
J Geod (2010) 84:731–749
DOI 10.1007/s00190-010-0406-2

ORIGINAL ARTICLE

The combination of GNSS-levelling data and gravimetric
(quasi-) geoid heights in the presence of noise

R. Klees · I. Prutkin

Received: 22 January 2010 / Accepted: 12 August 2010 / Published online: 29 August 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We propose a methodology for the combination
of a gravimetric (quasi-) geoid with GNSS-levelling data in
the presence of noise with correlations and/or spatially vary-
ing noise variances. It comprises two steps: first, a gravi-
metric (quasi-) geoid is computed using the available gravity
data, which, in a second step, is improved using ellipsoidal
heights at benchmarks provided by GNSS once they have
become available. The methodology is an alternative to the
integrated processing of all available data using least-squares
techniques or least-squares collocation. Unlike the corrector-
surface approach, the pursued approach guarantees that the
corrections applied to the gravimetric (quasi-) geoid are con-
sistent with the gravity anomaly data set. The methodology is
applied to a data set comprising 109 gravimetric quasi-geoid
heights, ellipsoidal heights and normal heights at benchmarks
in Switzerland. Each data set is complemented by a full noise
covariance matrix. We show that when neglecting noise cor-
relations and/or spatially varying noise variances, errors up
to 10% of the differences between geometric and gravimetric
quasi-geoid heights are introduced. This suggests that if high-
quality ellipsoidal heights at benchmarks are available and
are used to compute an improved (quasi-) geoid, noise covari-
ance matrices referring to the same datum should be used in
the data processing whenever they are available. We com-
pare the methodology with the corrector-surface approach
using various corrector surface models. We show that the
commonly used corrector surfaces fail to model the more
complicated spatial patterns of differences between geomet-
ric and gravimetric quasi-geoid heights present in the data
set. More flexible parametric models such as radial basis
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function approximations or minimum-curvature harmonic
splines perform better. We also compare the proposed method
with generalized least-squares collocation, which comprises
a deterministic trend model, a random signal component and
a random correlated noise component. Trend model parame-
ters and signal covariance function parameters are estimated
iteratively from the data using non-linear least-squares
techniques. We show that the performance of generalized
least-squares collocation is better than the performance of
corrector surfaces, but the differences with respect to the
proposed method are still significant.

Keywords Local gravity field modelling · Quasi-geoid ·
GNSS-levelling data · Cauchy boundary value problem ·
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1 Introduction

Local (quasi-) geoids serve as reference surface for the
national height system and facilitate the application of Global
Navigation Satellite Systems (GNSS) for heighting. They are
computed by or under contract of national authorities for a
target area, which is mostly identical with the whole country.
Depending on the required accuracy and spatial resolution,
terrestrial and/or airborne gravity surveys are conducted to
acquire the necessary gravity data over the target area. The
access to gravity data of comparable quality and density out-
side the target area is not always guaranteed, because these
data are either classified or not available for other reasons.
Lack of data of comparable density and quality outside the
target area reduces the accuracy of the (quasi)-geoid. Sig-
nificant errors are not confined to the border of the target
area, but propagate throughout the whole target area. Com-
monly adopted approaches to reduce these errors comprise
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the use of an existing global or continental gravity model (e.g.
EGM2008, see Pavlis et al. 2008, or EGG97, see Denker and
Torge 1998) or the prediction of gravity data. A further error
reduction is possible by a modification of the Stokes integral
kernel, which is motivated by the early works of Molodensky
et al. (1962), Wong and Gore (1969) and Meissl (1971).

GNSS measurements at points with known orthometric
heights or normal heights (shortly, levelling-based heights)
located inside the target area, however, may be a good alter-
native or may offer an additional opportunity to reduce these
errors provided that enough points with a good spatial cover-
age of the target area are available, and the accuracy is at least
comparable to the accuracy of the gravimetric (quasi-) geoid.
Differences between ellipsoidal heights and levelling-based
heights are essentially equivalent to pointwise measurements
of (quasi-) geoid heights. Over the years, the number of
benchmarks observed with GNSS is continuously growing
in many countries, though their number is much less than the
number of available gravity anomalies. At the same time, a
1- to 2-cm precision for ellipsoidal heights is feasible pro-
vided that the occupation time is long enough and the data
processing has been done carefully. This is better than the
quality of the best gravimetric (quasi-) geoids. Moreover,
systematic errors in levelling networks can be better con-
trolled by GNSS, which reduces long-wavelength errors in
levelling-based heights. Therefore, GNSS measurements at
benchmarks of good quality and spatial coverage represent a
valuable data set to reduce the errors in gravimetric (quasi-)
geoids, which are caused by the lack of high-quality, dense
gravity data outside the target area. In the following we will
assume that such a data set is available.

When following a boundary-value approach, the deter-
mination of a local (quasi-) geoid from a combination of
gravity anomalies and (quasi-) geoid heights requires a dif-
ferent methodology than the computation of a (quasi-) geoid
from gravity anomalies alone. Prutkin and Klees (2008)
have developed such a methodology. It is seen as an alter-
native to the commonly applied corrector-surface approach
(e.g. Denker and Torge 1998; Featherstone 2000; Fotopoulos
2005; van Loon 2008) and least-squares collocation (Meissl
1976; Tscherning 1978; Moritz 1989). The main limitation
of the approach of Prutkin and Klees (2008) is, however,
that it does not permit to properly take random data noise
into account. In fact, it is a deterministic approach. Noise
is addressed indirectly by the choice of a single parameter,
which determines the smoothness of the combined (quasi-)
geoid model. Prutkin and Klees (2008) propose to choose
this parameter equal to the average standard deviation of
an observed difference between geometric and gravimet-
ric (quasi-) geoid height. This is a serious limitation as
standard deviations may vary significantly from point to
point. Moreover, it is known that there are strong noise cor-
relations among gravimetric (quasi-) geoid heights and to

a lesser extent also among ellipsoidal heights and among
levelling-based heights. There are also cross-correlations
between gravimetric (quasi-) geoid heights and levelling-
based heights, for the latter are being used when computing a
gravimetric (quasi-) geoid. An example of noise correlations
is shown in Fig. 2. It displays the noise covariance matri-
ces of ellipsoidal heights, normal heights and gravimetric
quasi-geoid heights at a set of benchmarks in Switzerland
(cf. Sect. 3 for more details about this data set).

Here, we propose an extension of the methodology of
Prutkin and Klees (2008) to noisy data with spatially varying
noise variances and/or noise correlations. We study the effect
of correlated noise on the combined (quasi-) geoid and com-
pare the results with the method of Prutkin and Klees (2008),
various corrector surfaces and least-squares collocation.

The paper is organized as follows: in Sect. 2, we extend
the methodology of Prutkin and Klees (2008) to noisy data
with full noise covariance information. Moreover, we present
an alternative interpretation of the methodology of Prutkin
and Klees (2008), which emphasizes the complementarity of
GNSS-levelling data to gravity anomaly data if gravity anom-
alies of comparable quality and density outside the target area
are not available. Here, ‘suitable’ refers to either quality or
density or both of them. In Sect. 3, we introduce the data set,
which is being used in this study. In Sect. 4, we apply the pro-
posed methodology to real data. In particular, we show that
when noise correlations are neglected errors up to 10% of the
differences between geometric and gravimetric quasi-geoid
heights can be introduced. In Sect. 5, we compare the com-
bined (quasi-) geoid solution obtained with the methodology
of Sect. 2 with various corrector surfaces. The latter are esti-
mated from the data by least-squares. We demonstrate that
there are significant errors in the corrector-surface solutions,
which may take up values of several centimetres for the Swiss
data set. In Sect. 6, we extend the comparison to the method
of least-squares collocation with trend parameters and data
noise. The trend parameters and the parameters of the sig-
nal covariance function of the differences between geo-
metric and gravimetric (quasi-) geoid heights are estimated
from the data using an iterative approach and non-linear
least-squares techniques. We show that the least-squares col-
location solution is closer to the solution obtained with the
proposed methodology than most of the corrector-surface
solutions. We close the paper with a discussion (Sect. 7) and
some conclusions (Sect. 8).

2 Methodology

Suppose a quasi-geoid has been computed for the target area
using all available gravity data. The corresponding disturb-
ing potential is Tgrav. Suppose ellipsoidal heights h have
been observed with GNSS at a set of benchmarks with given
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normal heights H and have been converted into disturbing
potential values (function f ) using the normal gravity at the
corresponding telluroid points. We want to use this data set
to obtain a new quasi-geoid solution. The corresponding dis-
turbing potential is T . Then,

T = Tgrav + u, (1)

where u is the solution to the problem

�u = 0 outside S

−∂u

∂r
|S − 2

r
u|S = 0 (2)

u|S = q

Here, S is the telluroid, and

q := f − Tgrav|S . (3)

Note that problem (2) provides only an approximation to u
up to the linearization error and the error of the spherical
approximation (e.g. Heck 1997). The former is negligible,
because u is a residual quantity. The latter can be reducted
whenever necessary by applying ellipsoidal corrections.

The quantity q
γ

, where γ is the normal gravity at the tellu-
roid, is the difference between the geometric height anomaly

ζgeom := h − H, (4)

and the gravimetric height anomaly

ζgrav := Tgrav|S

γ
. (5)

Unfortunately, no algorithm to compute a solution of prob-
lem (2) is known yet, because S is an open surface. However,
Prutkin and Klees (2008) found a numerical solution to the
problem

�u = 0 outside S

−∂u

∂r
|S = 0 (6)

u|S = q

The problems (2) and (6) use different differential operators
in the first boundary condition: problem (2) uses the grav-
ity anomaly operator − ∂

∂r − 2
r , while problem (6) uses the

gravity disturbance operator − ∂
∂r .

The question whether problem (6) may replace problem
(2) depends on the magnitude of u|S . As long as

|u|S| <
r

2
σ�g, (7)

where σ�g is the standard deviation of the terrestrial gravity
anomalies, it is safe to replace problem (2) by problem (6).
To obtain an idea about the magnitude of u|S , we remem-
ber that u|S scales with the difference between geometric
and gravimetric quasi-geoid heights, and therefore is a small
quantity, usually of the order of a few m2/s2. The accuracy
of currently available surface gravity anomalies is not better

than, say, 0.5 mGal; for many countries it is worse. Therefore,
as long as u is smaller than, say, 15 m2/s2, the quasi-geoid
error introduced when replacing problem (2) by problem (6)
is below the data noise level. Hence, as long as u < 15 m2/s2,
problem (6) provides a good approximation to problem (2).

Prutkin and Klees (2008) suggest to represent u as the
mean of two harmonic functions, uint and uext, which form a
Kelvin transform pair (Kellogg 1929) with respect to a sphere
SR of radius R that best fits the target area (i.e. a locally best
fitting sphere). That is, if uext is harmonic in the domain
Dext ⊂ R

3, where Dext is the domain outside a sphere of
radius R − d (the choice of d will be discussed later), then
the function

uint(y) =
(

R

|y|
)

uext(x), x = R2

|y|2 y, (8)

is harmonic in the domain Dint. Dint is obtained from Dext

by an inversion in the sphere SR = {x : |x | = R}, i.e. by
the mapping x → y = R2

|x |2 x . If d/R is small, any point on
the sphere SR−d (which is the boundary of the domain of
harmonicity of uext) is mapped onto a point with distance
R(1 + d/R + O(d/R)2)) ≈ R + d from the origin, i.e.
onto a point close to the surface of the sphere with radius
R + d. Hence, if d/R is small, we can consider the bound-
ary of the domain Dint as the surface of a sphere with radius
R + d without introducing significant errors in the solution.
In reality, the telluroid surface S differs from the surface of a
locally best-fitting sphere SR by less than a few kilometres.
If this difference is denoted h, the error in the quasi-geoid
height we introduce when taking u as the mean of the Kelvin
transform pair uext and uint is h

Rγ
u. When we set h = 5 km,

R = 6371 km and u = 1 m2/s2, the error is <0.1 mm.
The functions uext and uint can be written in terms of their

trace χ on the boundary of the domain of harmonicity SR−d

and SR+d , respectively, using Poisson’s integral (e.g. Kellogg
1929) as

uext(x) = KR−d(χ)(x), |x | > R − h, (9)

uint(x) = KR+d(χ)(x), |x | < R + h. (10)

The integral operator Kr is defined as

Kr (χ)(x) :=
∫∫

y∈Sr

χ(y)Kr (x, y) dSr (y), (11)

where Kr (x, y) is the Poisson kernel for a sphere of radius
r :

Kr (x, y) = |x |2 − r2

4πr

1

|x − y|3 , |y| = r. (12)

Hence, the solution to problem (6) in the vicinity of the tel-
luroid S can formally be written as

u(x) = 1

2
(KR−d(χ)(x) + KR+d(χ)(x)) . (13)
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To obtain a numerical solution of u in a 3D neighborhood of
the telluroid S from given values u|S , we need to discretize
the integral (11). We select nodes {yi ∈ S : i = 1, . . . , I } and
associated weights wi and approximate the integral operator
(11) by

Kr (χ)(x) ≈ ˆKr (χ)(x) =
I∑

i=1

χ(r ŷi ) Kr (x, r ŷi ) r2 wi ,

(14)

where {ŷi : i = 1, . . . , I } are the nodes on the unit sphere,
i.e. ŷi = yi

|yi | . The simplest choice is an equiangular grid of
nodes with weights

wi = �2 sin ϑi , (15)

where � is the grid spacing in rad, and {ϑi : i = 1, . . . , I }
are the co-latitudes of the grid points. Correspondingly, we
define

û(x) := 1

2

( ˆKR−d(χ)(x) + ˆKR+d(χ)(x)
)

. (16)

When we insert Eq. (14) into Eq. (16), we obtain

û(x) =
I∑

i=1

χi

[
(R − d)2 K R−d

(
x, (R − d)ŷi

)

+(R + d)2 K R+d
(
x, (R + d)ŷi

)] wi

2
, (17)

where we have used χ((R − d)ŷi ) = χ((R + d)ŷi ) =: χi .
u(x) is not known at all point x ∈ S, but only at the J GNSS-
levelling points {x j ∈ S : j = 1, . . . , J }: u|S(x j ) = q(x j )

(for simplicity reasons we use the same notation for points
on the Earth’s surface and on the telluroid). Hence, the fully
discretized observation equations are up to the discretization
error

q(x j ) =
I∑

i=1

χi

[
K R−d(x j , (R − d)ŷi )(R − d)2

+K R+d(x j , (R + d)ŷi )(R + d)2
] wi

2
. (18)

Equation (18) is a system of J linear equations with I
unknowns. We define vectors q = (q(x j )) and χ = (χi )

and a matrix

K = (K j,i ) =
([

(R − d)2 K R−d
(
x j , (R − d)ŷi

)

+(R + d)2 K R+d
(
x j , (R + d)ŷi

)] wi

2

)
, (19)

and write Eq. (18) in matrix-vector notation as

q = Kχ . (20)

In the presence of noise, we write the last equation as a
Gauss–Markov model

E{q} = Kχ , D{q} = Cn, (21)

where E{·} and D{·} are the expectation and dispersion oper-
ator, respectively. The noise covariance matrix Cn is the sum
of the noise covariance matrices of the gravimetric quasi-
geoid heights ζgrav, the ellipsoidal heights h and the normal
heights H . Adding a random vector of errors ε = (ε j ), we
obtain

q + ε = Kχ , E{ε} = 0, D{ε} = D{q} = Cn . (22)

Assuming rank K = J and Cn positive definite, the least-
squares solution to Eq. (22) is

χ̂ =
(

KT C−1
n K

)−1
KT C−1

n q. (23)

To control the amplification of data noise, some regulariza-
tion may be needed though the discretization already acts
as a smoother. Then, Eq. (23) is replaced by the regularized
least-squares solution

χ̂α =
(

KT C−1
n K + αR

)−1
KT C−1

n q, (24)

where R is the regularization matrix and α is the regulari-
zation parameter. Once the solution χ̂α has been computed,
the regularized least-squares solution ûα to problem (6) on
S and within a small neighbourhood of S is

ûα(x) = χ̂T
α k(x), (25)

where k(x) is the I × 1 vector with elements

k(x, ŷi ) =
(
(R − d)2 K R−d(x, (R − d)ŷi )

+(R + d)2 K R+d(x, (R + d)ŷi )
) wi

2
. (26)

Once ûα(x) has been computed at points x ∈ S, we obtain
an estimate of the disturbing potential T , Eq. (1),

T̂α(x) = Tgrav + ûα(x), x ∈ S, (27)

and an estimate of the height anomaly,

ζ̂α(x) = ζgrav(x) + ûα(x)

γ (x)
, x ∈ S. (28)

The solution to problem (6) requires three choices to be
made: (1) the weights and nodes of the cubature formula that
are being used to discretize the model (14); (2) the depth
d, Eqs. (9) and (10); and (3) the regularization parameter α,
Eq. (24). We choose a simple discretization scheme, which
uses the nodes of an equiangular grid with grid spacing �

and weights according to Eq. (15). To obtain an overde-
termined system of linear equations, Eq. (18), the number
of grid points must be smaller than the number of GNSS-
levelling points. To guarantee this, we choose the grid
spacing � as function of the mean distance between the
GNSS-levelling points, s, according to

� <
s

R

√
sin ϑ0, (29)
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where R is the radius of the locally best-fitting sphere SR ,
and ϑ0 is the mean co-latitude of the target area. The depth
d and the regularization parameter α control the smoothness
of the solution and the fit of the model to the data.

An optimal solution could be found by searching for the
optimal pair (d, α), for instance using Generalized Cross Val-
idation (GCV) (Craven and Wahba 1979). We use a some-
what simpler approach to find a suitable pair (d, α): we solve
problem (6) for a range of depths; for each depth, we deter-
mine the optimal regularization parameter using GCV. The
minimum of the GCV functional is found using the algorithm
of Brent (1973). The pair for which the RMS of the least-
squares residuals is close to the (average) standard deviation
of the geometric quasi-geoid heights at the GNSS-levelling
points is the selected one. This approach is numerically not
that expensive, because the search space of candidate depths
does not need to be sampled very densely as will be shown
in Sect. 4. Note that there can be more than one pair that
fulfils the minimum RMS criterion. Empirically, we found
that if there are several pairs (d, α), the corresponding solu-
tions differ by just a few millimetres, i.e. they are essentially
identical in the presence of data noise.

3 Test data set

To demonstrate the performance of the proposed method-
ology, we use a data set which covers the entire Switzer-
land. It has already been used in Fotopoulos (2005) and
van Loon (2008) to investigate the use of Variance Com-
ponent Estimation (VCE) techniques to estimate variance
factors for the noise covariance matrices of geoid heights,
ellipsoidal heights and orthometric heights assuming that the
systematic differences between geometric and gravimetric
geoid heights can be modelled using low-degree algebraic
or trigonometric polynomials. Instead of geoid heights and
orthometric heights as being used in Fotopoulos (2005) and
van Loon (2008), we use quasi-geoid heights and normal
heights, which are also available at the benchmarks observed
by GNSS.

The original data set comprises ellipsoidal heights, nor-
mal heights and quasi-geoid heights at 111 levelling bench-
marks covering the entire country (cf. Fig. 1). We do not use
the data of the stations Zimmerwald and GR3 318. Station
Zimmerwald was held fixed in the adjustment of the level-
ling network and the geoid computation. Station GR3 318
has been identified as an outlier (van Loon 2008). Hence,
all computations were made using 109 data points. The
area of Switzerland is about 42,000 km2, which corresponds
to an average distance between the GNSS-levelling points
of about 20 km. The differences between geometric quasi-
geoid heights (ellipsoidal heights minus normal heights) and
gravimetric quasi-geoid heights (computed from gravity

Fig. 1 Spatial distribution of the GNSS-levelling points and differ-
ences between geometric quasi-geoid heights (from GNSS at bench-
marks) and gravimetric quasi-geoid heights (from gravity anomalies)

anomalies using least-squares collocation) vary between
−10 cm and +6 cm, and the RMS difference is 4 cm. The
differences are very small compared with the situation in
many other countries. We explain this partially by the fact
that high-quality gravity data outside Switzerland have been
used in the computation of the quasi-geoid. In Sects. 4, 5
and 6, different solutions will be compared with each other.
The differences between these solutions scale proportional
to the differences between geometric and gravimetric quasi-
geoid heights. One needs to keep this in mind when analysing
the magnitude of differences between various solutions and
judging whether the differences are significant or not.

Fully populated noise covariance matrices are available
for ellipsoidal heights, normal heights and gravimetric quasi-
geoid heights (cf. Fig. 2). The noise covariance matrix of
normal heights comes directly from the national adjustment
of all first-order and second-order levelling measurements,
which was done in geopotential numbers. The fully popu-
lated noise covariance matrix of the gravimetric quasi-geoid
heights at the GNSS-levelling benchmarks was obtained by a
straightforward application of error propagation to the least-
squares collocation equations. Unfortunately, omission and
commission errors of the global reference gravity model have
not been incorporated in the noise covariance matrix of gravi-
metric quasi-geoid heights.

The noise covariance matrix of the differences between
geometric and gravimetric quasi-geoid heights, C̃n , can be
written as

C̃n = σ 2
h Qh + σ 2

ζ Qζ + σ 2
H QH , (30)

where Qh, Qζ and QH are the cofactor matrices of, respec-
tively, the ellipsoidal heights, the gravimetric quasi-geoid
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Fig. 2 Magnitude of elements
(units of cm2, log 10 scale from
0.01 to 25 cm2) of various noise
covariance matrices (from left to
right, top to bottom): noise
covariance matrix for ellipsoidal
heights, Ch , normal heights,
CH , gravimetric quasi-geoid
heights, Cζ , geometric
quasi-geoid heights, Ch + CH
and for the differences between
geometric and gravimetric
quasi-geoid heights,
C̃n = Ch + CH + Cζ

heights and the normal heights. The covariance matrix Cn ,
Eq. (22), follows from C̃n by error propagation using the
model

q(x) = ζgeom(x) − ζgrav(x)

γ (x)
. (31)

We use the variance factors of (van Loon 2008) to re-scale
the cofactor matrices of Eq. (30):

σ 2
h = 3.01, σ 2

ζ = 1.14, σ 2
H = 3.61. (32)

Note that these variance factors depend on the chosen trend
function, which is the one of Eq. (10.14) in (van Loon 2008).
We computed variance factors for a couple of alternative
trend functions and found that the impact this has on the
solution to problem (6) is much smaller than the uncertain-
ties of the solution. Therefore, C̃n and Cn use the scaling
factors (32).

The noise covariance matrices C̃n and Cn reveal the
presence of strong correlations, in particular between nearby
stations. This is mainly due to the presence of strongly corre-
lated noise in normal heights and, though to a lesser extent,
in gravimetric quasi-geoid heights. Compared with them,
noise correlations between ellipsoidal heights are negligi-
ble. Table 1 provides some statistics of the main diagonal
elements of the various noise covariance matrices. Note that
gravimetric quasi-geoid heights and geometric quasi-geoid
heights are of comparable quality; the standard deviations of
the geometric quasi-geoid heights vary between ±1.0 cm and
±3.4 cm (average ±2.0 cm), and the standard deviations of
the gravimetric quasi-geoid heights vary between ±1.2 cm
and ±4.4 cm (average ±2.0 cm). The standard deviations of
the differences between geometric quasi-geoid heights and
gravimetric quasi-geoid heights vary between ±1.9 cm and
±5.4 cm. As expected, the gravimetric quasi-geoid heights
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Table 1 Statistics of the main diagonal elements of the noise covariance
matrices of GNSS ellipsoidal heights Ce, normal heights CH , gravimet-
ric quasi-geoid heights Cζ , geometric quasi-geoid heights Ce +CH and
the sum of the three noise covariance matrices Cn

Ellipsoidal Quasi-geoid Normal Geometric Cn
heights heights heights quasi-geoid

heights

Min 0.08 1.40 0.65 1.08 3.89

Max 7.40 19.09 6.51 11.65 28.75

Mean 1.85 4.18 2.00 3.85 8.03

Units in cm2

contribute the most to the overall standard deviation with an
average contribution of about ±2 cm.

For the Swiss data set, the average distance between the
GNSS-levelling points is s = 20 km and the radius of the
locally best-fitting sphere is R = 6365 km. With ϑ0 = 43◦,
Eq. (29) provides an upper limit to the grid size � : � < 16′.
We use � = 15′ and obtain 83 nodes located inside the target
area; hence the redundancy is 109 − 83 = 26.

4 Results

4.1 The optimal solution to problem (6)

The first experiment is conducted in order to find the optimal
pair (d, α) and to investigate the effect of different choices
of (d, α) on the smoothness of the innovation function ûα ,
Eq. (25). The full noise covariance matrix Cn has been used
in these computations. We computed a series of innovation
functions for various choices of the depth d. Three of them are
shown in Fig. 3: d = 50 km, d = 100 km and d = 200 km.
The statistics of the residuals of the least-squares adjustment
and the corresponding regularization parameters are given
in Table 2 together with the corresponding information for
some other depths.

The range of the residuals of the least-squares adjustment
and the RMS of the residuals is essentially the same for the
three depths. However, a visual inspection of the solutions
reveals some significant differences in the spatial pattern of
the innovation function ûα . Solution d = 50 km is char-
acterized by larger gradients in the neighbourhood of the
GNSS-levelling points. These local features are likely caused
by the influence of data noise, which is amplified when the
data are downward continued. This is not corrected for by
the regularization term, though the d = 50 km solution has
the largest regularization parameter among all solutions. The
solution d = 200 km is obviously too smooth. The a-posteri-
ori RMS fit to the data is ±2.2 cm, which is above the (aver-
age) standard deviation of the geometric quasi-geoid heights
(±2.0 cm). We prefer solutions which have a RMS fit to the

data not exceeding and being close to the (averaged) stan-
dard deviation of the geometric quasi-geoid heights. When
taking this as a criterion for optimality, the optimal solution is
found for a depth between d = 100 km and d = 130 km. The
innovation functions for this range of depths are very much
alike with maximum differences below 0.5 cm. Hence, the
solution is not that sensitive to the choice of the depth over
this range of depths. For the rest of the study, we choose the
solution d = 120 km with full noise covariance matrix as
the reference solution. It is as smooth as the other solutions
over this range of depths, but has the smallest effective regu-
larization parameter. The effective regularization parameter
is defined as the ratio of the regularization parameter and the
mean amplitude of the main diagonal elements of the normal
equation matrix. The latter strongly depends on the choice
of the depth. The reference solution is not shown in Fig. 3,
because, visually, there is no difference with respect to the
d = 100 km solution.

4.2 Comparison with Prutkin and Klees (2008)

The second experiment has been designed to quantify the dif-
ferences between the approach by Prutkin and Klees (2008)
and the methodology presented in Sect. 2. The approach by
Prutkin and Klees (2008) assumes a square system matrix K
and solves in fact Eq. (20), or its regularized version, q =
(K+αI)χ . The advantage of a square system matrix is its bet-
ter condition number compared with the condition number
of the normal matrix. Remember that the system matrix rep-
resents a discretized version of the first-kind Poisson integral
equation, i.e. it is ill-conditioned, and its condition number
increases with increasing number of nodes. A square system
matrix implies that the Poisson integral equation on the sur-
face of a sphere with radius R − d needs to be discretized
at a number of nodes, which is equal to the number of data
points. Therefore, it is not possible to use an equiangular grid
as proposed in Sect. 2, because then the number of nodes will
not be the same as the number of data points. There are two
possibilities to realize a square system matrix: (1) the Pois-
son integral equation is discretized at the data points; or (2)
the data are interpolated at the nodes of an equiangular grid,
and the interpolated data are used as ‘observations’; in order
to avoid an artificial increase of the number of observations,
the size of the grid is chosen such that the number of nodes
is as close as possible to the number of data points.

We compute two solutions according to the approach by
Prutkin and Klees (2008). Solution 1 uses the data points as
nodes to discretize the Poisson integral equation, and solution
2 uses a 15’ equiangular grid as nodes. The latter comprises
83 nodes inside the target area. This grid is the same grid as is
being used when computing the solution with the proposed
methodology of Sect. 2. To obtain a square system matrix
K, the original data given at the GNSS-levelling points are
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Fig. 3 Various solutions to
problem (6) with full noise
covariance matrix: from left
to right and top to bottom:
depth d = 50 km, d = 100 km,
d = 200 km, difference between
d = 100 km and d = 50 km and
differences between
d = 100 km and d = 200 km.
For every depth d, the optimal
regularization parameter has
been determined with GCV

interpolated at the nodes of the 15’ equiangular grid using
the GMT-routine ‘surface’ with tension factor 1 (Smith and
Wessel 1990; Wessel and Smith 1991). The choice of a ten-
sion factor 1 is justified in Sect. 5. The trade-off between the
fit to the data and the smoothness of the solution depends
on the depth d and the regularization parameter α. We found
that different pairs (d, α) provide solutions which differ by
less than a few millimetres. After several experiments, we
select a depth of d =100 km for both solutions. The regular-
ization parameter for solution 1 is α = 0.005; the effective
regularization parameter is 0.6101, and the RMS fit to the
data is 1.8 cm. The regularization parameter for solution 2 is

α = 0.001; the effective regularization parameter is 0.1219,
and the RMS fit to the data is 1.9 cm.

Figure 4 shows the two solutions and the differences with
respect to the reference solution (i.e. the solution, which is
obtained with the proposed methodology and the full noise
covariance matrix). Solution 2 is closer to the reference solu-
tion than solution 1, which is due to a better fit in the eastern
part of Switzerland. The differences with respect to the ref-
erence solution vary between −1.2 and 1.2 cm; the RMS dif-
ference is 0.5 cm. We explain the larger differences between
the reference solution and solution 1 in the eastern part of
Switzerland with the effect of the interpolation of the data at
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Table 2 Statistics of the least-squares residuals of the solution to prob-
lem (6) for various choices of the depth d

d (km) Min Max Mean RMS Effective
regularization
parameter

50 −5.4 4.4 −0.5 2.0 0.966

75 −4.8 4.9 −0.3 1.9 0.315

100 −4.7 5.1 −0.2 1.9 0.111

120 −4.8 5.3 −0.2 2.0 0.062

150 −5.4 5.7 −0.3 2.1 0.250

200 −5.7 6.0 −0.2 2.2 0.359

Units in cm. The last column shows the effective regularization param-
eter αgcv,eff = αgcv

D , where D is the average diagonal element of the
matrix KT C−1

n K

the nodes of the 15’ equiangular grid. The ‘observed’ differ-
ence between geometric and gravimetric quasi-geoid heights
at the two most eastern GNSS-levelling benchmarks is −7.1
and −9.9 cm, respectively (cf. Fig. 1); the interpolated value
at the closest node of the 15’ equiangular grid (distance to
the data point is 11.7 and 6.3 km, respectively) is only −5.4
and −7.3 cm, respectively. Hence, one must be careful when
interpolated data is being used as ‘observations’ in the further
data processing.

4.3 Effect of noise correlations and spatially varying noise
variances

A third experiment has been designed to investigate the
effect of noise correlations on the innovation function ûα ,
Eq. (25). In practice, fully populated noise covariance matri-
ces for ellipsoidal heights, normal heights, and gravimetric
quasi-geoid heights at GNSS-levelling benchmarks are rarely
available. More often than not, correlations are ignored, and
diagonal covariance matrices are used, which only account
for spatially varying variances. Sometimes, even the latter
are not available, and the noise covariance matrix Cn is
assumed to be a (scaled) unit matrix. To test the effect on
the innovation function of noise correlations and spatially
varying noise variances in differences between geomet-
ric and gravimetric quasi-geoid heights, several computa-
tions were done with a fully populated, a diagonal and a
(scaled) unit noise covariance matrix Cn . All computations
use the same depth of d = 120 km. For every choice of
the noise covariance matrix, the regularization parameter
is determined using GCV. Figure 5 shows the differences
with respect to the reference solution (solution with depth
d = 120 km and full noise covariance matrix), and Table 3
shows the statistics of the differences.

Fig. 4 Innovation function
according to Prutkin and Klees
(2008) (d = 100 km) (left
column) and differences with
respect to the reference solution
(proposed methodology with
full noise covariance matrix)
(right column). First row data
interpolated at the nodes of a
15- min grid; second row
original data used
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Fig. 5 Innovation functions
computed with a simplified
noise covariance matrix. Top left
panel diagonal noise covariance
matrix (i.e. noise correlations
have been neglected); bottom
left panel unit noise covariance
matrix (i.e. noise correlations
and spatial variations of noise
variances have been neglected).
Right column corresponding
differences with respect to the
reference solution (proposed
methodology with a full noise
covariance matrix). All
solutions have been computed
for a depth of d = 120 km; the
regularization parameter has
been determined with GCV

Table 3 Statistics of the differences with respect to the reference solu-
tion (proposed methodology with full noise covariance matrix) of four
innovation function solutions

Approach Min Max Mean RMS SD

Prutkin and Klees (2008);
gridded data

−2.5 1.2 0.0 0.5 0.5

Prutkin and Klees (2008);
original data

−1.2 1.2 0.0 0.5 0.5

Proposed methodology;
diagonal noise
covariance matrix

−0.5 1.1 0.2 0.4 0.3

Proposed methodology;
unit noise covariance
matrix

−0.5 1.7 0.3 0.6 0.5

The statistics are computed at a 1- min equiangular grid restricted to the
target area. Units in cm

Neglecting correlations introduces errors varying between
−1.2 and 1.9 cm. These errors are systematic and positive for
most parts of the country (cf. Fig. 5). A scaled unit matrix
leads to similar error amplitudes and patterns (cf. Fig. 5).
The differences between the solution with a diagonal noise
covariance matrix and a scaled unit matrix are below 0.4 cm,
though the noise variances vary significantly from point to
point (between 3.9 and 28.8 cm2). This indicates that for the
Swiss data set it is more critical to neglect noise correlations

than to ignore spatially varying noise variances. This can
be explained by the strong correlations present in the noise
covariance matrix Cn . Such strong noise correlations are not
a special property of the Swiss data set, but typical for all
noise covariance matrices of differences between geometric
and gravimetric quasi-geoid heights. Remarkable is that the
errors introduced in the innovation function when neglect-
ing correlations or neglecting spatial variations of the noise
variances lead to large errors in the eastern part of Switzer-
land. Obviously, when taking noise correlations and spatially
varying noise variances into account as the reference solution
does, these two data points are downweighted, i.e. they con-
tribute less to the solution. Vice versa, if noise correlations are
neglected or spatially varying noise variances are ignored, too
high weights are assigned to them, which explains the large
differences relative to the reference solution.

5 Comparison with the corrector-surface approach

The next experiment was conducted to test the performance
of the corrector-surface approach, which is the most popu-
lar method to deal with differences between geometric and
gravimetric quasi-geoid heights. Originally, corrector sur-
faces were used to facilitate the transformation of ellipsoidal

123



GNSS-levelling data and gravimetric (quasi-) geoid heights 741

heights into levelling-based heights (e.g. Featherstone 1998;
Grebenitcharsky et al. 2005; Nahavandchi and Soltanpour
2006). However, they are also being used as a simple tool
to obtain improved quasi-geoid models from a combination
of gravity anomalies and GNSS-levelling data (e.g. de Min
1996; de Bruijne et al. 1997; Featherstone 2000). A practical
advantage of this simple approach is that no new quasi-geoid
needs to be computed if new GNSS measurements at bench-
marks become available. The innovation function obtained
with a full noise covariance matrix Cn and a depth of d =
120 km serves as the reference solution.

The type of the corrector surface may be suggested by the
geometry of the problem. For instance, the popular model of
Heiskanen and Moritz (1967) has been developed to account
for different reference ellipsoids to which GNSS ellipsoi-
dal heights and levelling-based heights may refer. However,
in most applications, there is no information available in
favour of a particular type of an analytical corrector surface.
Typically, low-order polynomials are preferred, because the
differences between geometric and gravimetric quasi-geoid
heights are usually associated with a smoothly varying func-
tion. Moreover, the mean distance between GPS-levelling
points poses a lower limit to the wavelengths of the correc-
tions that can be determined. We follow the same idea and
analyse various corrector surface models within the class of
models

u(ϕ, λ) =
N∑

i=0

N∑
j=0

pi j ϕi (λ cos ϕ) j + q0 + q1 cos ϕ cos λ

+q2 cos ϕ sin λ + q3 sin ϕ + q4 sin2 ϕ. (33)

This class of models comprises some of the most widely
used corrector surface models including the model of Heiska-
nen and Moritz (1967). The parameters pi j and qk are esti-
mated by least-squares following the approach of van Loon
(2008): we use full noise covariance matrices for gravimet-
ric quasi-geoid heights, GNSS ellipsoidal heights and normal
heights, respectively; for every choice of the corrector sur-
face model, optimal scaling factors are estimated for the three
noise covariance matrices using VCE; the parameters of the
corrector surface model are tested for significance; statisti-
cally insignificant parameters are removed from the model,
and the procedure is repeated until a final set of statistically
significant parameters has been found. Among the accepted
models, the model with the highest level of significance has
been selected. It turned out to be the model

u(ϑ, λ) = p01(λ cos ϕ) + p11(ϕ λ cos ϕ) + q2(cos ϕ sin λ).

(34)

This model has been compared with the reference solution
(cf. Fig. 6; Table 4).

The corrector surface (34) is a very smooth function,
being close to a tilted plane. Therefore, it cannot model local
features of differences between geometric and gravimetric
quasi-geoid heights, which differ from a tilted plane. Cor-
respondingly, the largest differences with respect to the ref-
erence solution occur in those areas where the innovation
function shows larger gradients; the maximum difference
is 4.3 cm and is located in the eastern part of Switzerland
(cf. Fig. 6). The model (34) is also the only one considered
in this study that has a bias (0.6 cm). An attempt to account
for the bias by extending the model (34) fails in the sense that
then only the parameter p11 passes the test of significance.

An easy-to-get corrector surface is the minimum-curva-
ture spline under tension (e.g. Smith and Wessel 1990) in
combination with a spatial low-pass filter. The GMT soft-
ware package (Wessel and Smith 1991) provides the rou-
tine ‘blockmean’, which does the low-pass filtering, and
the routine ‘surface’, which computes the spline under ten-
sion. The smoothness of the spline is controlled by a tension
factor, which has to be selected by the user. The default ten-
sion factor in routine ‘surface’ is 0.25. We use a tension factor
equal to 1, because only then the minimum-curvature spline
is a harmonic function in the (ϕ, λ)-domain. Prutkin and
Klees (2008) have shown that the solution of the Laplace–
Beltrami equation on the sphere (which uses extrapolated
differences between geometric and gravimetric quasi-geoid
heights along the border of the target area) provides a good
approximation to the solution of problem (6) if the target area
is not too large. Though the minimum-curvature spline with
tension factor 1 does not fulfil the Laplace–Beltrami equation
exactly, it is a smooth function without maxima or minima
inside the target area, and hence may provide an appealing
corrector surface. The solution and its difference to the refer-
ence solution are shown in Fig. 6 and Table 4. The minimum-
curvature spline with tension factor 1 performs better than
the model (34). The maximum differences with respect to
the reference solution concentrate to an area east of 10◦ lon-
gitude and a small area along the north-western border of
Switzerland (cf. Fig. 6). For most parts of the country, the
differences do not exceed 1.0 cm.

We also tested a least-squares radial basis function approx-
imation as corrector surface model. The parameters of a thin-
plate spline radial basis function model,

q(x, p)=
M∑

m=1

pm f (x, ym),

f (x, ym)=
{|x − ym |2 (ln(|x−ym |)−1) for |x−ym |>0

0 for |x−ym |=0
,

(35)

are computed such that �(p) = (q − A p)T C−1
n (q − A p) +

1
α

pT p is minimized, where A is the design matrix with
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Fig. 6 Various
correction-surface solutions (left
column) and their difference
with respect to the reference
solution (proposed methodology
with full noise covariance
matrix) (right column). From
top to bottom: corrector surface,
Eq. (34), minimum-curvature
spline with tension factor 1
(GMT-routine ‘surface’) and
thin-plate spline radial basis
functions below the data points

elements Ai,m = f (xi , ym), p = (p1, . . . , pm)T and q =
(q(x1), . . . , q(xJ ))T . The regularization parameter α is esti-
mated using GCV. The minimum of the GCV functional is
found using Brent’s method (Brent 1973). The radial basis
functions are placed below the data points, i.e. the number of
radial basis functions, M , is equal to the number of observed
differences between geometric and gravimetric quasi-geoid
heights, J . The results are shown in Fig. 6 and Table 4. The
method performs slightly better than the minimum-curva-
ture spline with tension factor 1. We also tested other radial
basis function locations, e.g. at the nodes of an equiangular

grid with M ≈ J ; the maximum differences between these
solutions are found to be below 0.1 cm. This is in agreement
with (Klees and Wittwer 2007) and (Klees et al. (2008)), who
found that the choice of the radial basis function centres does
not have a significant effect on the solution.

6 Comparison with least-squares collocation

Another popular technique to estimate the differences
between gravimetric and geometric quasi-geoid heights is
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Table 4 Statistics of the differences with respect to the reference solu-
tion (proposed methodology with full noise covariance matrix) of three
correction-surface solutions and two least-squares collocation (LSC)
solutions

Approach Min Max M RMS SD

Minimum-curvature spline −2.9 2.6 0.0 0.6 0.6
(tension factor 1)

Thin-plate spline below −1.4 2.8 0.1 0.6 0.6
data points, Eq. (35)

Corrector surface, Eq. (34) −1.2 4.3 0.6 1.1 0.9

LSC (spherical signal −2.1 2.6 0.1 0.7 0.7
covariance function)

LSC (Matern signal −2.1 2.5 0.1 0.7 0.7
covariance function)

The statistics are computed at a 1- min equiangular grid restricted to the
target area. Units in cm

least-squares collocation (LSC) (note that least-squares col-
location could also be used to directly compute a quasi-geoid
using all available data). If these differences have a pro-
nounced spatial trend, as applies to the Swiss data set, we
cannot directly use LSC without parameters. A straightfor-
ward way of dealing with a trend is to first model the trend as
a smoothly varying function of the coordinates, estimate the
trend parameters using least-squares and remove the trend
from the data. Next, the resulting residuals are treated as
realizations of a stationary correlated random variable, the
covariance function of that random variable is estimated from
the residuals, modelled by a suitably chosen function and then
used in LSC without parameters.

The drawback of this approach is that the estimated sig-
nal covariance function obtained from the residuals is biased,
because it depends in a non-linear way on the estimated trend
parameters, which are also erroneous. Moreover, the mean
square prediction error at any new station would not be min-
imum. Therefore, we prefer to use least-squares collocation
with parameters and data noise (e.g. Meissl 1976; Tscherning
1978; Moritz 1989), which in this study will be referred to
as ‘generalized LSC’:

δζ(x) = δζ(x, p) + s(x) + n(x), (36)

where δζ(x) is the observed difference between geometric
and gravimetric quasi-geoid heights at point x, δζ(x, p) rep-
resents the trend, i.e. the systematic part of the difference,
p is the vector of trend-model parameters, s(x) is a random
variable with mean zero and covariance function Cs(x, y),
which represents the random part of the difference, and n(x)

is a random variable with mean zero and covariance func-
tion Cn(x, y), which represents the noise. The user has to
choose the trend model in order to discriminate between the
deterministic component of the signal and its random com-
ponent. This discrimination is to some extent arbitrary, i.e.

it is more art than science. However, the choice of the trend
model may not be that critical for the following reason: a
more complex trend function will lead to a signal covariance
function with a shorter correlation length, whereas a simple
trend function will lead to a signal covariance function, with
a slower decay. If the empirical covariances can be estimated
with sufficient accuracy over the relevant range of distances
(which must cover the significant range of the signal after
trend removal), the solution should not differ much from a
solution that uses a more complex trend function. This is the
case for the Swiss data set. Therefore, we prefer to use a
simple (linear) trend model δζ(x, p) = a(x)T p, where a(x)

is a vector of functions, which only depend on x . Potential
choices are the models discussed in Sect. 5 or even simpler
models such as a piecewise constant function or a low-degree
algebraic polynomial in ellipsoidal geographic latitude (ϕ)
and longitude (λ). We used the model (34). Hence,

a(x)T = (1 cos ϕ sin λ ϕλ cos ϕ), (37)

and

pT = (p01 p11 q2). (38)

A complication from a practical point of view is due to the
fact that the trend h(x, p) and the signal covariance function
Cs(x, y) are not known a priori, but have to be estimated
from the data. There are different options for doing this (e.g.
Goovaerts 1997). We decided to do this iteratively in the fol-
lowing way:

1. We first estimate the parameters of the trend model using
the Gauss-Markov model:

E(q) = A p, D(q) = Cn, (39)

where the vector q contains the observations q(x j ), and
A is the design matrix with row vectors a(x j )

T . The
least-squares solution is

p̂ls = (AC−1
n A)−1 AT C−1

n q. (40)

2. We estimate empirical signal covariances from the resid-
uals q−Ap̂ls for a number of lags, and fit a suitable model
to this, so obtaining a covariance matrix Ĉs with elements
Ĉs(xi , x j ). After a visual inspection of the residuals q −
Ap̂ls , we decided to assume isotropy, so estimate iso-
tropic empirical covariances and use an isotropic model
covariance function Cs(x, y; θ) = Cs(x − y; θ). The
vector of parameters of the model covariance function,
θ , is estimated using generalized least-squares, which
minimizes

�(θ) =
(

Ĉs − Cs(θ)
)T

C̃−1
(

Ĉs − Cs(θ)
)

, (41)
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where C̃ is the covariance matrix of the empirical covar-
iances, Ĉs is the vector of empirical covariances at lags
d1, . . . , dL , L is the number of lags and Cs(θ) is the vec-
tor of model covariances at lags d1, . . . , dL . Note that
the model covariance function is in general a non-linear
function of θ . We follow the same procedure as proposed
by Pardo-Iguzquiza and Dowd (2001) and use a Gauss–
Newton algorithm to find the minimizer θ̂ of �(θ).
The corresponding covariance function is denoted
Cs(x − y; θ̂).

3. We compute an improved trend model q(x, p̂) as

p̂ = (AT CA)−1 AT C−1 q, C = Ĉs + Cn, (42)

where Ĉs is the signal covariance matrix, which is com-
puted using the model covariance function Cs(x − y; θ̂)

of step 2.
4. We iterate steps 2 and 3 until there are no significant

changes in the estimated trend parameters p̂ and the sig-
nal covariance function Cs(x − y; θ̂).

5. We predict values q at a point y as

q̂(y) = q(y, p̂) + ĈT
s (y)C−1(q − A p̂), (43)

where Ĉs(y) is the vector of signal covariances with ele-
ments Cs(y − x j , θ̂).

The empirical covariance function is shown in Fig. 7; 30
lags were estimated; the lag size is about 6 km. The number
of pairs per lag varies between 69 and 500 for lags 2 to 30;
for lag 1 (distance interval 0–6 km) only 13 pairs were avail-
able, which leads to a higher uncertainty of the empirical
covariance for this lag. This higher uncertainty is taken into
account when fitting the covariance model by generalized
least-squares. Usually, the lag size is chosen equal to the
mean distance between the data points, which for the Swiss
data set is about 20 km. We used the smaller lag size to get
some ideas about the shape of the covariance function close
to the origin. We also used empirical covariance estimates
for a lag size of 20 km using 10 lags, but the estimated model
covariance function does not differ significantly from the one
computed with a lag size of 6 km. We explain this by the fact
that the empirical covariances are weighted when fitting the
covariance function model, whereby the weights are chosen
proportional to the number of pairs and inverse proportional
to the standard deviation of the estimated empirical covari-
ance at that lag.

We tried several model covariance functions, among oth-
ers a spherical covariance function, a Gaussian covariance
function, an exponential covariance function and a Matern
covariance function (e.g. Matern 1986; Goovaerts 1997). We
assess the goodness of fit ofvarious models using the root
mean square error (RMSE). The spherical model is the one

Fig. 7 Empirical (dots) and two model covariance functions used in
the least-squares collocation solution: Matern covariance function (solid
line) and spherical covariance function (dashed line)

Table 5 Estimated parameters for two model signal covariance func-
tions, which are used in generalized LSC

C0 (m2) C1 (m2) C2 ( km) C3 (–)

Spherical 2.773 × 10−4 2.077 × 10−4 65.2
covariance function

Matern 2.676 × 10−4 2.170 × 10−4 10.1 1.99
covariance function

with the smallest RMSE (2.33 × 10−5), though the RMSE
of the Matern model is very close to it (3.46 × 10−5); these
two models are given as

Cs(d)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2 − C0 − C1

[
3
2

d
C2

− 1
2

(
d

C2

)3
]

for d < C2

σ 2 − (C0 − C1) for d ≥ C2

σ 2 for d = 0

,

(44)

and

Cs(d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2 − C0 − C1

×
[

1 − 1
2C3−1�(C3)

(
d

C3

)C3
JC3

(
d

C3

)]
for d >0

σ 2 for d =0

,

(45)

respectively. d is the distance between two points, σ 2 is the
signal variance (i.e. the variance of the residuals q − A p̂,
which after the final iteration is 4.9 × 10−4 m2), � is the
Gamma-function and Js is the modified Bessel function of
the second kind of order s. Figure 7 shows the fitted spher-
ical and Matern covariance functions and Table 5 contains
the final parameters for each of the two models.

The fitted spherical and Matern signal covariance func-
tions provide generalized LSC solutions, which are very
close to each other; the maximum difference is 0.4 cm and
the RMS difference is 0.1 cm. Figure 8 shows the spatial
pattern of the solution using the Matern covariance func-
tion and the difference with respect to the reference solution
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Fig. 8 Least-squares
collocation solution (Matern
signal covariance function) and
differences with respect to the
reference solution (proposed
methodology with full noise
covariance matrix)

(innovation function with d = 120km and full noise covari-
ance matrix). Table 4 contains the statistics of the differences.
Note that the amplitude of the trend component is much larger
than the amplitude of the random component: at the GNSS-
levelling points, the trend component varies between −7.3
and 2.8 cm, whereas the random component varies between
−1.2 and 1.3 cm.

The a posteriori prediction errors (trend and random part)
at the GNSS-levelling points take up values between ±0.9
and ±2.1 cm. About 70% comes from the random part, and
the remaining 30% comes from the deterministic part. We
also computed the a posteriori prediction errors (trend and
random part) at 1000 points randomly distributed over the
target area; they vary between ±2.0 and ±3.1 cm.

7 Discussion

7.1 The proposed methodology

The proposed methodology is one of several strategies
to combine a gravimetric quasi-geoid model with GNSS-
levelling data. The assumption that underlies this approach
is that (1) the lack of high-quality and dense gravity data out-
side the target area is the main contributor to the observed
differences between gravimetric and geometric quasi-geoid
heights, (2) the quality of quasi-geoid heights derived from
GNSS-levelling data is at least comparable to the quality of
the gravimetric quasi-geoid and (3) the density of the GNSS-
levelling points is enough to capture most of the signal in the
observed differences (Table 6).

Assumption (1) is not valid if systematic, long-wave-
length errors are present in geometric quasi-geoid heights,
which, unfortunately, is a quite common situation in practice.
For example, long-wavelength errors in levelling networks
propagate into levelling-based heights and, therefore, also in
the observed differences between geometric and gravimet-
ric quasi-geoid heights. Then, the problems (2) and (6) are

not the correct model to combine a gravimetric quasi-geoid
with GNSS-levelling data. The practical implication of this is
that the innovation function, Eq. (16), cannot be interpreted
anymore as a correction to the gravimetric (quasi-) geoid in
order to obtain an improved (quasi-) geoid, which is compat-
ible with gravity anomalies and GNSS-levelling data. With-
out additional information, it is not possible to distinguish
between long-wavelength errors in the gravimetric (quasi-)
geoid caused by, e.g. the lack of suitable gravity data inside or
outside the target area and long-wavelength systematic errors
in levelling-based heights caused by deformations of the lev-
elling network. Then, the corrector-surface approach may be
a valid choice to deal with these long-wavelength errors pro-
vided that it is only used to facilitate the transformation of
ellipsoidal heights into levelling-based heights. The question
is whether the methodology developed in Sect. 2 can also be
used for that purpose. Our answer is ‘yes it can’. In order to
understand this, we may have a look at Eq. (17), which rep-
resents the solution to problem (6) after discretization of the
integral equations. Equation (17) can formally be written as

u(x) =
I∑

i=1

χi �(x, yi ), (46)

where �(x, yi ) is a radial basis function with centre yi , i.e.
the solution u(x) to problem (6) is written as a linear com-
bination of radial basis functions. Equations (23, 24) is the
(regularized) least-squares approximation of the vector of
unknown coefficients χ = (χi ). Hence, solution (25) can
formally be interpreted as a least-squares radial basis func-
tion approximation to the differences between geometric and
gravimetric height anomalies. In the presence of systematic
errors of non-gravitational origin in the differences between
geometric and gravimetric (quasi-) geoid heights, the pro-
posed methodology provides a corrector surface, which can
be used like any other corrector surface to facilitate the trans-
formation of ellipsoidal heights into levelling-based heights.
The only difference with respect to more traditional corrector

123



746 R. Klees, I. Prutkin

Table 6 Statistics of the
residuals at the GNSS-levelling
points for various methods

Units in cm. The last column
shows the effective
regularization parameter αgcv,eff
used to compute the solution

Min Max Mean RMS Effective
regularization
parameter

Proposed methodology; full noise covariance matrix −4.8 5.3 −0.2 2.0 0.0619

(reference solution)

Proposed methodology; diagonal noise covariance matrix −3.9 5.3 0.0 1.8 0.0019

Proposed methodology; unit noise covariance matrix −3.7 4.9 0.0 1.8 0.0017

Prutkin and Klees (2008); gridded data −4.2 5.3 −0.1 1.9 0.1219

Prutkin and Klees (2008); original data −3.8 5.1 0.0 1.8 0.6101

Corrector surface, Eq. (34) −5.0 6.9 0.5 2.2 0.0000

Thin-plate spline below data points, Eq. (35) −5.6 5.7 0.0 2.1 0.0199

LSC (spherical signal covariance function) −4.6 5.5 0.0 1.8 0.0000

LSC (Matern signal covariance function) −4.7 5.6 0.0 1.9 0.0000

surface models like those of Eq. (33) is the choice of the basis
functions.

Assumption (2) will only be met if the occupation times
of the benchmarks with GNSS are sufficiently long and if the
data processing is done carefully. For instance, in the Neth-
erlands, the majority of the benchmarks has been occupied
with GNSS for 1-2 hours, which is not enough to determine
the ellipsoidal height with an accuracy of 1–2 cm.

Assumption (3) requires enough GNSS-levelling points
within the target area. Only half-wavelengths larger than the
mean distance between GNSS-levelling points can be cap-
tured. For the Swiss data set, this limits to wavelengths larger
than about 20 km. Smaller features are left unmodelled.

7.2 The numerical experiment

The experiments with the Swiss data set have shown that
taking noise covariances into account is important for pre-
cise quasi-geoid modelling. We explain this by the fact that
the noise in differences between geometric and gravimetric
quasi-geoid heights at the GNSS-levelling points is highly
correlated. The main contributors are the noise correlations
among normal heights and among gravimetric quasi-geoid
heights. The maximum error of 1.1 cm that is introduced if
noise correlations are neglected does not seem to be much, in
particular relative to the precision of the quasi-geoid, which
is of the order of ±2 cm. However, one should remember that
for the Swiss data set, the maximum difference between geo-
metric and gravimetric quasi-geoid heights is only 9.9 cm.
Hence, neglecting noise correlations introduces errors up of
10% of the maximum signal! As the errors scale with the
magnitude of the signal, larger errors are expected if the
differences between geometric and gravimetric quasi-geoid
heights increase. Therefore, we recommend to put effort
into getting access to full noise covariance information for

GNSS ellipsoidal heights, levelling-based heights and gravi-
metric (quasi-) geoid heights, when computing an optimal
(quasi-) geoid from gravity anomalies and GNSS-levelling
data. The individual covariance matrices must refer to the
same datum, which in practice may require the application of
S-transformations (Baarda 1981) before the three noise
covariance matrices are added to get the noise covariance
matrix of the differences between geometric and gravimetric
(quasi-) geoid heights (cf. Eq. (30)). Moreover, it should be
investigated whether cross correlations between noise in lev-
elling-based heights and gravimetric (quasi-) geoid heights
need to be taken into account, because both may rely upon
the same gravity data set. Another aspect which needs further
investigation is the contribution to Qζ (the noise covariance
matrix of the gravimetric quasi-geoid heights, see Eq. (30))
of commission and omission errors of the global reference
gravity model. This information was not available for the
Swiss data set. Hence, the variance factor σ 2

ζ , Eq. (32), is too
optimistic.

7.3 The corrector-surface approach

The main advantage of the proposed methodology compared
with the corrector-surface approach is that (1) no subjective
choice of a parametric model is needed and (2) the combined
(quasi-) geoid solution is compatible with all data (i.e. with
the gravity anomaly data set and with the GNSS-levelling
data set), whereas the corrector-surface approach yields cor-
rections that are not compatible with the gravity anomaly data
set. However, the proposed methodology is also not free of
some choices to be made: (1) the choice of the depths of the
sources and (2) the choice of the regularization parameter.
Both determine the smoothness of the solution. It is difficult
to decide which pair of depth/regularization parameter is the
correct one without knowing the exact quasi-geoid. In this

123



GNSS-levelling data and gravimetric (quasi-) geoid heights 747

study, we used the available information about the standard
deviations of the geometric quasi-geoid heights at the bench-
marks as indicator of over- or underfit. This information was
complemented by a visual inspection of the innovation func-
tion. Local gradients around data points were interpreted as
an indicator of overfit. Very smooth innovation functions
were considered as the result of underfit. When applying
these subjective criteria, different pairs of depth and regu-
larization parameter may be admissible choices. However,
from many numerical experiments with the Swiss data set,
we found that different pairs of admissible parameters yield
innovation functions, which are identical within a few milli-
metres.

The corrector-surface approach may only offer an alterna-
tive to the proposed approach if the differences between geo-
metric and gravimetric quasi-geoid heights are very smooth.
This depends on the accuracy and density of the gravity
anomalies inside and outside the target area. For instance,
if little data are available outside the target area, a more com-
plicated pattern of corrections is expected if the gravimet-
ric (quasi-) geoid is combined with GNSS-levelling data.
The same applies if the quality of gravity data outside the
target area is superior to the quality of gravity data inside
the target area, a situation that is not unusual in practice.
Then, it may be a non-trivial task to find a suitable analyti-
cal model for the corrector surface, which is able to follow
this more complicated spatial pattern sufficiently well. If the
user wants to apply the corrector-surface approach, we rec-
ommend to follow the approach of van Loon (2008), which
comprises outlier detection or robust estimation techniques,
VCE to properly scale the noise covariance matrices, and
significance tests of the estimated model parameters. Outlier
detection may be a problem in practice, in particular if the
number of GNSS-levelling points is low or if there are iso-
lated GNSS-levelling points. An example are the two most
eastern GNSS-levelling points of the Swiss data set, which
are poorly controled by other GNSS-levelling points.

There may be better alternatives to the popular corrector
surfaces, Eq. (33). For instance, for the Swiss data set better
results were obtained with a minimum-curvature (harmonic)
spline (Smith and Wessel 1990), which is implemented e.g.
in the ‘surface’ routine of the GMT software package (Wessel
and Smith 1991) or with least-squares radial basis function
approximations. If the latter are being used, we recommend
to choose the GNSS-levelling data points as radial basis func-
tion centres for simplicity reasons and to estimate the regu-
larization parameter using GCV. No matter what corrector
surface model is used, the corrector-surface approach does
not take into account that the differences between geomet-
ric and gravimetric (quasi-) geoid heights multiplied by the
normal gravity (which can be considered as a constant scal-
ing factor without introducing significant errors) may be the
trace of a harmonic function on the Earth’s surface. Then,

they provide solutions which are not compatible anymore
with the gravity anomaly data set.

7.4 Least-squares collocation

Least-squares collocation applied to the differences between
geometric and gravimetric quasi-geoid heights is another
alternative to the methodology developed in Sect. 2. As the
differences usually show a significant trend and the data are
noisy, generalized LSC (i.e. LSC with parameters and data
noise) should be used. The inherent problem then is that
the trend function is not known a priori, but has to be esti-
mated from the data together with the parameters of the signal
covariance function. The iterative approach presented in this
paper is a simple solution to this problem; some alternatives
are known in geostatistics (e.g. Goovaerts 1997), but have not
been tested in this study. The approach of van Loon (2008)
may be used to find a good trend model within the class of
linear models. Another, though more theoretical, problem is
that the signal covariance function of the differences between
geometric and gravimetric quasi-geoid heights is in general
not compatible with the signal covariance function of the
gravity anomalies. Another choice to be made in generalized
LSC is the type of analytical covariance function. We rec-
ommend to fit various analytical covariance functions to the
empirical covariances and to choose the one that is the opti-
mal one according to some statistical measure. In this study,
we used the root mean square error (RMSE) as a measure
of optimality. Many other measures are known in geostatis-
tical literature (e.g. Isaaks and Srivastava 1990; Goovaerts
1997; Webster and Olivier 2007) such as Akaike’s informa-
tion criterion AIC (Akaike 1973). For the Swiss data set and
a simple linear algebraic polynomial in latitude and longi-
tude as trend model, the spherical covariance function and
the Matern covariance function had the smallest RMSE (and
AIC) and in this sense performed better than other covari-
ance models. Predictions made with both models differ only
by a few millimetres, though the models behave differently
for short distances.

A better methodology than generalized LSC applied to
the differences between geometric and gravimetric (quasi-)
geoid heights would be generalized LSC applied to gravity
anomalies and GNSS-levelling data. In this case, the signal
covariance function of the disturbing potential and the cross-
covariance function between gravity anomalies and disturb-
ing potentials are derived from the signal covariance function
of gravity anomalies by covariance propagation. Then, there
is no compatibility problem anymore as no signal covariance
function of the differences between geometric and gravimet-
ric quasi-geoid heights needs to be estimated. This, however,
requires the access to all original data. Nevertheless, it would
be interesting to compare such an approach with general-
ized LSC applied to differences between gravimetric and
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geometric (quasi-) geoid heights. A practical advantage of
the latter approach is that new corrections to the gravimet-
ric (quasi-) geoid heights can easily be computed once new
GNSS measurements at benchmarks become available. The
more strict approach of processing all available data together
would require a completely new computation of the (quasi-)
geoid. Moreover, it is likely that GNSS-levelling data will
not contribute much to the combined solution as long as
their number is much smaller than the number of gravity
anomalies.

8 Summary and conclusion

Local quasi-geoid modelling from gravity anomalies and
GNSS-levelling data can be formulated as a Cauchy bound-
ary value problem for the Laplace equation. The determin-
istic approach by Prutkin and Klees (2008), which solves
this problem approximately in the vicinity of the target area,
has been extended to noisy data. The method was applied
to a real data set for Switzerland. The effect of noise cor-
relations and spatially varying noise variances on the com-
bined quasi-geoid solution were quantified, and the method
was compared with the corrector-surface approach using var-
ious corrector surface models and with generalized LSC. The
main conclusion is that noise correlations need to be taken
into account for precise quasi-geoid modelling. Otherwise,
errors of about 10% of the differences between geometric and
gravimetric quasi-geoid heights can be introduced easily. The
largest errors occur in areas with little GNSS-levelling data
or in the neighborhood of isolated GNSS-levelling points.
Compared with the popular corrector-surface approach, the
proposed method has the advantage that no choice of a para-
metric model needs to be done and that the combined quasi-
geoid solution is consistent with both data sets. Compared
with generalized LSC applied to differences between geo-
metric and gravimetric quasi-geoid heights at benchmarks,
the proposed method is less complex and numerically eas-
ier to implement. Moreover, generalized LSC also requires
the choice of a parameteric trend model, though the solution
may be less sensitive to this choice than any corrector surface
solution.
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