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Abstract We sketch the evolution of station trajectory
models used in crustal motion geodesy over the last sev-
eral decades, and describe some recent generalizations of
these models that allow geodesists and geophysicists to para-
meterize accelerating patterns of displacement in general,
and postseismic transient deformation in particular. Mod-
ern trajectory models are composed of three sub-models
that represent secular trends, annual oscillations, and instan-
taneous jumps in coordinate time series. Traditionally the
trend model invoked constant station velocity. This can be
generalized by assuming that position is a polynomial func-
tion of time. The trajectory model can also be augmented
as needed, by including one or more logarithmic transients
in order to account for typical multi-year patterns of post-
seismic transient motion. Many geodetic and geophysical
research groups are using general classes of trajectory model
to characterize their crustal displacement time series, but few
if any of them are using these trajectory models to define and
realize the terrestrial reference frames (RFs) in which their
time series are expressed. We describe a global GPS reanaly-
sis program in which we use two general classes of trajec-
tory model, tuned on a station by station basis. We define
the network trajectory model as the set of station trajectory
models encompassing every station in the network. We use
the network trajectory model from the each global analysis
to assign prior position estimates for the next round of GPS
data processing. We allow our daily orbital solutions to relax
so as to maintain their consistency with the network poly-
hedron. After several iterations we produce GPS time series
expressed in a RF similar to, but not identical with ITRF2008.
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We find that each iteration produces an improvement in the
daily repeatability of our global time series and in the pre-
dictive power of our trajectory models.
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1 Introduction

The problems of realizing a terrestrial reference frame (RF),
and expressing the position and displacement history of geo-
detic stations in that frame are very strongly coupled (e.g.
Bevis et al. 2012a). In this work, we focus on one partic-
ular coupling: the mathematical models used by geodesists
and geophysicists to characterize the position of geodetic sta-
tions as a function of time. We refer to purely kinematical
models of this kind as station trajectory models, or trajectory
models for short. For the geodesist, these models are useful
because they provide a simple and compact means to pre-
dict the position of a given station on a given day. This task
constitutes the very essence of RF realization: constraining
the coordinates of some stations at a given epoch in order to
determine, via measurements of relative position, the coordi-
nates of other stations at that same epoch. The more precisely
and more consistently (over time) one can predict the geom-
etry of a reference network, the more consistent and stable
the associated RF becomes. This is a major concern for most
geodesists. Geophysicists are usually more concerned about
station trajectories because of the insights they give into the
dynamical behavior of the solid earth. But everyone ben-
efits from improved RF stability, since daily ‘jitter’ of the
frame (or, more properly its realization) increases the scatter
or noise in station coordinate time series, thus diminishing
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our ability to resolve and characterize the phenomenology of
station displacement.

Geophysicists will go to great lengths to examine, ana-
lyze and model crustal motion time series, following Play-
fair’s (1802) dictum that it is wiser to inquire into nature’s
secrets than to guess at them. A geophysical research group
might spend a year analyzing in exhaustive detail the pre-
cise nature of the crustal displacements observed in a given
region in the aftermath of a single great earthquake, and what
can be inferred from those observations. It is not surprising
then, that geophysicists have driven much of the recent inno-
vation in trajectory models. Not all of these innovations will
be widely adopted by geodesists, especially those engaged
in operational analysis, because for geodesists a station tra-
jectory model is really useful only if it is easy to deploy,
computationally inexpensive, and fairly widely applicable.

Although many geodetic and geophysical research groups
are using ‘modern’ trajectory models to characterize their
crustal displacement time series, very few if any of them are
using these trajectory models to define (or refine) and real-
ize the frames in which their time series are expressed. We
have been incorporating modern, rather general classes of
trajectory model into the ‘upstream’ as well as the ‘down-
stream’ segments of our geodetic workflow for more than
3 years. Upstream we use them to generate the prior sta-
tion coordinates required by our GPS data processing engine
GAMIT/GLOBK (Herring et al. 2010), thereby influencing
our daily solutions for the GPS satellite orbits and for the
geometry of the global GPS network. After each global analy-
sis or reanalysis is completed, we update the station trajectory
models for each station in the network. After several itera-
tions the prior coordinates being injected to the GPS process-
ing engine are no longer consistent with the predictions of
ITRF2008 (Altamimi et al. 2011). The differences are mod-
est but they are systematic, and therefore our network time
series are actually expressed in a slightly different RF that
we call OSU08.

There are two main themes in this paper. First, we wish
to review the topic of station trajectory models in a man-
ner that is easily accessible to non-specialists and to students
entering our field. This review—perhaps tutorial would be a
better term—is not exhaustively comprehensive, and it does
emphasize the classes of trajectory model we use at Ohio
State University (OSU). Towards the end of this survey, we
discuss our experience incorporating the logarithmic tran-
sient formula, now widely used to characterize postseismic
transients, into our trajectory models. Unlike most discus-
sions of this topic, our approach is pragmatic and focused
primarily on the geodetic utility of this class of trajectory
model, not its geophysical significance.

We then develop our second theme—the potential impact
of modern trajectory models on the way in which we define
and realize reference frames (RFs). At high school we learned

that a set of axes allows us to give coordinates to a set of
points. But for geodesists, it is the giving of coordinates to
a set of reference stations that, in effect, defines the axes.
Therefore, when a RF is to operate not just at a single epoch,
but continuously over an extended period of time, we have to
invoke this axis system by specifying the coordinates of the
reference stations as functions of time. That is, we must spec-
ify the trajectories of these reference stations. If we define a
network trajectory model as a set of station trajectory models
for every station in a network, then, in its operational con-
text, a RF is a network trajectory model for a set of reference
stations. It follows that if modern station trajectory models
are improving our ability to characterize displacement time
series expressed in standard RFs, then these improved tra-
jectory models should also allow us devise and realize more
consistent (and ‘stable’) RFs.

Again, we hope to develop this theme in a fashion eas-
ily understood by non-specialists. We will invoke the con-
cept of inner geometry, meaning RF-independent geome-
try. This fundamental idea pervades modern space geodesy,
but its ubiquity is sometimes obscured by the variety of lan-
guage in which it is expressed. To understand the potential
impact of modern trajectory models on the RF and the time
series expressed in these frames, it is crucial to distinguish
between the geometrical alignment or stacking of a network
time series, and the subsequent transformation of the aligned
time series into a target RF. This two-stage approach is widely
used in the space geodetic community, but its nature some-
times proves difficult for non-specialists to grasp. Therefore,
we seek to explain the posterior approach to RF realization,
and its nexus with trajectory modeling, using consistent and
easily understood language.

2 The evolution of station trajectory models

About 50 years ago, before Alfred Wegener’s theory of conti-
nental drift (or plate tectonics) was widely accepted, and well
before modern space geodetic techniques had been devel-
oped, geodesists realized their RFs and described their geo-
detic networks by assigning three spatial coordinates to each
geodetic station. In principle, these coordinates were con-
stant over time. Static coordinates are best suited to a static
earth, but also serve on a dynamic earth so long as extant posi-
tioning methods lack the precision to detect tectonic motions
over extended periods of time (say, one decade). But with the
advent of very long baseline interferometry (VLBI), satellite
laser ranging (SLR), and global positioning system (GPS)
geodesy, plate motions were easily resolved over a year or
two, and eventually over even shorter periods of time. This
level of positioning accuracy rendered static global coordi-
nate systems permanently obsolete. The simplest conceiv-
able reference system for a dynamic earth invokes a constant
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velocity model (CVM) in which the geocentric Cartesian
coordinates (X, Y, Z) for each geodetic station are expressed
as a linear function of time, thus

X (t) = XR + Vx (t − tR)

Y (t) = YR + Vy(t − tR)

Z(t) = ZR + Vz(t − tR)

(1)

or in vector form

x(t) = xR + v(t − tR) (2)

where tR is a reference time (adopted by convention), xR =
x(tR) = [XR YR ZR]’ is the reference position, and v =
[Vx Vy Vz]’ is the station velocity. In this model, the trajec-
tory of each station, i.e. its position as a function of time,
is completely described by its reference position, xR, and
its velocity, v. That is, six parameters are used to describe
each station, instead of three as before. Some groups and
services, e.g. the International Earth Rotation and Reference
Systems Service (IERS), adopt a single reference time for all
stations used to define a given reference frame, while others
(including us) prefer station-specific reference times set by
convention to the mean epoch (measurement time) of the time
series used to estimate the six parameters of the CVM. This
convention minimizes the statistical correlation between the
reference position and velocity estimates.

As networks of continuous GPS (CGPS) stations prolifer-
ated around the world in the late 1980s, it very soon became
clear that the CVM was of limited utility in that it could not
accommodate the sudden offsets or ‘jumps’ observed in many
geodetic time series. In some cases these jumps were coseis-
mic displacements produced by local or large regional earth-
quakes. But most coordinate jumps were caused by changes
in the GPS hardware, especially the antenna or its radome,
and thus were artificial discontinuities in the time series since
the ground itself had not really moved. Artificial or not, these
sudden jumps in coordinates must be accounted for. One way
to do this is to rename the station so as to establish a new ref-
erence position. But the more elegant and more manageable
approach is simply to model each jump using a Heaviside
function, sometimes referred to as the ‘unit step’ function,
defined thus

H(t) = 0 for t < 0
H(t) = 1/2 for t = 0
H(t) = 1 for t > 0

(3)

The CVM was modified to accommodate one or more jumps
at specified times {t j }, j = 1 : nJ , thus:

x(t) = xR + v(t − tR) +
nJ∑

j=1

b j H(t − t j ) (4)

where b j characterizes the jump which occurs at time t j as
an instantaneous displacement vector specified in geocentric
Cartesian coordinates. That is, the three components of b j

are the jumps that occur in the X, Y , and Z coordinates of the
station at the instant of the j th jump. The velocity v remains
constant. This model (Eq. 4) is also referred to as the CVM,
but it can be called the ‘CVM with jumps’, if the distinction
from Eq. (2) is important.

This modified trajectory model (Eq. 4) was widely adopted
by the international geodetic community by the late 1980s,
and it provided an adequate description of the great major-
ity of geodetic CGPS time series until the late 1990s, when
geophysicists and geodesists began to resolve annual oscil-
lations in their geodetic time series. These oscillations were
usually much larger in the vertical direction than in the hor-
izontal. With the notable exception of Dr. M. Murakami in
Japan, who argued they were real, these seasonal cycles were
largely ignored or dismissed as artifacts (e.g. due to mis-
modeling of atmospheric delays) until Heki (2001) vividly
demonstrated that they were actual oscillations of the ground
manifesting earth’s elastic response to seasonal changes in
the loads imposed upon the lithosphere by the overlying
environment—especially the loads associated with surface
water, snow and ice (see also Mangiarotti et al. 2001; Van
Dam et al. 2001; Blewitt et al. 2001). Dong et al. (2002)
demonstrated that for most GPS stations these annual oscil-
lations could be well approximated by a four-term Fourier
series consisting of two annual and two semi-annual terms.
They also argued that it was desirable to include this truncated
Fourier series in the trajectory model so as to prevent non-
integer numbers of displacement cycles affecting, or “leaking
into” estimates of a station’s reference position and velocity.
They implied that this could, in principle, improve the sta-
bility of the terrestrial RF. Today, many, if not all, crustal
motion geodesy groups routinely include annual displace-
ment cycles in their station trajectory models, which usually
take the form:

x(t) = xR + v(t − tR) +
nJ∑

j=1

b j H(t − t j )

+
nF∑

k=1

[sk sin(ωk t) + ck cos(ωk t)] (5)

where nF is the number of frequencies used to model the
annual displacement cycle, and

ωk = 2π

τk
, and τ1 = 1 year,

τ2 = 1/2 year, τ3 = 1/3 year, etc.

This trajectory model, which superimposes both Heaviside
jumps and an annual cycle on a constant velocity trend, is lin-
ear with respect to its parameters or coefficients, which num-
ber 3∗(2 nF +nJ +2) in all. That is, (2 nF +nJ +2) trajectory
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Fig. 1 Daily displacement time series (blue dots) at CGPS station
POVE in Puerto Vehlo, Brazil, and its best-fit trajectory model (red
curves). The three plots depict the east (E), north (N) and up (U) compo-
nents of displacement in meters. Annual displacement cycles at POVE
are driven by seasonal variations in the mass of water residing in the
Central Amazon Basin (e.g. Bevis et al. 2005). The vertical cycle has
a peak to peak amplitude close to 40 mm, about an order of magnitude
larger than the horizontal cycles. Note that interannual variations in the

vertical cycle can be correlated with droughts or unusually wet rainy
seasons. The five numbers above the left side of each plot are the veloc-
ity in mm/year and coefficients (s1, c1, s2, c2) of the truncated Fourier
series in mm. The WRMS misfit of data and model is given in mm at
top right. The super-label at the top of the page specifies the structure
of the SLTM. All displacements are expressed in a RF attached to the
stable core of the South American plate

parameters are needed to describe the temporal evolution of
each station coordinate X, Y , or Z . In our experience, it is
only rarely necessary to set nF > 2, but setting nF = 2 usu-
ally produces a significantly better fit to the observed time
series than does setting nF = 1. Figures 1 and 2 depict rather
striking examples of seasonal oscillations at GPS stations
POVE, in Brazil, and NETT, in New Zealand.

While this trajectory model (Eq. 5) is well known and
fairly widely employed, it has never, to our knowledge, been
used to define a RF. Before focusing on this issue, we describe
two further generalizations of the station trajectory model
that we frequently use in our work at OSU. The first gen-
eralization allows us to model stations whose displacement
trends involve significant and sustained accelerations. The
second generalization allows a trajectory model to follow the
displacements of stations affected by post-seismic transients.

3 Incorporating non-steady displacement trends

The trajectory model presented in Eq. (5) is composed of
three sub-models:

x(t) = xtrend + xjumps + xcycle (6)

with the first sub-model, which accounts for the multi-
year trend in position, being the CVM (Eq. 2). How-

ever, sustained accelerations are being observed at increas-
ing numbers of CGPS stations, especially near or within
active ice sheets (Khan et al. 2010; Jiang et al. 2010;
Bevis et al. 2012b), but also in other settings such as
active volcanoes. We can accommodate such behavior by
replacing the CVM (Eq. 2) with the polynomial trend
model

xtrend =
nP+1∑

i=1

pi (t − tR)i−1 (7)

where nP is the order or maximum power of the polynomial.
If nP = 1, then this model reduces to the CVM, with p1 =
xR and p2 = v. If nP = 2, it becomes the quadratic trend
or ‘constant acceleration’ model in which the acceleration
vector a = 2 p3. No matter what value is assigned to nP , p1

always corresponds to the reference position xR. In practice
nP should not be set larger than 5 or 6, unless the trend model
is reformulated to use orthogonal polynomial functions. In
our experience it is only rarely necessary to set nP > 3. For a
very large majority of CGPS stations, it is perfectly adequate
to set nP = 1.

Having made this substitution we obtain the trajectory
model known at OSU as the standard linear trajectory model
(SLTM):
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Fig. 2 The CGPS station NETT in the Southern Alps of New Zealand
exhibits one of the largest horizontal displacement cycles observed any-
where on earth. This cycle is much stronger in the E component of dis-
placement (shown) than in the other components (not shown). Note that

the SLTM incorporates a single Heaviside jump which accommodates
an artificial displacement associated with an antenna change. This time
series is expressed in ITRF2008

x(t) =
nP+1∑

i=1

pi (t − tR)i−1 +
nJ∑

j=1

b j H(t − t j )

+
nF∑

k=1

sk sin(ωk t) + ck cos(ωk t) (8)

This vector equation can be thought of as a system of three
scalar equations describing the temporal evolution of the
X, Y , and Z coordinates, respectively. Indeed, operationally
it is most practical to work with the three scalar equations
one at a time, because, in analyzing the displacement history
at a given station, we can solve for the three sets of trajectory
parameters independently, given that the X, Y, and Z axes are
orthogonal. Note that the trajectory model for each Cartesian
coordinate involves a total of (2 nF +nJ +nP +1) parameters
or coefficients. In estimating the parameters of this model by
inverting a station position time series {ti , xi }, i = 1 : m, it
is useful to keep the architecture of the model (Eq. 6) in mind.
For instance, we build the design matrix (which we partition)
from the individual design matrices associated with each sub-
model, and, after the inversion, we frequently decompose the
trajectory model into its component parts.

By way of an example, we show a trajectory model fitted
to our coordinate times series for the West Greenland CGPS
station KELY at Kellyville. This time series, and all others
shown in this paper, were obtained using GAMIT/GLOBK
software (Herring et al. 2010) at OSU. We fit this time series
with a trajectory model composed of a quadratic trend (by
setting nP = 2), one Heavyside jump (nJ = 1), and the
standard four-term Fourier series (nF = 2). As usual, it is
instructive to transform the data and the trajectory model
into the local (topocentric) cartesian axis system [E, N, U] in
which E is east, N is north and U is ellipsoid-normal up. We
then see that the jump, the annual oscillations and the accel-
erations are all larger in the vertical direction (Fig. 3). The
jump, which occurred at 17:18 Z on 2001/09/14, was associ-
ated with a change of receiver, antenna and radome as well
as a change in the antenna reference point. This produced an

apparent downward jump of 61.1 mm, and horizontal jumps
of 3.5 mm W and 3.4 mm S. Since this jump is artificial in the
sense that the earth’s crust did not really jump at this time,
it is useful to remove the Heaviside jump from the data and
the trajectory curves so as to isolate actual crustal motion
(Fig. 4). Clearly, KELY has reversed the direction of its ver-
tical movement during the course of its lifetime (Jiang et al.
2010).

We quantify these rate changes in Fig. 5, which shows the
‘velocity trend’, that is the station velocity history once the
oscillatory velocity changes associated with the seasonal dis-
placement cycle have been excluded. This is achieved by tak-
ing the first derivative of the polynomial model for displace-
ment trend. We see that the U component of velocity changed
from about −2.8 mm/year in 1996.0 to about +4.1 mm/year
in 2010.4. The acceleration estimate is 0.49±0.02 mm/year2.
The accelerations are much smaller in the E component
(−0.10 ± 0.01 mm/year2) and negligible in the N compo-
nent (−0.04 ± 0.02 mm/year2). As KELY has accelerated
upwards in response in accelerating ice loss to its east (Khan
et al. 2010; Jiang et al. 2010), it also accelerated horizon-
tally, nearly westwards. This ‘up and away’ acceleration is
the classic ‘Boussinesq response’ for a point located outside
of a region of accelerating mass loss (Becker and Bevis 2004;
Bevis et al. 2012b).

It is possible to characterize accelerating patterns of dis-
placement without using polynomial trend models. Some
recent works have invoked a linear spline or polyline trend
model instead (e.g. Khan et al. 2010). This divides the total
time span encompassing a station time series into two or more
adjoining intervals, and invokes a CVM in each time interval,
but requires these line segments to connect at the boundaries
between time intervals. The resulting polyline is continuous,
but its gradient can be and usually is discontinuous at the
boundaries of the time intervals.

Note that the linear spline model is distinct from the piece-
wise constant velocity model (PCVM) sometimes invoked by
the ITRF, since the line segments in this case are not required
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Fig. 3 The crustal
displacement time series at
station KELY in West
Greenland, and a standard linear
trajectory model invoking a
quadratic trend, a single
Heavyside jump, and a four-term
Fourier series (red curve). The
WRMS misfit of data and model
is shown (in mm) on the top
right side of each plot. This time
series is expressed in a frame
that minimizes horizontal
motion at long-lived CGPS
stations within Greenland
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Fig. 4 The displacement time
series and trajectory model
shown in Fig. 3 after the
Heaviside jump has been
removed from the data and the
model. The location of the jump,
which was an artifact of an
antenna and radome change, is
shown by the dashed red line.
These plots now depict the
actual motion of the ground.
Clearly the direction of vertical
motion has reversed during the
course of KELY’s lifetime
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to join at the boundaries between time segments, and so the
PCVM often produces a discontinuous representation of a
secular trend. Indeed, ITRF sometimes invokes the PCVM
using time segments that overlap, or which are separated by
gaps in which the station position is undefined. See Sect. 6.2
for further discussion of the PCVM.

Yang et al. (2013) model both secular trends and annual
cycles recorded in Greenland using a more complicated
approach than any discussed so far. Their approach uses a

spline model to address how annual ‘cycles’ might vary from
year to year. This is perhaps the most specialized trajectory
model devised to date for use in tectonically stable areas: its
structure reflects the authors’ understanding of climate cycles
and climate change in a polar ice sheet. It is probably too
specialized for wholesale adoption by geodesists and geo-
physicists engaged in global GPS analysis. We shall make
no further reference to this interesting class of trajectory
model.
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Fig. 5 The E, N and U components of the velocity trend at KELY
(solid red line) and their nominal 95 % confidence intervals (dashed
red lines). Since this station was modeled using a quadratic trend, this
is a ‘constant acceleration trajectory.’ The dashed blue line represents

the lifetime average station velocity. Strongly accelerating patterns of
displacement in Greenland cannot be explained in terms of postglacial
rebound (PGR). They manifest instantaneous elastic rebound driven by
accelerating rates of ice loss (Bevis et al. 2012b)

4 Accommodating postseismic deformation

A significant fraction of CGPS stations worldwide are located
in seismogenic areas, and therefore, over the last 15–20 years,
many CGPS stations have recorded coseismic jumps fol-
lowed by pronounced postseismic transients. This produces a
significant challenge for groups engaged in designing or real-
izing global RFs valid from the early 1990s to the present day,
because there are numerous regions of the world, e.g. west-
ern South America, Indonesia, Turkey, California, Japan,
Taiwan, Alaska and the Southwest Pacific, in which many
or even all long-lived CGPS stations have recorded one or
more episodes of vigorous postseismic deformation. Unless
the trajectories of these stations can be approximated using a
suitably modified trajectory model, then these stations can-
not easily be used to define or realize a RF, and the remaining
global reference stations will have a significantly poorer spa-
tial distribution. Polynomial trend models (Eq. 7) are not well
suited to this task, because postseismic transients often begin
‘in the middle’ of a time series, with the fastest accelerations
of all just after the earthquake, and no transient acceleration
at all immediately before the earthquake.

Postseismic deformation is widely thought to be driven by
some combination of

(1) poroelastic rebound, which is deformation caused by
pore fluids flowing in response to the stress perturba-
tions produced by the earthquake (Peltzer et al. 1998;
Wang 2000; Masterlark and Wang 2002; Jónsson et al.
2003; Fialko 2004; Wang et al. 2004),

(2) afterslip on the fault or plate boundary that generated
the earthquake (Smith and Wyss 1968; Bucknam et al.
1978; Marone et al. 1991; Heki et al. 1997; Marone 1998;
Perfettini and Avouac 2007; Perfettini et al. 2010, Lin et
al. 2013), and

(3) bulk viscoelastic relaxation of material surrounding (in
map view) and beneath the fault (e.g. Thatcher and Run-
dle 1979; Wahr and Wyss 1980; Deng et al. 1998; Pollitz
et al. 2000; Freed 2007; Freed et al. 2007; Wang et al.
2012).

While poroelastic rebound may not always be a strong
contributor to postseismic deformation, when it is clearly
present, it is distinct from the other two mechanisms in that
it is relatively short-lived (often being weak or even unre-
solvable after a few weeks), and it is best expressed in the
near-field of the main event. Afterslip and viscoelastic relax-
ation persist for many years, and they may affect a much
wider region. Many geophysical theorists believe that vis-
coelastic relaxation persists much longer than does afterslip
(e.g. Wang et al. 2012), and that present day postseismic
deformation near the rupture areas of the giant 1960 Chile
and 1964 Alaska megathrust earthquakes can be explained
purely in terms of viscoelastic relaxation (Wang et al. 2007).

Of the three mechanisms identified above, only the second
mechanism is easy to model using a simple mathematical
formula. Afterslip is known to generate transient displace-
ments that are well approximated over several years by the
logarithmic transient formula A log(1 + �t/T ) suggested
by rate-and-state friction models (Marone et al. 1991; Per-
fettini and Avouac 2007; Perfettini et al. 2010). In contrast,
poroelastic effects and bulk viscoelastic relaxation are typ-
ically modeled using complicated numerical methods (e.g.
finite element models), and there are no closed-form, analyt-
ical expressions for the transients generated at each geodetic
station.

Given that multiple, quite distinct mechanisms contribute
to postseismic deformation, it does not seem likely, at first
glance, that we could develop a simple means of augmenting
the SLTM so as to account for postseismic transient motion.
But we will show that it is possible to achieve this goal, pro-
vided that (1) we focus directly on the trajectories of the
geodetic stations affected by postseismic deformation, not
on the causative phenomena taking place underground, and
(2) we accept that this simple model often fails to account
for the especially rapid deformation that takes place in the
first few weeks or months following the main event. We
achieve this apparently unlikely outcome by assuming that
the logarithmic transient formula can model postseismic tran-
sient displacement at any GPS station, even though this for-
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mula is theoretically associated with the afterslip mechanism
alone. The frequent failure of this formula to account for the
first few weeks or months of postseismic deformation might
arise because actual short-term deformation is produced in
large part by a mechanism other than afterslip, most likely
poroelastic deformation. (We should keep in mind that the
fluctuations of well water levels sometimes observed imme-
diately following nearby earthquakes, provides direct evi-
dence of postseismic pore-pressure transients, e.g. Jónsson
et al. 2003; Wang et al. 2004.) However, the inability of the
logarithmic transient formula to fit the entire time series could
also arise because GPS station displacement caused by after-
slip is sensitive to spatial variation of the frictional properties
of the fault or plate boundary engaged in afterslip. While the
logarithmic transient formula might be a valid expression for
afterslip in every small patch of the fault, the value of para-
meter T might vary from patch to another, and since all such
patches contribute to displacement at a given GPS station, it
is not really valid to assume that station displacement follows
the logarithmic form with a single value of T . That is, the
logarithmic formula may be overly simplistic when applied
to a single GPS station as opposed to a small fault patch
undergoing afterslip.

However, as we shall see, if we exclude (or downweight)
the several week to several month period immediately follow-
ing the earthquake, the subsequent success of the logarithmic
transient formula in accounting for GPS station displacement
is so striking that it suggests to us that afterslip nearly always
dominates viscoelastic relaxation even a decade or more after
the primary seismic event, and not just for a several years, as
is already widely acknowledged—see Lin et al. (2013) for a
brief review of the relevant literature.

Indeed, the claim we shall make below is rather more
remarkable than what we have suggested so far. The logarith-
mic transient formula has two parameters, A and T , the sec-
ond of which appears inside the logarithm, and thus implies a
nonlinear inversion will be required to estimate the parame-
ters or coefficients for each station. But we will demonstrate
that a useful first approximation is obtained simply by set-
ting T = 1 year, and estimating A alone, in which case the
inversion is purely linear. We do recommend tuning the T
parameter by station, usually one station at a time, but only
as a non-urgent refinement undertaken as time permits, and
not in the context of global time series analysis and RF real-
ization. The insensitivity to T is such that, having refined the
estimate of T at some later date, using a station-specific non-
linear estimation procedure, it is not necessary to repeat this
refinement process very often, at least once the postseismic
transient has been measured for ∼2 years or longer.

We are not suggesting that geophysicists engaged in the
study of earthquake physics, fault mechanics, and crustal and
mantle rheology, could consider such a simplistic approach
sufficient or adequate. Rather, we are suggesting that a very

simple augmentation of the SLTM, based on the logarithmic
transient formula, provides an adequate means for geodesists
to predict the positions of almost any geodetic station sub-
ject to postseismic transient deformation, for all but a few
months at worst, with centimeter or sub-centimeter accu-
racy. This is much preferable to eliminating all such stations
from the set of reference stations used to realize a RF (at
least for all epochs after the first earthquake that produces
a postseismic transient at that station). Modeling such tran-
sients allows many more long-lived CGPS stations to be used
in RF realization (specifically in the time series alignment
step discussed in Sect. 6.3), including stations in regions that
would otherwise be almost devoid of representation. This
promotes a ‘stiffer’ RF and less noisy estimates of station
motion (including postseismic transients) within that frame
(see Sect. 6.4). Indeed, such an approach ultimately benefits
the geophysicist who will analyze station displacements in
a much more sophisticated way, because it will largely sup-
press the RF jitter and RF drift that is often precipitated by
very large earthquakes. Even so, our immediate interest here
is in predicting the station trajectory, not in understanding its
physical causes.

5 Adding logarithmic transients to the standard linear
trajectory model

In this section, we will discuss how we augment the SLTM
(Eq. 8) by adding one or more logarithmic transients, as
needed, in order to accommodate postseismic deformation,
at least in an approximate sense.

5.1 Some preliminary considerations

A logarithmic transient displacement has the form

d = A log(1 + �t/T ) (9)

where �t is time since the earthquake occurred. Since this
formula applies only after the earthquake has occurred, we
are restricted to the domain �t ≥ 0. The scalar d might refer
to any one of the geocentric Cartesian coordinates (X, Y , or
Z ) or topocentric Cartesian coordinates (E, N , and U ) used
to describe a geodetic time series.

In Appendix 1, we demonstrate that the SLTM augmented
with the logarithmic transient formula (Eq. 9) is surprisingly
insensitive to the value of the nonlinear parameter T in the
sense that if one assigns a moderately erroneous value to T ,
and allows A to adjust accordingly, one can retain a very good
fit to the great majority of the data. There is a subtlety here in
that this insensitivity is not inherent to the logarithmic tran-
sient formula itself, but arises when it is used in conjunction
with the SLTM (Eq. 8). That is, the coefficients of the SLTM,
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as well as the linear coefficient A, all adjust so as to permit
a good fit to the data even when T is assigned an inaccurate
value (though A usually adjusts the most). If one’s goal is
fitting or characterizing an observed station trajectory, rather
than isolating the individual physical contributions to station
displacement, this trade-off between the various coefficients
is highly beneficial. It also provides the geodesist with a use-
ful option, further discussed below, i.e. to simply assign a
‘reasonable’ or default value for T , and fit an augmented tra-
jectory model using a completely linear LS approach. The
value of T can be refined later, on a station by station basis,
using a nonlinear estimation approach. The practical advan-
tage of this option is that during the global process of time
series analysis and reference frame realization, one is not
engaged in estimating many dozens or even hundreds of non-
linear parameters simultaneously. This task can be deferred,
and later undertaken in a non-global context. It is often prefer-
able to estimate say 100 non-linear parameters one or two at
a time, in separate inversions, than to estimate all of these
parameters simultaneously (along with thousands of linear
parameters) in one large inversion.

5.2 The extended trajectory model: nomenclature and
patterns of usage

We define the extended trajectory model (ETM) as the com-
bination of a SLTM and one or more logarithmic transients.
Explicitly, the ETM is

x(t) =
nP+1∑

i=1

pi (t − tR)i−1 +
nJ∑

j=1

b j H(t − t j )

+
nF∑

k=1

sk sin(ωk t) + ck cos(ωk t)

+
nT∑

i=1

ai log(1 + �ti/Ti ) (10)

where nT is the number of logarithmic transients. For each
transient caused by an earthquake at time tEQ, we define �t =
0 for t < tEQ, and otherwise �t = t − tEQ. This is one way to
ensure that the transient is restricted to the time period after
the primary or causative seismic event.

When we engage in station trajectory analysis and refer-
ence frame realization using a global time series involving
>1,200 GPS stations and a combined or total timespan of
∼18 years (e.g. Bevis et al. 2012a), we are typically model-
ing ∼100 stations affected by postseismic transients. We rou-
tinely perform a provisional analysis for any newly observed
transient in which Ti is treated as a known constant (metadata
for a particular station and earthquake), so that the amplitude
coefficients, ai , can be estimated using a linear LS approach.
In this case we call the model (Eq. 10) the extended linear

trajectory model (ELTM). We rarely fail to obtain a useful
first approximation by assigning T a default value of 1 year.

We have modified our global ‘jump table’, which was pre-
viously used to indicate the timing of Heaviside jumps at each
station, and nothing else, so that following the station code
and the jump time there is now a third, numerical entry. If
this entry is set to zero, it indicates that no logarithmic tran-
sient is invoked. (This is always the case for artificial jumps
associated with equipment changes.) If this entry is set to
any positive number, it indicates that a logarithmic transient
should be ‘attached to’ the Heaviside jump, and that the value
of this entry should be assigned to the parameter T . By con-
vention, T = 1 is the (default) value entered when a transient
has been recognized for the first time, and its optimal value
is unknown. If any value other than 1 is found in the jump
table, it indicates that this value that has already been ‘tuned’
by a non-linear analysis of this station’s time series, usually
in the calm aftermath of a large global analysis or ‘rerun’.
As noted above, in our experience, this tuning does not need
to be revisited very often, unless one is truly focused on T
as a geophysical quantity, rather than just as a means to pre-
dict station position. (The exception is for those stations for
which little time has passed since an earthquake initiated a
transient. Until the transient is characterized by about 2 years
of postseismic observations, the best fit value of T may
change significantly with each new increment of postseismic
data.)

Non-linear estimation of T implemented on a single sta-
tion basis is particularly simple if (as usual) the ETM invokes
only a single transient. In this case T can be estimated using
an iterative one-dimensional grid search. It is also possible to
estimate an optimal shared value of T for a group of CGPS
stations that all record the postseismic transient deformation
produced by a single earthquake. This level of detail is of
more interest to a geophysicist studying earthquake source
physics than to a geodesist whose immediate interest is to be
able to predict the coordinates of a given station on a given
day.

5.3 Case studies

We now present some examples of postseismic transients and
the extent to which we can model them using the ETM or the
ELTM. We shall include the latter approach, because we wish
to demonstrate that remarkably good results can be obtained
even without estimating the parameter T using a nonlinear
inversion.

We first consider the case of the Mw 7.6 ‘Centennial’
earthquake that occurred near the South Orkney islands on
4 August 2003 (Plasencia 2007; Smalley et al. 2007). The
epicenter of this shallow, transtensional event was located
about 76 km from the GPS station BORC at Base Orcadas.
So far, the postseismic transient at BORC has been observed
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Fig. 6 The displacement time
series at station BORC, in the
South Orkney islands, fit with
an ELTM with T at its default
value of 1 year. Note that the
first few months after the
earthquake, the E time series is
systematically down-weighted
by our robust inversion
algorithm. The down-weighted
points are shown in orange. The
down-weighting factor, s, is
largest in the first few days of
the transient, but progressively
weakens as the transient is better
modeled by the ELTM.
Eventually, down-weighting
ceases. In contrast, most of the
orange ‘outliers’ visible in the N
and U time series have been only
gently down-weighted. They
represent noisy measurements,
not model problems
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for a total of 8.5 years (Fig. 6). It is most strongly developed
in the E component of displacement. The best fit ELTM,
with T defaulting to 1 year, is shown in Figure 6. A sec-
ond, nonlinear analysis finds T = 0.283 years, leading to
a modestly improved fit (Fig. 7). In both cases our iterative
reweighting scheme, which is designed to reduce the impact
of unusually noisy measurements (i.e. outliers), systemati-
cally downweights the observations during the early portion
of the transient (Fig. 8). Note that model problems rather than
data problems are responsible for this misfit. However, even
the ELTM with T defaulting to 1 year, produces a very good
fit to the observations for the last ∼8 years of the time series.

Our second example is the postseismic transient observed
by GPS station AREQ in Arequipa, Peru (Fig. 9). This tran-
sient was precipitated by an Mw 8.4 megathrust earthquake
which occurred on June 23, 2001 about 230 km from the
GPS station. We present the best fit ELTM obtained when
T was set to its default value of 1 year. We accounted for
a Mw 7.6 aftershock which occurred on July 7, 2001, by
adding a second Heaviside jump, but we did not invoke a
second logarithmic transient. The observed time series are
well fit by the resulting trajectory curve, except in the first
few weeks following the main event. In this particular case,
subsequent tuning of the value of T produced only a very
minor improvement to the fit.

Our last case study, which focuses on the displacements
recorded by GPS station SAMP in Sumatra, is unusual in that
this station has recorded three distinct postseismic transients
to date. The first transient followed the Mw 9.1 Sumatra–

Andaman earthquake of 2004/12/26, which produced the
highly destructive Indian Ocean Tsunami that killed over
230,000 people in 14 countries. The epicenter of this megath-
rust event was located about 305 km from the GPS station.
This earthquake may have triggered the Mw 8.6 megathrust
event which occurred on 2005/03/28 off the Sumatran island
of Nias, about 246 km from SAMP. Finally, this GPS station
recorded the Mw 7.8 event off the Banyak islands near Suma-
tra on 2010/04/06. Our trajectory model for SAMP invokes
three Heaviside jumps and three logarithmic transients. The
fit obtained in Fig. 10 was obtained with refined estimates for
T for the first two events (0.45 and 1.45 years, respectively),
but because we did not have much data available after the
third event, we allowed T to retain its default value of 1 year.
Note that the RMS misfit of the data and model is higher
but not greatly higher than what we attain at many tropical
stations—and most of those are not undergoing postseismic
deformation. The largest misfit at SAMP occurs in the Y
component, which almost corresponds to the local up (U)
direction.

6 Trajectory models and reference frame design and
realization

In this section we discuss the ways in which utilizing general
trajectory models impacts the design, definition or realiza-
tion of terrestrial RFs. The designing and defining of RFs is
a specialized activity performed by a very small segment of
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Fig. 7 The same displacement
time series for station BORC as
shown in Fig. 6, but now fit by
an ETM with an optimized
value for T (0.283 years). Far
fewer of the E measurements
immediately following the
earthquake are down-weighted
in this analysis, as seen in Fig. 9
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Fig. 8 A detailed comparison
of the fits already seen in Figs 7
and 8, which zooms in on the
time period immediately
following the earthquake. a
When T takes it default value of
1 year, the ELTM significantly
and systematically misfits the
observed transient for a little
over 90 days. b When T is
optimized by non-linear
estimation, the period of poor
model fit is reduced to ∼3 weeks
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the geodetic community. But RF realization is a routine step
for anyone engaged in the analysis of GPS networks, since
station positions and velocities are almost always desired
and stated with respect to a given or target RF. We discuss
RFs in the context of ‘pure GPS’ networks because (i) we,

like the majority of geophysicists, geologists, glaciologists,
meteorologists, etc., engaged in applied geodesy, and even
many ‘pure’ geodesists, analyze geodetic networks consist-
ing only of GPS stations, and (ii) this allows us to simplify
our discussion, because we have already demonstrated that
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Fig. 9 The displacement time
series at station AREQ in
Arequipa, Peru, fit with an
ELTM with T at its default
value of 1 year. This accounts
for the logarithmic transient
produced by the Mw 8.4
earthquake of 2001/6/23. The
Mw 7.6 aftershock of 2001/7/7
(which was closer to the GPS
station) is accommodated with a
pure Heaviside jump, because it
too closely followed the main
event to warrant a separate
transient. The inset figures show
the period before and after the
second earthquake in greater
detail
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Fig. 10 The station SAMP in
Sumatra has recorded jumps and
seismic transients associated
with two great and one major
megathrust earthquakes. The
time series is modeled using
three logarithmic transients, the
last of which assumes the default
value (1 year) for T , since there
is not enough data following this
event to warrant nonlinear
estimation of this parameter
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there is no evidence for significant temporal changes in the
scale associated with GPS measurements, provided that the
entire time series is analyzed using modern satellite antenna
models, and geodetic software and processing protocols are
not changed during the course of the analysis (Bevis et al.
2012a). This allows us to invoke a single and time-invariant
metric or scale. As a result, the coordinate transformations
associated with a change of RF can be completely described
in terms of the three translations and the three rotations that
relate one RF (or axis system) to another one. These are the
parameters of the 6-parameter Helmert transformation H6
(see Appendix 2 for additional discussion).

6.1 Basic concepts

We often refer to a GPS network as a polyhedron, meaning
that the GPS stations of the network constitute the vertices
of this polyhedron. Typically we quantify the geometry of
a polyhedron by assigning coordinates (X, Y, Z) to each of
its vertices. Those coordinates refer to a specific RF that
we normally think of as a particular, right-handed Cartesian
axis system [X, Y, Z]. Most scientists and engineers were
trained, when young, to think of a Cartesian axis system
as an entity that allows us to assign coordinates to points.
But operationally, the reverse is true. In space geodesy, it is
the assigning of coordinates to points that, in effect, defines
the axes. A terrestrial RF such as ITRF2008 (Altamimi et
al. 2011) is a conventional model (Appendix 2) that can be
used to predict the coordinates of a certain set F of GPS
stations at any given epoch or time t , and thereby invoke a
specific axis system. We view the term ‘reference frame’ as
having two distinct meanings: (i) a particular and named axis
system, and (ii) a model that predicts the coordinates for a
global set of GPS stations, allowing us to use these stations
to invoke or realize this axis system. When we wish to refer
to a RF in this second, operational sense, we can call it a RF
model. A RF model is a network trajectory model consisting
of a set of station trajectory models (i.e. including the values
of the parameters of these models)—one for each reference
station incorporated into the definition of the RF. When we
use a RF model to predict the coordinates of a network (or
subnetwork) at a single epoch t , we call this prediction the
model polyhedron at time t . As we shall explain below, model
polyhedra are often used as alignment targets in geodetic time
series analysis.

Suppose we wish to position a general set or network N
of GPS stations, some subset C of which are also members
of the frame-defining station set F. (F is the set of reference
stations used to define a given RF). The stations in C are
common to N and F. Because GPS geodesy is a differential
positioning technique, it determines the inner geometry of a
polyhedron (i.e. its size and shape) much more accurately that
it can directly determine its location or orientation. But we

can use the RF model to predict the coordinates of the com-
mon stations (in subset C), and arrange for the GPS solution
(polyhedron) to be re-positioned and re-oriented so as to con-
form with the predicted coordinates for the common stations,
or very nearly so. Since the shape and size of the polyhedron
is very strongly constrained by the GPS measurements, the
entire polyhedron is now positioned and oriented in the target
frame, and the coordinates of all stations (including those in
N but not in F) are determined. In other words, we transform
the coordinates of polyhedron N so as to express it in the
target RF by aligning the observed (GPS) sub-polyhedron C
with the model sub-polyhedron C.

We invoked above the concept of ‘inner’ geometry—i.e.
the geometry that can be defined purely in terms of the lengths
between points, such as the vertices of a polyhedron. The
inner geometry of a polyhedron makes no reference to axis
systems, and is entirely independent of them. Inner geome-
try depends only on the scale or metric associated with mea-
surements in physical space. A physicist might say that inner
geometry is invariant under rotation and/or translation of
the RF. Those readers not familiar with the concept of inner
geometry (or our terminology) are referred to Appendix 2
for an extended discussion.

We use the 6-parameter Helmert transformation, H6, to
shift and reorient a polyhedron in space so that some subset
of its vertices take on the coordinates predicted by a given
RF (or very nearly do). We can certainly think of this trans-
formation as a general, rigid-body motion of the polyhedron
relative to the axes. But in geodesy we usually adopt the
opposite but equivalent point of view that it is the axes that
are moving rather than the polyhedron. Imagine that a pre-
liminary solution for the polyhedron has the correct inner
geometry but is expressed in an arbitrary RF rather than the
target RF. All we must do is estimate the 6-parameters of an
H6 transformation that changes the coordinates for the sta-
tions in C so that they correspond as closely as possible to the
coordinates predicted by the target RF. That is we transform
the GPS polyhedron by aligning some subset of its stations
with a model polyhedron generated using the network trajec-
tory model that defines the RF in the operational sense. We
then use those H6 parameter values to transform the coordi-
nates of the entire GPS polyhedron, which is then expressed
in or referred to the target frame.

A RF model is most useful if the inner geometry of its
predictions are consistent (or very nearly consistent) with
the actual inner geometry of the corresponding GPS stations
over an extended period of time. This is a key means of
characterizing the ‘geometrical consistency’ of a RF. This
is because the inner geometry of a polyhedron is in some
deep sense its most fundamental and irreducible geometry.
Two very different sets of station coordinates might refer to
exactly the same polyhedron because they differ only in the
choice of the RFs used to express the coordinates. But two
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sets of station coordinates that imply quite different inner
geometries do not and cannot refer to the same polyhedron
(Appendix 2).

In practice, when an H6 transformation is used to align
or re-align a GPS polyhedron as closely as possible with a
model polyhedron, this alignment will almost never be per-
fect. A measure of the residual misfit that characterizes the
lengths of the deviation or residual vectors between the two
sets of vertices is said to characterize their inner coordinate
misfit or inner coordinate scatter (Appendix 2). This is a
RF-independent or ‘frameless’ measure of the geometrical
inconsistency of the polyhedra. If a GPS network time series
composed of one estimated polyhedron per day is aligned
with the model polyhedra predicted by two distinct RFs
and the inner coordinate scatter (for the entire time series)
associated with RF#1 is smaller than that associated with
RF#2, then RF#1 is said to be more consistent with the
GPS measurements, and it would normally be preferred over
RF#2.

Standard RFs such as ITRF2008 normally use equa-
tion (4)—i.e. the CVM augmented, as necessary, by jumps—
to predict the position coordinates of the great majority of
GPS stations incorporated into their definition. For the rest
of this paper we use the abbreviation CVM whether the model
invokes no, one or more jumps. This has long been the favored
station trajectory model for ITRF. For GPS stations at which
postseismic transient deformation produces large changes in
velocity over time, ITRF2008 invokes the PCVM instead.
The PCVM is further discussed and illustrated in Sect. 6.2.
The key point we wish to make here is that to be operationally
useful, a RF must be associated with a network trajectory
model which can predict the model polyhedra used as align-
ment targets, and it is highly desirable that these predictions
are geometrically consistent with the GPS measurements (i.e.
have very similar inner geometries), but there is no reason
why these station trajectory models should be limited to par-
ticular classes of model such as the CVM or the PCVM. We
prefer to employ more general classes of trajectory models—
i.e. the SLTM and the ETM or ELTM—because they produce
more consistent predictions of station geometry, as illustrated
in Sect. 6.2, and this leads to a more consistently realized RF,
as discussed in Sect. 6.3.

In our view, the RFs we produce in this way are mod-
est refinements of an existing parent frame. In recent years
our parent frame is ITRF2008 (from which we inherit our
GPS scale), and we designate our variant as OSU08. Loosely
speaking, OSU08 has been aligned as closely as possible
with ITRF2008, both in position space and in rate or velocity
space. Indeed, for many practical purposes, such as mapping
and engineering surveys, the differences between the two
frames are insignificant. We prefer OSU08 over ITRF2008
because the time series that we express in OSU08 have lower
levels of coordinate scatter.

6.2 Contrasting general station trajectory models with those
employed by ITRF

We begin by noting that even if we position a network N
consisting only of stations which are well characterized by
the CVM, and even if we invoked only the CVM in our
own geodetic analysis, should we use a longer time series
than that available to Altamimi et al. (2011) to formulate
and define ITRF2008, then our estimates of station velocity
and reference position would almost certainly differ from the
canonical predictions of ITRF2008 RF model, and therefore
our realization of ITRF2008 would not be completely con-
sistent with ITRF2008 as it was originally defined. This is
sometimes referred to as ‘reference frame realization error’
(Dietrich et al. 2001)—a very useful term, though perhaps
the word ‘error’ is rather harsh if the dataset being used to
realize ITRF2008 is several years longer than that used to
design and define it, and the extended GPS times series is
now less consistent with the predictions of ITRF2008.

A similar situation arises if the secular trend of many sta-
tions in N was truly constant-velocity, but we inferred these
velocities using Eq. (5) rather than the Eq. (4). We would do
this because, for stations with fairly short time series in par-
ticular, not estimating annual oscillations (as part of the tra-
jectory model) can cause them to alias to ‘leak into’ geodetic
estimates of station velocity (Dong et al. 2002; Collilieux et
al. 2012). Adding cycles to all our station trajectory models
improves the geometrical consistency of our velocity esti-
mates, but may slightly degrade our post-alignment fits with
the predictions of ITRF.

A more dramatic version of this problem arises when we
wish to process a station manifesting large accelerations (i.e.
very significant changes in velocity over time). By mid-2013,
we could clearly resolve accelerations at about half of the
GPS stations in Greenland. In Fig. 11 we show a recent solu-
tion for the upwards (U) component of vertical displacement
at station THU3 in N.W. Greenland, and the best fitting SLTM
(with nP = nF = 2), both expressed in OSU08. We also show
the CVM for THU3 predicted by ITRF2008. The CVM fits
our solutions reasonably well within the time-span of the
THU3 dataset available to Altamimi et al. (2011) when they
designed and defined ITRF2008, although the CVM clearly
does not fit the data as well as the SLTM (or even just the
quadratic trend component of this SLTM). Beyond the time
span of the data available to Altamimi et al. (2011), i.e. after
2009.51, the CVM trajectory (indicated by the dotted line)
systematically diverges from the actual trajectory of this sta-
tion. The key point is that the actual trend of U (t) is curved,
whereas the CVM invoked by ITRF2008 is not. In other
words, the ITRF2008 prediction for THU3 becomes increas-
ingly inconsistent with reality as time passes. We have found
it necessary to invoke polynomial trends to adequately model
stations subject to volcanic deformation, and even ground
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Fig. 11 The vertical
component of the GPS time
series for station THU3 in N.W.
Greenland, plus the associated
trajectory model, both expressed
in OSU08, and the CVM
provided for this station in
ITRF2008. We invoked an
SLTM with a quadratic trend,
which better accounts for the
evident curvature of the secular
trend

water withdrawal as well as elastic displacements driven by
accelerating changes of ice mass in nearby glaciers or ice
sheets.

For some stations, particularly those affected by postseis-
mic transients, Altamimi et al. (2011) accommodate pro-
nounced changes in station velocity by invoking a PCVM
rather than their usual CVM. For example, their SINEX file
entries for station AREQ in Arequipa, which we discussed in
Sect. 5.3, provides predictions for 6 time segments by invok-
ing a CVM model for each segment (Table 1). In Fig. 12a, we
focus on what this RF model implies for the east (E) compo-
nent of displacement at AREQ, and compare it with our GPS
measurements referred to OSU08. Since our model is the
ELTM (with a default value for T ), the non-cyclical part of
the E trajectory model is determined by just 3 coefficients. In
contrast, the PCVM requires 2×6 = 12 coefficients. A mod-
est difference between the ITRF velocity prior to the Mw 8.4
earthquake, and the velocity implied by our GPS solutions
and ELTM in this time period (Fig 12b), probably manifests
the non-identity of ITRF2008 and OSU08. At the other end
of the time series, beyond the end date of the AREQ data
originally available to Altamimi et al. (2011), the ITRF2008
prediction progressively diverges from our GPS solutions
and our SLTM model, and these discrepancies are far larger
than those that occur prior to the Mw 8.4 event. This is
because even after 2010.0, when the postseismic transient
has been decaying for more than 8 years, velocity is still
changing too rapidly to allow the prediction produced using
the sixth CVM to be projected for much more than about
1 year. The ITRF2008 PCVM does out-perform our ELTM
in the several month period immediately following the two
earthquakes—indeed, it concentrates about half of its degrees
of freedom in this time period for that very purpose. But apart
from that limited period, the ELTM model does rather better,
despite having far fewer degrees of freedom, and after about
2011.5 it does much better than the ITRF2008 prediction.

We are well aware that it is in some sense unfair to compare
the predictions of ITRF2008 and those we achieved using our

favored trajectory models, because our data set was larger
than that available to Altamimi et al. (2011), and our fit used
all of our data, whereas the predictions of ITRF had access to
less data per station. But almost everyone analyzing a data set
using a RF such as ITRF2008 has longer if not much longer
time series for many of the GPS stations that they have in
common. We must express our more up-to-date time series
in some frame, and it is reasonable to use or produce a variant
of ITRF2008 rather than ITRF2008 itself if this leads to a
more consistently-realized RF and less ‘noisy’ time series.

In the next section we point out that using more general
trajectory models than those used by the designers of ITRF
is not just about improving the way in which we characterize
the stations our network has in common with those used
to define ITRF, but rather improving the way in which we
characterize the displacements occurring at all GPS stations
in our networks.

6.3 The advantage of imposing the RF after fitting the
trajectory models

Geodesists and geophysicists can realize a target RF in a vari-
ety of ways. It is useful to distinguish between two general
approaches that we refer to as prior versus posterior impo-
sition of the RF.

6.3.1 Prior imposition of the RF

Suppose, as before, that we are analyzing a set N of GPS
stations, some subset C of which were also used to define
a target RF such as ITRF2008. Perhaps the simplest of all
approaches to RF realization, which we call ‘prior imposi-
tion’ of the frame, is pursued during the daily geodetic analy-
sis of the network N. GPS data processing software requires
the user to specify a prior position estimate (X, Y, Z) for
each station in the polyhedron (for each and every epoch or
day), and associated prior position constraints, i.e. the stan-
dard errors (σX , σY , σZ ) indicating the extent to which the
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Table 1 Model parameters for CGPS station AREQ (in Arequipa, Peru) extracted from the SINEX file describing ITRF2008 (Altamimi et al. 2011)

ITRF-2008 piecewise constant velocity model for AREQIPA station AREQ

SEG# Starts Ends Mean epoch

AREQ 1 96:363:00000 01:176:00000 99:087:00000

AREQ 2 01:188:00000 01:225:00000 01:206:43200

AREQ 3 01:223:00000 01:260:00000 01:241:43200

AREQ 4 01:258:00000 02:231:00000 02:062:00000

AREQ 5 02:264:00000 07:337:00000 05:117:43200

AREQ 6 07:342:00000 09:187:00000 08:265:00000

Th TREF XREF (M) Sigma (M) XVEL (M/Y) Sigma (M/Y)

AREQ 1 05:001:00000 1942826.8243 0.72953E−03 0.012736 0.80417E−04

AREQ 2 05:001:00000 1942825.4645 0.84181E−01 −0.238831 0.24440E−01

AREQ 3 05:001:00000 1942825.8945 0.53804E−01 −0.113263 0.16017E−01

AREQ 4 05:001:00000 1942826.1127 0.36669E−02 −0.046701 0.11804E−02

AREQ 5 05:001:00000 1942826.2123 0.63327E−03 −0.003089 0.64376E−04

AREQ 6 05:001:00000 1942826.1976 0.98817E−03 0.002727 0.20859E−03

Th TREF YREF (M) Sigma (M) YVEL (M/Y) Sigma (M/Y)

AREQ 1 05:001:00000 −5804070.2300 0.11404E−02 0.001613 0.16782E−03

AREQ 2 05:001:00000 −5804070.3802 0.18773E+00 −0.031151 0.54510E−01

AREQ 3 05:001:00000 −5804070.4999 0.11958E+00 −0.065838 0.35602E−01

AREQ 4 05:001:00000 −5804070.3063 0.79765E−02 −0.007141 0.25927E−02

AREQ 5 05:001:00000 −5804070.3120 0.81051E−03 −0.006449 0.13747E−03

AREQ 6 05:001:00000 −5804070.3145 0.18335E−02 −0.005281 0.44987E−03

Th TREF ZREF (M) Sigma (M) ZVEL (M/Y) Sigma (M/Y)

AREQ 1 05:001:00000 −1796893.8460 0.75175E−03 0.013794 0.74854E−04

AREQ 2 05:001:00000 −1796894.8069 0.74558E−01 −0.171979 0.21648E−01

AREQ 3 05:001:00000 −1796894.5339 0.47409E−01 −0.091980 0.14114E−01

AREQ 4 05:001:00000 −1796894.3207 0.31852E−02 −0.026622 0.10178E−02

AREQ 5 05:001:00000 −1796894.2552 0.67426E−03 0.002723 0.62008E−04

AREQ 6 05:001:00000 −1796894.2632 0.93833E−03 0.007518 0.18162E−03

The first block describes the six time intervals invoked by the PCVM for this station. The next three blocks provide the parameters of the CVM
invoked for each time interval (1–6), for the X, Y and Z coordinates, respectively. This PCVM is also depicted in Fig. 12
An M 8.4 EQ occurred on 2001/06/23 at 20:33:14 UTC. Jump time is 01:174:73994 in YY:DOY:SOD format
An M 7.6 EQ occurred on 2001/07/07 at 09:38:43 UTC. Jump time is 01:188:34094 in YY:DOY:SOD format
Time format YY:DOY:SOD = year:day of year:second of day

posterior position estimate is expected, desired or ‘allowed’
to deviate from the prior estimate. If we very tightly constrain
the daily prior positions for all stations in C to the positions
predicted by the target RF model by setting the associated
constraints to something very small, such as 2–3 mm, while
allowing much looser constraints (perhaps 20–30 cm) for
the remaining stations (i.e. those in N but not in C), then
each daily polyhedron solution is automatically ‘aligned’ to
the target frame, and the velocities obtained by analyzing the
time series of coordinates for each station are in consequence
tied to that same frame. This is the general approach favored
most surveyors.

6.3.2 Posterior imposition of the RF

Most GPS geodesists, including us, use an alternative
approach to geodetic time series analysis involving posterior
imposition of the RF. All stations appearing in the daily GPS
analysis (including the stations in set C) are only loosely con-
strained to the prior coordinates predicted by the target RF.
We then manipulate this time series of loosely constrained
or ‘loose’ polyhedron solutions in two stages, which we call
time series alignment or just alignment for short, followed by
post-alignment imposition of the RF. The alignment process
unfolds in an arbitrary and drifting axis system. The target
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Fig. 12 Contrasting the PCVM
invoked by ITRF2008, and our
GPS solutions and the ELTM
(expressed in OSU08), for the
east component of displacement
at AREQ. a Shows the entire
time series, allowing the 6 time
segments (see Table 1) to be
resolved. b The interseismic
period prior to the Mw 8.4 event.
c The end of the time series,
emphasizing the inability of the
CVM adopted for the 6th time
segment to accurately predict
the displacement trend after
about mid 2010
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frame is invoked only after alignment is complete. Both of
these stages involve the use of Helmert transformations that
rigorously preserve the inner geometry of each daily solu-
tion for the GPS polyhedron, while manipulating their outer
coordinates. The first and most time-consuming stage, align-
ment, involves a great many H6 transformations and repeated
estimation of the parameters of all station trajectory models.
The second stage simply transforms these results into the
target RF using a single 12-parameter Helmert transforma-
tion, H12. This can be thought of as two H6 transformations
operating in concert—one in position space and the other in
velocity space (Appendix 2).

In implementing this two-stage approach, we could use the
CVM favored by the authors of ITRF, or the more general
trajectory models that we favor. No matter what trajectory
models are used, time series alignment is accomplished in an
inversion that (i) estimates the 6-parameters of each daily H6
transformation which align each loose polyhedron solution
with the daily predictions of the network trajectory model,
and (ii) estimates the coefficients of the trajectory models so
as to produce the closest possible agreement of these models
with the aligned time series. We do this by minimizing the
inner coordinate scatter (i.e. collective misfit length) of the
time series of transformed polyhedra about the correspond-
ing series of model polyhedra. We emphasize that both the
outer coordinates of the aligned time series of GPS poly-
hedra, and the parameters of the various station trajectory
models change with each iteration of the inverse algorithm.

This process stops (typically after 7–12 iterations) only when
the inner coordinate scatter ceases to decline by a significant
amount. Because we take this approach, the station reference
positions and station velocities estimated by this algorithm
are ultimately expressed in no particular reference frame.
(Though, because the daily transformations and infinitesimal
rotations associated with the daily Helmert transformations
(H6) produce only small changes in daily station coordinates,
the final reference position and velocities are stated in an arbi-
trary frame that still lies ‘fairly close to’, or is weakly aligned
with the target RF model used to generate the prior position
estimates during GPS data processing.)

Once the alignment process discussed above is complete,
we move on to the next step, and transform the RF-sensitive
coefficients of the station trajectory models and the associ-
ated time series of (aligned) polyhedra, by estimating the 12-
parameters of a generalized Helmert transformation (H12)
consisting of three translations, three translation rates, three
rotations and three rotations rates that specify the relative
motion of the arbitrary frame and the target frame (Appen-
dix 2). Those interested in why we utilize the H6 and H12
transformations, rather than the H7 and H14 transformations
that also include scale change and scale change rate parame-
ters, are referred to Appendix 1 of Bevis et al. (2012a).

At first look, this two-step approach may seem to be
unnecessarily complicated relative to the simpler approach,
described earlier, when the RF was imposed (‘upstream’) on
a day-by-day basis during daily GPS data processing. Indeed,
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if every station in the network N is also included in the def-
inition of the target RF (so that set C = set N), then one
might expect a similar result. But when, as is typical, many
stations in N are not included in C, then the two approaches
are not, in fact, equivalent. This is because during the align-
ment process, the daily Helmert parameters used to align
polyhedra onto the network trajectory model, are estimated
using all stations in N, and not just those in C. That is,
we are exploiting the fact that we know the general form of
the station trajectory at every station, not just those stations
incorporated in the definition of the target RF. This leads to
better and sometimes much better constrained estimates for
the Helmert parameters, and this is reflected in the quality of
the final solution.

6.4 Trajectory prediction error and RF instability

The ‘up front’ approach to RF realization discussed in
Sect. 6.3.1 provides a simple context in which to explain
the concept of RF jitter. Suppose we have produced GPS
solutions for a sparse regional network or polyhedron for 7
days in a row. Suppose our network of 20 stations contains
four of the reference stations associated with our favorite RF.
Suppose we tightly constrained the positions of these four sta-
tions at the 2 mm level in order to invoke our target RF. Since
very little plate motion occurs in 7 days, the prior coordinates
adopted for these reference stations changed very little from
day to day. Suppose the RF model we use to generate the
prior position estimates for our reference stations was for-
mulated using the CVM (Eq. 4). Suppose that 3 of these RF
stations are very well characterized by the CVM, but the 4th
is not, because it is located next to the Amazon river and it
experiences a very large annual vertical displacement cycle
(Bevis et al. 2005) that is not incorporated into its trajectory
model. Let us suppose that this cycle happens to be near its
maximum during our study period, and the station location
is actually 25 mm above the long term secular displacement
trend invoked by the RF’s CVM. The entire GPS network
solution will be very strongly influenced by this Amazonian
station since it will tend generate a far larger residual vector
than the other three reference stations, and any least squares
process seeks to balance the square of the magnitude of the
normalized residual vectors. If we had used the other 3 ref-
erence stations alone we might have obtained nearly perfect
‘alignment’ of prior and posterior position estimates. But
when the Amazonian reference station is included, the align-
ment parameters estimated internally by the GPS processing
package produce a much-degraded fit at these three stations
so as to reduce the enormous residual at the Amazonian sta-
tion. The entire alignment process will have been biased by
this one station. But suppose the Amazonian station had a
technical problems on days 4 and 5, its data were not avail-
able, and do not appear in our time series. Then this bias

in the alignment process would not have occurred on these
days. That is the alignment process on days 1, 2, 3, 6 and 7
would be distinct from that on days 4 and 5. This effect would
generate artificial scatter in the coordinates of each and every
station in the time series. We can think of this as the polyhe-
dron jerking about, but actually it was the realization of the
RF that was jerking or jittering.

RF jitter is a stochastic process (think of Brownian motion)
in which day-to-day variations in the (inner geometrical) mis-
fit between the GPS polyhedron and the model polyhedron
(for the reference stations) produce statistical fluctuations in
the alignment process associated with RF realization. These
variations are often modulated by the presence or absence
of poorly modeled stations in the time series. Temporal vari-
ability in trajectory model error can also arise in response
to the model not capturing rapidly changing displacements
such as postseismic displacement in the days or weeks fol-
lowing a great earthquake, or unrecognized jumps in station
time series.

Returning to our thought experiment, it is fairly obvious
that the RF realization error (jitter) precipitated by the uneven
appearance of the Amazonian station could be reduced by
(i) using more realistic trajectory models (so as to reduce the
number of large station-day residuals), and/or (ii) using many
rather than fewer reference stations to control the alignment
process, so that one or two highly problematic stations do
not have so great an influence (this is the defendit numerus
strategy advocated by Bevis et al. 2012a).

Of course, the prediction errors generated by oversimpli-
fied trajectory models can also develop slowly over months
or years, slowly but relentlessly distorting the alignment
process, producing RF drift rather than high frequency RF
jitter. If ‘RF realization error’ (Dietrich et al. 2001) is not a
constant bias, but a time varying error or discrepancy, then
RF jitter relates or refers to its high frequency component
and RF drift refers to its low frequency component. Fail-
ure to incorporate significant and sustained accelerations in
a trajectory model, as discussed in Sect. 6.2 and illustrated
in Fig. 11, can lead to RF drift. For example, suppose two
GPS groups (A and B) analyze another sparse regional net-
work, mostly located in North America, over more than one
decade, using the same target RF. Suppose both groups use
five reference stations to realize this frame, but they have
only four of these stations are in common. Let us suppose
that these four reference stations are well characterized by
the CVM invoked in the definition of the target frame, as is
the fifth reference station invoked by geodesy group A. But
let’s suppose geodesy group B chooses a Greenland station
for its fifth reference station, and this station has been subject
to a large and nearly constant rate of acceleration through-
out its lifetime, but the target RF definition invokes a CVM
for this station. As discussed earlier, the inconsistency of this
CVM and the actual trajectory means that the inner geometry
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of the model polyhedra used as alignment targets by group
B will be inconsistent with the actual inner geometry of this
sub-network, and this inconsistency will vary systematically
over time. As a result, the two GPS groups will find that their
‘aligned’ time series have different velocities at nearly every
station, and will probably conclude that despite their best
intentions, their results are expressed in somewhat different
RFs. We call this RF drift, in contrast to RF jitter, because it
derives from a discrepancy whose impact systemically grows
over time.

6.5 The broader context: repeated reanalysis

For the last ∼3 years we have processed and reprocessed
>1,200 unique CGPS stations (up to 700 per day) for a
15–18 year time period (Bevis et al. 2012a). We perform
the daily GPS data analysis using GAMIT/GLOBK soft-
ware (Herring et al. 2010). In the first processing pass of
our most recent series of solutions, all prior coordinates
were similar to those used by IGS analysis centers, based
on the ITRF2008 standard, and we used IGS orbital solu-
tions expressed in ITRF2008. We then fit each station time
series using an SLTM or ETM/ELTM. Once the alignment
step was completed, we transformed our trajectory models
(and the associated GPS time series) into a frame that was as
closely aligned as possible with ITRF2008, while preserving
the inner geometry of the aligned time series and the net-
work trajectory model. We then used our trajectory model to
generate the prior coordinate estimates for the next iteration
(or ‘rerun’) of GPS data processing. Because the prior posi-
tions are no longer completely consistent with ITRF2008,
we allowed the orbits to relax so as to maintain consistency
with the global polyhedron. We stacked or aligned the new
GPS time series, transformed the aligned time series and the
associated network trajectory model so as to nearly match the
predictions of ITRF2008, and then used the updated network
trajectory model to generate the prior coordinates for the next
processing iteration, etc. During the early iterations we used
fairly loose constraints (∼30 cm) even for the ‘best’ of the sta-
tions used to define ITRF2008, and in subsequent iterations
we gradually tightened these constraints, but always ensured
that the station constraints (i.e. the (σX , σY , σZ ) discussed in
Sect. 6.3) remained 5–10 times larger than the WRMS scatter
levels produced by the previous analysis for the correspond-
ing stations. What we noticed during this iterative process
was that the inner coordinate scatter of the entire GPS time
series around the network trajectory model declined with
each new iteration. This includes the last iteration, so our
reanalysis effort has yet to converge.

The trajectory models produced by our fifth and most
recent global rerun in May 2013 can model the GPS time
series (expressed in OSU08) at almost every station with
a daily WRMS misfit of 1–3.5 mm in the horizontal, and

2–7 mm in the vertical, once something like 0.5–2% of the
observations were down-weighted by our robust inversion
algorithms. The WRMS misfit levels for all stations and all
epochs combined were 2.3, 2.2 and 4.7 mm in E, N, and U
respectively. These scatter levels represent a>50 % reduction
from those achieved in the first iteration. The posterior re-
alignment of our daily polyhedra and trajectory models with
the predictions of ITRF2008 was achieved using 84 common
stations rather than all common stations. These stations were
selected on the basis of (a) high solution quality, (b) a very
long time series uninterrupted by any jumps, and (c) no sug-
gestion that velocity is changing significantly as a function of
time. The WRMS difference between the velocities assigned
to these stations in ITRF2008 and in our solution (i.e. in
OSU08) was 0.55, 0.64 and 0.55 mm/year in the X, Y and Z
directions respectively. The WRMS differences in the pre-
dicted positions of these stations at the ITRF2008 reference
epoch was 5.9, 4.3 and 8.2 mm, respectively.

It is said that ‘the proof of the pudding is in the eating’, and
we are persuaded of the utility of our overall approach by the
steady reduction of the WRMS scatter levels associated each
iteration of our global analysis. Only recently, for example,
have we observed WRMS misfit levels in the horizontal com-
ponents of displacement fall to the ∼1 mm level, or better, at
many higher latitude stations—a recent solution for KAGA in
Greenland (Fig. 13) provides an example. Since (data-model)
misfits reflect both measurement error and mis-specification
(usually oversimplification) of the trajectory model, then the
random component of our horizontal GPS positioning error
is probably rather better than this. (Water vapor dynamics
still prevents us reaching this level of repeatability at mid
and low latitudes).

7 Discussion

Geodesists engaged in daily GPS data processing tradition-
ally resist or avoid the application of tight prior constraints
on station position because this might inject mis-information
into the analysis of satellites orbits and the global polyhedron.
(One might tightly constrain stations to incorrect or incon-
sistent sets of prior coordinates. Tight constraints would be
justified if we knew the ‘correct’ solution in advance, but in
this case we would not need to engage in geodetic measure-
ment!). Because we avoid tight prior constraints, the GPS-
estimated coordinates (outer geometry) of the polyhedron
scatters much more, from day to day, than does the implied
inner geometry. That is, the daily solutions for the polyhe-
dron have nearly the correct shape and size, but are nearly
randomly displaced and reoriented by noise which differs
from one day to the next. The alignment process suppresses
this outer coordinate noise, by re-aligning the time series of
polyhedra. We could approach this task by aligning each GPS
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Fig. 13 The displacement
history at GNET station KAGA,
fit with an ELTM that invokes a
quadratic trend. Plots a–c show
the U, E and N components of
displacement, respectively. Plot
d depicts the implied temporal
variation in uplift rate. e shows
the location of station KAGA
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polyhedron onto the polyhedron for the previous day. We do
not do so because the station trajectory model is typically
a better predictor of the polyhedron’s inner geometry at a
given epoch than is the inner geometry estimated (using just
one day’s data) the day before. The beauty of the iterative
alignment process is that well-tuned station trajectory mod-
els lead to better alignment of the GPS time series, and better
aligned time series lead to improved station trajectory mod-
els. This alignment or stacking-in-time process is the central
task of geodetic time series analysis, and posterior imposition
of a target RF is a relatively minor post-process. The greatest
benefit of more realistic trajectory models is improvement of
time series alignment.

Our course, improved trajectory models also generate
improved geophysical insight. Five years ago and more, geo-
physicists routinely plotted GPS-derived vertical velocity
vectors on maps of Antarctica, Greenland and elsewhere, and
then attempted to explain them in terms of glacial isostatic
adjustment. Recently it has been recognized that uplift rates
in Greenland and in parts of Antarctica are so variable in time
that the lifetime average uplift rate is a limited representation
of what is happening, and it is much more fruitful to think in
terms of accelerations as well as average rates of uplift (Khan
et al. 2010; Jiang et al. 2010; Bevis et al. 2012b). The vertical
time series at KAGA provides a particularly striking exam-
ple. Here the uplift rate has increased from ∼7.5 mm/year
in mid-2006 to ∼32 mm/year at the end of 2012. It should
be obvious looking at Fig. 13 (and Fig. 4) that as technical
improvement in the alignment process reduces the level of

scatter of the GPS measurements about the trajectory model,
this improves our ability to resolve curvature in the trend
component of this model.

Although many geodetic and geophysical research groups
are using the more general classes of trajectory models to
characterize their crustal displacement time series, very few
of them are using these trajectory models to estimate orbital
solutions or realize (and modify) the frames in which their
network time series are expressed. Because a RF is, for
operational purposes, a network trajectory model, and our
RF model now differs from that of ITRF2008 for the sta-
tions we have in common, our final RF—in which we esti-
mate orbital solutions as well as the network time series—
is no longer identical to ITRF2008. Our final RF inherited
its GPS scale from ITRF2008, and is not intended to serve
as a shared, general purpose RF. Indeed, as OSU08 varies
from one iteration of our global analysis to the next one, it
can hardly be thought of as ‘standard’ RF in the traditional
sense.

We believe that the steady improvements we are attain-
ing as we repeat and refine our global analyses mainly result
from (i) the increasing geometrical consistency between our
network time series, our trajectory models, the prior position
estimates we inject into GPS data processing, and our orbital
solutions, and (ii) ongoing refinement of our trajectory mod-
els for each station we process. Lowering the scatter levels
in each new solution often helps us identify small and previ-
ously unidentified jumps in the time series, usually traceable
to an overlooked change in the antenna or radome, or pre-
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viously unresolved phenomenology such curvature (accel-
eration) in the secular trends. This causes us to change the
number of parameters available to a trajectory model, or even
invoke a new class of trajectory model. For example, newly
resolved jumps are accommodated by adding another Heavi-
side jump to the trajectory model, and newly resolved curva-
ture might be accommodated by invoking a quadratic rather
than a linear secular trend.

Although OSU08 plays a special role in our reanalysis
effort because the prior coordinates injected to daily GPS
data processing are always stated in that frame (so as to ‘stay
close’ to ITRF2008), in the scientific studies that utilize the
products of our latest reanalysis, we nearly always transform
into other frames, typically on a project by project basis, as
previously discussed by Bevis et al. (2012a). This is because
as geophysicists we place no particular importance on the
no-net-rotation (NNR) aspect of ITRF, nor any other purely
conventional aspects (Appendix 2) of this RF. Some readers
may be worried about our apparent disinterest in monitoring
the position and motion of Earth’s center of mass (CM) in
our frame. But, this is because we choose to estimate relative
frame motion later on, in the context of specific compar-
isons between GPS uplift rate, model GIA (or PGR) rates, or
observed rates of sea level rise (Bevis et al. 2012a,b).

There is still a lot of interesting research to be done with
regard to trajectory models. In addition to devising and test-
ing new classes of trajectory model, there are open questions
as to how best to deploy or utilize extant models. When we
invoke a SLTM with a polynomial trend, for example, how
should we select the value we assign to the maximum power
nP and thus the number of degrees of freedom available to
our trend sub-model and the SLTM? Obviously the more
degrees of freedom one assigns to the polynomial trend, the
better it can fit a given station position time series, but at
some point one begins to model ‘noise’ rather than ‘signal’.
The stability and thus the predictive power of a model will
fall given too many degrees of freedom simply because it
has started to model the noise. Given the role of a trajectory
model in providing prior coordinates in GPS data process-
ing, etc., we are very concerned with the model’s predictive
power—each global re-analysis tends to include a significant
amount of ‘new’ GPS data. A graph of the WRMS misfit
of data and trajectory model versus the number of degrees
of freedom assigned to the model can help one assess this
trade-off between resolution and reliability (Jackson 1972;
Lawson and Hanson 1974). One approach is to increase nP

until the WRMS misfit matches ones expectation for the stan-
dard deviation of the measurement noise at that station. But in
practice, one has no exact prior knowledge of this statistic. As
a result, there is a lot of work in the numerical analysis com-
munity associated with identifying natural ‘break points’ in
this or related trade-off curves such as the ‘L-curve’ (Lawson
and Hanson 1974; Hansen 1992).

If the analyst is prepared to assume that the noise is drawn
from a Gaussian distribution, it is also possible to use a formal
statistical hypothesis test to determine if each increment in
the value of nP produces a statistically significant reduction
in the scatter of the data about the model. In order to imple-
ment this hypothesis test one must adopt a given confidence
level. Changing the confidence level at which the hypothesis
accept/reject decision is made can change the value finally
selected for nP . Thus the decision on the best value of nP

remains somewhat arbitrary. We do not use this approach
because we do not believe that the noise process in GPS
positioning is Gaussian (Bevis et al. 2012a) or corresponds
to any other named statistical distribution. Indeed, we do not
believe that the GPS positioning noise process is stationary
in space or time.

Our approach to choosing nP for each station trajectory
model tends to be heuristic and conservative. We are very
reluctant to increase nP from 1 to 2, and even more reluctant
to increase it from 2 to 3. When we fit an SLTM to a time
series, we usually plot the E, N and U residuals as a func-
tion of time. Only when these residuals suggest strong and
systematic structure, do we consider increasing the value of
nP . The great majority of the station models in our global
analysis have nP = 1, and the great majority of those with
nP > 1 have nP = 2. We prefer to ‘under-model’ the data
rather than ‘over-model’ it. This is a subjective decision, if
a conservative one. But the ‘regularization’ of inverse prob-
lems and empirical trend analysis of almost any kind tends
to be something of an art (Hanke and Hansen 1993).

We admit to a rather pragmatic attitude towards our trajec-
tory models. As geodesists we tend to deploy them oppor-
tunistically, focusing on improving the consistency of our
frame, our orbital solutions and the daily repeatability of
our time series, with a blithe disregard to physical meaning.
But subsequently, as geophysicists, we feel no compunction
in abandoning a trajectory model (as a mere first approxi-
mation) as we seek to probe the physical causes of crustal
displacement and deformation.

Geophysicists and geodesists typically play complemen-
tary roles in crustal motion geodesy. Geophysicists use
crustal motion geodesy—often in combination with addi-
tional observations—to study a wide range of geodynamic
phenomena. Their progress in discerning and explaining the
phenomenology of crustal motion, will sometimes help geo-
desists better formulate their station trajectory models. Bet-
ter trajectory models will lead to better predictions of station
position, improved orbital solutions, more stable reference
frames and less noisy times series of crustal displacement.
These ‘cleaner’ displacement time series would then lead
geophysicists to resolve new dynamic phenomena (e.g. the
2010 ‘uplift anomaly’ in Greenland, Bevis et al. 2012b) or
improve their characterization of already recognized phe-
nomena, allowing this synergetic cycle to continue. Up to
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now, however, new classes of trajectory models have had
very little impact on the way in which standard or named
RFs are designed and defined. The trajectory models used
to define the ITRF, in particular, have not changed for more
than a decade. We expect this to change in the next few years.
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8 Appendix 1: The insensitivity of the ELTM to the
transient timescale parameter T

Here we demonstrate our contention that the SLTM aug-
mented with the logarithmic transient formula is surprisingly
insensitive to the value of the nonlinear parameter T in the
sense that if one assigns a moderately erroneous value to T ,
and allows A to adjust accordingly, one can retain a very good
fit to the great majority of the data. As we shall show here,
this insensitivity is not inherent to the logarithmic transient
formula itself, but arises when it is used in conjunction with
the SLTM (Eq. 8).

We begin by generating a simulated data set that we can
then analyze in several different ways. Suppose a transient
displacement is given by Eq. (9), where �t is time since
the earthquake occurred, T = 1 year and A = 100 mm.
Note that this formula applies only after the earthquake has
occurred, so we are restricted to the domain �t ≥ 0. The
scalar d might refer to any one of the geocentric Cartesian
coordinates (X, Y , or Z ) or topocentric Cartesian coordinates
(E, N , and U ) used to describe a geodetic time series. We
computed the value of d, using this formula, once per day
for the first 5 years of the transient, and then added zero-
mean Gaussian noise with sigma = 3 mm so as to simulate
observations incorporating positioning noise (the blue dots
in Fig. 14).

First, we invert this data set using the transient formula
alone, or in isolation. If we invert for A under the (correct)
assumption that T = 1 year, our least squares (LS) estimate
for A = 100.03 mm, which produces the dotted black curve
passing through the middle of the data (Fig. 14a). The RMS
deviation of the data about this curve is 2.99 mm, closely
matching the designed level of noise. Next we ‘erroneously’
set T = 3 years, and obtained a LS estimate A = 196.4 mm,
producing the dashed red curve (Fig. 14a). The RMS devia-

tion of the data about this curve is 9.2 mm. Finally, we erro-
neously set T = 1/3 years, and estimated A = 60.0 mm,
producing the solid magenta curve (Fig. 14 a) and an RMS
misfit of 9.7 mm. We twice assigned a value for T that was
off by a factor of 3 (either too big, or too small), and resulting
approximation to the transient behavior was rather poor, and
the RMS misfit was more than three times larger than the
measurement noise.

However, we will rarely estimate the parameters of the
transient model (Eq. 9) in isolation, since any station record-
ing a postseismic transient is almost certain to have recorded
a coseismic jump as well, and this jump would be mod-
eled using a Heaviside function. This means our transient
model, operating in conjunction with the SLTM (Eq. 8), can
‘misappropriate’ part of this jump, so as to reduce the misfit
of the combined model to the transient displacement data.
Therefore in our second set of inversions we invoke a two-
parameter model in which we estimate both A and a constant
offset, or d-axis intercept, d0, that mimics the impact of the
Heaviside function. This offset parameter has very little effect
when T is assigned its correct value of 1 year, but when T is
assigned values of 3 and 1/3 year, the estimates of A are mod-
ified to 172.4 and 70.8 mm, respectively, and the RMS misfit
is reduced to 5.8 and 5.6 mm, respectively. The improved fit
to the data (Fig. 14b) was achieved using curves that now
predict d values of 16.8 and −23.7 mm when �t = 0. These
offsets correspond to that portion of the Heaviside jump being
used to improve any imperfectly formulated transient model
rather than represent a coseismic offset.

When we use logarithmic transients operationally, we
are prepared to down-weight the observations occurring in
the first few weeks or even the first few months after the
earthquake (either a priori, or via an iterative re-weighting
approach, Holland and Welsch 1977) because we believe that
short-lived poroelastic rebound (should it occur) is unlikely
to produce a logarithmic transient. This down-weighting
can also impact our fit to the transient when T has been
assigned an incorrect value, since much of the misfit asso-
ciated with an incorrect T value is concentrated early in the
time series (Fig. 14b). We illustrate this effect by repeating
our LS analysis, without using the simulated displacement
data when �t < 1 month. Down-weighting or eliminating
these early observations has very little impact to our fit when
T is assigned its correct value, but if T is assigned a value
of 3 or 1/3 year, the resulting estimates for A change to
169.9 and 72.1 mm, respectively, and the RMS deviations
(for �t > 1 month) are further reduced to 5.2 and 5.1 mm,
respectively. The modified curves now predict d values of
18.4 and −26.6 mm, respectively, when �t = 0.

In practice, the trend component of a SLTM at most sta-
tions invokes constant velocity, so if we fit an SLTM aug-
mented with a logarithmic transient, it is also likely that the
presence of the transient will modify the velocity estimate
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Fig. 14 Modeling a
logarithmic transient with
correct and erroneous values of
T, using a the logarithmic
transient formula (LTF) alone,
b the LTF plus a constant offset
parameter, c LTF, offset and
velocity parameters
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to some degree so as to mitigate misfits of the transient that
arise when we assign an incorrect value to parameter T . If
that portion of the time series that precedes the earthquake
is several years long, the constant velocity estimate is proba-
bly quite tightly constrained by the pre-earthquake observa-
tions, so the velocity perturbation just discussed is likely to
be small. In the event that the earthquake occurred early in
the time series, however, a larger perturbation might occur.

We now simulate the extreme case in the constant velocity
estimate is entirely determined using data acquired after the
onset of the transient. We do this by assigning the value of T ,
as before, and fitting a three parameter model that estimates
an offset, a constant velocity and the parameter A of the loga-
rithmic transient. First we do this using all data, and then we
repeat the inversion using only the observations with �t > 1
month. When we invert all data while assuming the correct
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Table 2 Results of our
model-fitting experiments with
the simulated transient data
(Fig. 14)

Model parameters Value assigned to T (years) Time period of analysis WRMS misfit (mm)

A 1 (correct) All 3.0

A 3 All 9.2

A 1/3 All 9.7

A, �d 1 (correct) All 3.0

A, �d 3 All 5.8

A, �d 3 �t > 1 month 5.2

A, �d 1/3 All 5.6

A, �d 1/3 �t > 1 month 5.1

A, �d, v 1 (correct) All 3.0

A, �d, v 3 All 3.3

A, �d, v 3 �t > 1 month 3.1

A, �d, v 1/3 All 3.4

A, �d, v 1/3 �t > 1 month 3.2

value for T (i.e. T = 1 year), the addition of a velocity para-
meter to our model makes only a tiny change to the good-
ness of fit. However, it produces a dramatic improvement
to the RMS misfit when T is incorrectly assigned. Setting
T = 3 years produces an RMS misfit of 3.3 mm, whereas
setting T = 1/3 year results in an RMS misfit of 3.4 mm.
If we model the transient for �t > 1 month, the misfits are
further reduced to 3.1 and 3.2 mm, which is almost a perfect
fit, given that the design or constructed level of RMS mea-
surement noise is 3.0 mm. Whether or not we use the first
month of observations, the fits are remarkably good, only
3–13 % higher than the designed level of noise in the data.
The results of our experiments with this synthetic data set are
summarized in Table 2.

If one’s goal is fitting the actual station trajectory, rather
than isolating the individual components of this trajectory,
the trade-off between the coefficients of the SLTM and the
coefficient A of the transient model is highly beneficial if
one does not know the correct value of the parameter T .
This provides the geodesist with a useful option, discussed in
Sect. 5, i.e. to simply assign a ‘reasonable’ or default value for
T , and fit an augmented trajectory model using a completely
linear LS approach. The value of T can be refined later,
on a station by station basis, using a nonlinear estimation
approach.

9 Appendix 2: Inner geometry, outer geometry and
Helmert transformations

The theme of outer versus inner geometry appears quite fre-
quently in the literatures of classical mechanics and space
geodesy, but individual discussions are often framed using
different terminologies, e.g. ‘fiducial’ versus ‘fiducial-free’
analysis (Heflin et al. 1992), and this tends to obscure the

ubiquity and utility of these concepts. We use this appendix
to further explain our terminology, both to clarify our mean-
ing in the main text of this paper, and to help students and
non-specialists grasp these sometimes subtle but fundamen-
tal and very useful concepts.

Einstein once said that ‘all geometry is length’. He was
emphasizing the central role of the metric tensor in defining
and measuring both lengths and angles. But even in classi-
cal or Galilean mechanics, this statement remains valid and
profound.

Let us assume that we work in 3D physical space equipped
with a well-defined scale which is independent of position or
orientation (i.e. there is a single scalar metric for the whole
space), that this scale does not change over time, and that
we are concerned with the geometry of a set of points—
representing GPS stations—that constitute the vertices of a
polyhedron embedded in this space. The inner geometry of
the polyhedron addresses its shape and size, but not its loca-
tion or orientation. The outer geometry of the polyhedron
encodes or implies its inner geometry, but also addresses the
position and the orientation of the polyhedron relative to an
external reference frame, which we will normally think of as
a Cartesian axis system [X, Y, Z]. The outer geometry of a
polyhedron is expressed or defined by measuring or assigning
the 3n coordinates {Xi , Yi , Zi }, i = 1 : n of the n stations
or vertices composing the polyhedron. The inner geometry of
the polyhedron is the geometry that can be measured or spec-
ified with reference to the polyhedron, but without reference
to (or access to) to an axis system or RF. If one knows the
lengths of all baselines (inter-vertex distances) in the poly-
hedron, then the inner geometry is completely determined.
Inner geometry is all about length, so, in principle, all one
really needs to discuss it or measure it is a length scale.

Since the inner geometry of a polyhedron is totally deter-
mined by measuring or specifying the lengths between the
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vertices of the polyhedron, this description is invariant with
respect to a change of axis system. But the coordinates
(X, Y, Z) of these vertices, i.e. the outer geometry of the
polyhedron, obviously depend on the particular choice of
axis system. It is because the inner geometry is invariant
with respect to the choice of axes (as long as the scale or
metric is fixed) that the inner geometry is often thought of
as being the deeper or more fundamental description of the
polyhedron’s geometry. (If we redefined the Z-axis so that it
passed through New York, the distance between New York
and Los Angeles would remain the same).

There is a subtlety of language that can cause confusion.
We can refer to the inner geometry of a polyhedron speci-
fied by listing its 3n coordinates. But we are referring to the
shape and size of the polyhedron implied by those coordi-
nates, and not the coordinates themselves. Indeed, one often
discusses the inner geometry of a polyhedron with reference
to its outer coordinates, because this is much simpler in prac-
tice than describing an independent set of baseline lengths.
One could specify the inner geometry with a set of lengths
and related metadata, and those lengths might be referred
to as inner coordinates. This is very rarely done in prac-
tice because formulating the metadata required to interpret
these lengths correctly is quite complicated. Nevertheless, the
concept of inner coordinates is a useful one. Let us suppose
we have aligned two very similar polyhedra (perhaps a GPS
polyhedron and a model polyhedron) as closely as possible,
and determined the remaining differences in the coordinates
of corresponding vertices {�Xi , �Yi , �Zi }, i = 1 : n. We
might characterize total misfit of these polyhedra using the
statistic M2 = �i (�X2

i +�Y 2
i +�Z2

i ) which, at first sight,
might appear to be an outer coordinate description. But, since
�X2

i + �Y 2
i + �Z2

i = L2
i , where Li is the length of the

residual vector between the i th vertex of the two polyhedra,
then the global misfit measure M2 = �i (�L2

i ) is actually an
inner geometrical measure since it is depends only on length.
The measure M is independent of the RF. For this reason M
can be said to quantify the inner coordinate misfit or inner
coordinate scatter of the two polyhedra. If formal estimates
of the uncertainties attending each �Xi , �Yi , and �Zi . are
available, they can be used to weight these quantities when
evaluating M .

One must specify the lengths of all six sides of a tetra-
hedron (which has 4 vertices) in order to render it ‘rigid’
or to completely specify its inner geometry. If we add one
new vertex to an already rigid polyhedron, it is necessary to
specify the distance between the new vertex and three (non-
collinear) existing vertices in order that the enlarged poly-
hedron remains rigid, and its inner geometry remains fully
determined. It follows that we must measure a total of (3n−6)

lengths to determine or define the inner geometry of a poly-
hedron composed of n GPS stations. (Note that if n > 4, this
is less than the total number of baselines or lengths associated

with a polygon, which number n (n − 1)/2 in all. This situa-
tion arises because not all baselines are linearly independent,
and the (3n − 6) lengths referred to above must be indepen-
dent.) We can specify the outer geometry of this polyhedron
with respect to a given set of [X, Y, Z] axes by measuring or
specifying the 3n coordinates {Xi , Yi , Zi }, i = 1 : n of the
n stations in that coordinate system. The difference between
needing (3n − 6) parameters to determine the inner geom-
etry of a polyhedron and needing 3n parameters to spec-
ify its outer geometry amounts to 6 degrees of freedom.
These degrees of freedom correspond to the 3 translations
(tx , ty, tz) and 3 rotations (rx , ry, rz) that produce a length-
preserving (or isometric) but otherwise arbitrary displace-
ment of the axis system (or, equivalently, any possible rigid-
body displacement of the polyhedron relative to a fixed set
of axes). In space geodesy, coordinate transformation asso-
ciated with the RF change [X, Y, Z] => [X′, Y′, Z′] is
achieved by the 6-parameter Helmert transformation H6 con-
structed using these translational and rotational parameters
(see Bevis et al. 2012a, for a related discussion).

The H6 transformation can be represented in different
ways. For example, if some point P has the position or coor-
dinate vector xA in frame A, and xB in frame B, then

xB = t + R xA (11)

where t = [tx ty tz]′ is the frame translation vector, and R is
the frame rotation matrix. The elements of R depend only
the frame rotation angles rx , ry , and rz , which correspond
to rotations about the X, Y, and Z axes, respectively. That
is, the rotation matrix R depends only on the elements of
the rotation vector r = [rxryrz]′.When these angles are very
small, the rotations are said to be infinitesimal rotations, in
which case matrix R takes on the especially simple form, and
this equation can be restated in matrix form as

⎡

⎣
XB

YB

ZB

⎤

⎦ =
⎡

⎣
tx
ty

tz

⎤

⎦ +
⎡

⎣
1 −rz ry

rz 1 −rx

−ry rx 1

⎤

⎦

⎡

⎣
XA

YA

ZA

⎤

⎦ (12)

We can also represent the H6 transformation as a nonlinear
functional relationship

xB = H6(xA|t, r) = H6(xA|h6) (13)

where the symbol ‘|’ occurring between the parentheses
means ‘given’ the parameters that follow this symbol. This
formalism emphasizes that the H6 transformation is con-
trolled by the three translations and three rotations of the
frame, which can be thought of as the elements of a parame-
ter vector h6.

To apply this formalism to a polyhedron it is useful to
define the network position vector, xN, for a polyhedron com-
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posed of n vertices or GPS stations as the column vector of
length 3n built by stacking the n station position vectors
x1, x2, . . . xn . Then

xN
B =

⎡

⎢⎢⎣

x1

x2

·
xn

⎤

⎥⎥⎦

B

=

⎡

⎢⎢⎣

t
t
·
t

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

R 0
R

·
0 R

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x1

x2

·
xn

⎤

⎥⎥⎦

A

(14)

or

xN
B = H6(xN

A |h6 ) (15)

These equivalent Eqs. (14 and 15) can be thought of as
expressing a forward problem: given knowledge of the frame
translation and frame rotation parameters (i.e. the vector h6),
transform the coordinates of a polyhedron (i.e. network posi-
tion vector) xN in frame A so to determine its coordinates in
frame B.

The problem of ‘aligning’ two polyhedra is actually the
inverse problem. Suppose we wish to align polyhedron A
with a ‘target’ polyhedron T. Then we seek a particular vector
h6—i.e., a particular change of RF—that minimizes some
measure of the (post-transformation) deviation or residual
vector, d, defined as

d = xN
T − H6(xN

A|h6) (16)

The obvious measure or penalty function is that discussed
earlier, i.e.

M2 = d′∗d =
n∑

i=1

�X2
i + �Y 2

i + �Z2
i (17)

although, in practice, one typically uses a suitably weighted
version of this penalty function, such as d′∗C−1 ∗ d where
C is the covariance matrix for d. One can usually get a sim-
ilar result at less computational cost by minimizing d′∗W∗d
where W is the diagonal matrix whose i th. diagonal element
is the reciprocal of the estimated variance for the i th. ele-
ment of d. This second approach better lends itself to robust
least squares inversion via iterative re-weighting (Holland
and Welsch 1977).

If polyhedron A and the target polyhedron T had the same
inner geometry, then they could be perfectly aligned and M
(as given by Eq. 17) would be zero. If M is minimized, but
has a non-zero value, this statistic characterizes the differ-
ences in the inner geometry of the two polyhedra, i.e. a post-
alignment misfit which manifests a fundamental difference
in size and shape. Note that this measure of inner coordinate
scatter will normally be smaller, sometimes much smaller,
than the corresponding outer coordinate scatter statistic

M2
pre-alignment = (xN

T − xN
A)′∗(xN

T − xN
A)

=
n∑

i−1

�X2
i + �Y 2

i + �Z2
i (18)

in which the �X, �Y , and �Z are computed at each vertex
before alignment takes place.

The outer geometry of a polyhedron uniquely implies or
determines its inner geometry, but its inner geometry in no
way implies or determines its outer geometry. There are
an infinite number of outer geometries consistent with a
given inner geometry, and all these outer geometries can be
explored by searching over the space spanned by the six para-
meters of the H6 transformation. A key point is that if two
observers ascribe different inner geometries to a polyhedron,
then they are describing fundamentally different polyhedra,
or proposing inconsistent descriptions of a single polyhedron.
But it is possible that two observers ascribe differing outer
geometries (sets of coordinates) for the same polyhedron and
yet both have valid descriptions. If their measurements were
perfect, this situation would arise if the two observers had
adopted (or realized) different RFs, either deliberately or by
accident. Two differing sets of coordinates for a GPS network
are completely consistent only if they imply the same inner
geometry, i.e. the same lengths for all baselines in that poly-
hedron. An equivalent statement that is often more useful
operationally is that two sets of coordinates for a polyhedron
are completely consistent if and only if it is possible to find
specific values for the six parameters of the H6 transforma-
tion that transform one set of vertex coordinates so that it is
in complete agreement with the other set.

The concept of inner versus outer geometry also applies in
4D (i.e. in classical space–time) to the displacement histories
of GPS networks (polyhedra) that are moving and deform-
ing over extended periods of time. The inner description of
an evolving polyhedron is a description that can be framed
purely in terms of baseline lengths describing the polyhedron
at each and every epoch. Alternatively, this description could
be framed in terms of the baseline lengths in effect at a ref-
erence epoch, and the temporal changes in these lengths that
occur throughout the time span of interest. The inner geome-
try of a geodetic time series describing a deforming network
is independent of any RF, and therefore invariant under RF
transformation.

We can generalize the H6 transformation which accounts
for rotation and translation of an axis system, by assuming
that, over an extended period of time, we are concerned with
the relationship between two axis systems wherein one is
continuously translating and rotating relative to the other one.
We require that if any station has a constant velocity in RF#1
it will have a (generally different) constant velocity in RF#2.
This is achieved by assuming that the rotation and translation
vectors appearing in Eqs. (11) and (12) change linearly in
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time, such that

r = r0 + (t − t0)
dr
dt

= r0 + (t − t0)ṙ (19)

t = t0 + (t − t0)
dt
dt

= t0 + (t − t0)ṫ (20)

where t0 is some reference time, adopted by convention. Note
that these equations are invocations of the CVM (Eq. 2), but
applied to frame translation and frame rotation. The reader
might object that a rotation rate is an angular velocity, and
ongoing rotation necessarily produces accelerations, which
violates our requirement that every station has a constant
velocity in both frames. But, in our context, vector r expresses
infinitesimal rotations (typically |r| ∼ 1 nanoradian =
10−9), and the same is true of the derivative dr/dt . A
typical value for this derivative or rotation rate might be
∼10−9 year−1. Since both RFs are very nearly geocentric,
and the displacements implied near the earth’s surface are
circular arcs, then the amplitude of the associated centripetal
or transverse acceleration is given by the well known for-
mula a = −ω2 RE , where RE is the radius of the earth, and
ω is angular speed. Because the acceleration depends on the
square of ω = |dr/dt |, and because ω is a tiny number, the
implied accelerations are completely negligible.

Thus, in the context of crustal motion geodesy, GPS coor-
dinate times series referred to two distinct axis systems (with
a shared and time-invariant scale) can be related by the three
rotations, three rotation rates, three translations and three
translation rates that describe the motion of one frame rel-
ative to the other one. These are the 12 parameters of the
generalized Helmert transformation, H12 (see Bevis et al.
2012a, for a related discussion). The H12 transformation can
be written down in a variety of ways, but perhaps it is simplest
to think of it as Eq. (11) or Eq. (12) in which the frame trans-
lations and rotations behave according to Eqs. (19) and (20).
We can combine these equations so as to arrive at a single
complicated equation, but this is not particularly edifying.

In the event that the trajectory of each station in the
network is characterized in RF#1 using a CVM, that is,
by stating a reference position (xR, yR, zR) and a velocity
(vx , vy, vz) for each station in the network, then the inner
geometry equivalent or ‘isometric’ description in RF#2 is
easily found using the appropriate H12 transformation. Two
distinct sets of reference positions and station velocities pur-
porting to represent the same polyhedron and the same period
of time are consistent, i.e. imply the same inner geometry,
if and only if we can find specific values for the 12 para-
meters of the H12 transformation that maps one description
{xR, yR, zR, vx , vy, vz}i , i = 1 : n onto the other one. If
we cannot do this exactly, but we find instead the parame-
ters that bring the two descriptions as closely together as
possible, then the remaining differences manifest irreducible
length differences in the inner geometry of the two descrip-

tions, and their evolution over time. That is, they manifest
the inconsistency of the two kinematic descriptions.

Suppose we parameterize a trajectory model using a refer-
ence position vector xR and a velocity vector v, we can view
this description as constituting a position–velocity vector w
defined as

w =
[

xR

v

]
(21)

We can then define the network position–velocity vector for
a polyhedron as

wN =

⎡

⎢⎢⎣

w1

w2

·
wn

⎤

⎥⎥⎦ (22)

which is analogous to definition of the network position vec-
tor which appeared in Eq. (14), but describes the temporal
evolution of the polyhedron or network geometry, not just its
instantaneous geometry. And by analogy with Eq. (14), we
can represent the 12-parameter generalized Helmert trans-
formation H12 thus:

wN
B = H12

(
wN

A

∣∣t0, r0, ṫ, ṙ
)

= H12
(

wN
A |h12

)
(23)

where the 12 elements of the parameter vector h12 constitute
the translation and rotations that relate frames A and B at
some frame reference epoch, and the (constant) translation
rates and rotation rates, that describe how frame rotation and
translation evolve as a function of time. Eq. [23] constitutes
the forward problem of transforming the network position–
velocity vector (to change from frame A to frame B) given
the parameter vector h12.

The problem of posterior imposition of a target RF,
described in Sect. 6.3, is essentially an inverse problem in
which we estimate the particular vector h12 that transforms
the network position–velocity vector (for some sub-network
of ‘common’ stations) expressed in an arbitrary frame so that
the transformed vector matches as closely as possible the pre-
dictions of the target RF model for that sub-network. Having
solved this inverse problem, then the forward equation (23)
can be applied to the entire network time series and model.

The reader might wonder how this approach applies if we
are using the SLTM or the ETM/ELTM instead of a CVM.
In fact this generalization poses no difficulties since translat-
ing the RF in no way effects the amplitudes of oscillations
or jumps or the amplitude coefficient A in the logarithmic
transient formula (Eq. 9), and the same is true for infinites-
imal rotations and infinitesimal rotation rates. The rotation
vector r, and the rotation rate vector dr/dt , produce discern-
able changes only when multiplied by a very large number
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such as the radius of the earth given in meters. So infini-
tesimal rotations affect geocentric position vectors, but they
have essentially no effect on topocentric vectors (i.e. those
‘rooted’ at the geodetic station) such as oscillation ampli-
tudes or jump amplitudes with typical magnitudes of 1 mm
to several meters. A similar consideration applies in rate or
velocity space.

The role of conventions in standard RFs. All geometrical RFs
contain purely arbitrary aspects that are resolved by conven-
tion. (From the linear algebraic point of view, these con-
ventions introduce constraints that resolve rank deficiencies
or degeneracies that would otherwise occur in the matrix
description of the RF and/or positioning of stations in that
RF). These conventions in no way affect the inner geome-
try of any entities described in the frame. For example, if
we frame a static geographical coordinate system (latitude,
longitude) for the earth, the location of the prime meridian
(i.e. the locus of zero longitude) is completely arbitrary. At
one time this particular ambiguity was resolved by adopting
the convention that the prime meridian passes through the
Greenwich Observatory in London. Any formula for the dis-
tance between two points on an axi-symmetric earth refers
only to the difference in the longitudes of these points, which
is entirely unaffected by the conventional designation of the
prime meridian. Since any Cartesian axis system [X, Y, Z]
can be related to any similar axis system [X′, Y′, Z′] using
six parameters or degrees of freedom, this is the number of
degrees of freedom that must be resolved by convention when
defining a ‘standard’ coordinate system or RF. The same is
true for terrestrial RFs, such as ITRF2008, that operate con-
tinuously in time except that 12 degrees of freedom must be
resolved by convention (6 associated with position space and
6 more for velocity or rate space). The fact that ITRF2008 is
nominally a NNR frame, for example, is essentially a conven-
tional means to resolve an otherwise arbitrary decision about
the rotation rates of this particular frame. The inner geometry
of a GPS coordinate time series is invariant with respect to
the choice of reference frame, so it is entirely independent
of the NNR assumption or any other conventional aspect of
ITRF2008. In this sense we might paraphrase Einstein and
state that in crustal motion geodesy, all geometry is either
inner geometry (length) or convention.

In this paper we analyze GPS networks without direct ref-
erence to the other space geodetic techniques used to devise
and define ITRF2008, and previous versions of ITRF. So,
in this paper we are directly concerned only with the scale
associated with GPS measurements. We acknowledge that
our GPS metric or scale is inherited from ITRF2008, via the
prior constraints applied during daily GPS data processing,
and that this scale actually derives from a combination of
geodetic techniques. Because of this, our RFs are not inde-
pendent of ITRF2008, and we think of them as modifications

of, or being derived from ITRF2008. We choose to depart
from the ITRF2008 standard because we place more impor-
tance on the consistency of our geometrical description than
in sharing this description with third parties (which requires
us to adopt a common and ‘named’ RF), and because we
place more importance on the consistency of our geomet-
rical descriptions than on the convention-related properties
of ITRF2008 such as its nominal NNR property. There are
applications and contexts in which adopting a standard and
shared reference frame, such as ITRF2008, is more important
that any consideration related to modest improvements in the
geometrical consistency of the adopted frame. But physics
usually places its main emphasis on inner geometry rather
than convention.
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