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Abstract A methodology is developed to analyze a
multivariate linear model, which occurs in many geodetic
and geophysical applications. Proper analysis of multivariate
GPS coordinate time-series is considered to be an applica-
tion. General, special, and more practical stochastic models
are adopted to assess the noise characteristics of multivariate
time-series. The least-squares variance component estima-
tion (LS-VCE) is applied to estimate full covariance matrices
among different series. For the special model, it is shown that
the multivariate time-series can be estimated separately, and
that the (cross) correlation between series propagates directly
into the correlation between the corresponding parameters in
the functional model. The time-series of five permanent GPS
stations are used to show how the correlation between series
propagates into the site velocities. The results subsequently
conclude that the general model is close to the more practi-
cal model, for which an iterative algorithm is presented. The
results also indicate that the correlation between series of dif-
ferent coordinate components per station is not significant.
However, the spatial correlation between different stations
for individual components is significant (a correlation of 0.9
over short baselines) both for white and for colored noise
components.
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1 Introduction

In geophysical studies, in addition to global models of plate
motions, it is widely accepted that the site velocities of per-
manent GPS stations are determined by linear regression of
individual GPS coordinate time-series. In an earlier work, a
method is used to assess the noise characteristics of univariate
GPS coordinate time-series (Amiri-Simkooei et al. 2007). A
large number of permanent GPS stations allows one to apply a
multivariate analysis method. This analysis includes both an
optimal parameter estimation—site velocities for instance—
and a realistic assessment of noise characteristics—variance
and covariance components for instance—among different
time-series. In multivariate models, the multiple dependent
variables are measures of multiple outcomes, usually measu-
red at the same point in time. A multivariate analysis might,
for instance, be used to model the three coordinate compo-
nents (north, east and up) at a single point in time.

If in a linear model, instead of one observation vector, there
exist several observation vectors with identical covariance
matrices, and the corresponding parameter vectors have to
be determined, the model is referred to as a multivariate
linear model. For the univariate linear model, in general, the
covariance matrix of the observables is expressed as an unk-
nown linear combination of some known cofactor matrices.
One simple form (special case) of a covariance matrix is the
presence of 1 unknown variance (of unit weight) in the sto-
chastic model. The estimation of such unknowns is referred
to as variance component estimation (VCE). This contribu-
tion generalizes the idea of VCE for a multivariate linear
model.

We make use of the least-squares variance component
estimation (LS-VCE) (Teunissen and Amiri-Simkooei 2008;
Amiri-Simkooei 2007). When the observables are normally
distributed, LS-VCE gives identical results with those of the
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many of the existing VCE methods such as best invariant
quadratic unbiased estimator (BIQUE) (Koch 1978, 1999;
Crocetto et al. 2000; Schaffrin 1981a, 1983; Caspary 1987),
minimum norm quadratic unbiased estimator (MINQUE)
(Rao 1971; Rao and Kleffe 1988; Sjöberg 1983; Xu et al.
2007), and restricted maximum likelihood (REML) estima-
tor (Koch 1986). For applications of VCE-methods to GPS
and geodetic data we refer to Chen et al. (1990), Kusche
(2003a,b), Wang et al. (1998), Teunissen et al. (1998), Barnes
(2002), Satirapod et al. (2002), Tiberius and Kenselaar (2000),
Bona (2000), Bischoff et al. (2005, 2006), Fotopoulos (2005),
Xu et al. (2006), Amiri-Simkooei (2007), Amiri-Simkooei
and Tiberius (2007) and Schön and Brunner (2008a,b).

The VCE-methods have been applied to assess the noise
characteristics of GPS position time-series. A realistic des-
cription of noise in GPS coordinate time-series is required to
properly assess the error estimate of the unknown parame-
ters. Several studies have recognized flicker noise (power-law
noise with spectral index κ = −1) in addition to white noise
in geodetic time-series (Zhang et al. 1997; Mao et al. 1999;
Calais 1999; Williams et al. 2004; Nikolaidis et al. 2001;
Teferle et al. 2008; Amiri-Simkooei et al. 2007). The last
paper confirms, in addition, the presence of first-order auto-
regressive noise AR(1) in the series. Several researchers also
acknowledge the presence of random walk noise (κ =−2)
or a combination of different noise components(Wyatt 1982;
Johnson and Agnew 2000; Langbein and Johnson 1997;
Langbein and Bock 2004; Langbein 2008). All these ana-
lysis are based on the univariate noise assessment for which
the time-series are estimated individually.

In time series analysis of GPS coordinates, the noise com-
ponents have been obtained by the maximum likelihood esti-
mation (MLE), which is solved using the downhill simplex
method (Press et al. 1992). In contrast to MLE, which gives
biased estimators, LS-VCE provides unbiased and minimum
variance estimators; MLE is only asymptotically unbiased,
i.e., when the sample size is very large, which usually holds
for GPS time series. Also, LS-VCE is much faster than MLE,
as the downhill simplex method is extremely slow. With the
LS-VCE method one is capable of applying hypothesis tes-
ting to the stochastic model. This allows one to judge, in an
objective manner, which noise components are likely to be
present in the data. The MLE method can provide the prefer-
red noise model using the log-likelihood values, which are
given after applying the method to the data.

Cross correlation between the time-series is considered to
be an important issue. Williams et al. (2004) have reported
significant spatial correlation between GPS time-series. In
this contribution we elaborate this in detail. It is here wor-
thwhile mentioning the related work on the developing and
applying of the spatial filtering to the geophysical applica-
tions. We refer to Wdowinski et al. (1997), Nikolaidis (2002),
Dong et al. (2006) and Teferle et al. (2006).

The objective of this paper is four-fold. First, we adopt
three (general, special, and more practical) stochastic models
to assess the noise characteristics of a multivariate linear
model, with emphasis on GPS position time-series. Second,
we provide an answer to the question as whether or not it
is realistic to treat the GPS coordinate time-series separately
(Amiri-Simkooei et al. 2007). Third, we elaborate the more
practical formulation of the multivariate stochastic model
that requires computation burden comparable to the univa-
riate model. Fourth, the methodology is applied to the time-
series of five permanent GPS stations.

The article is organized as follows. Section 2 reviews
the basic concepts of LS-VCE and univariate GPS coordi-
nate time-series. Section 3 introduces a multivariate linear
model along with its statistical analysis that occurs frequently
in geodetic and geophysical applications. We start with the
general formulation of the stochastic model, followed by a
special case formulation, and finally by a more practical for-
mulation, for which a straightforward and simple algorithm is
provided. In Sect. 4, the noise characteristics of the multiva-
riate GPS coordinate time-series are assessed. The emphasis
in this section is on the spatial correlation of the series, both
for white and for colored noise components.

2 Univariate GPS coordinate time-series

2.1 Least-squares variance component estimation

The LS-VCE is employed to assess the noise characteristics
of GPS coordinate time-series. LS-VCE has many attractive
features for which we refer to Teunissen and Amiri-Simkooei
(2008, 2006) and Amiri-Simkooei (2007). Consider the fol-
lowing linear model of observation equations:

E(y) = Ax, D(y) = Qy =
p∑

k=1

σk Qk (1)

where the m × n design matrix A is assumed to be of full
column rank, the m × m covariance matrix Qy of the
m-observable vector y is assumed to be positive definite,
x , the n-vector of parameters has to be estimated and E and
D are the expectation and dispersion operators, respectively
(an underscore indicates a random variable).

The m ×m cofactor matrices Qk are assumed to be sym-
metric such that the sum

∑p
k=1 σk Qk is positive definite.

The cofactor matrices Qk, k = 1, . . . , p should be linearly
independent, which is in fact the necessary condition for the
stochastic model to have a regular solution. For more infor-
mation we may refer to Amiri-Simkooei (2007) and Xu et al.
(2007).

The least-squares estimator for the p-vector of unknown
(co)variance components σ = [σ1σ2 . . . σp]T can then be
obtained as
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σ̂ = N−1l (2)

with the p × p normal matrix N and the p-vector l as

nkl = 1

2
tr(Q−1

y P⊥A Qk Q−1
y P⊥A Ql) (3)

and

lk =
1

2
êT Q−1

y Qk Q−1
y ê, k, l = 1, 2, . . . , p (4)

where ê = P⊥A y is the least-squares residuals and P⊥A is an
orthogonal projector given as

P⊥A = I − A(AT Q−1
y A)−1 AT Q−1

y (5)

The (co)variance components can be obtained in an iterative
procedure. We start with an initial guess for the (co)variance
components. New updates are obtained in each iteration, and
the procedure is repeated until the estimated components do
not change with further iterations. Our conclusion regarding
implementation of LS-VCE is that, at most, ten iterations are
needed to obtain converged variance components.

Since the estimators σ̂ are based on the least-squares
method, the inverse of the normal matrix N automatically
gives the covariance matrix of the estimated (co)variance
components, namely Qσ̂ = N−1. This provides us with the
measures of precision for the estimates.

The estimates obtained along with their precision should
be presented as clearly as possible. For this purpose, visuali-
zing techniques are appealing. Apart from that, when dealing
with numbers, it is more convenient to demonstrate the nume-
rical estimates in such a way that they are readily understan-
dable. For example, if our original observations are expressed
in unit of meter (m), then the (co)variance components will
be expressed in unit of m2 and the variance of these estima-
tors in m4. It may not be convenient to deal with m2 and m4.
In Appendix A we derive simple formulas for standard devia-
tion estimators and correlation coefficients along with their
precision only for the sake of presentation used, for instance,
in Sect. 4

2.2 Functional and stochastic models

In this section, we consider individual GPS coordinate time-
series. One may use the daily solutions and estimate the para-
meters from time-series i . Consider a linear trend with q− 1
periodic signals in the data series describing the deforma-
tion behavior and unmodelled periodic effects. The functio-
nal model E(y

i
) = Axi then reads

E(y
i
(t)) = x (1)

i + x (2)
i t +

q∑

k=2

x (2k−1)
i cos ωk t

+ x (2k)
i sin ωk t (6)

where y
i

is the m-vector of time-series observables, and the

unknown n-vector xi consists of the intercept x (1)
i , the slope

x (2)
i , and the coefficients x (2k−1)

i and x (2k)
i of the harmonic

functions.
Examples of periodic patterns in the series are annual and

semiannual signals, as well as signals with periods of 13.66,
14.2, and 14.8 days (Penna and Stewart 2003; Stewart et al.
2005; Penna et al. 2007). Recent studies (Amiri-Simkooei
et al. 2007; Ray et al. 2007) on GPS coordinate time-series
reveal the presence of other periodicities in the spectra (per-
iods of 350 days and its fractions 350/n, n = 2, . . . , 8). The
design matrix A is of size m×n where n = 2q. Another sys-
tematic error in GPS coordinates is the presence of jumps or
offsets in the series; we refer to Williams (2003b), Kenyeres
and Bruyninx (2004) and Perfetti (2006).

Without loss of generality, the covariance matrix of the
time-series observations is chosen as

D(y
i
) = Qyi = σw

i i I + σ
f

i i Q f (7)

where I is an identity matrix of size m—the cofactor matrix of
white noise—and Q f is the cofactor matrix of flicker noise,
for which the structure introduced by Zhang et al. (1997) is
used. One can also use the Hosking flicker noise covariance
matrix, which was introduced and used by Williams (2003a),
Langbein (2004), Williams et al. (2004), Beavan (2005) and
Bos et al. (2008). The flicker noise variances estimated in
this paper are roughly one-half the size of those quoted in
these papers (see Williams 2003a).

The least-squares estimator for xi is given as: x̂i = (AT

Q−1
yi

A)−1 AT Q−1
yi

yi with the covariance matrix of the form
Qx̂i = (AT Q−1

yi
A)−1. The LS-VCE method is employed to

estimate the amplitudes of white noise (variance σw
i i ) and

flicker noise (variance σ
f

i i ) in the time-series (see Eq. 2).

3 Multivariate GPS coordinate time-series

A significant and comparable amount of colored noise (bet-
ween sites) reflects a common physical basis. Williams et al.
(2004) showed plots of the (significant) spatial correlation
as a function of angular distance. Reduction in both white
and flicker noise from global solutions to regional solutions
suggested that some of the noise is spatially correlated. The
fact that different time-series can be correlated implies that
it might not be realistic to estimate the series individually.

Most analysis of GPS time series estimate parameters
from each series independent of other components. This has
the advantage of being able to include all the colored
(time-correlated) noise of the series and the disadvantage of
neglecting the correlation between different time-series (e.g.
spatial). One can neglect the time correlation and estimate
only the between-series correlation. This has the disadvantage
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of giving too optimistic results for site velocity uncertainties
and should be avoided (Zhang et al. 1997; Mao et al. 1999;
Williams et al. 2004; Amiri-Simkooei et al. 2007).

The most sophisticated strategy, which gives more rea-
listic results, is to include the time correlation as well as
the between-series correlation. We can therefore estimate all
parameters simultaneously using LS-VCE. We now consi-
der three different possibilities for the stochastic model and
explain the structure of each in detail.

3.1 General model

To keep the generality, we assume that the amounts of noise
for white and flicker noise are different for different time-
series. Consider the following model consisting of r
time-series

E(y
i
) = Axi , D(y

i
, y

j
) = σw

i j I + σ
f

i j Q f (8)

where i and j run from 1 to r , y
i

is the m-vector of obser-
vables for time-series i , and correspondingly xi is the
n-vector of unknown parameters. The m × n design matrix
A and the m × m cofactor matrices I and Qf are supposed
to be identical for all time-series. D(y

i
, y

j
) is the (cross)

covariance matrix between series i and j .
The total number of observations and unknowns in the

functional part of the model is mr and nr , respectively. If
one collects all unknown vectors xi in the n × r unknown
matrix X , all observable vectors y

i
in the m × r observable

matrix Y , and correspondingly all residual vectors ei in the
m × r residual matrix E , one obtains

X = [x1 . . . xr ]; Y = [y
1

. . . y
r
]; E = [e1 . . . er ]. (9)

The unknowns in the stochastic model are the 2 × r(r +
1)/2 = r(r + 1) number of (co)variance elements of types
σw

i j and σ
f

i j . If one collects all (co)variance components σw
i j

and σ
f

i j in the r × r matrices �w and � f respectively, then

�w=

⎡

⎢⎢⎢⎣

σw
11 σw

12 · · · σw
1r

σw
12 σw

22 · · · σw
2r

...
...

. . .
...

σw
1r σw

2r · · · σw
rr

⎤

⎥⎥⎥⎦ � f =

⎡

⎢⎢⎢⎢⎣

σ
f

11 σ
f

12 · · · σ
f

1r

σ
f

12 σ
f

22 · · · σ
f

2r
...

...
. . .

...

σ
f

1r σ
f

2r · · · σ
f

rr

⎤

⎥⎥⎥⎥⎦

(10)

With the preceding notations and using the properties of the
vec-operator and the Kronecker product ⊗, one can rewrite
Eq. (8) in a compact form as

E(vec(Y )) = (Ir ⊗ A)vec(X) (11)

with the covariance matrix of the form

D(vec(Y )) = Qvec(Y ) = �w ⊗ I +� f ⊗ Q f (12)

where Ir is an identity matrix of size r . For the properties
of the vec-operator and the Kronecker product⊗ we refer to
Magnus (1988); Amiri-Simkooei (2007). Equation (12) can
in fact be generalized as D(vec(Y )) =∑p

k=1 �k⊗Qk . When
r = 1, this formulation reduces to the univariate model (see
Eq. 7).

One can now apply the standard least-squares to estimate
X and LS-VCE to estimate the full unknown matrices �w and
� f . Since the number of observations m of each series can
be very large and the number of time series r can be large,
this method can be numerically expensive—one needs the
successive inverses of the mr×mr matrix Qvec(Y ). However,
when r is small, say r = 2 or r = 3, numerical evaluation of
the full formulation is still not very time-consuming.

One may consider r = 2 to assess the noise characteristics
of two time-series y

1
and y

2
simultaneously. One can then

estimate the covariance matrix of the white noise and of the
flicker noise components. There are in total six (co)variances
for these two noise components to be estimated by LS-VCE,
i.e. r(r + 1) = 6. In other words, the covariance matrix
D = D(vec(Y )) of Eq. (12) reads

D = σw
11

[
I 0
0 0

]
+ σw

22

[
0 0
0 I

]
+ σw

12

[
0 I
I 0

]

+ σ
f

11

[
Q f 0
0 0

]
+ σ

f
22

[
0 0
0 Q f

]
+ σ

f
12

[
0 Q f

Q f 0

]

(13)

LS-VCE can be applied—through Eqs. (2) to (4)—to esti-
mate the (co)variances σw

11, σw
22, σw

12, σ
f

11, σ
f

22, and σ
f

12.
Given the preceding estimates, one can obtain the correla-

tion coefficients (between series) of white noise and of flicker
noise component as

ρ̂w
12 =

σ̂ w
12√

σ̂ w
11σ̂

w
22

, ρ̂
f

12 =
σ̂

f
12√

σ̂
f

11σ̂
f

22

(14)

respectively. Because the covariance matrix of the (co)
variance components is given by N−1, one can simply obtain
the variance of the correlation coefficients by applying the
error propagation law to the linearized form of the preceding
equations (as special case see later on Eq. 27).

3.2 Special model

We now consider a special structure (p = 1) of the stochas-
tic model, which can simply be used for a large number of
time-series (large r ). The multivariate analysis of this special
model turns out to be identical to the univariate analysis of
the individual series. We also show how the significance of
the correlation coefficients can be tested when the noise
of the time-series is not necessarily white.
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Parameter estimation

Consider now a special case of Eq. (12) where there is only
one noise component in the series, i.e., either white noise or
flicker noise. It then follows that

E(vec(Y )) = (Ir ⊗ A)vec(X), D(vec(Y )) = � ⊗ Q (15)

where the matrix � plays the role of �w or �f and accordin-
gly Q plays the role of I or Q f .

To derive simplified formulas for the least-squares esti-
mator of X , Y , and E , one needs simple expressions for the
multivariate projectors P⊥Ir⊗A and PIr⊗A which follow as (see
Amiri-Simkooei 2007, page 101)

P⊥Ir⊗A = Ir ⊗ P⊥A ; PIr⊗A = Ir ⊗ PA , (16)

with univariate projectors PA = A(AT Q−1 A)−1 AT Q−1 and
P⊥A = I − PA. One can then show that the least-squares
estimator of X , Y , and E is

X̂=(AT Q−1 A)−1 AT Q−1Y ; Ŷ = PAY ; Ê= P⊥A Y (17)

respectively.
The preceding expressions are independent of the

(un)known matrix �. This can be considered as a genera-
lization of the univariate linear model E(y) = Ax, D(y) =
σ 2 Q, when the variance σ 2 of unit weight is (un)known.
One can also show that the covariance matrix of the estima-
tor vec(X̂) is

Qvec(X̂)
= � ⊗ (AT Q−1 A)−1 (18)

Equation (18) is also similar to the univariate model.
One can thus determine the outcomes of individual models

separately. The unknown vector xi of the series i and its
(cross)covariance matrix are estimated as

x̂i = (AT Q−1 A)−1 AT Q−1 yi , Qxi x j = σi j (AT Q−1 A)−1

(19)

Let now x (k)
i be the k-th element of xi and x (l)

j the
l-th element of x j , then the variances of and the covariance
between these elements read

σ 2
x (k)

i

= σi i qkk; σ 2
x (l)

j

= σ j j qll; σ
x (k)

i x (l)
j
= σi j qkl (20)

where qkl denotes (AT Q−1 A)−1 in index notation. The cor-
relation coefficient ρkl

i j between x (k)
i and x (l)

j then reads

ρkl
i j =

σi j√
σi iσ j j

qkl√
qkkqll

= σi j

σiσ j

qkl

qkql
= ρi jρ

kl (21)

If one is interested in the correlation between elements of
an individual series, i.e. if i = j , then ρi i = 1. On the
other hand, if one is interested in the correlation coefficient
between an element in xi and its corresponding element in

x j , it will follow that k = l and then ρkk = 1. Therefore, one
obtains

ρkk
i j = ρi j = σi j

σiσ j
, ρkl

ii = ρkl = qkl

qkql
(22)

With the special model, the least-squares estimate of xi is
obtained independent of other time-series. Also, the corre-
lation between an element (e.g. site velocity) in xi and its
corresponding element in x j is the same as the correlation
between time-series i and j , namely ρi j . Only for this spe-
cial case does the correlation between time-series propagate
directly into the correlation between parameters. This means
that the time-series can be treated individually and the cor-
relations between time-series can be added later into a cova-
riance matrix of site velocities. We now have a theoretical
proof—through Eqs. (20) to (22)—of the Williams et al.
(2004) arguments.

Variance-covariance estimation

To obtain the covariance matrix of the estimators, so far the
matrix � was assumed to be known. If � is unknown, one can
rely on an estimate �̂ instead. The minimum variance esti-
mator of the unknown matrix�, obtained from LS-VCE, then
reads (Amiri-Simkooei 2007; Teunissen and Amiri-Simkooei
2008; Schaffrin 1981b)

�̂ = Ê
T

Q−1 Ê

m − n
with Ê = P⊥A Y = [ê1 ê2 ... êr ] (23)

where m-vectors êi , i = 1, 2, . . . , r are the least-squares
residual estimators of time-series i obtained as êi = P⊥A y

i
.

Because the method is based on the least-squares prin-
ciple, one can also determine the precision description of the
preceding (co)variance estimators. For time-series i and j ,
the covariance matrix of the estimator vector [σ̂ i j σ̂ i i σ̂ j j ]T
is given as (Amiri-Simkooei 2007)

Qi j
σ̂
= 1

m − n

⎡

⎢⎣
σi iσ j j + σ 2

i j 2σi iσi j 2σ j jσi j

2σi iσi j 2σ 2
i i 2σ 2

i j
2σ j jσi j 2σ 2

i j 2σ 2
j j

⎤

⎥⎦ (24)

with i, j = 1, 2, . . . , r . Note that all preceding estimators
as well as their precision description are exact. Because the
entries of Qi j

σ̂
are unknown a-priori, we have to be satisfied

with an estimate Q̂i j
σ̂

instead.

From �̂, one can also compute the correlation coefficient
between time-series (cf. Eq. 22)

ρ̂i j = σ̂i j√
σ̂i i σ̂ j j

= σ̂i j

σ̂i σ̂ j
, i, j = 1, 2, . . . , r (25)

This is a nonlinear function of the variables σ̂i j , σ̂i i , and σ̂ j j .
Application of the error propagation law to the linearized
form of the preceding equation yields σ 2

ρ̂i j
= J Qi j

σ̂
J T, where
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J = ρ̂i j

[
1

σ̂i j

−1

2σ̂i i

−1

2σ̂ j j

]
(26)

is the Jacobian vector. The variance σ 2
ρ̂i j

, with Eqs. (24) and
(26), simplifies to

σ 2
ρ̂i j
= (1− ρ2

i j )
2

m − n
, i, j = 1, 2, . . . , r (27)

A formula for the correlation coefficient, for the case that two
series i and j are uncorrelated and the number of common
points (m) is sufficiently large, is given by Press et al. (1992).
The formula is expressed as σ 2

ρ̂i j
= 1/m, which is a special

case of Eq. (27) when ρi j = 0 and m � n.
We now assume that ρ̂

i j
has a normal distribution, which

for large m (e.g. 500) is not unrealistic (Amiri-Simkooei
2007). We will then obtain

ρ̂
i j
∼ N(ρi j , σ

2
ρ̂i j

), i, j = 1, 2, . . . , r (28)

which can be used to test the significance of correlation coef-
ficients (e.g. to test whether or not ρi j = 0). The signifi-
cance of correlations is traditionally tested with the implicit
assumption that the two series are white.

Williams et al. (2004) simulated pairs of time-series with
white and flicker noise to investigate the significance of spa-
tial correlations. They concluded, for large m, that the stan-
dard deviation of the correlation coefficients tended to a
steady value of less than 0.1. This value guaranteed the signi-
ficance of the estimated correlations. With the formulation
described above it is now possible to test the significance
of correlations with any type of noise as Q, introduced in
Eq. (15), is an arbitrary positive definite matrix.

Example 1 (Identical structure of noise components)
Assume that the structure of white and flicker noise is the
same for different time-series. One then has

�w = λw�; � f = λ f � with λw and λ f known (29)

meaning that the correlation matrix (between different time-
series) of the white noise component is the same as the flicker
noise one. This can be the case when the correlation of the
two noise components between time-series is the same (i.e.
ρw

i j = ρ
f

i j , i, j = 1, . . . , r ) and, in addition, the ratios of
flicker noise to white noise amplitudes is the constant λ f /λw.

The above structure for the covariance matrix can now be
reduced to the formulation in Eq. (15) with

Q = λw I + λ f Q f (30)

Other explanations and formulas go exactly along with those
of the ‘special model’. The above strategy is still a good
approximation even when the above assumptions are mildly
violated, for example, when the two series have slightly dif-
ferent ratios of flicker to white noise amplitudes or when the
white noise correlation differs slightly from the flicker noise
correlation; see also arguments of Williams et al. (2004).

3.3 More practical model

In Eq. (30) we assumed that λw and λ f are known. In most
practical applications, however, such parameters are
unknown. To generalize Eq. (30), we now consider the sto-
chastic model D(vec(Y )) = �⊗ Q where Q =∑p

k=1 sk Qk

is partly unknown, and both the matrix � and the unknown
factors sk are to be estimated using LS-VCE.

To solve the problem we first assume that � is known. For
the multivariate linear model we just need to substitute the
terms in Eqs. (3) and (4) as follows: ê ← vec(Ê), Qy ←
� ⊗ Q, Qk ← � ⊗ Qk , and P⊥A ← I ⊗ P⊥A . After a few
algebraic operations we obtain ŝ = N−1l where

nkl = r

2
tr(Q−1 P⊥A Qk Q−1 P⊥A Ql) (31)

and

lk =
1

2
tr(Ê

T
Q−1 Qk Q−1 Ê�−1) (32)

with the univariate projector P⊥A = I − A(AT Q−1 A)−1 ×
AT Q−1.

Since Q =∑p
k=1 sk Qk is unknown a-priori, the unknown

factors sk should be obtained through an iterative procedure.
The advantage of this formulation over the general case for-
mulation is that one needs the successive inverse of Q which
is of the size m rather than mr . Therefore, if one includes
more time-series in the model, the computational burden will
not be increased much (it is similar to the univariate model).

In a special case where � = Ir , Eq. (32) simplifies to
(cf. Eq. 4)

lk =
1

2

r∑

i=1

êT
i Q−1 Qk Q−1êi =

r∑

i=1

l(i)k (33)

where superscripts (i) refer to individual models. Equations
(31) and (33) give

ŝ = N−1l = 1

r

r∑

i=1

ŝ(i) (34)

This equation shows, for � = Ir , that the unknown factors
sk can be estimated as the arithmetic mean of the individual
estimates. Such estimators have been introduced and used
by Tiberius and Kenselaar (2003) and Schön and Brunner
(2008b) to assess the noise characteristics of the GPS obser-
vables. This is considered as a theoretical proof for using
such estimates.

If � is unknown, the problem can be solved in a two-step
procedure. For this purpose one first uses Eq. (23) to obtain an
estimate for �, and then applies the preceding formulation.
In other words, in Eq. (32) one can substitute �̂ from Eq. (23)
which yields

lk =
m − n

2
tr(Ê

T
Q−1 Qk Q−1 Ê(Ê

T
Q−1 Ê)−1) (35)
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Fig. 1 Straightforward algorithm for implementation of least-squares
variance component estimation in terms of a multivariate linear model
E(vec(Y )) = (Ir ⊗ A)vec(X) and D(vec(Y )) = �⊗∑p

k=1 sk Qk . The
s(i) is the vector of unknown factors estimated in iteration i

Figure 1 gives a straightforward iterative algorithm for
implementing a LS-VCE in terms of the multivariate model
of observation equations.

4 Applications, results and discussions

The proposed multivariate analysis has been applied to two
important applications of the daily GPS global solutions of
permanent stations. The proper analysis of GPS time-series is
an important issue in many geodetic and geophysical appli-
cations. The time-series of coordinates for KOSG, WSRT,
ONSA, GRAZ and ALGO processed, using the precise point
positioning (PPP) method in the GIPSY software (Zumberge
et al. 1997), by the GPS Analysis Center at Jet Propulsion
Laboratory (JPL) are adopted (Beutler et al. 1999). We have
used 5 years of daily solutions for all sites (from 1999 to
2003).

We previously considered the univariate error analysis
of these stations (Amiri-Simkooei et al. 2007). The results

presented here are considered to be complementary to the
results given in that paper. In both applications, the design
matrix A is obtained by the linear regression with annual and
semiannual terms and signals with periods of 13.66, 14.2,
and 14.8 days (Amiri-Simkooei et al. 2007).

4.1 Correlation at one station

One important issue related to the time-series is the (cross)
correlation between coordinate components of a station. The
components are suspected to be correlated since they are
simultaneously estimated from the functional model based
on the same set of (range) observations. This simultaneous
estimation can lead to algebraic correlation among the esti-
mators.

One of the applications of this method is to estimate the
covariance matrix of one station consisting of three time-
series, namely, north, east, and up components. In this case,
r = 3, the design matrix A has the same structure for the three
time-series, and we use a simple stochastic model, namely
Q = I or Q = Q f in Eq. (15).

We estimated the covariance matrix and the correlation
coefficients of the three coordinate components (Table 1) at
individual sites using Eqs. (23) and (25), respectively. The
correlations between different components do not seem to be
significant. Insignificant correlations between components
has also been shown by Bock et al. (1997).

We would have intuitively suspected that coordinate com-
ponents of a station would be correlated. This correlation can
be caused because the components are simultaneously esti-
mated from the same data set through one functional model.
The statement is however correct for one epoch of observa-
tions or for a couple of adjacent epochs. When considering
all observations together (24 h), one has a well distributed
satellite configuration with which the estimated coordinates
will be approximately uncorrelated.

4.2 Correlation between stations (spatial correlation)

The formulations in Sect. 3 can also be applied to estimate the
covariance matrix of an individual component (north, east or
up) among different stations. One can thus determine how the
solution for one particular station is correlated with those of
other stations. We have estimated the spatial correlation, each
time for one coordinate component and by three different
stochastic models described in Sect. 3.

The first one is based on the supposition that the time-
series have only one noise component, e.g. either white or fli-
cker noise (special model); the second one takes into account
both white and flicker noise (general model) whereby we esti-
mate one correlation coefficient for each noise component;
and the third one uses the more practical formulation in which
the matrix � is fully unknown, and Q is partly unknown.
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Table 1 Estimated standard deviation of north, east and up components as well as correlation coefficients between different components on
assumption of Q = I ; N: north, E: earth, and U: up component

Standard deviation Correlation coefficient

Site code σN (mm) σE (mm) σU (mm) ρNE ρNU ρEU

KOSG 2.79± 0.05 3.07± 0.06 7.16± 0.13 −0.05± 0.02 −0.06± 0.02 −0.08± 0.02

WSRT 2.76± 0.05 2.79± 0.05 7.16± 0.13 −0.06± 0.02 −0.06± 0.02 −0.02± 0.02

ONSA 2.82± 0.05 2.90± 0.05 7.38± 0.14 0.10± 0.02 0.04± 0.02 0.01± 0.02

GRAZ 3.02± 0.06 4.05± 0.07 8.33± 0.15 0.07± 0.02 −0.10± 0.02 −0.01± 0.02

ALGO 2.93± 0.05 3.39± 0.06 7.19± 0.13 0.08± 0.02 −0.17± 0.02 0.03± 0.02

Standard deviation of estimates is also included—special model

Table 2 Estimated spatial correlation coefficients (sorted by baseline
length between stations) and their precision between corresponding
north, east, and up component time-series for five stations (Q = I )

Distance (km) Correlation coefficient

North East Up

98 0.87± 0.01 0.69± 0.01 0.76± 0.01

592 0.78± 0.01 0.60± 0.02 0.64± 0.02

687 0.77± 0.01 0.56± 0.02 0.65± 0.02

927 0.74± 0.01 0.43± 0.02 0.60± 0.02

935 0.76± 0.01 0.45± 0.02 0.63± 0.02

1,180 0.71± 0.01 0.38± 0.02 0.58± 0.02

6,504 0.23± 0.02 −0.11± 0.03 −0.13± 0.03

6,574 0.23± 0.02 −0.10± 0.03 −0.15± 0.03

7,054 0.21± 0.02 −0.08± 0.03 −0.15± 0.03

7,217 0.19± 0.02 −0.01± 0.03 −0.22± 0.03

They also directly propagate into correlations between site velocities—
special model

Special model

For the special case, we may consider white or flicker noise
in the series, i.e. Q = I or Q = Q f in Eq. (15). There is no
restriction for the number of the time-series used. One can
simply estimate the variances and covariances between series
of different sites using Eq. (23) where the least-squares resi-
duals are Ê = P⊥A Y with P⊥A = I−A(AT Q−1 A)−1 AT Q−1.

Table 2 gives the numerical results for Q = I , which pre-
sents only the spatial correlations between coordinate com-
ponents. The results for Q = Q f are very similar to those
for Q = I and thus not repeated here. The correlation bet-
ween time-series turns out to be significant. This is verified
when one compares the correlations with their precision (use
e.g. normal distribution in Eq. (28)). The significance of the
correlations can also be simply a result from the Chebyschev
inequality even when one does not specify a distribution.

The maximum correlations are obtained between the nea-
rest sites, i.e. between KOSG and WSRT (they are only 98 km
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Fig. 2 Correlation coefficient of time series for north, east, and up com-
ponents as a function of station separation. Pluses indicate the results
from Williams et al. (2004) and circles indicate the results of this contri-
bution

apart). This confirms that the noise has a common physical
basis. Over the largest station separation (between ALGO
and other sites), the spatial correlation is lower for the north
component. It becomes negative for east and up components.
It is important to note that the correlations given in Table 2
propagate directly into the correlation between the site velo-
cities.

We now make a comparison (Fig. 2) with the results of
the spatial correlations given by Williams et al. (2004), which
was obtained from (S. D. P. Williams, Proudman Oceanogra-
phic Laboratory, personal communication, 2008). The cor-
relations obtained here are slightly larger (in absolute sense)
than those obtained by Williams. It is likely because we pro-
cessed the newer part of the series which are less noisy than
the older time-series precessed by Williams et al. (2004); the
reduction of noise amplitude in the daily position estimates
(toward the end of the series) was reported by Williams et al.
(2004) and Amiri-Simkooei et al. (2007).
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Table 3 Estimated spatial correlation coefficients (sorted by baseline
length) and their precision of white (top) noise and flicker (bottom) noise
components between corresponding north, east, and up components—
general model

Distance (km) Correlation coefficient

North East Up

98a 0.84± 0.01 0.61± 0.02 0.68± 0.02

592 0.79± 0.02 0.53± 0.03 0.53± 0.04

687 0.78± 0.02 0.45± 0.03 0.50± 0.04

927 0.74± 0.02 0.43± 0.03 0.45± 0.04

935 0.78± 0.02 0.45± 0.03 0.47± 0.04

1,180 0.72± 0.02 0.47± 0.03 0.34± 0.05

6,504 0.26± 0.04 −0.17± 0.04 −0.06± 0.05

6,574 0.30± 0.04 −0.13± 0.04 −0.08± 0.05

7,054 0.25± 0.04 −0.15± 0.04 −0.06± 0.05

7,217 0.33± 0.04 −0.08± 0.04 −0.07± 0.05

98b 0.94± 0.02 0.90± 0.03 0.91± 0.02

592 0.78± 0.04 0.81± 0.05 0.81± 0.04

687 0.79± 0.04 0.77± 0.06 0.80± 0.04

927 0.76± 0.05 0.49± 0.09 0.80± 0.04

935 0.68± 0.06 0.44± 0.10 0.81± 0.04

1,180 0.69± 0.06 0.34± 0.10 0.79± 0.04

6,504 0.10± 0.12 −0.02± 0.11 −0.22± 0.09

6,574 0.01± 0.12 −0.03± 0.12 −0.22± 0.09

7,054 0.12± 0.11 0.01± 0.11 −0.27± 0.09

7,217 −0.06± 0.11 −0.01± 0.11 −0.41± 0.08

a Spatial correlation of white noise
b Spatial correlation of flicker noise

Such high correlations have significant effects on most
geodetic and geophysical applications. For example, in geo-
detic applications—realization of ITRF for instance
(see Altamimi et al. 2002)—they have significant effect on
the estimation of the parameters of interest and their uncer-
tainty. In geophysical applications they need to be taken into
account for the proper interpretation and analysis of crustal
deformation.

General model

The use of the general case formulation is restricted to the
small values for r . We restrict ourselves to r = 2 to assess
the correlation of the white and of the flicker noise compo-
nents (each time between two stations). There are in total six
(co)variance components for two time-series of an individual
component to be estimated by the general LS-VCE formu-
lation (see Eq. 13). The final solution should be obtained
through iteration.

Table 3 gives the spatial correlations of white (top) and
flicker (bottom) noise components. The correlation coeffi-
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Eq. (13) for corresponding north, east, and up components of five per-
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22;

subscripts 1 and 2 indicate time-series 1 and 2, respectively

cients in case of white noise (Table 2 for special model),
seem, in general, to be between the two correlation values
when we estimate one coefficient for each noise component.
Both noise components seem to be spatially correlated to
some extent. The spatial correlation of flicker noise (abso-
lute values) is larger than that of white noise, on average, by
a factor of 1.2. However, these differences do not seem to be
significant when we compare them with the standard devia-
tion of the correlation coefficients given in Tables 2 and 3.

Figure 3 shows the ratios of the flicker noise amplitudes
to the white noise amplitudes for times series (between sta-
tions) of north, east, and up components. These ratios, on
average, are approximately identical for mutual time-series
(i.e. σ

f
11/σ

w
11 ≡ σ

f
22/σ

w
22; the average of the red (dark) bars

are approximately identical to the average of the green (light)
bars). Also, parts of the variations are due to the negative cor-
relation between the estimated flicker and white noise ampli-
tudes. These all confirm that our formulation is close to the
special case of Eq. (30) in Example 1.

Based on the general formulation of Qvec(Y ) in Eq. (12)
and using the covariance matrix Qvec(X) = ((I2⊗AT)Q−1

vec(Y )

(I2 ⊗ A))−1 of the parameters, we obtained the correlation
coefficients between the site velocities (Table 4). They are
very similar to those given in Table 3 for the flicker noise
component. This makes sense since flicker noise is the domi-
nating source of error in the series, and thus has the main
contribution of the error on the parameters of interest as the
site velocity. The values given in Table 4 have standard devia-
tions comparable with those given in Table 3 for flicker noise
component. This makes it easier to conclude that these results
are not much different from those given in Table 2 for the site
velocities.
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Table 4 Spatial correlation coefficients (sorted by baseline length) bet-
ween site velocities for north, east, and up components—general model

Distance (km) Correlation coefficient

North East Up

98 0.94 0.90 0.90

592 0.78 0.80 0.81

687 0.79 0.76 0.80

927 0.76 0.49 0.79

935 0.68 0.44 0.81

1,180 0.69 0.34 0.79

6,504 0.10 −0.03 −0.22

6,574 0.02 −0.03 −0.22

7,054 0.13 −0.00 −0.27

7,217 −0.06 −0.01 −0.40

More practical model

The numerical evidence concluded that the structure of the
covariance matrix is close to D(vec(Y )) = � ⊗ Q with
Q = s1 I+s2 Q f . For each coordinate component, Y consists
of the time-series observations of the five stations (� is of
size 5× 5). The iterative algorithm of Fig. 1 is now used to
estimate both � and s1 and s2. The correlation between series
is given by �, and time correlation of the series is expressed
by the relative magnitude of s2 with respect to s1.

The correlation coefficients obtained from � are given in
Table 5, and the amplitudes of white noise, i.e. multiplication
of the diagonal elements of � with s1, are given in Table 6.
The amplitudes of flicker noise are correspondingly larger by
factors of 1.14, 1.06, and 1.25 for north, east, and up compo-
nents, respectively. The correlations are approximately iden-
tical to those given in Table 2. This implies that the results are
not dependent on the matrix Q, and therefore it is safe to use
this stochastic model. Here also these correlations (between
series) directly propagate into the correlations between site
velocities.

5 Concluding remarks

In this contribution, for the multivariate linear model
E(vec(Y )) = (I ⊗ A)vec(X), we considered the following
stochastic models:

1. general model

D(vec(Y )) =
p∑

k=1

�k ⊗ Qk (36)

Table 5 Spatial correlations (sorted by baseline length between sta-
tions) and their precision between corresponding north, east, and up
component time-series for five stations (Q = s1 I + s2 Q f )

Distance (km) Correlation coefficient

North East Up

98 0.86± 0.01 0.66± 0.01 0.76± 0.01

592 0.78± 0.01 0.57± 0.02 0.63± 0.02

687 0.78± 0.01 0.51± 0.02 0.61± 0.02

927 0.74± 0.01 0.44± 0.02 0.57± 0.02

935 0.75± 0.01 0.45± 0.02 0.59± 0.02

1,180 0.71± 0.01 0.44± 0.02 0.52± 0.02

6,504 0.23± 0.02 −0.14± 0.03 −0.11± 0.03

6,574 0.24± 0.02 −0.12± 0.03 −0.12± 0.03

7,054 0.22± 0.02 −0.11± 0.03 −0.13± 0.03

7,217 0.24± 0.02 −0.06± 0.03 −0.17± 0.03

The correlations also directly propagate into correlations between site
velocities—more practical model

Table 6 Standard deviation estimates of white noise along with their
precision for five stations (Q = s1 I + s2 Q f )—more practical model

Site code Standard deviation

σw
N (mm) σw

E (mm) σw
U (mm)

KOSG 2.27± 0.04 2.52± 0.05 5.68± 0.10

WSRT 2.22± 0.04 2.34± 0.04 5.59± 0.10

ONSA 2.23± 0.04 2.36± 0.04 5.63± 0.10

GRAZ 2.42± 0.04 3.12± 0.06 6.24± 0.11

ALGO 2.38± 0.04 2.78± 0.05 5.81± 0.11

2. special model (p = 1)

D(vec(Y )) = � ⊗ Q (37)

3. more practical model (�k = sk�)

D(vec(Y )) = � ⊗
p∑

k=1

sk Qk (38)

in which the matrices �k and the factors sk (k = 1, . . . , p)
were estimated using LS-VCE.

We examined different GPS coordinates time-series toge-
ther. In practice, it is more convenient to process time-series
separately. There is a special model (p = 1) that gives iden-
tical results as to when we treat the time-series individually.
The correlations between different time-series can simply be
obtained from the least-squares residuals. The correlation
between parameters—site velocities for instance—is then
identical to the correlation between time-series observations.

The correlation between different components at one site
is not significant. But, the correlation between different
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stations for individual components (spatial correlation)
appeared to be significant over short distances (e.g., 100 km).
This holds both for white noise and flicker noise (general
model). The coloured noise is the dominating source of error,
and also, the correlations of the white noise are close to those
of the flicker noise component. In addition the ratios of the
flicker to white noise amplitudes are approximately identi-
cal for different time-series. These together confirm that the
general formulation is close to the special model (Example 1).

Because the relative amplitudes of different noise compo-
nents are usually unknown, it was recommended to employ
the more practical model of the covariance matrix of the
multivariate GPS coordinate time-series, i.e. D(vec(Y )) =
� ⊗ Q with Q = ∑p

k=1 sk Qk . Cross correlations—spatial
correlation for instance—are given by the matrix �. Time
correlation of the series are expressed by the components
sk, k = 1, . . . , p. The matrix � as well as the components
sk, k = 1, . . . , p can be estimated by LS-VCE using an ite-
rative procedure (Fig. 1). The computational burden of this
model is not much higher than the univariate model.

We noted that the final results are not seriously affected
if we estimate the time-series separately. This conclusion
suggested that the correlations between time-series can be
added later into the covariance matrix of the parameters of
interest. The amount of correlation is weakly dependent on
the type of the stochastic model of the series. One may use a
simple stochastic model—white noise only for instance—to
obtain the correlation coefficients.
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Appendix

Presentation and interpretation of results

It is intended to derive simple formulas (by means of two
lemmas) for standard deviation estimators and correlation
coefficients along with their precision only for the sake of
presentation of the (co)variance components.

Lemma 1 (Standard deviation estimator) Let σ̂ 2
i = σ̂i i and

σσ̂ 2
i
= σσ̂i i be the variance estimator and its standard devia-

tion, respectively. They are both expressed in units of m2—as
an example. To extract the more convenient indicators, we

apply the square root to the variance estimator which gives
the standard deviation estimator expressed in units of metres,
namely

σ̂i =
√

σ̂ 2
i =

√
σ̂i i (39)

It is possible to derive the precision of the variable σ̂i ,
namely σσ̂i , by applying the error propagation law to the
nonlinear function. One can simply show that the precision
of the standard deviation estimate, expressed in unit of m,
can be approximated using the following equation:

σσ̂i ≈
σσ̂ 2

i

2σ̂i
= σσ̂i i

2σ̂i
(40)

in which both σ̂i and σσ̂i i are given.

Lemma 2 (Correlation coefficient) Assume that we are given
the covariance estimate σ̂i j (m2) and its precision σσ̂i j (m2)

and two variance estimates σ̂i i (m2) and σ̂ j j (m2) with their
precision σσ̂i i (m2) and σσ̂ j j (m2), respectively. In addition
to the standard deviations of the estimates, there can also be
covariances between estimates. The 3×3 matrix Qi j

σ̂
denotes

the covariance matrix of the estimates.
In practice, it is more convenient to present the correlation

coefficient rather than the covariance estimate, namely

ρ̂i j = σ̂i j

σ̂i σ̂ j
= σ̂i j√

σ̂i i
√

σ̂ j j
(41)

To obtain the variance of the correlation coefficient ρ̂i j , we
apply the error propagation law to the linearized form of the
preceding equation. This then yields σ 2

ρ̂
= J Qi j

σ̂
J T, where

the Jacobian vector J is given in Eq. (26).
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