
J Geod (2018) 92:321–332
https://doi.org/10.1007/s00190-017-1064-4

ORIGINAL ARTICLE

Analytic tools for investigating the structure of network reliability
measures with regard to observation correlations
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Abstract A global measure of observation correlations in
a network is proposed, together with the auxiliary indices
related to non-diagonal elements of the correlation matrix.
Based on the above global measure, a specific representa-
tion of the correlation matrix is presented, being the result
of rigorously proven theorem formulated within the present
research. According to the theorem, each positive definite
correlation matrix can be expressed by a scale factor and a
so-called internal weight matrix. Such a representation made
it possible to investigate the structure of the basic reliability
measures with regard to observation correlations. Numerical
examples carried out for two test networks illustrate the struc-
ture of those measures that proved to be dependent on global
correlation index. Also, the levels of global correlation are
proposed. It is shown that one can readily find an approximate
value of the global correlation index, and hence the correla-
tion level, for the expected values of auxiliary indices being
the only knowledge about a correlation matrix of interest.
The paper is an extended continuation of the previous study
of authors that was confined to the elementary case termed
uniform correlation. The extension covers arbitrary correla-
tion matrices and a structure of correlation effect.
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1 Introduction

It is commonly known that covariance matrices for obser-
vations play an important role in constructing the stochastic
models for geodetic networks. Possessing reliable values of
the elements of covariance matrices in satellite and ground
positioning systems is of considerable significance in esti-
mating the actual accuracy of final coordinates (Wang et al.
2012). Also, the design of such systems based on the knowl-
edge of potential effects of observation correlations may
contribute to achieving high reliability of the systems.

The covariance matrices, but actually the correlation
matrices contained in them, are the weak (in terms of accu-
racy) elements of stochastic models built for networks. For
correlation matrices that are obtained by estimation in data
post-processing the accuracy of non-diagonal elements can
undergo steady improvement due to the research being car-
ried out on themethods of estimating the covariancematrices
(e.g., Ananga et al. 1994; Leandro et al. 2005). The most dif-
ficult situation and not solved as yet takes place at the stage of
network design where the knowledge on non-diagonal terms
in correlation matrices is usually small, or sometimes even
none. That calls for the need to work out the methods of con-
structing something like substitute matrices on basis of the
possessed knowledge on correlation terms.

Seeking the tools for investigating the effect of observa-
tion correlations on network reliability, we have then to cover
both the case of a specified correlation matrix and the substi-
tute one. So, the tools should be applicable to any arbitrary
correlation matrix.

The problem of the effect of observation correlations
on network internal reliability has been undertaken in
Prószyński and Kwaśniak (2016). The investigations were
confined to the elementary case termed there uniform cor-
relation, i.e., where all the non-diagonal elements of the
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correlation matrix are of equal values (positive or negative).
Such a matrix that played there a role of a substitute matrix
is known in financial mathematics as constant correlation
matrix, e.g., Tiit and Helemae (1997), Dufresne (2005). In
those publications, one can find a rigorously derived, neces-
sary, and sufficient condition for positive definiteness of such
a matrix. The set of constant correlation matrices (n×n) can
be immediately ordered according to the increasing values
of the constant term. The problem is with ordering the set
of possible configurations of an arbitrary (n × n) correlation
matrix. An appropriate measure would be needed for this
purpose.

The study of the elementary case of constant correlation
matrices indicated the way to a more generalized approach
and is assumed as reference material in the present investi-
gations.

The objectives of the paper, covering the problems out-
lined above, can be formulated in the following way:

– to extend the former studies by seeking a global measure
of observation correlations covering all possible configu-
rations of correlationmatrices. Themeasure should allow
ranking of matrix configurations;

– to create theoretical basis for operating with any correla-
tion matrices in the analyses of correlation effect;

– to construct analytical tools for investigating the structure
of correlation effect on internal and external reliability of
networks for any arbitrary correlation matrices;

– to propose levels of global correlation in networks.

As in the previous paper of authors, the research is confined
to a single outlier case.

Taking into account all the problems to be solved, reflected
in the above objectives, the primary motivation to undertake
the research was the fact that at the stage of network design
the knowledge on non-diagonal terms in a correlation matrix
for observations is usually small or none.

2 A proposed global measure of observation
correlations in a network

Determinant of a correlationmatrix is ameasure of collinear-
ity of explanatory variables in linear regression. High corre-
lation between these variables has a negative influence upon
the effectiveness of estimates of the model parameters. The
determinant takes the values within the interval 〈0, 1〉. Since
0 corresponds to full correlation (i.e., 1) and 1 corresponds
to the lack of correlation (i.e., 0), to get a measure ordered
according to the increase of correlation, we introduce for a
positive definite matrix Cs the following quantity

ρG = √
1 − detCs ρG ∈< 0, 1) (1)

Fig. 1 Frequencies of Cs configurations corresponding to ρG intervals
of 0.01 width (averages of 3 sets of 50,000 simulations) for n = 3, 4, 5

where ρG is termed a global measure of stochastic relation-
ships between the observations in a network, or for short—a
measure of global correlation. It only takes positive values
like a coefficient of determination (e.g., Anderson-Sprecher
1994). For the quality of anymeasure, it is recommended that
it should be a one-to-one mapping of all possible values of
the characterized quantity. Looking from the algebraic point
of view, we can observe that the function f : Cs → detCs

(or f : Cs → ρG) is not injective (i.e., is not a one-to-one
function). This means that although a specifiedCs configura-
tion corresponds to only one value of detCs, a specified value
of detCs (or ρG) may correspond to a certain number of Cs

configurations. Such numbers expressed in terms of frequen-
cies are shown in Fig. 1 on exemplary diagrams obtained by
numerical simulation of theCs configurations forn = 3, 4, 5
(3 sets of 50,000 simulations were used for each graph). The
simulations were based on the algorithm termed “accept-
reject.” It consisted in drawing each non-diagonal element
of the matrix Cs from the uniform distribution and reject-
ing those of the resulting matrix configurations that were
not positive definite matrices. As stated in Numpacharoen
and Atsawarungruangkit (2012) and Budden et al. (2008),
such an algorithm is effective only for small values of n. In
the present research, it was found empirically that this algo-
rithm, being free of any algebraic operations, does not affect
the frequencies of matrix configurations as is the case with
some faster algorithms.

In Fig. 1 we can observe an advantageous trend that with
the increase of n, the percent of Cs configurations increases
significantly only for ever greater values of ρG where detCs

starts asymptotic ascend toward 1. Hence, the quality of the
measure in the analyzed aspect of the function injectivity
improves with the increase of n.

To approximate the actual numbers of Cs configurations
corresponding to a specified value of ρG more accurately
than on basis of the 0.01-width intervals, the numbers sought
for were determined for the 0.0001-width intervals located
at detCs values 0.1, 0.2,…, 0.9 and 0.9999 (see Table 1). The
results of the above-mentioned simulations were used for
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Table 1 Numbers of the Cs configurations obtained within 0.0001-
width intervals (mean values of 3x50,000 simulations)

ρG 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9999

n = 3 0.3 1.7 3.0 2.0 4.7 9.0 13.0 20.3 20.3 40.7

n = 4 0 0 0 0 1 0.7 5.0 13.3 37.7 132.7

n = 5 0 0 0 0 0 0.3 0.3 4.3 19.3 386.3

this purpose. The zeroes in Table 1, being more numerous
for greater n, are merely the result of the problems with gen-
erating the correlation matrices and very low probabilities of
the investigated events.

Initially, we tried to get the above curves (hopefully, also
for greater n) by means of the probabilistic approach involv-
ing determination of density of detCs, treated as a random
variable (e.g., Hanea and Nane 2016). That would require a
rigorous probabilistic definition of the elements of Cs and
would yield the results dependent on that definition. Finally,
we chose the above-mentioned algebraic approach as satis-
factory to show the degree of departure from injectivity for
the function f :Cs → detCs.

In spite of the function Cs → detCs (or Cs → ρG) being
not injective, the use of ρG makes possible, although with
some ambiguity, the ranking of configurations of a corre-
lation matrix. As follows from Fig. 1, the ambiguities for
n = 5 are relatively small for up to ρG < 0.85 (i.e., frequency
<2%).However, theywill increase abruptly for higher values
of ρG.

With constant correlation matrices, we get a specific mea-
sure of observation correlations denoted in Prószyński and
Kwaśniak (2016) by the symbol a. The measure provides
ambiguity-free ranking of constant correlation matrices. It is
related to detCs by the formula (Dufresne 2005)

det Cn
s (a) = (1−a)n−1 [1 + (n − 1)a] − 1

n − 1
< a < 1

(2)

where Cn
s denotes Cs(n × n).

Due to (1) we get on basis of (2)

ρnG(a) =
√
1 − (1 − a)n−1 [1 + (n − 1)a]

− 1

n − 1
< a < 1. (3)

The relationship between a and ρG for n = 2, 3, . . ., 50 is
shown in Fig. 2. All the curves approach ρG = 1 asymptoti-
cally. We can see that with the increase of n, the same values
of ρG correspond to diminishing values of a.

We can easily connect the global measure ρG with the
index of multiple correlation ρ(i) for the i th observation
(i = 1, . . ., n), i.e.,

Fig. 2 The relationship between a and ρG

ρ2
(i) = 1 − detCs

detCs(i)
= 1 − 1 − ρ2

G

detCs(i)
(4)

where detCs(i) is obtained after deleting the i th row and the
i th column in Cs.

3 Auxiliary indices connecting a global measure ρG
with the elements of correlation matrix

The definition of the global measure (1) does not provide
information about the magnitudes of non-diagonal elements
of Cs. Hence, the following auxiliary indices that may pro-
vide some more detailed description of a global measure ρG
are proposed and investigated

∣∣{Cs}i j
∣∣
max ; ({Cs}i j

)
qm =

√ ∑ {Cs}2i j
n(n − 1)/2

;
i, j = 1, . . ., n; j > i (5)

where {Cs}i j is a non-diagonal element of Cs; the subscript
“qm” denotes quadratic mean.

The indices are related to each individualCs configuration
that can be generated for a specified value of ρG.

Here are the properties of the above indices, proven imme-
diately for a specific case n = 2 and due to complexity of the
task for n ≥ 3 confirmed only on basis of numerical testing
(for n = 3, 5, 9).

Property 1 For a positive definite correlationmatrixCs(n×
n), n ≥ 2 and an arbitrarily chosen value of a global corre-
lationmeasure ρG, denoted as

�ρG, the following relationships
occur

for n = 2
∣∣{Cs}i j

∣∣
max = ∣∣�a−∣∣ = �ρG (6)

for n ≥ 3
∣∣�a−∣∣ <

∣∣{Cs}i j
∣∣
max <

�ρG (7)
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Fig. 3 Illustration of Property 1 and Property 2 (for n ≥ 3);
MAV—interval concerning maximum absolute value, QM—interval
concerning quadratic mean

where �a− is that smaller of the two real roots of the function
ρG(a) = �ρG satisfying (3).

The specific case (6) can be proved immediately. We can
write �ρ2

G = �a2 = x2, where x denotes {Cs}12, and hence, we
get the equality (6).

The numerically based confirmation for a general case (7)
is presented in Appendix B.

Property 2 For a positive definite correlationmatrixCs(n×
n), n ≥ 2 and an arbitrarily chosen value of a global corre-
lationmeasure ρG, denoted as

�ρG, the following relationships
occur

for n = 2
({Cs}i j

)
qm = ∣∣�a−∣∣ = �a+ (8)

for n ≥ 3
∣∣�a−∣∣ <

({Cs}i j
)
qm <

�a+ (9)

where �a− (as above) and �a+ are real roots of the function
ρG(a) = �ρG satisfying (3).

The specific case (8) can be proved immediately. We
can write �ρ2

G = �a2 = x2, where x denotes {Cs}12. Since
({Cs}12)qm = |{Cs}12|, we get the equality (8).

The numerically based confirmation for a general case (9)
is presented in Appendix B.

Both the properties are illustrated in Fig. 3. The intervals
given by (7) and (9) are denoted there as MAV and QM,
respectively.

The problem of finding a− and a+ for a specified value
of ρG and n ≥ 3 is a complex task of finding the real roots
of the polynomial of the nth order, each root satisfying the
condition − 1

n−1 < a < 1. This can be done in an iterative
way. We used for this purpose a Solver being a Microsoft
Excel add-in program.

For uniform correlation matrices, i.e., Cs(a) as in Sect. 2,
we have

∣∣{Cs}i j
∣∣
max = a and

({Cs(a)}i j
)
qm = a.

For proper interpretation of Property 1 and Property 2, we
show in Fig. 4 a mutual arrangement of the ρG , a+ and

∣∣a−∣∣
curves with the increase of n (except for n = 2).

For n = 2 (not shown in Fig. 4) the a+and
∣∣a−∣∣ curves

coincide with the ρG curve.With the increase of n, the a+and∣∣a−∣∣ curves move away downward from the ρG curve while
diminishing their mutual separation. For n = 100, they only
slightly depart from the detCs axis on a long section, but close
to detCs = 0 the a+ curve starts to ascend asymptotically to
1.

4 A representation of correlation matrix based on
the proposed global measure

Using a formula for the inverse of the correlation matrix Cs

(positive definite), i.e.,

C−1
s = 1

detCs
C∗
s (10)

whereC∗
s is the adjugate (positive definite), wemay represent

Cs(n × n), n ≥ 2 in the form

Cs = detCs · (
C∗
s

)−1 (11)

where detCs is a scale factor common for all the n observa-
tions in a network.

Since detC∗
s �= 1, detCs as in (11) is not a complete scale

factor, and the remaining part of it must be contained in(
C∗
s

)−1. A representation of Cs showing a complete scale
factor is specified by the theorem below. The theorem was
formulated and proved within the present research.

Fig. 4 Variability of ρG , a+ and
∣∣a−∣∣ with respect to detCs for some values of n
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Fig. 5 Variability of the scale factor q with respect to ρG and with respect to a

Theorem 1 A positive definite correlation matrix Cs(n ×
n), n ≥ 2 can be represented as

Cs = q · R (12)

where

q = (detCs)
1/n - a complete scale factor,

R = (detCs)
(n−1)/n · (

C∗
s

)−1
- a matrix with determinant

equal to 1

The proof is immediate.

Assuming Cs = q · R, where detR = 1, we get detCs =
qn · detR = qn and hence, q = (detCs)

1/n . On basis of (11)
we write detCs ·

(
C∗
s

)−1 = (detCs)
1/n ·R, and finally we get

R = (detCs)
(n−1)/n (

C∗
s

)−1, what ends the proof.
We can readily prove that the representation (12) applies

to non-singular matrices (n × n), n ≥ 2 with a determinant
greater than zero, and also to non-singular matrices (n ×
n), n ≥ 3 where n is an odd number. The asymmetry of a
matrix does not affect this type of representation.

In analogy to the well-known relationship between the
covariance matrix and the weight matrix, i.e., C = σ 2

o · P−1

with σ 2
o being a variance factor, we express (11) in a notation

that introduces the proposed global correlation measure ρG
and considers R as a rescaled correlation matrix

Cs = q(ρG) · P−1
s (13)

where

q(ρG) the complete scale factor expressed in terms of ρG;
q(ρG) =

(
1 − ρ2G

)1/n

Ps-internal weight matrix; detPs = 1.

We can readily check that for ρG → 0 or ρG → 1 the
complete scale factor q(ρG) tends asymptotically to 1 or 0,

respectively. The relationshipq(ρG) = (
1 − ρ2

G

)1/n
is shown

in Fig. 5a, and as a function of a constant correlation term a
in Fig. 5b.

With the increase in global correlation, the scale factor
decreases. The greater the values of n, the longer are the
intervals where the scale factor does not depart from 1 sig-
nificantly (see Fig. 5a).

5 Transforming basic reliability expressions to
learn about the character of correlation effect

We show that representation of the correlation matrix as in
the formula (13) can be useful in analyses of the structure
of network reliability measures with respect to observation
correlations.

Below, there is a list of basic expressions and quanti-
ties used in theory of reliability for correlated observations.
They all refer to the modified (i.e., standardized) form of the
Gauss–Markov model (GMM), that exposes the correlation
matrix Cs (Prószyński 2010), i.e.,

Asx + es = ys es ∼ (0, Cs) (14)

where: x(u×1), ys(n×1),As(u×n), rankAs ≤ u,Cs(n×n)

(positive definite).
Let us remind here that the standardized model such as

(14) is obtained by multiplying both sides of the original
GMM by σ−1, where σ = (diag C)1/2, and transforming the
covariance matrix C (positive definite) accordingly.

Following the essential classification of network reliabil-
ity (Baarda 1968), the expressions and quantities are listed
in two groups, the first pertaining to the internal reliability
and the second pertaining to the external reliability

a) internal reliability

H = I − As(AT
s C−1

s As)
+AT

s C−1
s ; W = H − HTH; hii

= {H}i i ; wi i = hii − {HTH}i i (15)

123
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hii , wi i —the response-basedmeasures of internal reliability
for the i th observation

HTC−1
s H = C−1

s H; ri = {HTC−1
s H}i i ; MDBs,i =

√
λ√
ri

(16)

ri —reliability number for the i th observation; MDBs,i—
minimal detectable bias for the i th observation (standard-
ized), where λ is non-centrality parameter in a global model
test (Wang and Chen 1994; Teunissen 1990, 2006)

ρi j =
{
HTC−1

s H
}
i j√{

HTC−1
s H

}

i i

√{
HTC−1

s H
}

j j

(17)

ρi j—coefficient of correlation between the outlier w-test
statistics for the i th and the j th observation, as a quantity
related to internal reliability

b) external reliability

K = (AT
s C−1

s As)
+AT

s C−1
s ; x̂ = Kys;

�x̂(i) = K · �ys(i) = K ·
⎡

⎣
0
MDBs,i

0

⎤

⎦

δi = (
�x̂(i)

)T C+
x̂ · �x̂(i) (18)

x̂—LS estimator for x as in (14); MDBs,i as in (16); �x̂(i)—
the vector of increments in x̂ due to MDBs,i , δi—a measure
of external reliability (Wang and Chen 1994), given there
with the use of regular inverse of Cx̂.

Additionally, we include in this analysis a correlation-
dependent quantity based on a matrix H, but not considered
as a measure of network reliability

HCsHT = HCs; Cvs = HCsHT; σ2vs,i =
{

HCsHT
}

i i

= 1 − σ2ŷs,i
(19)

Cvs—covariance matrix of the vector of standardized LS
residuals; σ2vs,i—variance of the i th standardized LS resid-
ual.

First, we consider the matrices H and K appearing in all
the expressions in the groups (a) and (b) as above. Applying
(13), we get

H = I − As

(
AT
s

1

q(ρG)
PsAs

)+
AT
s

1

q(ρG)
Ps

= I − As

(
AT
s PsAs

)+
AT
s Ps = fH(As, Ps) (20)

K =
(

AT
s

1

q(ρG)
PsAs

)+
AT
s

1

q(ρG)
Ps

=
(

AT
s PsAs

)+
AT
s Ps = fK(As, Ps) (21)

We can see that both the matrices H and K do not depend
on q(ρG) and, hence, do not depend on a global correlation
measure ρG. They are functions of the structural matrix As

(standardized) and the internal weight matrix Ps.
Now, basing on the above properties of H and K, we ana-

lyze other quantities listed under a) and b).
Ad a) The matrix W, and hence all its diagonal elements

wi i (i = 1, . . . , n) depend on the structural matrix As and
the internal weight matrix Ps. Therefore, the measures hii
and wi i for a given network can only undergo changes in
mutual diversification for different configurations of Cs and,
obviously, for different accuracies of observations.

HTC−1
s H = 1

q(ρG)
HTPsH and hence

{
HTC−1

s H
}

i i

= 1

q(ρG)

{
HTPsH

}

i i
(22)

where HTPsH and
{
HTPsH

}
i i are functions of As and Ps.

MDBs,i = √
q(ρG)

√
λ

√{
HTPsH

}
i i

(23)

We can easily find that the correlation coefficients ρi j as
in (17) do not depend on ρG, but on As and Ps only, i.e.,
ρi j = fi j (As, Ps).

Ad b) The vector x̂ does not depend on ρG, but on As

and Ps only, i.e., x̂ = fx(As, Ps). This result is quite under-
standable since it is well known that the LS estimator can be
obtained equivalently either by using the covariance matrix
or the weight matrix.

As derived in Appendix A, the measure of external relia-
bility δi can be represented in the following form

δi = λ

[
{Ps}i i{

HTPsH
}
i i

− 1

]

(24)

This means that it does not depend on the global correlation
measure ρG, but on As and Ps only. We notice that there is
a common factor λ, which depends on type I error α, type II
error β, and redundancy f of a network.

The additional quantity HCsHT will have the representa-
tion as below

HCsHT = q(ρG) · HP−1
s HT and hence

{
HCsHT

}

i i

= q(ρG) ·
{

HP−1
s HT

}

i i
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where HP−1
s HT and

{
HP−1

s HT
}
i i are functions of As and

Ps.
Before summing up the results of the above analysis,

we denote by zi (As, Cs)dep the quantity related to the i th
observation (i = 1, . . ., n) dependent on the level of global
correlation ρG and by zi (As, Cs)ind the quantity related to
the i th observation (i = 1, . . ., n) independent of that level.

The results show that the representation of the correlation
matrix as in (13) makes it possible to express the reliability
measure zi for the i th observation in the following form:

− zi (As, Cs)dep = μ(ρG) · fi (As, Ps) (25)

where μ(ρG) can be either of (q(ρG))−1,
√

λ( f )·√q(ρG)

− zi (As, Cs)ind = fi (As, Ps) (26)

For additional quantity σ2vs,i , being zi (As, Cs)dep, we get
in (25) μ(ρG) = q(ρG).

In the factorization of reliabilitymeasure as in (25),μ(ρG)

is a scale factor common for all the n observations in a net-
work, whereas fi (As, Ps) is a factor related only to the i th
observation. The factors fi (As, Ps) for i = 1, 2, . . . , n
form together a set of mutually diversified values, as also
is the case in relationship (26). Figure 6 shows graphs of
the above-mentioned three types of the function μ(ρG), i.e.,
μ1(ρG) = (q(ρG))−1, μ2(ρG) =

√
λ( f )·√q(ρG), μ3(ρG) =

q(ρG) for n = 2, 6 and 10. Since beside the statistical
parameters, λ is a function of redundancy f in a network, to
get a common basis for different n, we assume for construct-
ing the graphs that f = 0.5n, which corresponds to a level
of internal reliability h = 0.5 for Cs = I.

Figure 6 shows that the scale factor μ1(ρG) is increasing
with the increase in ρG. The compound scale factor μ2(ρG)

displaying the resulting decrease with the increase in ρG
contains two mutually opposing effects, i.e., the increasing
one (

√
λ( f )) due to network redundancy and the decreasing

one (
√
q(ρG)) due to the global correlation. The scale factor

μ3(ρG) is decreasing with the increase of ρG.

Fig. 6 Variability of the scale factorsμwith respect to ρG (λ computed
for α = 0.05, β = 0.80, f = 0.5n)

Additionally, by transforming (25) to a form

fi (As, Ps) = �μ(ρG)
−1 · zi (As, Cs)dep , (27)

we get an idea what part of the total value of the reliabil-
ity measure for the i th observation represents a diversifying
effect of observation correlations.

By simple modification of (27), we may also decompose
the reliabilitymeasure for the i th observation into a part inde-
pendent of ρG and a part dependent on ρG, as shown below

zi (As, Cs)dep = fi (As, Ps) +
{
1 − [μ(ρG)]−1

}

·zi (As, Cs)dep (28)

For completeness, we quote (26), which corresponds to
μ(ρG) = 1 in (28)

zi (As, Cs)ind = fi (As, Ps)

6 Numerical examples illustrating the use of
derived formulas

In numerical examples, we maintain the approach applied
in Prószyński and Kwaśniak (2016) of expressing each
correlation-dependent quantity as a function of the form
z(A,σ = 1, Cs) where the column vector σ of ones repre-
sents unitary accuracies of observations. For simplicity, the
form is denoted as z(As, Cs) where As = A.

A test network in two options, as shown in Fig. 7, is taken
from the above-mentioned publication. It is a horizontal net-
work treated as a free network. The brief characteristics of
both the options, placed under each sketch, contain the fol-
lowing features:

– the range of internal reliability indices for Cs = I (in
square brackets);

– number of observations n, redundancy f .

The arrows for GPS vectors in Fig. 7 indicate the orienta-
tion of coordinate differences assumed in the corresponding
GMM models. The option (b) is the option (a) strengthened
with 13 angular observations, what is reflected in a consider-
able increase in network internal reliability. The coordinates
of the network point are given in Table 2.

For generating the correlation matrices, a slightly modi-
fied version of an algorithm as that in Davies and Higham
(2000) was used, being much faster for greater n than the
“accept-reject” algorithm described in Sect. 2.

The examples refer only to quantities that depend on a
global correlation ρG, i.e., MDBs,i , ri and σ2vs,i . First, we
illustrate the effect of reducing zi (As, Cs) to zi (As, Ps),
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Fig. 7 Options of the test
network. a [0.11, 0.48]; n = 15;
f = 5. b [0.40, 0.82]; n = 28,
f = 18

Table 2 Point coordinates for
horizontal network

Point no. X[m] Y[m]

1 150 650

2 200 100

3 400 400

4 800 700

5 350 950

6 950 350

where zi = MDBs,i , by using a scale factor μ(ρG) as in the
formula (27).

In Figures 8 and 9 we can see that due to the reduction,
for quantities being the reliability measures (i.e., MDBs,i

and ri ) the graphs for different values of ρG become con-
siderably compacted, especially for the latter measure. The
compacted graphs enable one to learn about themutual diver-
sification of the zi values for different observations, i.e.,
for i = 1, . . . , n, independent of the global correlation
ρG. In the case of an additional quantity σ2vs,i (Fig. 10), the

values of σ2vs,i (As, Ps) (i = 1, . . . , n) for different values
of ρG are more extended along the vertical axis and much

less mutually diversified for individual observations than in
σ2vs,i (As, Cs).

For a more detailed analysis, we could determine the
degree of mutual diversifications of the zi (As, Ps) (i =
1, . . . , n) values and compare them with the correspond-
ing ones for zi (As, Cs) (i = 1, . . . , n), for some chosen
values of ρG. The degree of mutual diversifications might
then be defined as a mean square deviation from the average
value.

Now, the additive representation of zi (As, Cs) as in the
formula (28) is illustrated in the examples for a network in
Fig. 7a).

For MDBs,i and ri , due to μ(ρG) > 1 (see diagram in
Fig. 6), the ρG-dependent components assume positive val-
ues as shown in Figs. 11 and 12. In the case of σ2vs,i , where
μ(ρG) < 1 (see diagram in Fig. 6), the ρG-dependent com-
ponents are of negative values (see Fig. 13).

7 Proposed global correlation levels in networks

For a pair of random variables, there are established cor-
relation levels. The problem arises in the case of global

Fig. 8 Effect of reducing MDBs,i (As, Cs) to MDBs,i (As, Ps) for a network in Fig. 7a μ2 (ρG) = √
λ( f )·√q(ρG)
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Fig. 9 Effect of reducing rs,i (As, Cs) to rs,i (As, Ps) for a network in Fig. 7b μ1(ρG) = (q(ρG))−1

Fig. 10 Effect of reducing σ2vs,i (As, Cs) to σ2vs,i (As, Ps) for a network in Fig. 7a μ3(ρG) = q(ρG)

Fig. 11 Additive representation of MDBs,i (As , Cs)

correlation discussed in this paper.Wemay express the corre-
lation levels either directly in terms of the global correlation
measure ρG or in terms of the constant correlation coeffi-
cient a. Since the latter approach refers to a specific type of
correlation matrices only, preference should be given to the
former approach covering a full set of matrix configurations.

The following global correlation levels are proposed:

Fig. 12 Additive representation of rs,i (As , Cs)

1. 0 < ρG ≤ 0.3 weak correlation
2. 0.3 < ρG ≤ 0.6 moderate correlation
3. 0.6 < ρG < 1 significant/strong correlation

Figure 14 shows the relationship between the above levels
and the corresponding intervals of the constant correlation
parameter a. As one might expect on basis of the curves in
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Fig. 13 Additive representation of σ2vs,i (As, Cs)

Fig. 14 The proposed correlation levels as functions of a and n

Fig. 2, with the increase of n, the intervals of a corresponding
to weak and moderate global correlation are more and more
lowered and narrower.

This testifies that the choice of the correlation levels was
to a high extent imposed by the character of variability of ρG
versus a for different values of n. The case n = 2 is satisfy-
ingly consistentwith the commonly used levels of correlation
between two random variables.

The proposed global correlation levels provide a concise
description of each given correlation matrix and make pos-
sible the comparison of different-size correlation matrices.
It seems that they can be helpful in the design of systems
with correlated observations. At the phase of design, we
usually do not possess a specified correlation matrix, but
may have some general knowledge on its elements as, for
instance, the expected value of

∣∣{Cs}i j
∣∣
max or

∣∣{Cs}i j
∣∣
qm (see

(5)). It is obvious that with this knowledge we may only
find the approximate value of the global correlation index
�ρG and the corresponding correlation level. We can do it by
making the simplifying assumption that

∣∣{Cs}i j
∣∣
max = a1

or
∣∣{Cs}i j

∣∣
qm = a2, and using the formula (3) for a1 or

a2.
We may use the matrices Cs(a1) or Cs(a2) as substitute

correlation matrices for determining some approximate reli-
ability characteristics of the designed network.

8 Concluding remarks

Representation of the correlation matrix, based on the
proposed measure of network global correlation, made it
possible to investigate the structure of correlation-dependent
quantities. Each analyzed quantity can be qualified either as
dependent on a global correlation measure or as independent
of such a measure. Those of the first type can be represented
by a scale factor common for all the observations in a network
and a factor being, beside a network structure, a function of
the internal weight matrix yielding inter-observational diver-
sifications. The quantities of the second type are solely the
functions of the network structure and the internal weight
matrix. Another way of representing the analyzed quantity
of the first type is its decomposition into a part independent
of the global correlation measure and a part dependent on
that measure.

The above ways of representing the correlation matrices,
together with the proposed levels of global correlation, can
be applied in the analyses of systems with correlated obser-
vations.

For investigating the structure of correlation-dependent
quantities at greater values of ρG and n, we may use the
easily created correlationmatricesCs(a)with a constant term
a computed for the required values of ρG and n. Obviously,
the thus-obtained matrices will only be specific substitutes
of the correlation matrices sought for.

In the paper the proposed analytical tools were applied
to basic reliability measures for a single outlier case. It
is easy to deduce that due to generality of the theoretical
basis of the tools their potential application field can be
much wider. Analyzing the findings of some publications
that contributed to development of the theory of network
reliability and outlier detection methods, we may state that
the tools can also be applied in investigating the effect
of observation correlations on the quantities such as for
instance:

– the outlier test statistics and MSBs (minimally separable
biases) for a single outlier case as in Knight et al. (2010),

– the outlier test statistic and MDB (minimal detectable
bias) for multiple outliers as in Wang and Knight (2012).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix A

Proof for the formula (24).
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Taking into account the formulas (18), (21), (22) and
adding that

Cx̂ = (AT
s C−1

s As)
+ and hence,

C+
x̂ = AT

s C−1
s As = 1

q(ρG)
AT
s PsAs,

we can write

δi = (
�x̂(i)

)T C+
x̂ · �x̂(i) = [

0 ... MDBs,i ... 0
]

· KTC+
x̂ K · [

0 ... MDBs,i ... 0
]T

=
√
q
√

λ
√{

HTPsH
}
i i

[
0 ... MDBs,i ... 0

]

· KTC+
x̂ K · [

0 ... MDBs,i ... 0
]T

√
q
√

λ
√{

HTPsH
}
i i

= qλ
{
HTPsH

}
i i

·
{

KTC+
x̂ K

}

i i

KTC+
x̂ K = 1

q
PsAs(AT

s PsAs)
+AT

s PsAs(AT
s PsAs)

+AT
s Ps

= 1

q
PsAs(AT

s PsAs)
+AT

s Ps

= 1

q
Ps(I − H) = 1

q
(Ps − PsH). (29)

We can easily check that when H as in (20), PsH = HTPsH,
and so

KTC+
x̂ K = 1

q
(Ps − HTPsH) and

{
KTC+

ξ̂
K

}

i i

= 1

q
({Ps}i i −

{
HTPsH

}

i i
).

Coming back to (29), we get

δi = qλ
{
HTPsH

}
i i

· 1
q

({Ps}i i −
{

HTPsH
}

i i
)

= λ ·
[

{Ps}i i{
HTPsH

}
i i

− 1

]

,

what ends the proof.
Using a regular inverse in K, we would obtain the same

formula for δi .

Appendix B

Numerically based confirmation of Property 1 and
Property 2 (for n ≥ 3)

For generating the correlation matrices, the same algorithm
was used as that quoted in Sect. 6. For each diagram, 50,000
simulations were used.

Figure 15a–c shows the results of checking Property 1 as
in formula (7).

Figure 16a–c shows the results of checking Property 2 as
in formula (9)

All the results confirm the properties. The empty spaces in
the “confirmation area” are due to insufficiently great num-
ber of the executed simulations. The validity of this statement
lies in the empirically observed fact that a certain increase in
the number of simulations yielded several additional points
within “the confirmation area.” Obviously, the checks at
greater n would be recommended to get a stronger empir-
ical support for the Properties.

Fig. 15 Results of checking Property 1
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Fig. 16 Results of checking Property 2
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Prószyński W (2010) Another approach to reliability measures for sys-
tems with correlated observations. J Geod 84:547–556
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