (15).

3. The functional model of Eqs. (20), (22) is different from
the model suggested in Lieb (2017), which in our nota-
tion is

E{d1}(·) =
I1∑

i=1

c1i
(
F1(δL1 ∗ Φ)

)
(·, z1i ), (23)

E{d2}(·) =
I2∑

i=1

c1i
(
F2(δL1 ∗ Φ)

)
(·, z1i )

+
I2∑

i=1

c2i
(
F2

(
(δL2 − δL1) ∗ Φ

))
(·, z2i ).

(24)

Moreover, Lieb (2017) suggests to estimate the coef-
ficients {c1i } and {c2i } simultaneously using weighted
least-squares techniques. Some preliminary experiments
with this model andΦ set equal to the Abel–Poisson ker-
nel (Freeden et al. 1998) point to a sub-optimal quality
of the estimated quasi-geoid model at the resolution of
the dataset d1, which is likely caused by the simultaneous
estimation of the two sets of coefficients {c1i } and {c2i }.
However, additional numerical experiments are neces-
sary to support these preliminary results. They are out of
the scope of this study.

3 Numerical experiments

The parameterizations and functional models of Sect. 2 will
be analysed using numerical experiments. Though from a
practical point of view, working with real data may be
desired, we decide to use a state-of-the-art combined GGM
and a satellite-only GGM to generate the (noise-free) high-
resolution and low-resolution datasets, respectively. The
main motivation for us to prefer GGMs to real datasets is
that some problems and limitations of the functional models
of Sect. 2.2 would be masked by deficiencies in real datasets,
e.g. unmodelled signal and noise and data gaps. This would
make a proper interpretation of the results impossible. Gen-
erating the exact data from GGMs and adding noise which
is consistent with the corresponding noise covariance matrix
provides a complete error control and facilitates a proper
interpretation of the results.

The datasets are generated from the GGMs using a
spherical harmonic synthesis and thereafter reduced for the
contribution of a long-wavelength GGM, which serves as
the reference model. Here we use EIGEN-6C4 (Förste et al.
2014) to generate the (noise-free) high-resolution dataset
and the regularized version of GOCO05s (Mayer-Gürr et al.
2015) to generate the (noise-free) low-resolution dataset. The
latter is also used as the reference model, though up to a
smaller maximum degree. The low-resolution dataset con-
sists of a set of height anomalies. This is a logic choice as
the target quantity is a quasi-geoid model. The noise covari-
ancematrix of the low-resolution dataset is obtained from the
full noise covariance matrix of the spherical harmonic coeffi-
cients of the unregularized version of GOCO05s by applying
the law of covariance propagation. A logic choice for the
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Table 1 Experimental set-ups used in Sect. 4

No. 1 High-resolution dataset Gravity disturbances from EIGEN-6C4 complete to degree 500 - GOCO05s complete to degree 150;
Reuter grid Reuter (1982), control parameter 875 (width 12′21′′, ≈ 23 km along the meridians);
zero-mean, white Gaussian, 2 mGal standard deviation

Low-resolution dataset Height anomalies from GOCO05s complete to degree 200 - GOCO05s complete to degree 150; Reuter
grid, control parameter 350 (width 30′51′′, ≈ 57 km along the meridians); full noise covariance matrix
GOCO05s complete to degree 200, propagated using the law of covariance propagation

Data area 44◦–68◦N and 11◦W–15◦E
Parameterization Poisson wavelets of order 3, depth = 30 km, Fibonacci grid with a mean node distance of 25 km, max

absolute parameterization error = 4.7 mm, SD of parameterization error = 0.9 mm (over area of interest)

No. 2 High-resolution dataset Gravity disturbances from EIGEN-6C4 complete to degree 500 - GOCO05s complete to degree 150;
Reuter grid, control parameter 875 (width 12′21′′, ≈ 23 km along the meridians); zero-mean, white
Gaussian, 2 mGal standard deviation

Low-resolution dataset Height anomalies from GOCO05s complete to degree 230 - GOCO05s complete to degree 150; Reuter
grid, control parameter 402.5 (width 26′50′′, ≈ 50 km along the meridians); full noise covariance matrix
GOCO05s complete to degree 230, filtered with cosine taper, propagated using the law of covariance
propagation

Data area 44◦–68◦N and 11◦W–15◦E
Parameterization Poisson wavelets of order 3, depth = 30 km, Fibonacci grid with a mean node distance of 25 km, max

absolute parameterization error = 4.5 mm, SD of parameterization error = 0.9 mm (over area of interest)

No. 3 High-resolution dataset Gravity disturbances from EIGEN-6C4 complete to degree 1000 - GOCO05s complete to degree 150;
Reuter grid, control parameter 1750 (width 6′10′′, ≈ 11 km along the meridians); zero-mean, white
Gaussian, 2 mGal standard deviation

Low-resolution dataset Height anomalies from GOCO05s complete to degree 230 - GOCO05s complete to degree 150; Reuter
grid, control parameter 402.5 (width 26′50′′, ≈ 50 km along the meridians); full noise covariance matrix
GOCO05s complete to degree 230, filtered with cosine taper, propagated using the law of covariance
propagation

Data area 44◦–68◦N and 11◦W–15◦E
Parameterization Poisson wavelets of order 3, depth = 30 km, Fibonacci grid with a mean node distance of 13 km, max

absolute parameterization error = 4.6 mm, SD of parameterization error = 1.0 mm (over area of interest)

No. 4 High-resolution dataset Gravity disturbances from EIGEN-6C4 complete to degree 500 - GOCO05s complete to degree 150;
Reuter grid, control parameter 875 (width 12′21′′, ≈ 23 km along the meridians); zero-mean, white
Gaussian, 2 mGal standard deviation

Low-resolution dataset Height anomalies from GOCO05s complete to degree 230 - GOCO05s complete to degree 150; Reuter
grid, control parameter 402.5 (width 26′50′′, ≈ 50 km along the meridians); full noise covariance matrix
GOCO05s complete to degree 230, filtered with cosine taper, propagated using the law of covariance
propagation

Data area High-resolution dataset: 39◦–73◦N and 16◦W–20◦E; low-resolution dataset: 44◦–68◦N and 11◦W–15◦E
Parameterization Φ of Eq. (20): Poisson wavelets of order 3, depth = 30 km, Fibonacci grid with a mean node distance of

25 km; max absolute parameterization error = 4.5 mm, SD of parameterization error = 0.9 mm (over
area of interest)

Ψ1 of Eq. (22): Poisson wavelets of order 3, depth = 60 km, Fibonacci grid with a mean node distance of
60 km; max absolute parameterization error = 0.01 mm (over area of interest)

The area of interest is 49◦–63◦N and 6◦W–10◦E in all set-ups
The parameterization area is identical to the data area

high-resolution dataset would be gravity anomalies. Here,
we use gravity disturbances for simplicity reasons. Noise in
gravity disturbances is zero-mean white Gaussian, i.e. the
noise covariance matrix of the high-resolution dataset is a
scaled unit matrix. More details about the datasets are pro-
vided in Table 1.

The datasets are generated at the Earth’s surface and cover
an area, which is referred to as “the data area”. The Earth’s
surface is represented by the digital elevation model Euro-
DEM v1.0 (Hovenbitzer 2008) with 2′′ grid width. In areas

where this model is not available, we use SRTM version 2.1
(Farr et al. 2007) with 3′′ grid width. For the remaining areas,
we use ASTER GDEM v2 (Tachikawa et al. 2011) with 1′′
grid width.

The SRBF of Eq. (2) is a Poisson wavelet of order 3
(Holschneider and Iglewska-Nowak 2007). Different from
the Shannon kernel, which is frequently used in local quasi-
geoidmodelling, the Legendre spectrumof a Poissonwavelet
relative to a sphere of radius R has a peak at degree 3R

R−|z| ,
where z < R is the location of the Poissonwavelet (cf. Fig 1).

123



A methodology for least-squares local quasi-geoid… 437

100 101 102 103 104

degree

0

0.2

0.4

0.6

0.8

1

Fig. 1 Normalized Legendre spectrum of Poisson wavelets of order 3
at a depth of (from right to left) 20, 40, 80, 160, and 320 km, respectively.
Note the logarithmic scale of the horizontal axis

The Legendre spectrum of a Poisson wavelet may give the
impression that a single-scale Poisson wavelet model is not
able to accurately represent a quasi-geoid with a resolution
one typically encounters in practice. Therefore, Chambodut
et al. (2005) suggest to use Poisson wavelets of different
scales to guarantee that the space of spherical harmonic
complete to a degree L2 is sufficiently well covered. How-
ever, Slobbe (2013) successfully used a single-scale Poisson
wavelet model to compute a quasi-geoid model for the
Netherlandsmainland, continental shelf, andWadden Islands
with an accuracy of about 1.5 cm standard deviation using
real data. The only prerequisite is that the energy in the data at
the lowest and highest frequencies is reduced by using a refer-
enceGGMand a digital terrainmodel, respectively. ThePois-
sonwavelets are located at a constant depth below the Earth’s
surface and cover the data area. Their horizontal positions
correspond to the points of a Fibonacci grid (Gonzalez 2010).

Whenever a new set of Poisson wavelets is chosen in the
numerical experiments, we have to determine the optimal
depth and the optimal mean distance between the Poisson
wavelets. This is done using noise-free datasets generated
from the corresponding GGMs on grids dense enough to pre-
serve the information content in the GGM.We define a set of
candidate depths and candidate mean distances, and estimate
the model coefficients by least squares using the correspond-
ing dataset (i.e. gravity disturbances when looking for a high-
resolution model and height anomalies when looking for a
low-resolutionmodel). The depth andmeandistance that pro-
vide the model with the smallest RMS difference to a height
anomaly control dataset are selected. The fit of this model
to the control dataset is referred to as the “parameterization
error”. Note that the parameterization error is always defined
in terms of height anomalies, no matter whether the dataset
comprises gravity disturbances or height anomalies. Other
control datasets are generated to assess the quality of the
estimated quasi-geoid models in Sect. 4. They always com-
prise height anomalies on grids different from the data grids
and are computed using a spherical harmonic synthesis of the
GGMs from which the noise-free datasets were generated.

Table 2 Statistics of the least-squares residuals using functional model
no. 1 of Sect. 2.2

Dataset Units # Of points Min Max Mean SD

d1 cm 1297 − 34.20 30.75 − 0.22 9.86

d2 mGal 8238 − 9.90 9.42 0.01 2.02

The statistics are computed over the area bounded by 44.5◦–67.5◦N and
11.5◦W–14.5◦E
# Of points refers to the whole dataset

When computing quasi-geoid models using weighted
least-squares techniques, we calculate the normal equa-
tions explicitly and apply Tikhonov regularization (Tikhonov
1963) with a unit regularization matrix. The regularization
parameter is fixed using the method in (Wittwer 2009).
The normal equations are solved using a parallelized QR-
decompositionwith column pivoting. This solver is preferred
to a Cholesky decomposition due to its much better stability
for ill-conditioned linear systems at the benefit of a smaller
bias in the least-squares estimate due to a smaller regulariza-
tion parameter.

Table 1 summarizes the set-up of the numerical experi-
ments, which will be used in Sect. 4.

4 Results

4.1 Functional model no. 1

We use experimental set-up no. 1 of Table 1. Table 2 shows
some statistics of the least-squares residuals for the estimated
quasi-geoid model. The standard deviation (SD) of the resid-
uals is 9.86 cm for the low-resolution dataset and 2.02 mGal
for the high-resolution dataset. The latter corresponds to the
standard deviation of the noise in the high-resolution dataset.
The former, however, is much larger than the noise. From
this we conclude that the estimated quasi-geoid model fits
the high-resolution dataset within noise, but gives a poor fit
to the low-resolution dataset.

Table 3 shows the statistics of the errors in the estimated
quasi-geoid model. They are computed over the area of inter-
est.

The errors range from−10.68 to 12.76 cm; the error SD is
3.46 cm. After applying a low-pass filter at the cut-off degree
200, the estimated quasi-geoid model error SD is 7.62 and
7.68 cm depending on what low-resolution signal is taken as
the reference.

To get more insight into the reason why the estimated
quasi-geoid model does not fit the low-resolution dataset
within noise, we repeat the experiment with noise-free data.
The error SD of the estimated quasi-geoid model reduces
from3.46 to 0.09 cm. This is identical to the SDof the param-
eterization error. Hence, when using noise-free data, the esti-
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Table 3 Error statistics (in units of cm) of the quasi-geoidmodel which
has been estimated using the functional model no. 1 of Sect. 2.2

Control dataset # Of points Min Max Mean SD

F1(δ200 ∗ T1) 1152 − 21.52 21.65 0.07 7.68

F1(δ500 ∗ T2) 6776 − 10.68 12.76 0.05 3.46

F1(δ200 ∗ T2) 1152 − 22.31 21.66 0.15 7.62

The statistics are computed over the area of interest, which is bounded
by 49◦–63◦N and 6◦W–10◦E, on an equal-angular grid of width 10′48′′
(1st row) and 23′29′′ (2nd and 3rd rows)
T1 = GOCO05s minus GOCO05s complete to degree 150; T2 =
EIGEN-6C4 minus GOCO05s complete to degree 150. F1 = height
anomaly functional

mated quasi-geoid model perfectly fits the high-resolution
dataset. This does not apply, however, to the low-pass-filtered
quasi-geoid model; the error SD is 7.12 and 7.46 cm, respec-
tively, i.e. comparable to the results using noisy data. Hence,
the poor fit of the estimated quasi-geoid model to the low-
resolution dataset cannot be explained by the noise in this
dataset. Additional numerical experiments (not shown here)
reveal that the fit to the low-resolution dataset can only be
improved by further increasing the size of the data area. The
5◦ extension beyond the area of interest in all directions as
used here is already a challenge in real quasi-geoidmodelling
as access to data of neighbouring countries is not guaranteed.
Moreover, we found that the fit to the low-resolution dataset
improves slowly when enlarging the data area. From this we
conclude that the poor fit of the estimated quasi-geoid model
to the low-resolution dataset is caused by the hard truncation
of the Poisson wavelets. This introduces strong spatial-
domain oscillations, which are cut off at the border of the data
area when computing the elements of the design matrix. This
introduces errors in the functionalmodel,which exceedby far
the noise in the low-resolution dataset, as shown in Table 3.

4.2 Functional model no. 2

We use experimental set-up no. 2 of Table 1. The kernel P ,
which according to Eq. (12) is used in the functionalmodel of
the low-resolution dataset, is chosen according to Eqs. (14)
and (15). The cosine taper parameters are set equal to p1 =
150 and p2 = 230. Hence, the filtered low-resolution dataset
P ∗ d1 of Eq. (12) is band-limited to degree L1 = 230.

The choice of p1 and p2 is a trade-off between loss of
information in the low-resolution dataset by filtering (i.e.
nonzero d1 − P ∗ d1), and a reduction in the area under
the side lobes of the cosine taper, which cause oscillations
of the filtered Poisson wavelets extending beyond the data
area. Moreover, the difference p2 − p1 determines how fast
the oscillations roll off. The difference p2 − p1 = 80 has
been fixed after some numerical experiments. Note that the
maximum degree of the reference GGM (which is L ref = 150
in our experiments) and the maximum degree of the noisy

Table 4 Statistics of the least-squares residuals using functional model
no. 2 of Sect. 2.2

Dataset Units # Of points Min Max Mean SD

P ∗ d1 cm 1751 − 15.45 13.29 0.00 3.42

d2 mGal 8238 − 7.90 8.52 0.00 1.94

The statistics are computed over the area bounded by 44.5◦–67.5◦N and
11.5◦W–14.5◦E
# Of points refers to the whole dataset

GGM (which is LGGM = 280 for GOCO05s) impose lower
and upper bounds, respectively, on the choice of p1 and p2,
i.e. p1 ≥ 150 and p2 ≤ 280.

The maximum possible value of p2 is equal to the max-
imum degree of the GGM, LGGM. The GGM used in this
study is GOCO05s. However, for GOCO05s the cumulative
height anomaly commission error increases exponentially
with increasing degree. It is 1.5 cm at degree 200, but already
3.6 cm at degree 230, and 6.8 cm at degree 250. The height
anomaly signal and noise degree variances intersect at degree
257. Hence, when assuming that the noise standard devia-
tion in the high-resolution dataset does not exceed 1–2 mGal
(which applies to good terrestrial gravity anomaly datasets),
it does not make sense to use a low-resolution dataset com-
plete to the maximum possible degree of LGGM = 280.
Another reason in favour of a choice L1 < LGGM is the fact
that the condition number of the noise covariance matrix
of the low-resolution dataset, which is propagated from the
full noise covariance matrix of the spherical harmonic coeffi-
cients of the GGM, increases with increasing L1. This makes
the computation of the least-squares estimator numerically
challenging.

Table 4 shows the statistics of the least-squares residuals
for the estimated quasi-geoid model. The SD is 1.94 mGal
for the high-resolution dataset. This is close to the SD of the
superimposed zero-mean white Gaussian noise of 2.0 mGal.
From this we conclude that the model fit is within noise. The
situation is different for the low-resolution dataset. The SD
of the residuals is 3.42 cm. This is a factor of 2 larger than the
average SD of the data noise. Obviously, for some reason, the
estimated quasi-geoid model does not fit the low-resolution
dataset as one may expect.

Table 5 shows the statistics of the errors in the estimated
quasi-geoid model. They are computed over the area of inter-
est.

The error SD is 3.01 cm. The error SD of the cosine-
tapered quasi-geoid model is 1.89 and 1.76 cm, respectively,
depending on what control dataset is used. We may compare
this with a quasi-geoid model which is estimated using only
the high-resolution dataset. The corresponding error SDs are
3.01, 1.58, and 1.71 cm, respectively. Hence, adding the
low-resolution dataset does not improve the accuracy of the
estimated quasi-geoid model at low frequencies (i.e. below
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Table 5 Error statistics (in units of cm) of the quasi-geoidmodel which
has been estimated using the functional model no. 2 of Sect. 2.2 with
cosine taper parameters p1 = 150 and p2 = 230

Control dataset # Of points Min Max Mean SD

F1(P ∗ T1) 1400 − 5.60 5.40 0.00 1.89

F1(δ500 ∗ T2) 6776 − 11.28 11.33 0.01 3.01

F1(P ∗ T2) 1400 − 4.90 5.89 0.01 1.76

The statistics are computed over the area of interest, which is bounded
by 49◦–63◦N and 6◦W–10◦E, on an equal-angular grid of width 10′48′′
(1st row) and 23′29′′ (2nd and 3rd rows)
T1 = GOCO05s minus GOCO05s complete to degree 150; T2 =
EIGEN-6C4 minus GOCO05s complete to degree 150. F1 = height
anomaly functional

degree 230). This is unexpected, because the low-resolution
dataset has a high quality and should improve the estimated
quasi-geoid model at the low frequencies. This, and the large
least-squares residuals of the dataset P ∗ d1, which by far
exceed the noise, implies that for some reason, the informa-
tion content in the low-resolutiondataset is not fully exploited
in the combined least-squares adjustment.

To help understand this result, we run two additional
experiments. First of all, we compute the error of the
functional model of the (noise-free) low-resolution dataset,
Eq. (12), i.e. (P ∗ d1)(·) − ∑I

i=1 ci (F1(P ∗ Φ)) (·, zi ). We
found that it does not exceed 0.01 cm over the area of inter-
est. In a second experiment, we compute a low-resolution
quasi-geoid model using the noisy low-resolution dataset
and the functional model of Eq. (12). The SD of the resid-
uals is 0.13 cm. This is significantly smaller than for the
solution which uses both datasets (SD=3.42 cm, cf. 1st row
in Table 4). Moreover, the error SD of the low-resolution
quasi-geoid model is 1.58 cm when evaluated over the area
of interest. This is also smaller than the error we obtain when
using both datasets (SD=3.89 cm, cf. 1st row in Table 5).

Our interpretation of the results of these experiments is
that a single-scale model is not able to fit two datasets of sig-
nificantly different bandwidths. Consequently, the weighted
least-squares principle forces the solution to match the
high-resolution dataset (because it comprises many more
observations than the low-resolution dataset) at the price of
a larger mismatch to the low-resolution dataset.

To support this interpretation,we choose experimental set-
up no. 3 ofTable 1,which is similar to experimental set-up no.
2, but involves a high-resolution dataset and a low-resolution
dataset with a much larger bandwidth difference of 335%
compared to 117% of experimental set-up no. 2. The SD
of the least-squares residuals of the low-resolution dataset
increases from 3.42 cm (cf. Table 4, 2nd row) to 5.13 cm,
whereas the SD of the least-squares residuals of the high-
resolution dataset does not change. Hence, when increasing
the bandwidth difference between the high-resolution and
the low-resolution datasets, the fit of the model to the low-

Table 6 Statistics of the least-squares residuals of the datasets used
to estimate the two-scale SRBF model using the functional models of
Eqs. (20), (22)

Dataset Units # Of points Min Max Mean SD

d2 mGal 15967 − 6.01 7.30 − 0.01 1.74

P ∗ d1 cm 1751 − 4.85 4.52 − 0.02 1.47

d3 cm 1751 − 8.04 6.90 − 0.33 2.69

The statistics are computed over the area bounded by 44.5◦–67.5◦N and
11.5◦W–14.5◦E
# Of points refers to the whole dataset

resolution dataset becomes worse. This provides evidence
that our interpretation is correct.

4.3 Functional model no. 3

We use experimental set-up no. 4 of Table 1. Note that this
set-up uses a high-resolution dataset which extends over a
larger area than the experimental set-ups no. 1–3. The rea-
son is the following. When using the functional model of
Eq. (22) to estimate a low-resolution quasi-geoid model, the
dataset d3 must be available over the data area, which in all
experiments extends by 5◦ in all directions beyond the area
of interest. If we would use the same data area for dataset d2
when estimating the coefficients {c21} using the functional
model of Eq. (20), the dataset d3 of Eq. (21) would suffer
from edge effects. Therefore, the high-resolution dataset d2
must be available over an area, which is larger than the data
area of the dataset d3. The additional extension must be cho-
sen to reduce the edge effects in dataset d3 below the noise
level. In the experimental set-up no. 4, we use an additional
extension by 5◦ in all directions. Test computations reveal
that this choice causes edge effects in dataset d3, which are
negligible compared to the noise. We expect that the addi-
tional extension can be chosen much smaller. To find the
minimum extension may be the subject of another study.

Table 6 shows the statistics of the least-squares residuals
for the model of Eqs. (20) and (22), respectively. The fit of
the high-resolution dataset d2 to the model of Eq. (20) has a
SD of 1.74 mGal. This is close to the superimposed noise of
SD=2 mGal; a similar fit has also been observed when using
the functional model no. 2 (cf. Table 4). However, compared
to the functional model no. 2, the fit of the dataset P ∗ d1
to the model has improved dramatically: from 3.42 cm (1st
row of Table 4) to 1.47 cm (2nd row of Table 6). A value of
1.47 cm is consistent with the noise in the dataset P ∗d1. The
fit of the dataset d3 to the model is 2.69 cm, i.e. dataset P ∗d1
has a larger contribution to themodel compared to dataset d3.
(Both datasets are evenly large.) This is also consistent with
the expectations based on an analysis of the noise covariance
matrices of the two datasets (not shown here).

The two-scale model appears to have a much higher qual-
ity than the single-scalemodel of Sect. 4.2. This follows from
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Table 7 Error statistics (in units of centimetres) of the quasi-geoid
model which has been estimated using the functional model no. 3 of
Sect. 4.3

Control dataset # Of points Min Max Mean SD

F1(P ∗ T1) 1400 − 2.45 2.73 0.00 0.86

F1(δ500 ∗ T2) 6776 − 6.12 6.65 0.02 1.97

F1(P ∗ T2) 6776 − 2.27 2.42 0.01 0.77

The low-pass filter is a cosine taper with parameters p1 = 150 and
p2 = 230. The statistics are computed over the area of interest, which
is bounded by 49◦–63◦N and 6◦W–10◦E, on an equal-angular grid of
width 10′48′′ (1st row) and 23′29′′ (2nd and 3rd rows)
T1 = GOCO05s minus GOCO05s complete to degree 150; T2 =
EIGEN-6C4 minus GOCO05s complete to degree 150. F1 = height
anomaly functional

the statistics of the differences at the control datasets, which
are shown in Table 7. For instance, the fit of the two-scale
model to the control dataset F1(δ500 ∗ T2) improves from
SD=3.01 cm (2nd row of Table 5) to SD=1.97 cm (2nd
row of Table 7). The fit to the low-resolution control data
improves dramatically, too: from 1.89 cm (F1(P ∗ T1), 1st
row of Table 5) and 1.76 cm (F1(P ∗T2), 3rd row of Table 5)
to 0.86 and 0.77 cm, respectively. From this we conclude
that the two-scale model in combination with the functional
model of Eqs. (20), (22) performs better at all wavelengths
than any of the two single-scale models. The improvement
is a factor of 2.2 for the wavelengths common to the high-
and the low-resolution dataset, and a factor of 1.5 for the
wavelength not resolved by the low-resolution dataset. The
former is due to the fact that the suggested approach which
uses the two-scale model fully exploits the higher accuracy
of the low-resolution dataset, which is not the case if any of
the single-scale models is used.

5 Summary and conclusions

In this study, we investigated different approaches to esti-
mate a local SRBF model of the disturbing potential using
weighted least squares from a high-resolution dataset and
a low-resolution dataset. In practice, the low-resolution
dataset represents a satellite-only spherical harmonic model
of the global gravity field equipped with a full noise covari-
ance matrix. Considering the latter as one of the noisy
datasets in local quasi-geoid modelling is considered as a
significant improvement to the traditional remove–compute–
restore approach. It improves the quality of the estimated
quasi-geoid model and paves the way to a complete quality
description of the estimated quasi-geoid model in terms of a
full noise covariance matrix.

Two approaches investigated in this study use a single-
scale SRBF model, but differ in the functional model for
the low-resolution dataset. The third one uses a two-scale

SRBF wavelet model and estimates the coefficients per scale
independently of each other.

We showed that the functionalmodel of the low-resolution
dataset has to be chosen with care. A hard truncation of
the SRBFs at the maximum degree of the low-resolution
dataset is the right choice in global quasi-geoid modelling,
but provides a wrong functional model in local quasi-geoid
modelling. This is in line with the results in (Slobbe et al.
2012). Applying a taper to both the low-resolution dataset
and the SRBF model solves this problem.

We also showed that a single-scale SRBF model cannot
deal with datasets of different bandwidths. The estimated
quasi-geoid model is biased towards the high-resolution
dataset at the cost of a poor fit to the low-resolution dataset.
The latter appeared to be much worse than the noise in this
dataset suggested, which indicates that the information con-
tent of the low-resolution dataset is not fully exploited.

We suggested the use of a two-scale SRBF model in com-
bination with a sequential estimation of the scale-dependent
coefficients. The latter differs from what has been suggested
in the literature in the context of amulti-scale analysis. In this
way, we ensure that the two datasets are weighted in line with
their accuracy, the information content in the low-resolution
and high-resolution datasets is fully exploited, and the mis-
fit of the estimated quasi-geoid model is consistent with the
noise in the datasets.

A challenge of the suggested approach in applications
involving real datasets is the additional extension of the data
area for the high-resolutiondataset. In this study, a safe choice
has been made to make edge effects insignificant. In applica-
tions involving real datasets, access to high-quality terrestrial
gravity anomaly datasets of neighbouring countries is not
guaranteed. How much the data area needs to be extended
and whether data with reduced accuracy can be used in the
additional area without introducing distortions in the esti-
mated quasi-geoid model has to be investigated.

It would be interesting to compare the two-scale approach
suggested in this study with a multi-scale approach, which
estimates the coefficients at the two scales simultaneously
as suggested in Lieb (2017). Some preliminary experi-
ments (not shown here) indicate that such a multi-scale
approach provides a sub-optimal low-resolution quasi-geoid
model compared to a sequential estimation as suggested
here. Whether this may be corrected for by a further
optimization of the multi-scale approach, for example, by
introducing constraints between the model coefficients asso-
ciated with different scales may be the subject of a future
study.
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