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Abstract This paper presents new variants of the Hodges–
Lehmann estimates, which belong to the class of R-estimates.
The new approach to this method arises from the need of
taking into account differences in accuracy of geodetic mea-
surements, which is not possible while applying traditional
R-estimates. The theoretical assumptions of the conven-
tional Hodges–Lehmann estimates are supplemented with
the information about the accuracy of observations and two
new variants of the estimates in question are derived by
applying the principles proposed by Hodges and Lehmann,
hence they are called the Hodges–Lehmann weighted esti-
mate. The main properties of the new estimates follow from
such approach, and from the practical point of view, the most
important seems to be their robustness against outliers. Since
the first estimate proposed is a natural estimator of the shift
between two samples, it can be applied in deformation analy-
sis to estimate point displacements. The paper presents two
numerical examples that show the properties as well as pos-
sible applications of the new estimates.

Keywords Robust estimation · R-estimation · Median ·
Deformation

1 Introduction

When analyzing deformation of a certain geodetic network,
it is necessary to investigate the movements of its points,
which always depends on appropriate identification of dis-
placed and stable points. Different methods and approaches
can be applied for such analyses. The choice of the method
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usually depends on the kind of the deformation that is inves-
tigated and the type of a control network that is designed
for the certain object of study. Many approaches are based
on the least squares estimation (LSE), for example, Conven-
tional Deformation Analyses (CDA) (see, e.g., Pelzer 1971;
Niemeier 1985; Heck 1984; Koch 1985; Chen 1983; Heki-
moglu et al. 2010). A simple comparison between results
of LSE at two different measurement epochs is often not
sufficient. This may result from unrecognized non-random
disturbances (such as, blunders or outliers) that might affect
the observation results (Shaorong 1990; Duchnowski 2011)
and be a source of various unwanted effects, for example,
smearing or masking (Schwarz and Kok 1993; Prószyński
2000; Hekimoglu et al. 2010). Thus, the problem of out-
liers applies also to deformation analyses. In many particular
cases, the outlying observations can be detected and rejected
from the set of observations by applying some procedures
that are generally called “data cleaning” (see, Baarda 1968;
Pope 1976; Schaffrin and Wang 1994; Ding and Coleman
1996; Xu 2005; Hekimoglu and Erenoglu 2007; Gui et al.
2011). However, the correct detection is not always possible
(see, for example Xu 2005; Gui et al. 2011) and the out-
liers might affect the deformation analyses even if the proce-
dures in question are applied. Thus, CDA is still developed or
improved, for example, to cope with such more complicated
cases or to increase its efficiency by applying a new alterna-
tive strategy that works on absolute deformation monitoring
networks and that has been developed based on division into
subnetworks which contain one objective point and reference
points (see, for example, Hekimoglu et al. 2010). On the other
hand, there are also other less traditional methods that can be
applied in deformation analyses, for example R-estimation
(see, Duchnowski 2009, 2010) or Msplit estimation (see,
Wiśniewski 2009). A special variant of the latter, which con-
cerns the estimation of a shift of parameters, was proposed in
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Duchnowski and Wiśniewski (2012). However, a natural
method for estimating shift between two sets of observations
is R-estimation.

R-estimation is one of the basic approaches to the robust
estimation, the other ones are M-estimation and L-estimation
(see, e.g., Huber 1981; Hampel et al. 1986). There is no
doubt that M-estimation is the most common robust method
that is applied for solving problems in geodesy or surveying.
Since the pioneering paper (Huber 1964) M-estimation was
improved and developed (see, e.g., Andrews 1974; Huber
1981; Hampel et al. 1986) and it also became an important
method of robust estimation employed in geodetic applica-
tions (see, Xu 1989, 2005; Yang et al. 2002; Wiśniewski 2009,
2010; Erenoglu and Hekimoglu 2010; Guo et al. 2011). On
the other hand, R-estimation which is a robust method often
applied in other fields of science, is still almost unknown (or
not applied) method in geodesy and surveying, The begin-
nings of the estimates that are derived from rank tests, namely
R-estimates, are related to the paper of Hodges and Lehmann
(1963), hence the alternative name for such type estimates,
namely the Hodges–Lehmann estimates (HLE). Since then,
the method was further developed (see, for example, Adichie
1967; Jurečkowá 1969; Kraft and van Eeden 1972; Antille
1974; Dionne 1981; Koul and Saleh 1993; Chen 2001) and
its properties were analyzed (see, e.g., Bickel 1965; Hoy-
land 1965; van Eeden 1970; Rousseeuw and Verboven 2002;
Small et al. 2006) by many authors and for many particu-
lar reasons. The method in question was also proposed to be
applied to solve some problems in geodesy or surveying (see,
for example Kargoll 2005; Duchnowski 2008). The second
paper concerns application of R-estimates in the LS adjust-
ment to cope with non-random errors (systematic or gross
errors) that might affect observations (R-LS method). The
direct application of HLE proposed in Hodges and Lehmann
(1963) is possible in geodetic or surveying problems only
in basic cases, namely when the functional model of geo-
detic observations is very simple (see, Duchnowski 2008,
2009). The subsequent applications required adaptations,
among other things, introducing initial residuals (Dionne
1981; Duchnowski 2009, 2010). Then, R-estimates were
applied in the new strategy for testing the stability of possible
reference points that was proposed in Duchnowski (2010).
This application results from high robustness of R-estimates
against outliers (see, Rousseeuw and Verboven 2002; Duch-
nowski 2011) and in some cases can give better results than
conventional methods, for example, when two of four possi-
ble reference points are unstable (Duchnowski 2010).

The applications of R-estimates in deformation analysis
that were proposed so far proved their worth; however, there
are still some disadvantages or limitations. Above all, this
concerns the general theoretical assumptions formulated for
such type of estimators, namely the assumption about the
identical distribution of the respective random variables. This

limits the application of the method to the case when all
observation results have the same accuracy (or at least are
standardized). Another disadvantage is application of ini-
tial residuals, which are useful but only in 1D networks.
Hence, the main objective of the present paper is to over-
come such limitations by proposing new versions of HLE
which will take into account differences in the observation
accuracy and which will not be based on application of initial
residuals.

2 Hodges–Lehmann estimates and their new variants

Let us now focus on a two-sample problem presented in
Hodges and Lehmann (1963) which is the most suitable
in deformation analyses (Duchnowski 2009, 2010). Thus,
let us consider two independent samples x1, x2, x3, . . ., xm

and y1, y2, y3, . . ., yn which are sets of realizations of ran-
dom variables X1, X2, X3, . . ., Xm , and Y1, Y2, Y3, . . ., Yn ,
respectively, and let the distributions of these variables differ
from each other only in a shift �, namely let the distribution
functions be F(x) and G(y) = F(x −�), respectively (e.g.,
Huber 1981). Hodges and Lehmann (1963) proposed to esti-
mate the shift by applying a rank test. When the Wilcoxon
test is used then one can get the well-known form of the
R-estimate of the shift between two samples:

�̂R = med(yi − x j ) (1)

where med is a median and 1 ≤ i ≤ n, 1 ≤ j ≤ m. Here,
the general idea behind the Wilcoxon test, which leads to
the formula in Eq. (1), is to shift the second sample by a
certain value � until the “displacement” between the sam-
ples is unrecognizable. In other words, until half of the non-
zero differences (yi − �) − x j are negative and the second
half is positive (the differences equal to 0 are neglected).
The detailed reasoning starts with the introduction of a test
statistic h(X1, X2, X3, . . ., Xm, Y1, Y2, Y3, . . ., Yn) for the
hypothesis H : � = 0 against the alternatives � > 0. Let us
now quote from (Hodges and Lehmann 1963) the following
assumptions:

(i) h(x1, x2, . . ., xm, y1 +a, y2 +a, . . ., yn +a) = h(x, y +
a) is a nondecreasing function of a for all x and y

(ii) when � = 0 then distribution of h(X1, X2, X3, . . ., Xm,

Y1, Y2, Y3, . . ., Yn) = h(X, Y ) is symmetric about a fixed
point μ (independent of distributions of X j and Yi )

(a and μ are real numbers). Here, but also afterwards, we
use the notation applied in the cited paper where X =
(X1, X2, X3, . . ., Xm) and Y = (Y1, Y2, Y3, . . ., Yn), but
also x = (x1, x2, . . ., xm) and hence y + a = (y1 + a, y2 +
a, . . ., yn + a), etc.
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Then Hodges and Lehmann (1963) proposed the following
estimate of the shift

�̂ = �∗ + �∗∗

2
(2)

where

�∗ = sup {� : h(x, y − �) > μ} , and

�∗∗ = inf {� : h(x, y − �) < μ} (3)

Thus, the different variants of HLE are based on the specif-
ically created test statistics h(x, y). For example, if h(x, y)

is equal to the number of pairs (x j , yi ) such that x j <

yi (1 ≤ i ≤ n, 1 ≤ j ≤ m) and X1, X2, X3, . . ., Xm ,
and Y1, Y2, Y3, . . ., Yn are assumed to be independently and
identically distributed, then we obtain HLE of the shift
as in Eq. (1) (Hodges and Lehmann 1963). Such chosen
statistic would lead to the Mann–Whitney U test. Other
variants of the statistic h are also presented in the paper
mentioned.

The R-estimate of Eq. (1) can be applied directly in defor-
mation analyses only under some assumptions. For exam-
ple, when we can assume that the samples are sets of results
of direct measurements of a certain quantity that were car-
ried out at two different epochs. In more complex cases, for
example in case of a geodetic network created for deforma-
tion analyses, such assumption is not acceptable. Then, we
can use a different approach, namely based on application of
initial residuals (Duchnowski 2009, 2010). The initial resid-
uals are computed for the initial values of the parameters,
which are assumed or just taken from the previous computa-
tions, and by applying the functional model of the network
in question. However, such application is sufficient only for
one dimensional networks, for example leveling networks
(Duchnowski 2011). The new possible approach that over-
comes such limitation is proposed and described in the next
section of the present paper.

Let us now consider another important problem with appli-
cation of HLE from Eq. (1) in geodetic or surveying analy-
ses, namely the assumption about distributions of the ran-
dom variables X1, X2, X3, . . ., Xm , and Y1, Y2, Y3, . . ., Yn .
These assumptions, which are described in detail in Hodges
and Lehmann (1963), lead to one important conclusion
that all elements of the samples x1, x2, x3, . . ., xm and
y1, y2, y3, . . ., yn are assumed to have the same accuracy. In
general, such assumption is not acceptable in cases of geo-
detic computations unless differences at the accuracies are
small enough to be neglected. Thus, if we do want to consider
different accuracies of measurement results then we should
propose another solution. One possible approach is standard-
ization of the initial residuals, which were mentioned earlier.
However, such approach has at least one disadvantage. In
such a case, we obtain the results of estimation as a dimen-
sionless quantity and it might be difficult to come back and

obtain, for example, point displacements in metric units. This
might happen if two or more standardized differences applied
in Eq. (1) are equal to each other but have different accura-
cies before standardization. Thus, the best way to deal with
the problem in question is to propose a new variant of HLE
that can consider different accuracies of the measurement
results.

Thus, let us first assume that elements of the set x1, x2, x3,

. . ., xm are realizations of some random variables X j whose
distributions belong to the class F1 of continuous symmet-
ric distributions such that E(X j ) = E(X). Similar assump-
tion concerns the set y1, y2, y3, . . ., yn and the class F2 for
which E(Yi ) = E(Y ). The all variables X j and Yi are
assumed to be independent of each other, and their distri-
butions can be defined as follows P(X j ≤ u) = F(u/σX j )

and P(Yi ≤ u) = F(u/σYi − �), where σ is the respective
standard deviation. Here, we focus our attention on appli-
cation of new estimates in deformation analyses and hence
x j and yi can be regarded as measurements (or their func-
tions, see Examples). It is well grounded in theory as well as
in surveying practice that measurement results are normally
distributed and hence the classes F1 and F2 are classes of
normal distributions. Thus, the presented assumptions are
fulfilled in this case. Note that the symmetric distributions
within the classes F1 and F2 contain also symmetric heavy-
tailed distributions, which would be important when mod-
eling the occurrence of outliers. Summing up, we assume
that each set x1, x2, x3, . . ., xm and y1, y2, y3, . . ., yn contain
realizations of different random variables that are indepen-
dent, symmetrically distributed with the common respective
expectations but may differ in variances.

Let us now introduce a new variant of the test statis-
tic h such that it considers possible differences of accuracy
among xi and among y j . Assuming the respective variances
V (X j ) = σ 2

X j
and V (Yi ) = σ 2

Yi
, let the accuracy of all

x j and yi be described by the weights px j = σ 2
0 /σ 2

X j
and

pyi = σ 2
0 /σ 2

Yi
(usually it is assumed that σ 2

0 = 1), which is
a very useful and often applied way of describing accuracy
of measurement results in surveying problems. Now, let all
the differences Wl = yi − x j , (1 ≤ l ≤ nm), be computed

and ordered. Then also pl = pWl =
(

p−1
x j

+ p−1
yi

)−1
. Let

us now propose the following statistic

h(x, y) =
t∑

l=t−k+1

pl (4)

to test the hypothesis H : � = 0 against the alternatives
� > 0, where k is equal to the number of positive differences
Wl , 0 ≤ k ≤ t , and t is the number of all the differences.
Such function obviously fulfills the condition (i). If F1 and
F2 are classes of symmetric distributions, then the condition
(ii) is also fulfilled if (see Appendix)
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μ = 1

2

t∑
l=1

pl (5)

One can also consider another form of the test statistic h(x, y)

such that does not neglect zero differences, then let

h1(x, y) =
t∑

l=t−k+1

pl + 1

2

t−k∑
l=t−k−d+1

pl (6)

where d is the number of zero differences. This statistic also
fulfills conditions (i), and (ii) is satisfied for μ = 1

2

∑mn
l=1 pl

(similarly to the function from Eq. 4).
The explicit form of HLE that is based on the test statistic

of Eqs. (4), or (6), can be found through Eqs. (2) and (3). Thus,
let us consider two possible cases. Suppose first that there
exists a positive natural number b such that μ = ∑b

l=1 pl ,
thus μ is a possible value of h(x, y). Then, in accordance
with Eq. (3), we should find the biggest � for which the sum
of the weights of the positive differences is bigger than μ,
thus

�∗ = sup

{
� : h(x, y − �) >

b∑
l=1

pl

}

= sup {� : � ≤ Wb} = Wb (7)

(remembering that h(x, y − �) = h(x1, . . . , xm, y1 −
�, . . . , yn − �)). We should also find the smallest � for
which the sum of the weights of the positive differences is
smaller than μ, hence

�∗∗ = inf

{
� : h(x, y − �) <

b∑
l=1

pl

}

= inf {� : � ≥ Wb+1} = Wb+1 (8)

Thus, in this case �̂ = �∗+�∗∗
2 = Wb+Wb+1

2 .
In the second possible case, let μ = 1

2

∑t
l=1 pl and let

it be not a possible value of h(x, y). This time, let b be a
positive natural number for which

s1 =
b∑

l=1

pl >
1

2

t∑
l=1

pl and s2 =
t∑

l=b

pl >
1

2

t∑
l=1

pl (9)

Under such assumptions one can write

�∗ = sup

{
� : h(x, y − �) >

1

2

t∑
l=1

pl

}

=
{

sup {� : � ≤ Wb} = Wb if s2 > s1

sup {� : � < Wb} = Wb if s2 < s1
(10)

�∗∗ = inf

{
� : h(x, y − �) <

1

2

t∑
l=1

pl

}

=
{

inf {� : � > Wb} = Wb if s2 > s1

inf {� : � ≥ Wb} = Wb if s2 < s1
(11)

Hence, �̂ = �∗+�∗∗
2 = Wb+Wb

2 = Wb. Note that exactly the
same estimates could be derived if the test statistic h1(x, y)

from Eq. (6) is applied.
Both estimates obtained can be written in a following com-

mon form

�̂W = medw(Wl) = medw(yi − x j ), (12)

where medw is a weighted median.
Generally, the weighted median in a set of n real numbers

zi with positive real weights pzi (note that in our case zi = Wl

and pzi = pl) is a solution of the following problem (Gurwitz
1990)

min
z∈R

f (z) = min
z∈R

n∑
i=1

pzi |z − zi | (13)

which is equivalent to the following one

∑
i :zi <z

pzi ≤
⎛
⎝ ∑

i :zi =z

pzi +
∑

i :zi >z

pzi

⎞
⎠ and

⎛
⎝ ∑

i :zi <z

pzi +
∑

i :zi =z

pzi

⎞
⎠ ≥

∑
i :zi >z

pzi (14)

The alternative definitions of the weighted median, its prop-
erties as well as the algorithms of its computation can be
found, e.g., in Gurwitz (1990); Yager (1998); Beliakov et
al. (2011). The choice of a certain computation algorithm is
not so important if the set z1, z2, z3, . . ., zn (or in our case
the sets x1, x2, x3, . . ., xn and y1, y2, y3, . . ., yn) has only a
few elements as it usually is in surveying computations. In
such a case, a partial heapsort method can be used which is
rather easy to be carried out, however, this is not the fastest
way to compute the weighted median. Here, the partial heap-
sort method can be carried out in the following way. First,
order the sample z1, z2, z3, . . ., zn, then start to sum weights
of k succeeding smallest zi . The weighted median is equal
to such zk for which the sum in question becomes greater
that the half of the sum of all the weights pzi . If the sum is
exactly equal to the half of the weights, then one should take
the mean of zk and zk+1 (see, Gurwitz 1990). Thus generally,
the idea behind the estimate in Eq. (12) is as follows: let the
values y1, y2, y3, . . ., yn be shifted to the left by a certain
value � until the differences Wl and their weights pl fulfill
the requirement in Eq. (14). Note that if all the weights are
equal to each other, then the estimate in question is equal to
HLE from Eq. (1).
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The new variant of the shift estimate that is introduced in
Eq. (12) is based on the test statistic of Eq. (4) which depends
on the weights of the ordered differences Wl . Hence, it will
be called the Hodges–Lehmann weighted estimate (HLWE).

Let us now apply a similar approach to the one sample
problem. Thus, let us consider a set x1, x2, x3, . . ., xm under
the same assumptions that were made for the first sample
in the two sample case. Then, let the common expected
value E(X j ) = E(X) be estimated. One can propose an
analogical new test statistic h(x), which could consider dif-
ferent accuracies of the measurement results, and the spe-
cially modified requirements (i) and (ii) (see, Hodges and
Lehmann 1963). However, there is another way to derive
an explicit form of HLWE of the expected value. Let a set
−x1,−x2,−x3, . . .,−xm be created and let it stand in for
the second set in the two sample problem. This set is shifted
to the left by 2E(X) and of course the shift can be estimated
by using HLWE in Eq. (12). Hence,

�̂W = 2ÊW (X) = medw(Wl) = medw(xi − (−x j )) (15)

and the final form of HLWE of the expected value is as follow

ÊW (X) = medw(xi + x j )

2
= medw

(
xi + x j

2

)
, (16)

where 1 ≤ i ≤ n, 1 ≤ j ≤ n. This estimate is consis-
tent with the original HLE of the expected value as well as
with the respective R-estimate presented in Huber (1981) if
only all the weights are the same. Note that the estimate in
question is robust against outliers if n ≥ 5 which reduces
its application in some surveying problems (Rousseeuw and
Verboven 2002; Duchnowski 2009).

3 HLWE in deformation analyses

The HLWE is a natural estimate of the shift between two
sets of observations in case of the random variables that are
defined as at the beginning of the previous section. Thus, if
the sets are properly constructed HLWE can also be applied
in deformation analyses to estimate point displacements.

Consider a geodetic network established to analyze defor-
mation of a certain structure. All the network points would
have one, two or three coordinates which depends on dimen-
sion of the network. Suppose that these coordinates can be
computed by applying measurement results and the coordi-
nates of the reference points. Let this computations be car-
ried out by using only the simplest surveying methods, for
example, by adding measured height differences to the height
of the reference points, by applying angular or linear inter-
sections, resections, 3D resections, or just a polar method.
Generally, each coordinate can be computed at least several
times, thus one can obtain a set of such values. If the obser-
vations are independent then we can assume that the set con-

tains the realizations of the independent random variables
with the common expected value, the “true” coordinate, and
with the different variances, which depend on the accuracy of
the observations and the computation method applied. Sup-
pose that the network was measured at least two times at two
different epochs. Then one can create the sets in question
for each coordinate and for each measurement epoch, and
the change of each coordinate can be estimated by applying
HLWE proposed earlier (if only coordinates can be regarded
as normally distributed).

Now let us present two examples that show the application
and properties of the new estimate in deformation analyses.

3.1 Example 1

Consider simple leveling networks with n ≥ 3 reference
points and one objective point for which vertical displace-
ment is tested. Let all differences between the objective point
and the reference points be measured twice at two different
epochs. Thus, n values of the height of the objective point
can be computed for each of the measurement epochs. Let
them create the sets x1, x2, x3, . . ., xn and y1, y2, y3, . . ., yn ,
respectively. Let the variances of these heights be described
by the following formula σ 2

xi
= σ 2

yi
= σ 2

0 Di , where Di is a
length of the i th leveling line given in km (σ 2

0 = 1). Assume
that the measurement errors are Gaussian with the expected
value equal to zero and the variances as presented above.
Let such errors be simulated 100,000 times, in each of the
computation variants, and let the theoretical displacement �,
which is equal to zero, be estimated by applying HLWE of
Eq. (12), LSE, i.e., by applying the weighted mean and the
traditional HLE (in this case we neglect the differences in the
variances and assume that all measurement results have the
same accuracy). The random errors of the simulated mea-
surement results were generated by Mathcad 15.0. The com-
parison of the results obtained is presented in Table 1.

The main conclusion is that the three estimates give very
similar results. The results obtained for HLWE and HLE
are often the same, however, this strongly depends on how
the weights differ from one another. When results for both
estimates are different then better results are mostly obtained
for HLWE. Comparing HLWE with LSE one can say that
LSEs give a little better results, however, note that HLWEs are
better in about 43 % of the simulations. Similar conclusions
follow from the analyses of the root-mean-squared deviations

RMSD =
√∑n

i=1 (� − �̂i )2/n (where n is the number of
experiments) which were computed for each of the estimates
in each of the variants on the basis of 100,000 simulations.

Here, always RMSDHLE ≥ RMSDHLWE > RMSDLSE

(considering also that HLWE are equal to HLE if all the
weights are the same). The differences in RMSDs are usually
small and <0.1 mm.
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Table 1 Comparison of HLWE with LSE and HLE

Number of reference
points

Lengths of leveling
lines (km)

HLE LSE RMSD (mm)

A (%) B (%) A (%) B (%) HLE HLWE LSE

3 1, 1, 2 91.1 4.9 0.3 43.6 0.98 0.97 0.85

0.5, 1, 2 75.5 16.2 0.2 42.6 0.89 0.85 0.76

0.5, 0.5, 2 54.2 30.4 0.3 43.9 0.81 0.72 0.67

4 1, 1, 1, 2 25.5 41.8 0.2 42.5 0.88 0.87 0.80

1, 1, 2, 2 55.5 25.3 0.3 43.2 0.94 0.93 0.87

0.5, 1, 2, 4 21.8 45.6 0.1 42.8 0.86 0.82 0.74

5 1, 1, 1, 1, 2 64.5 20.6 0.2 45.0 0.71 0.70 0.67

0.5, 1, 1, 2, 2 47.4 33.9 0.2 42.9 0.72 0.69 0.63

0.5, 1, 2, 3, 4 33.9 45.5 0.0 41.6 0.90 0.81 0.70

A percentage of the simulations in which HLWE is equal to HLE or LSE, respectively, B percentage of the simulations in which HLWE is closer
to 0 than HLE or LSE, respectively

Fig. 1 Horizontal control network

3.2 Example 2

Let us now consider a horizontal control network with three
reference points and two objective points. The objective
points are not connected to each other, thus, each of the
objective points with the reference points constitutes an inde-
pendent subnetwork as proposed in Hekimoglu et al. (2010).
The network as well as the horizontal angles and distances
observed are shown in Fig. 1. Let us now simulate the mea-
surement results for two measurement epochs under the fol-
lowing assumptions: the standard deviations are σA = 5cc

for the angles and σD = 2 mm for the distances; the mea-
surement errors are Gaussian with the expected value equal
to 0; both objective points are displaced and the shifts of
their coordinates are �X1 = 40 mm,�Y 1 = 20 mm as for
the point 1, �X2 = −30 mm,�Y 2 = −10 mm as for the
point 2. The simulated measurements results are presented
in Table 2.

Let now the displacements of the objective points be esti-
mated by applying HLWE of the shift Eq. (12). First, let the
coordinates of the objective points be computed by apply-
ing the measurements and simple surveying methods, For
example, the coordinate X1 can be calculated in seven dif-
ferent ways by using the coordinates of the reference points
and different pairs of the observations. Note, that since the
angles and distances are normally distributed, then within a
close neighborhood of E(X1) also X1 can be regarded as
normally distributed, which fulfills the theoretical assump-
tions for HLWE. If we also consider the assumed standard
deviations of the distances and the angles, then it is easy to
calculate the standard deviations of such computed values
of the coordinate X1 according to the law of propagation of
variance and assuming that the reference points as fixed. The
results of these calculations are listed in Table 3.

Note, that each observation can be used only once to avoid
dependences between the computation results. It is also worth
noting that there are also other possible ways to calculate X1,
namely by applying other intersections and other combina-
tions of the observations, however, there are always seven
independent ways to calculate X1. Of course, similar calcu-
lations can be carried out for X1 at the second measurement
epoch as well as for the other coordinates of the objective
points. Respective sets of the coordinate values can then be
applied in Eq. (12) resulting in HLWE of the coordinate
shifts. Note that the coordinate shift can also be estimated
by applying HLWEs of the expected value from Eq. (16).
Then, the point coordinates are estimated separately for both
epochs and the differences between respective values are the
estimates of the coordinate shifts. Of course, the same shifts
can be estimated by LSE. Also in this case, the network is
adjusted separately for each epoch and the shift estimate is
equal to the differences of the objective point coordinates,
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Table 2 Simulated
measurements

Distances (m) Angles (g)

Observation Epoch I Epoch II Observation Epoch I Epoch II

A-1 174.9265 174.9729 1-A-B 95.1112 95.1140

1-A 174.9291 174.9716 1-A-C 61.3571 61.3590

A-2 191.0489 191.0191 A-B-1 67.3030 67.3100

2-A 191.0523 191.0239 A-B-2 84.4041 84.4031

B-1 200.2530 200.2892 1-B-C 47.4084 47.4016

1-B 200.2471 200.2854 2-B-C 30.3076 30.3098

B-2 184.3910 184.3628 B-C-1 129.9959 130.0091

2-B 184.3898 184.3595 B-C-2 150.4790 150.4713

C-1 152.3148 152.3426 A-C-2 98.9450 98.9386

1-C 152.3161 152.2446 A-C-1 78.4613 78.4753

C-2 120.4150 120.3885 2-A-B 77.1598 77.1549

2-C 120.4160 120.3897 2-A-C 43.4052 43.4008

B-1-A 37.5847 37.5762

C-1-B 22.5960 22.5882

B-2-A 38.4363 38.4427

C-2-B 19.2139 19.2187

Table 3 Values of the coordinate X1 at the first epoch

Observations applied Coordinate value (m) SD (m)

A-1, 1-A-B 249.9963 0.00186

1-A, 1-A-C 249.9992 0.00186

1-B, A-B-1 250.0032 0.00200

B-1, 1-B-C 249.9974 0.00200

C-1, A-C-1 249.9991 0.00190

1-C, B-C-1 250.0011 0.00190

B-1-C, A-1-B 249.9997 0.00283

respectively. The estimation results and the comparison are
presented in Table 4. Consider now the second variant in
which some observations are disturbed with non-random
errors. Let four distances, namely C-1, 1-C, 2-C, C-2 be
affected with the non-random error of 0.01 m, and four angles
A-C-1, B-C-1, A-C-2, B-C-2 with the error of 50cc. Thus, the
observations that concern the point C are outliers. The esti-
mation results under such assumption are also presented in
Table 4.

Let us now compare the norms of the vectors e, which
contain respective values ei , for the three kinds of the esti-
mates of the coordinate shifts. In the first variant estimation
results are very similar, so are the norm values. In the sec-
ond variant the differences between the estimation results
as well as between the values of the norms, respectively,
are more evident. One should expect such results consider-
ing the lack of the robustness of LSE and the well-known
robustness of the Hodges–Lehmann estimates. There is no

doubt that �̂W gave much better results than ÊW (X), hence
it is more robust variant of HLWE in this case. Of course
this advantage of HLWEs disappears if only the outliers are
cleared off the measurement results. The traditional methods
of data cleaning are often based on standardized residuals
of the observations from the least squares method. In the
network at hand, all the standard deviations of the distance
residuals are very close to each other, so are all the standard
deviations of the angle residuals. Thus, we can compare the
residuals before the standardization trying to find outliers.
As one can see not only the real outliers, whose residuals are
underlined, have large residuals (these residuals are listed
in Table 5). This means that during the data cleaning one
would reject some “good” results. The same conclusion con-
cerns robust methods of M-estimation where the weights
of some good observations would be reduced unnecessarily.
Suppose now that outliers would be detected by applying
HLWEs, namely by using the observation residuals related
to these estimates. Let us apply the estimates �̂W , which are
the most robust here. The objective point coordinates at the
second epoch can then be calculated by adding the estimated
coordinate shifts (�̂W ) to the values of the coordinates at the
first epoch, respectively (for example, computed by ÊW (X)

or by LSE). The observation residuals related to such com-
puted coordinates are shown in Table 5. This time it is much
easier to detect outlying observations.

Let us now try to investigate distributions of HLWEs of
the coordinate shifts. Thus, let the measurement results be
simulated 100,000 times under the same assumptions as in
the numerical example presented above (the variant with-
out gross errors) and let HLWEs of all four coordinate shifts
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Table 4 Results of estimation

Coordinate Shift � (m) Estimated shift �̂ (m) Differences ei = �̂ − � (m)

�̂W ÊW (X) LSE �̂W ÊW (X) LSE

X1 0.04 0.0400 0.0398 0.0401 0.0000 −0.0002 0.0001

Y1 0.02 0.0187 0.0187 0.0184 −0.0013 −0.0013 −0.0016

X2 −0.03 −0.0281 −0.0279 −0.0285 0.0019 0.0021 0.0015

Y2 −0.01 −0.0112 −0.0114 −0.0109 −0.0012 −0.0014 −0.0009

‖e‖ = 0.0026 0.0028 0.0024

Second variant

X1 0.04 0.0412 0.0450 0.0453 0.0012 0.0050 0.0053

Y1 0.02 0.0202 0.0218 0.0226 0.0002 0.0018 0.0026

X2 −0.03 −0.0267 −0.0245 −0.0250 0.0033 0.0055 0.0050

Y2 −0.01 −0.0086 −0.0074 −0.0058 0.0014 0.0026 0.0042

‖e‖ = 0.0038 0.0081 0.0088

Table 5 Observation residuals
Residuals of distances (mm) Residuals of angles (cc)

Observation LSE HLWE Observation LSE HLWE

A-1 6.0 1.3 1-A-B −6.7 −5.4

1-A 7.3 2.6 1-A-C −1.7 −0.4

A-2 9.2 5.6 A-B-1 11.0 1.7

2-A 4.4 0.8 A-B-2 11.0 1.3

B-1 3.6 −0.1 1-B-C −10.0 −0.7

1-B 7.4 3.7 2-B-C −23.0 −13.3

B-2 2.2 −0.3 B-C-1 −22.2 −39.0

2-B 5.5 3.0 B-C-2 −16.8 −34.8

C-1 −5.8 −8.3 A-C-2 −27.8 −45.8

1-C −7.8 −10.3 A-C-1 −22.2 −39.0

C-2 −7.4 −9.0 2-A-B 2.0 4.9

2-C −8.6 −10.1 2-A-C −3.0 −0.1

B-1-A −7.3 0.7

C-1-B −5.8 1.7

B-2-A −18.9 −12.2

C-2-B −8.2 0.1

be computed. Let the same shifts be estimated by apply-
ing LS method (weighted means) for the sake of comparing.
The results of such Monte Carlo simulations are presented in
Table 6 and the histograms of HLWEs are shown in Fig. 2.

The histograms that are presented in Fig. 2 are symmetric
about the means, which are actually equal to the true shifts.
Thus, HLWEs are not biased here.

The results presented in Table 6 are very similar for both
HLWE and LSE. The only difference concerns their stan-
dard deviations. However, the respective standard deviations
are equal to each other if they get rounded to one-tenth of a
millimeter. The last column of Table 6 presents the standard

deviations of LSEs computed by applying the law of propa-
gation of variance, which are also very close to the values of
standard deviations of HLWEs resulting from Monte Carlo
simulations. Here, we apply HLWE to deformation analyses
thus it is very important to know the accuracy of this estimate.
Since the law of propagation of variance cannot be used to
compute the variance of HLWE directly from the variances
of the observations applied, thus application of Monte Carlo
simulations seems to be the best way to assess the accuracy
of HWLE.

From the practical point of view, it would be helpful to find
a simplified formula for assessment of accuracy of HLWE.
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Table 6 Results of Monte Carlo simulations of shift estimation

Coordinate Shift � (m) Monte Carlo simulations (m) SD of LSE (m)

�̂W LSE

Mean SD Mean SD

X1 0.04 0.0400 0.00112 0.0400 0.00107 0.00107

Y1 0.02 0.0200 0.00090 0.0200 0.00086 0.00085

X2 −0.03 −0.0300 0.00114 −0.0300 0.00107 0.00109

Y2 −0.01 −0.0100 0.00078 −0.0100 0.00073 0.00073

Fig. 2 Histograms of Monte
Carlo simulations of the values
a �̂W

X1, b �̂W
Y 1, c �̂W

X2, d �̂W
Y 2

(ω is the frequency)

The results obtained in the present example, but also many
other simulations which are not presented here, show that

σ̂HLWE = c · σ̂LSE , (17)

where c is a proportionality factor and c ≈ 1.07. The dif-
ference between the standard deviation of HLWE obtained
from Monte Carlo simulations and those from the Eq. (17)
are usually ≤1 % and very rarely ≥2 % (the maximum differ-
ence was ≤5 %). Note that the formula of Eq. (17) is valid and
tested for normal distributions which is however acceptable
when applying HLWE in a deformation analysis.

4 Conclusions

The estimates proposed in this paper, namely the Hogdes–
Lehmann weighted estimates, are based on the theoretical
foundations similar to the traditional R-estimates. Thus we
can suppose that the general properties of HLWE are similar
to conventional HLE. The main difference is that the new

estimators take into account the differences in measurement
accuracy among the observations. This extends the possible
application of the estimates also to more complex surveying
tasks. From the practical point of view, their high robust-
ness against outliers seems to be another important prop-
erty. This can not only protect the estimation results from
the influences of gross errors, but can also be applied to
solve some surveying problems. HLWE would be used to
test the stability of the reference points in 2D or 3D net-
works, for example in the case of horizontal control net-
works (similar method was proposed in Duchnowski (2010),
but concerned leveling networks). However, such application
surly requires investigating of robustness of HLWE in greater
detail.

The paper presents two variants of HLWE. Theoretical
properties as well as numerical test, see Example 2, show
that the HLWE of the shift is a better choice for geodetic
or surveying tasks. This follows from its robustness also in
case of very small samples. Note, that values of this variant
of HLWE is less affected by gross errors, Example 2.
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The paper presents also a new approach of how to apply
HLWE (but also other variants of HLE) in geodetic or sur-
veying problems. It is based on computing coordinates of,
for example, objective points by using all possible indepen-
dent ways and applying such created sets to HLWE. This
approach seems to be more natural, easier to be carried out
and more convenient in deformation analysis than the previ-
ously applied method based on initial residuals.

The last, but not least, conclusion concerns comparison
of HLWE with traditional LSE when observation errors are
assumed to be normally distributed. Example 1 shows that if
the observation set is free of outliers, then RMSDs of HLWE
of the shift are usually only a little bigger than those for LSE.
The same conclusion follows from Example 2 and concerns
the standard deviations of both estimates. Thus, generally the
accuracies of these estimates are very similar. Such knowl-
edge is applied in the simple formula of Eq. (17) and the stan-
dard deviation of HLWE can be computed in a very practical
way.

5 Appendix

Let us consider a distribution of the statistic h(X, Y ) from
Eq. (4). First, let us investigate the symmetry of the distri-
butions of Wl(X, Y ) = Yi − X j under the assumption that
� = 0. Thus, if F1 and F2 are classes of symmetric dis-
tributions then μ3(Yi ) = 0 and also μ3(X j ) = 0, where
μ3 is the third central moment of respective variable. Let us
now consider μ3(Wl). Since � = 0 then E(Y ) = E(X),
hence E(Yi ) = E(X j ). Applying this equality and con-
sidering that variables Yi and X j are independent, we can
obtain

μ3(Wl) = μ3(Yi − X j ) = E

⎛
⎜⎝Yi − X j − E(Yi − X j )︸ ︷︷ ︸

0

⎞
⎟⎠

3

= E
(

Y 3
i − 3Y 2

i X j + 3Yi X2
j − X3

j

)

= E
(

Y 3
i

)
− 3E

(
Y 2

i

)
E(X j ) + 3E(Yi )E

(
X2

j

)

−E(X3
j ) + 2E3(Yi ) − 2E3(X j )︸ ︷︷ ︸

0

= E
(

Y 3
i

)
− 3E(Y 2

i )E(Yi ) + 2E3(Yi )
︸ ︷︷ ︸

μ3(Yi )

−

⎛
⎜⎜⎜⎝E

(
X3

j

)
− 3E(X j )E

(
X2

j

)
+ 2E3(X j )

︸ ︷︷ ︸
μ3(X j )

⎞
⎟⎟⎟⎠

= μ3(Yi ) − μ3(X j ) = 0

Thus, if distributions of Yi and X j are symmetric then also
distributions of Wl(X, Y ) = Yi − X j are symmetric (for all
1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ l ≤ nm), and additionally
since E(Yi ) = E(X j ) then E(Wl(X, Y )) = 0. Note that,
the symmetry of the distributions of Yi and X j is a sufficient
condition here. The necessary and sufficient condition is that
μ3(Yi ) = μ3(X j ), hence F1 and F2 may also be classes of
non-symmetric distributions; however, such case will not be
discussed here.

Considering Eq. (4), h(X, Y ) is a discrete random variable
and its possible values can be computed as hr = ∑nm

l=1 kr
l · pl

for 1 ≤ r ≤ 2nm where: pl = pWl is the weight of the lth
difference Wl(X, Y ), and kr

l = 1 if Wl(X, Y ) > 0, kr
l = 0

if Wl(X, Y ) ≤ 0. Let us now consider pairs of the values hc

and hd such that kc
l �= kd

l for all l (all the possible values
create 2nm−1 such pairs). One of the pairs in question is the
pair of the minimal and maximal values of h(X, Y ), namely
hc = 0 if all kc

l = 0 and hd = ∑nm
l=1 pl if all kd

l = 1.
Thus, all the other pairs hc and hd must lie within the inter-
val

〈
0,

∑nm
l=1 pl

〉
and what is more, each pair is symmetrically

placed with respect to the interval ends. Additionally, since
all Wl(X, Y ) are symmetrically distributed about 0 then the
probabilities of both values hc and hd are equal to each other
P (h(X, Y ) = hc) = P (h(X, Y ) = hd). (Note, that if all
Wl(X, Y ) were independent of each other, then this proba-
bility would be equal to 0.5nm). Hence, h(X, Y ) is symmet-
rically distributed about the center of the interval, namely
μ = 1

2

∑nm
l=1 pl .

To illustrate the theoretical considerations presented
above, let us now present the results of Monte Carlo sim-
ulations of h(X, Y ). Thus, let � = 0 and let the variables
X j and Yi be normally distributed with the standard devia-
tions σX j and σYi , respectively. Let us consider four example
variants:

(a) m = n = 3, σX1 = 4, σX2 = 3, σX3 = 2, σY1 = 3,

σY2 = 1, σY3 = 2
(b) m = n = 4, σX1 = 4, σX2 = 6, σX3 = 1, σX4 = 1,

σY1 = 1, σY2 = 3, σY3 = 2, σY4 = 5
(c) m = n = 5, σX1 = σX2 = σX3 = σX4 = 1, σX5 = 2,

σY1 = 1, σY2 = σY3 = σY4 = σY5 = 2
(d) m = n = 7, σX1 = 2, σX2 = 1, σX3 = 4, σX4 = 3,

σX5 = 1, σX6 = 5, σX7 = 1,

σY1 = 3, σY2 = 2, σY3 = 1, σY4 = 2, σY5 = 3,

σY6 = 1, σY7 = 6

The histograms of the h(X, Y )’s values for those variants
are presented in Fig. 3. Each of them is based on 100,000 sim-
ulations and is quite symmetric which of course results from
the symmetric distributions of h(X, Y ). Figure 3 presents
only four example histograms, however, the other simula-
tions that were carried out by the author show that the his-
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Fig. 3 Histograms of Monte
Carlo simulations of h(X, Y )’s
values for the four example
variants a–d which are detailed
described in the text (ω is the
frequency)

tograms of the h(X, Y )’s values are always symmetric, hence
the symmetry is independent of values of m, n, σX j , σYi .

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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