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Abstract The GOCE gravity gradiometer measured highly
accurate gravity gradients along the orbit during GOCE’s
mission lifetime from March 17, 2009, to November 11,
2013. These measurements contain unique information on
the gravity field at a spatial resolution of 80 km half wave-
length, which is not provided to the same accuracy level by
any other satellite mission now and in the foreseeable future.
Unfortunately, the gravity gradient in cross-track direction
is heavily perturbed in the regions around the geomagnetic
poles. We show in this paper that the perturbing effect
can be modeled accurately as a quadratic function of the
non-gravitational acceleration of the satellite in cross-track
direction. Most importantly, we can remove the perturbation
from the cross-track gravity gradient to a great extent, which
significantly improves the accuracy of the latter and offers
opportunities for better scientific exploitation of the GOCE
gravity gradient data set.

Keywords Satellite gravity gradiometry · GOCE mission ·
Accelerometry · Calibration

1 Introduction

The Gravity field and Steady-state Ocean Circulation
Explorer (GOCE) was launched on March 17, 2009, and re-
entered on November 11, 2013. The objective of the GOCE
mission is the determination of the mean gravity field with
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an accuracy of 1–2 cm for the geoid and 1 mGal for the
gravity anomaly field, and achieving both at a spatial resolu-
tion of 100 km half wavelength (Drinkwater et al. 2007). In
order to reach this ambitious objective, GOCE carried two
complementary measurement systems on board. The first is
the satellite-to-satellite tracking (SST) instrument that was
used to determine the position and velocity of the satellite,
from which the gravity field can be retrieved. The second is
the gravity gradiometer that measured the gravity gradients
along GOCE’s orbit. The instruments contribute equally in
the gravity field retrieval at a spatial resolution of approxi-
mately 1000 km, where the SST instrument is more accurate
at lower and the gravity gradiometer is more accurate at
higher spatial resolution.

Since the gravity gradiometer required a “quiet” environ-
ment for providing excellent performance, the satellite was
equipped with a drag-free and attitude control system that
kept the satellite Sun- and nadir-pointing and compensated
non-gravitational forces in flight direction caused mainly by
drag. The elements of that system included the gradiome-
ter for measuring non-gravitational accelerations, three star
sensors for measuring the attitude of the satellite, an ion
propulsion system for counteracting non-gravitational forces
in flight direction and three magnetic torquers for controlling
the attitude (Floberghagen et al. 2011). In addition, the satel-
lite was designed to be stable under varying thermal loads,
had no moving parts in order to avoid microvibrations and
its shape was optimized for minimizing the effect of aerody-
namic drag.

The gravity gradiometer consisted of three pairs of ultra-
sensitive three-axis accelerometers, where the accelerom-
eters forming a pair were mounted at the ends of three
orthogonal gradiometer arms, separated by half a meter.
Each accelerometer measured the control voltages that were
required to levitate a proof-mass at the center of a slightly
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larger cage. The control voltages were applied to eight
electrodes located on the inner walls of the cage of each
accelerometer and were representative for the acceleration
of the proof-mass relative to the cage. The proof-masses had
square cuboid shape of 4 cm × 4 cm × 1 cm, which allowed
for ground testing but made the accelerometer axis that was
normal to 4 cm× 4 cm face less sensitive. This prevented the
gravity gradiometer frommeasuring all elements of the grav-
ity gradient tensor with high accuracy. Due to the orientation
of the individual accelerometers, only the elements Vxx , Vyy ,
Vzz and Vxz of the gravitational tensor were measured with
high accuracy (Rummel et al. 2011).

GOCE gravity gradients are used as input for many state-
of-the-art gravity field models (Pail et al. 2011; Hashemi
Farahani et al. 2013; Schall et al. 2014; Brockmann et al.
2014; Bruinsma et al. 2014), contributing significantly to
those models’ high accuracy and spatial resolution, with
downstream applications in oceanography, geophysics and
geodesy (Knudsen et al. 2011; Gruber et al. 2012; Fuchs
et al. 2013; Becker et al. 2014; Hirt 2014). Beyond that, the
direct use of gravity gradients in geophysical applications is
currently evolving (Van derMeijde et al. 2015; Bouman et al.
2016). TheGOCEmission provided a newandunique gravity
gradient data set that is today the most accurate spaceborne
measurement of the gravity field at high spatial resolution
and is likely to remain so at least for the next decade.

The measured gravity gradient V̄yy , which points roughly
into cross-track direction, is unfortunately subject to large
perturbations in the regions around the geomagnetic poles,
which was noted earlier, e.g., in Bouman et al. (2011). In
particular, Petersheim et al. (2011) show that the perturba-
tion cannot be removed by adjusting the scale factors for
the accelerometer pair on the cross-track gradiometer arm.
Though it was observed that magnitude of the perturbation
is linked to the magnitude of non-gravitational acceleration
(sum of drag, winds, and radiation pressure) in cross-track
direction (Siemes et al. 2012), the root cause of the perturba-
tion remained unclear until now. Ince and Pagiatakis (2016)
find a correlation between the occurrence of the perturbation
and more active space weather conditions. They suggest to
perform an empirical correction based on a response analysis
between the perturbation in V̄yy and ionospheric dynamics
represented by Poynting energy flux. Their empirical correc-
tion model is limited to regions where Poynting energy flux
measurements are available, i.e., a global correction is not
possible.

In this paper, we show that the perturbing effect can
be accurately modeled by a quadratic function of the non-
gravitational acceleration in cross-track direction, which
implies that the root cause of the perturbation rests within
the conversion from the control voltages to acceleration. As
described in Lenoir et al. (2011), a quadratic factor occurs
in the functional relation of the control voltage to the accel-

eration, when the proof mass position slightly deviates from
the center of the accelerometer. For that reason, the method
described in Frommknecht et al. (2011) was used to nul-
lify the quadratic factor. This was achieved by measuring
the quadratic factor and then adjusting the proof mass posi-
tion accordingly. Therefore, it is surprising to find that the
relation between acceleration and control voltages is best
described by a quadratic function for at least one of the in
total 18 accelerometer axes. More investigations are needed
for understanding how a quadratic factor can still create a sig-
nificant perturbation despite the efforts invested in physically
nullifying it. Nevertheless, we demonstrate that the pertur-
bation can be removed to a great extent from the measured
gravity gradient V̄yy , which increases its accuracy signifi-
cantly.

We specify the input data for the investigation presented
in this paper in Sect. 2. The method is described in Sect. 3
and the results are shown in Sect. 4. We conclude the paper
with a discussion of the results in Sect. 5, which includes
recommendations for future investigations.

2 Input data

Our main input data are the gravity gradients and calibrated
accelerations, both provided in the gradiometer reference
frame and contained in the EGG_NOM_1b data products
(Frommknecht et al. 2011). In addition, we use the gradiome-
ter inertial attitude quaternions that describe the rotation
from the gradiometer reference frame to the inertial refer-
ence frame and are also contained in the EGG_NOM_1b data
products. The rotation from the inertial reference frame to the
Earth-fixed reference frame is given in form of quaternions in
the SST_PSO_2_ data products, which also contain the satel-
lite positions of the reduced-dynamic orbit in the Earth-fixed
reference frame. Furthermore, we use the GOCO03s grav-
ity field model, which is in particular based on GOCE and
GRACE mission data (Mayer-Gürr et al. 2012). It should
be noted that we would obtain the same results with any
other gravity field model that is based on GOCE gravity
gradients.

From these input data, we calculate first the model gravity
gradient VGOCO03s

yy from the GOCO03s model in the local
north-oriented reference frame (The European GOCE Grav-
ity Consortium EGG-C 2014). Then, we use the quaternions
mentioned before to transform the model gravity gradients
to the gradiometer reference frame as described in Rummel
et al. (2011). The gradiometer reference frame is aligned
with the satellite axes, i.e., the x, y and z-axis are point-
ing approximately into flight, nadir and cross-track direction,
respectively. Finally, we calculate the residualΔVyy between
the measured gravity gradient V̄yy and the model gravity gra-
dient according to
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Improving GOCE cross-track gravity gradients 35

ΔVyy = V̄yy − VGOCO03s
yy . (1)

One could argue that the GOCO03s model might be
affected by the perturbation in the measured gravity gradient
V̄yy since that was used in the gravity field retrieval. There-
fore,we calculated themodel gravity gradientV ITG-Grace2010s

yy
in the same way also from the ITG-Grace2010s model
(Mayer-Gürr et al. 2010)which is basedonly onGRACEmis-
sion data and therefore independent of the perturbing effects,
and compared it to that calculated from theGOCO03smodel.
The RMS of the difference VGOCO03s

yy − V ITG-Grace2010s
yy was

only 1 mE, which we consider to be negligible for the inves-
tigation presented in this paper in view of the noise level of
V̄yy , which is 10mE/Hz1/2 within the frequency range 5–100
mHz and larger outside (Rummel et al. 2011).

3 Method

It is instructive to discuss the signal content of the accelerom-
eter data. A perfectly calibrated accelerometer measures the
acceleration

ai = −(V − Ω2 − Ω̇)r i + d (2)

where i = 1, . . . , 6 indicates the accelerometer. Figure 1
shows how the accelerometers are arranged in the gradiome-
ter reference frame. The acceleration ai contains the signal
of the gravity gradient V , the centrifugal acceleration Ω2,
the angular acceleration of the satellite Ω̇ , and the non-
gravitational acceleration of the satellite d where

acc. 6

z(GRF )

acc. 5 acc. 4

acc. 3

acc. 2acc. 1
x(GRF ) y(GRF )

Fig. 1 Arrangement of the six accelerometers in the gradiometer ref-
erence frame (GRF). Dotted lines indicate the less sensitive axis of the
accelerometers

ai =
⎡
⎣
aix
aiy
aiz

⎤
⎦ , (3)

V =
⎡
⎣
Vxx Vxy Vxz

Vxy Vyy Vyz

Vxz Vyz Vzz

⎤
⎦ , (4)

Ω2 =
⎡
⎣

−ω2
y − ω2

z ωxωy ωxωz

ωxωy −ω2
x − ω2

z ωyωz

ωxωz ωyωz −ω2
x − ω2

y

⎤
⎦ , (5)

Ω̇ =
⎡
⎣

0 −ω̇z ω̇y

ω̇z 0 −ω̇x

−ω̇y ω̇x 0

⎤
⎦ (6)

and

d =
⎡
⎣
dx
dy
dz

⎤
⎦ . (7)

r i is the vector from the satellite center of mass to the cen-
ter of the i-th accelerometer. It is practical to transform the
acceleration ai into differential mode accelerations

adi j = (ai − a j )/2 = −1

2
(V − Ω2 − Ω̇)(r i − r j ) (8)

and common mode accelerations

aci j = (ai + a j )/2 = d (9)

for the accelerometer pairs i j = 14, 25 and 36 where

r1 − r4 =
⎡
⎣
Lx
0
0

⎤
⎦ , r2 − r5 =

⎡
⎣

0
Ly
0

⎤
⎦ and r3 − r6 =

⎡
⎣

0
0
Lz

⎤
⎦ .

(10)

The quantities Lx , Ly and Lz are the distances between the
accelerometers of pair 14, 25 and 36, respectively. Rearrang-
ing Eq. (8) gives the gravity gradients

Vxx = −2ad14x/Lx − ω2
y − ω2

z , (11)

Vyy = −2ad25y/Ly − ω2
x − ω2

z , (12)

Vzz = −2ad36z/Lz − ω2
x − ω2

y, (13)

Vxy = −ad25x/Ly − ad14y/Lx + ωxωy, (14)

Vxz = −ad14z/Lx − ad36x/Lz + ωxωz (15)

and

Vyz = −ad36y/Lz − ad25z/Ly + ωyωz (16)
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where ωx , ωy and ωz are the angular rates about the along-
track, cross-track, and nadir axis of the gradiometer reference
frame, respectively.

Asmentionedbefore, Eq. (2) holds for themeasurement ai
of a perfectly calibrated accelerometer. A real accelerometer
is, however, subject to small imperfections and measurement
noise. We relate the measurement âi of a real accelerometer
to ai by

âi = b̂i + M i ai + K i a2i + n̂i (17)

where b̂i is the bias in the accelerometer measurements, M i

is the calibration matrix for a single accelerometer, K i is
a diagonal matrix holding the quadratic factors, and n̂i is
measurement noise. The vectors and matrices are defined as

âi =
⎡
⎣
âi x
âiy
âi z

⎤
⎦ , (18)

b̂i =
⎡
⎢⎣
b̂i x
b̂iy
b̂i z

⎤
⎥⎦ , (19)

M i =
⎡
⎣
Mixx Mixy Mixz

Miyx Miyy Miyz

Mizx Mizy Mizz

⎤
⎦ , (20)

K i =
⎡
⎣
kix 0 0
0 kiy 0
0 0 kiz

⎤
⎦ , (21)

and

n̂i =
⎡
⎣
n̂i x
n̂iy
n̂i z

⎤
⎦ . (22)

For the square of vector ai , we use the convention

a2i =

⎡
⎢⎢⎣
a2i x

a2iy

a2i z

⎤
⎥⎥⎦ (23)

throughout this paper.
The calibration of the gravity gradiometer is described in

detail in Frommknecht et al. (2011) and comprises two sepa-
rate procedures. The first is the determination of the quadratic
factors in K i and the adjustment of the proof mass positions
such that K i ≈ 0. The quadratic factors were thus physically
nullified and are consequently not considered in the Level
1b processing. The second procedure is the determination of
the calibration matrices M i from data collected during ded-
icated satellite maneuvers, which were performed typically
every two months during mission lifetime. The calibration

matrices are taken into account in the Level 1b processing
of the gradiometer data, whereas the biases b̂i are ignored.
It should be noted that an extensive analysis presented in
Siemes (2011) shows that the perturbing effect in V̄yy cannot
be modeled by the calibration matrices M i . Therefore, we
focus in this investigation on the quadratic factors K i .

In the same way that we calculated differential and com-
mon mode accelerations in Eqs. (8) and (9), we calculate
now measured differential and common mode accelerations.
Using Eq. (17) leads to

[
âdi j
âci j

]
= 1

2

[
âi − â j

âi + â j

]
(24)

=
[
b̂di j
b̂ci j

]
+

[
C i j Di j

Di j C i j

] [
adi j
aci j

]

+1

2

[
K i −K j

K i K j

] [
a2i
a2j

]
+

[
n̂di j
n̂ci j

]
. (25)

The vectors b̂ci j and b̂di j are the bias in the measured com-
mon and differential mode acceleration, respectively, the
matricesC i j and Di j are common and differential calibration
matrices, respectively, and the vectors n̂ci j and n̂di j are noise
in the measured common and differential mode acceleration,
respectively, where

b̂ci j = (b̂i + b̂ j )/2, (26)

b̂di j = (b̂i − b̂ j )/2, (27)

C i j = (M i + M j )/2, (28)

Di j = (M i − M j )/2, (29)

n̂ci j = (n̂i + n̂ j )/2, (30)

and

n̂di j = (n̂i − n̂ j )/2. (31)

The calibrated common and differential mode accelera-
tion āci j and ādi j , respectively, which are contained in the
EGG_NOM_1b data products and used in the Level 1b pro-
cessing for generating the gravity gradients, are related to the
measured accelerations by

[
ādi j
āci j

]
= M i j

[
âdi j
âci j

]
(32)

where

M i j =
[
C i j Di j

Di j C i j

]−1

(33)

is the inverse calibration matrix as defined in (Frommknecht
et al. 2011). We transform Eq. (25) using the definitions in
Eqs. (32) and (33) to
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[
ādi j
āci j

]
=

[
b̄di j
b̄ci j

]
+

[
adi j
aci j

]
+1

2
M i j

[
K i −K j

K i K j

] [
a2i
a2j

]
+

[
n̄di j
n̄ci j

]

(34)

where b̄ci j and b̄di j are the bias in the calibrated common
and differential mode acceleration, respectively, and n̄ci j and
n̄di j are the noise in the calibrated common and differential
mode acceleration, respectively. Similar to Eq. (32), the bias
and noise in the calibrated common and differential mode
acceleration are related to those in the measured common
and differential mode acceleration by

[
b̄di j
b̄ci j

]
= M i j

[
b̂di j
b̂ci j

]
(35)

and

[
n̄di j
n̄ci j

]
= M i j

[
n̂di j
n̂ci j

]
, (36)

respectively.Asdiscussedbefore,we expect that the quadratic
factors are close to zero. Noting that the inverse calibration
matrices are close to an identity matrix, i.e., M i j ≈ I , we
approximate

M i j

[
K i −K j

K i K j

]
≈

[
K i −K j

K i K j

]
(37)

without introducing significant approximation errors in
Eq. (34), which then reads

[
ādi j
āci j

]
=

[
b̄di j
b̄ci j

]
+

[
adi j
aci j

]
+ 1

2

[
K i −K j

K i K j

] [
a2i
a2j

]
+

[
n̄di j
n̄ci j

]
.

(38)

Thebiases andquadratic factors inEq. (38) enter the calcu-
lation of the gravity gradients as in Eqs. (11)–(16) directly by
using the calibrated acceleration ādi j in place of adij and indi-
rectly through the angular rates,which are reconstructed from
the calibrated acceleration ādi j togetherwith star sensor data.
For the angular rate reconstruction, the method described in
Stummer et al. (2011) is deployed, which implicitly elimi-
nates the biases b̄di j bymeansof a high-passfilter.Weassume
in this paper that the quadratic factors that enter the angular
rate reconstruction are zero, so that the reconstructed angu-
lar rates are not affected by biases or quadratic factors. Thus,
we assume in this paper that the gravity gradients are only
affected by biases and quadratic factors that enter Eqs. (11)–
(16) directly through the calibrated acceleration ādi j , though
more investigations are needed to verify this assumption. In
particular, we obtain the measured gravity gradient

V̄yy = −2ād25y/Ly − ω̄2
x − ω̄2

z (39)

where ω̄x and ω̄z are the angular rates resulting from the
angular rate reconstruction. The reconstructed angular rates
contain noise, which propagates to Eq. (39) through the cen-
trifugal terms ω̄2

x and ω̄2
z . We define nΩ2

yy
as sum of the noise

in the centrifugal terms such that

ω̄2
x + ω̄2

z = ω2
x + ω2

z + nΩ2
yy

(40)

and rewrite Eq. (39) to

V̄yy = −2ād25y/Ly − ω2
x − ω2

z − nΩ2
yy

. (41)

Next, we use Eq. (38) to replace the calibrated acceleration
in Eq. (41) to obtain

V̄yy = −2(b̄d25y + ad25y + (k2ya
2
2y − k5ya

2
5y)/2

+ n̄d25y)/Ly − ω2
x − ω2

z − nΩ2
yy

. (42)

Subtracting themodel gravity gradientVGOCO03s
yy as inEq. (1)

simplifies Eq. (42) to

ΔVyy = −2b̄d25y/Ly − (k2ya
2
2y − k5ya

2
5y)/Ly − 2n̄d25y/Ly

−nΩ2
yy

− nVGOCO03s
yy

(43)

where nVGOCO03s
yy

is the noise in VGOCO03s
yy , which is due to

model errors and noise in the orbit as well as the attitude
quaternions that were used to transform the gravity gradi-
ents to the gradiometer reference frame. In order to shorten
Eq. (43), we introduce

nyy = −2n̄d25y/Ly − nΩ2
yy

− nVGOCO03s
yy

(44)

as the sum of all noise terms such that

ΔVyy = −2b̄d25y/Ly − (k2ya
2
2y − k5ya

2
5y)/Ly + nyy .

(45)

Now it is important to know that dy is causing by far
the largest signal dynamics (variation about mean) in the
acceleration a2y and a5y as presented in Eq. (2). On April
1, 2012, for instance, the signal dynamics in dy are in the
order of 1µm/s2, whereas Vyy ,ω2

x , andω2
z cause acceleration

signal dynamics of only 5 nm/s2. We approximate therefore

a2y ≈ a5y ≈ dy = ac25y . (46)

Inserting Eq. (46) into (45) gives

ΔVyy = −2b̄d25y/Ly − 2kd25ya
2
c25y/Ly + nyy (47)

where kd25y is the differential quadratic factor defined as

kd25y = (k2y − k5y)/2. (48)
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38 C. Siemes

Fig. 2 Bandpass-filtered
gravity gradient residuals ΔṼyy
of present Level 1b gravity
gradients (top panel),
bandpass-filtered common mode
accelerations ãc25y (middle
panel), and bandpass-filtered
squared common mode
accelerations ã2c25y (bottom
panel)

We find by rearranging Eq. (38) and using the approximation
in Eq. (46)

a2c25y = (āc25y − b̄c25y − (k2y + k5y)a
2
c25y/2 − n̄c25y)

2

≈ ā2c25y − 2b̄c25yāc25y + b̄2c25y (49)

where we dropped all products that contain three or more
factors or the noise term n̄c25y since the acceleration and
biases are small and the noise term is even smaller. In order
to provide an indication of the size of āc25y and b̄c25y , we
refer again to the example of April 1, 2012, where āc25y is in
the order of 1-2 µm/s2.

Inserting Eq. (49) into Eq. (47) gives

ΔVyy = − 2

Ly
b̄d25y − 2

Ly
kd25yā

2
c25y + 4

Ly
kd25y b̄c25yāc25y

− 2

Ly
kd25y b̄

2
c25y + nyy, (50)

which represents our model for the perturbation in V̄yy .
Equation (50) demonstrates that a nonzeroquadratic factor

kd25y causes a perturbation in V̄yy that is a quadratic function
of the common mode accelerations āc25y . This means that
strong dynamics in āc25y in the regions near the geomagnetic
poles give perturbations in V̄yy in the same region, which
was noted earlier, e.g., in Bouman et al. (2011), Siemes et al.
(2012) and Ince and Pagiatakis (2016). Since the quadratic
factors are expected to be zero, their effects were not investi-
gated until now. Instead,Bouman et al. (2011), Siemes (2011)

and Petersheim et al. (2011) focussed their investigations on
effects of the scale factor sd25y , which is the element in the
second row and second column of the differential calibration
matrix D25.

Figure 2 compares the perturbation inΔVyy with the signal
dynamics of common mode accelerations āc25y and squared
common mode accelerations ā2c25y for a 2-day time window
starting on 6 April 2016, 6:00 am. In order to highlight the
perturbation,webandpass filter all quantities to the frequency
band 1–10mHz.We signify bandpass-filtered quantities with
a tilde in the following. We can clearly see that the perturba-
tion in ΔṼyy is centered at 90◦ argument of latitude, which
corresponds to the location along the orbit that is closest
to the geographic North pole. In the same location along
the orbit, we can also see strong dynamics in ãc25y , which
show a similar, but not the same pattern as in ΔṼyy . Also
ã2c25y shows strong dynamics in the same location along the
orbit and here the pattern matches almost perfectly the one in
ΔṼyy .We analyzedmanymore timewindows, which always
confirmed the almost perfect match between the patterns in
ΔṼyy and ã2c25y .

When estimating the parameters of the quadratic function,
we bandpass-filtered Eq. (50) to the frequency band 1–10
mHz, which is the frequency range in which the perturbation
is clearly visible as demonstrated in Fig. 2 and the gra-
diometer noise is expected to be low. The terms−2b̄d25y/Ly

and −2kd25y b̄2c25y/Ly are much smaller than nyy after the
bandpass filtering and are consequently neglected. The two
remaining parameters kd25y and cd25y ≡ −2kd25y b̄c25y
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Improving GOCE cross-track gravity gradients 39

Fig. 3 Time series of estimated parameters kd25y (top panel) and cd25y (bottom panel). The dots indicate the limits of each time interval, for which
the parameters were estimated

were allowed to change linear in time and are estimated by
minimization of ñ2yy . It should be noted that the effect of
cd25y on ΔVyy is similar to the effect of the element in the
second row and fifth column of M25.

We excluded the data from the estimation, when the satel-
lite is not in drag-free mode either due to satellite anomalies
or orbit maneuvers (GOCE Flight Control Team 2014). In
practice, we estimate one pair of kd25y and cd25y , i.e., four
parameters due to the linear time dependency, for each time
interval between two calibration maneuvers referred to as
”satellite shakings” (Frommknecht et al. 2011) or any other
satellite anomaly or orbit maneuver that causes the GOCE
satellite to leave the drag-free mode. Satellite shakings were
performed typically every 2 months.

4 Results

The estimated parameters kd25y and cd25y shown in Fig. 3
are both remarkably stable during mission lifetime. In this
context, it should be noted that September 23, 2009, was the

last time the proof mass positions were adjusted in order to
nullify quadratic factors (GOCE Flight Control Team 2014),
which is before the period covered by the data shown in
Fig. 3. A closer inspection reveals that kd25y seems to be
approximately constant around−70.4 s2/mbefore July 2010
and −67.6 s2/m after December 2010. We can only spec-
ulate that this small change in mean might be related to
the satellite anomaly that occurred in summer 2010 (GOCE
Flight Control Team 2014), where it should be noted that the
quadratic factors were determined several times afterward.
They were found to be adequately nullified, so that the proof
mass position was not adjusted. Such a change in mean is
not visible for cd25y , which appears to be constant around
55 × 10−6.

As a representative example, we show in Fig. 4 the map
of ΔṼyy for ascending orbital arcs in the period from March
16, 2012, to May 22, 2012, which is a period when the drag
signal is already much larger compared to the beginning of
the mission due to increased solar activity. Afterward, the
drag signal increases further, also because of a sequence of
orbit lowering maneuvers that started in November 2012.
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Fig. 4 Bandpass-filtered
gravity gradient residuals ΔṼyy
of present Level 1b gravity
gradients (top panel), the
bandpass-filtered quadratic
factor correction for V̄yy
(mid-panel), and the
bandpass-filtered gravity
gradient residuals ΔṼyy
corrected for a quadratic factor
(bottom panel). The green
triangles indicate the location of
the geomagnetic poles and the
green line indicates the
geomagnetic equator. In the top
and mid-panel, the color scale is
limited to ±30 mE, whereas
peak values are larger than
400 mE

The top panel shows ΔṼyy as calculated from the
EGG_NOM_1b data products. The perturbation in ΔṼyy

occurs predominantly in the regions around the geomagnetic
poles (green triangles) where its magnitude is at least 30 mE

as opposed to 5 mE at latitudes lower than 30◦. For some of
the orbits, the perturbation reaches peak values of more than
±400 mE, which is demonstrated in Fig. 5. In the example
shown in Fig. 4, the perturbation is larger in the northern
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Fig. 5 Bandpass-filtered
gravity gradient residuals ΔṼyy
of present Level 1b gravity
gradients (blue line) and after
correction for a quadratic factor
(red line)

hemisphere. It should be noted that there are also periods in
which the opposite is the case.

The estimated quadratic function used for correcting the
gravity gradients is illustrated in the mid-panel of Fig. 4 and
matches almost perfectly the perturbation shown in the top
panel. Even the small perturbing features at low latitudes
are captured very well, which demonstrates that the correc-
tion improves the gravity gradient V̄yy globally, though the
largest improvements are obviously in the regions around the
geomagnetic poles.

The bottom panel of Fig. 4 shows ΔṼyy after removing
the perturbation using the method introduced in Sect. 3. We
clearly see that the perturbation in the regions around the geo-
magnetic poles is removed to a great extent. Due to reducing
the range of the color scale from ±30 to ±5 mE, a much
smaller perturbation that is parallel to the geomagnetic equa-
tor (green line) becomes visible. We suspect that it is due
to small calibration errors that affect the angular rates ωx

and ωz in Eq. (12). Since the attitude control of the satellite
is performed by magnetic torquers, the angular rates corre-
late with the Earth’s magnetic field. Therefore, small errors
in, e.g., scale factors would result in perturbations that cor-
relate with the magnetic field lines. Since the other gravity
gradients are also affected by such small perturbations as
shown in Siemes (2011), Figs. 26–30, we believe that it is
possible to further improve the gravity gradients by revisit-
ing the gravity gradiometer calibration (Rispens andBouman
2011; Siemes et al. 2012), where the calibration model
should be extended by quadratic factors. This is subject to
ongoing investigations and is therefore not presented in this
paper.

The reason for choosing linear time-dependent parameters
is illustrated in Fig. 6. The top panel shows the bandpass-
filtered gravity gradient residual ΔṼyy of present L1b data
with respect to time and argument of latitude. We can clearly
see that the residual is largest around 90◦ argument of lat-
itude, which is near the north pole, and that there is a

significant variability over time. Most notably, the residual
has the largest magnitude around April 23, 2012. The mid-
panel shows ΔṼyy corrected for the effect of a quadratic
factor where the parameters kd25y and cd25y are constant
with respect to time. Though the residual is more than 10
times smaller than that without correction, we can clearly
see remaining perturbing effects in March andMay, whereas
the residual is very small in the second half of April. The
remaining perturbing effects are significantly reduced when
the parameters kd25y and cd25y are allowed to change linear
in time, which is illustrated in the bottom panel. Therefore,
we favor the quadratic function where the parameters kd25y
and cd25y are linearly time-dependent.

Figure 7 shows the amplitude spectral density (ASD) of
the gravity gradient residualΔVyy before and after removing
the perturbation (top and bottom panel, respectively) for dif-
ferent time intervals during mission lifetime. The ASD was
calculated according to a variant of Welch’s method (Welch
1967) where themeanwas replaced by themedian. As part of
Welch’s method, we used a Hanning window (Harris 1978),
which is also known as Hann window. Before removing the
perturbation, the ASD of ΔVyy shows large errors in the fre-
quency range 0.5–50 mHz. The magnitude of those errors
shows a large variability over time, which we attribute to the
variability over time of the non-gravitational acceleration dy .
At the beginning of the mission, the GOCE satellite is closer
in time to the solar minimum and also flying at the initial,
higher altitude. This means that the atmosphere density is
still low and the drag environment is much more ”quiet”. As
time advances, the solar maximum comes closer and the drag
environment becomes less quiet. Starting in November 2012,
the dynamics in the drag increase significantly not only due
to the approaching solar maximum, but also due to the orbit
lowering maneuvers since the atmosphere is denser at lower
altitudes (Bruinsma et al. 2014).

It is striking to see that after removing the perturbation, the
ASD ofΔVyy is practically constant over time. In addition, it
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Fig. 6 Bandpass-filtered
gravity gradient residuals ΔṼyy
of present Level 1b data (top
panel) and the same after
correction for a quadratic factor,
where the parameters are
constant (mid-panel) and linear
time-dependent (bottom panel)

also shows much lower errors than the one before removing
the perturbation. For some of the time intervals toward the
end of the GOCEmission, the improvement exceeds a factor
of 10 in the frequency range 1–10 mHz. We conclude that
removing the perturbation significantly improves the gravity
gradient Vyy , which stresses the need for a more advanced
calibration of the gradiometer that takes into account the
quadratic factor kd25y .

5 Discussion

The results show clearly that an unmodeled quadratic fac-
tor kd25y with a magnitude of approximately −70 s2/m is
responsible for the perturbation observed in the measured
gravity gradient Vyy . Since we are only able to determine a
differential quadratic factor, it is not possible to deduce the
quadratic factors for the individual accelerometers. Never-
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Fig. 7 Amplitude spectral density (ASD) of the gravity gradient residuals ΔVyy of present Level 1b gravity gradients (top panel) and the same
corrected for a quadratic factor (bottom panel)

theless, it should be noted that the initial quadratic factors
for the individual accelerometer reported in Frommknecht
et al. (2011) have a much larger magnitude, reaching values
up to−685.2 s2/m. Since the differential quadratic factor that
we determined is smaller and because we have no evidence
of perturbing effects due to other quadratic factors, we still
consider the method for physically nullifying the quadratic
factors to be very successful.

Smaller perturbations that correlate with Earth’s magnetic
field become visible in ΔVyy after removing the large per-
turbing effect due to the quadratic factor kd25y . Also the other
gravity gradients are affected by such perturbations as shown
in Siemes (2011) and we speculated in Sect. 3 that these are
due to an imperfect gradiometer calibration. Since quadratic
factors are not accounted for in the present calibrationmodel,
we recommend to extend the calibration model by quadratic
factors, recalibrate the gradiometer data and reprocess the

gravity gradients contained in the EGG_NOM_1b data prod-
ucts.

An assessment of the impact on the gravity field model
retrieval will reveal how the improvement described in this
paper compares to earlier improvements of the gravity gradi-
ents described in Stummer et al. (2011). Even though this is
not analyzed as part of this paper, we expect that the gravity
field models and gravity gradient grids will benefit signifi-
cantly from removing the perturbation. Regional studies that
make direct use of the gravity gradients for geophysical mod-
eling in the polar regions are expected to benefit most. For
example, Bouman et al. (2014) demonstrated that GOCE
gravity gradients combined with data of the GRACE mis-
sion are sensitive to ice mass changes of the West Antarctic
ice sheet at basin scale, whereas a similar analysis for the
Greenland ice sheet was hampered by the perturbation in

123



44 C. Siemes

Vyy . The latter should be reassessed in view of the findings
presented in this paper.
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