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Abstract A method has been developed and tested for esti-
mating calibration parameters for the six accelerometers on
board the Gravity field and steady-state Ocean Circulation
Explorer (GOCE) from star tracker observations. These six
accelerometers are part of the gradiometer, which is the prime
instrument on board GOCE. It will be shown that by taking
appropriate combinations of observations collected by the
accelerometers, by modeling acceleration terms caused by
gravity gradients from an a priori low-degree spherical har-
monic expansion, and by modeling rotational acceleration
terms derived from star-tracker observations, scale factors of
each of the accelerometers can be estimated for each axis.
Simulated observations from a so-called end-to-end simula-
tor were used to test the method. This end-to-end simulator
includes a detailed model of the GOCE satellite, its instru-
ments and instrument errors, and its environment. Results of
the tests indicate that scale factors of all six accelerometers
can be determined with an accuracy of around 0.01 for all
components on a daily basis.

Keywords GOCE · Gradiometer · Accelerometers ·
Star-tracker · Calibration · Bias · Bias drift · Scale factor

1 Introduction

The first gravity field gradiometer in space will be flown
on board of the first European Space Agency (ESA) Earth
Explorer mission, the Gravity field and steady-state Ocean
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Circulation Explorer (GOCE). The GOCE gradiometer will
consist of three orthogonal pairs of accelerometers (Fig. 1).
These accelerometers have a sensitivity of the order of
10−12 m/s2. The foreseen launch date of GOCE is in 2008
(as of September 2007). GOCE aims at modeling the sta-
tic Earth’s gravity field with an accuracy of 2 cm in geoid
and 1 mGal in gravity anomaly at a spatial resolution or
half-wavelength of 100 km (Drinkwater et al. 2007), thereby
improving the already high-quality static gravity field models
that can be derived from observations taken by the GRAvity
Climate Experiment (GRACE) mission, whose primary
objective is to observe temporal gravity (Tapley et al. 2004).

In addition to the gradiometer, GOCE will be equipped
with a dual-frequency GPS receiver, star-trackers, ion engines
and magnetic torquers. The satellite gravity gradiometer pro-
vides both differential accelerometer observations from
which satellite gravity gradients (SGG) and in conjunction
rotational accelerations are to be derived, and common-mode
(CM) accelerometer observations for representing the non-
gravitational accelerations and for steering the Drag Free
Control (DFC) system. The GPS receiver enables a precise
orbit determination and provides especially information for
retrieving the low-resolution part of the gravity field, whereas
the SGG observations provide high-resolution gravity field
information. The ion engines form part of the DFC and reduce
the non-gravitational accelerations to a level that prevents
saturation of the accelerometers. The magnetic torquers are
used for controlling the attitude motion of the satellite.

The highest sensitivity of the gradiometer is in the mea-
surement bandwidth (MB) of 0.005–0.1 Hz. Star tracker
observations are required together with differential accel-
erometer observations to precisely reconstruct the angular
motion of the satellite. This is necessary for deriving the
SGG observations from the differential accelerations (Ale-
nia 1999).
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Fig. 1 Configuration and naming convention of the three pairs of accel-
erometers on orthogonal axes that together form a gravity gradiometer.
Half the arm length of each pair is equal to a, whereas the offset of
the center of the gradiometer with respect to the center of mass of
the satellite is indicated by x . The X , Y and Z axes are aligned with
the along-track (or flight), cross-track and radial (or height) directions,
respectively, to within a few degrees

A crucial prerequisite for GOCE mission success is a
reliable and high-precision calibration of the gradiometer.
A challenging procedure has been developed to calibrate the
gradiometer not only pre-launch by a series of on-ground
tests, but also after launch by making use of on-board cold-
gas thrusters to provoke a long series of gradiometer shak-
ing events that will provide observations for its calibration
(Cesare and Catastini 2005). The objective is to obtain scale
factors for the differential accelerometer observations at a
precision level of 10−5 or better (Cesare 2005). Such a pre-
cision level can not be achieved pre-launch due to the 1-g
environment.

In addition, a number of post-launch methods has been
designed and will be implemented that aim at validating the
calibration of the gradiometer instrument and, at the same
time, supporting the operations of the satellite (Bouman et al.
2004). These methods are based on (1) comparison with the
best available global gravity field models, (2) upward con-
tinuation of high-precision ground-based gravity field data
over certain geographical areas, and (3) use of GPS high-
low satellite-to-satellite tracking (SST) observations (Visser
2007). All these methods make either use of the best available
state-of-the art global gravity field models or geographical
areas for which high-resolution and high-precision
terrestrial gravity field information is available. It will be
shown that the method outlined in this paper is not very sen-
sitive to errors in the a priori gravity field model.

For comparison, the CHAMP and GRACE satellites carry
only one accelerometer, which is located in the center of
mass. The best calibration of these accelerometers is obtai-
ned by a precise orbit determination (Bruinsma and Biancale
2003, Bruinsma et al. 2004). For GOCE, the CM can only be
calibrated to a limited extend by such a precise orbit deter-
mination (Visser 2007).

The focus of this paper will be on an efficient and fast esti-
mation of bias parameters and scale factors of all six individ-
ual accelerometers that together form the gradiometer (Fig. 1)
by making use of star-tracker observations. The results of this
estimation might in reality support and/or validate the other
gradiometer calibration methods. First, a detailed model of
accelerometer observations will be provided (Sect. 2). This
model serves as the basis for the calibration method and
for some additional checks (Sect. 3). The method will be
applied to a data set of simulated observations generated
by a GOCE end-to-end simulator (Sect. 4). Finally, results
will be summarized and conclusions will be drawn about the
predicted performance of the proposed calibration method
(Sect. 5).

2 Accelerometer observations

Before introducing methods for calibrating and/or validat-
ing the accelerometers on board GOCE, a comprehensive
model for their observations is required. First, it is assumed
that each individual accelerometer is located away from the
center of mass of the satellite with eccentricity vector
xi

T = (x, y, z), where the coordinate axes are in the gra-
diometer reference frame. The X axis is aligned with the
long axis of the satellite, the Z axis is perpendicular to the
X axis and is aligned with the wings of the GOCE satellite,
and the Y axis completes a right-handed orthonormal frame
(see also Fig. 1).

For a perfectly Earth nadir pointing satellite, the X , Y and
Z axes would coincide with the along-track, cross-track and
radial directions, respectively. In reality, the GOCE satellite
attitude will be steered in order to minimize aerodynamic
torques (“head in the wind”) resulting in yaw, roll and pitch
angles of the order of a few degrees (Visser 2007). The axes
of the gradiometer reference frame are defined to nominally
be aligned with the axes of the accelerometers (in reality there
will be small misalignments, see below).

Second, it is assumed that each accelerometer is affected
by biases, scale factors and misalignments. In reality, the
accelerometers will also be affected by non-orthogonalities,
couplings and quadratic terms (Cesare and Catastini 2005).
However, the requirement for the combined effect of non-
orthogonalities of, and couplings between the accelerometer
axes is smaller than 1.3 × 10−4 rad. The residual quadratic
effects are assumed to be negligible. In that case, the accel-
erations observed by the i-th accelerometer (i = 1, . . . , 6)
can be written as:

aobs,i = Si [Mi(� + R)xi + d] + bi + εi . (1)

The (diagonal) matrix of accelerometer scale factors Si,k

(k = x, y, z) is represented by Si :
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Si =
⎛
⎝

Si,x 0 0
0 Si,y 0
0 0 Si,z

⎞
⎠ . (2)

M represents the misalignment matrix:

Mi =
⎛
⎝

1 −γi βi

γi 1 −αi

−βi αi 1

⎞
⎠ . (3)

The misalignments are due to instrument imperfections and
are represented by rotations around the individual acceler-
ometer axes, where αi , βi and γi are the roll, pitch and yaw
angles. It is assumed that these angles are very small, leading
to the linearized matrix in Eq. (3). In the following, the mis-
alignments are nominally ignored. Tests have indicated that
for the simulated data used for this paper, the misalignments
are indeed small (Sect. 4).

� is the gravity gradient matrix containing the second-
order derivatives of the gravitational field potential�kl (k, l =
x, y, z) at the satellite location:

� =
⎛
⎝

�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

⎞
⎠ . (4)

The matrix with rotational terms R is written as:

R =
⎛
⎝

rxx rxy rxz

ryx ryy ryz

rzx rzy rzz

⎞
⎠

=
⎛
⎝

−ωy
2 − ωz

2 ωyωx ωzωx

ωxωy −ωx
2 − ωz

2 ωzωy

ωxωz ωyωz −ωx
2 − ωy

2

⎞
⎠

+
⎛
⎝

0 −ω̇z ω̇y

ω̇z 0 −ω̇x

−ω̇y ω̇x 0

⎞
⎠ , (5)

where ωk and ω̇k represent the angular rotation rates ωT =
(ωx , ωy, ωz) and the angular acceleration rates ω̇T =
(ω̇x , ω̇y, ω̇z). For the calibration method that is the topic of
this paper, the elements of the matrix with rotational terms
can be derived from the star-tracker observations by single
and double differentiation in time of observed orientation
angles (Sect. 3).

Finally, dT = (dx , dy, dz), bi
T = (bi,x , bi,y, bi,z), and

εi
T = (εi,x , εi,y, εi,z) represent the non-gravitational accel-

erations, the accelerometer biases, and the observation errors
for the three accelerometer axes.

3 Methodology

The calibration method and some checks that will be out-
lined in this Section are based on the assumption that each
individual accelerometer experiences the same linear

non-gravitational accelerations d (accelerations induced by
torques are included in the rotational terms):

d = S−1
i (aobs,i − bi − εi ) − (� + R)xi. (6)

By imposing that the non-gravitational accelerations are the
same for each individual accelerometer, each accelerome-
ter can be scaled with respect to the others in conjunction
with the estimation of relative accelerometer biases (Sect. 4).
Before outlining the calibration method by star-tracker obser-
vations, the different contributions to the total accelerometer
observations (Eq. (1)) are assessed.

3.1 Correcting the accelerometer observations

Each accelerometer experiences different accelerations due
to the local satellite gravity gradient (�xi in Eq. (1)) and
due to rotational effects (angular accelerations and centrifu-
gal terms, Rxi in Eq. (1)). First of all, the location of each
individual accelerometer has to be defined:

x1
T = (ox + Lx/2, oy, oz)

x2
T = (ox , oy + L y/2, oz)

x3
T = (ox , oy, oz + Lz/2)

x4
T = (ox − Lx/2, oy, oz)

x5
T = (ox , oy − L y/2, oz)

x6
T = (ox , oy, oz − Lz/2), (7)

where, Lx , L y, Lz are the gradiometer arm lengths along the
X , Y and Z axes (nominally 50 cm for the end-to-end sim-
ulator, in Cesare and Catastini (2005) the arm length along
the X axis slightly deviates and is equal to 51.4 cm), and
oT = (ox , oy, oz) represents the offset of the center of the
gradiometer instrument with respect to the satellite center of
mass (of the order of a few cm for the end-to-end simulated
data).

Second, the gravity gradients can be derived from an a pri-
ori gravity field model. It will be shown that for the calibration
method outlined in Sect. 3.2, a low degree and order gravity
field model, for example truncated at degree and order 20,
suffices. Finally, rotational terms need to be accounted for.
The star-tracker observations provide the orientation of the
gradiometer reference frame in the J2000 inertial reference
frame (Montenbruck and Gill 2000). They are used, together
with orbital information (position and velocity) to derive the
yaw, pitch and roll angles (φi , i = 1, 2, 3) of the axes of
the gradiometer reference frame with respect to the radial,
along-track and cross-track directions (Visser 2007).

It has to be noted that the axes of the selected star-tracker
are not aligned with those of the gradiometer reference frame.
In fact, a rotation of 60◦ around the X axis has to be applied to
the star-tracker observations. The relatively large star-tracker
observations errors around the bore sight (Visser 2007) are
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thus spread over more axes. This means that the results pre-
sented in this paper might be considered pessimistic. In real-
ity, it might be possible to combine observations taken by
different star-trackers. GOCE will carry three star-trackers,
with two always observing. These star-trackers have differ-
ent orientations, thereby opening the possibility to reduce the
effect of the large errors around the bore sight direction of
the currently selected one star tracker.

First and second time derivatives of the rotation angles are
obtained by using a moving time window of certain width
over the time-series of these angles and fitting second-order
polynomials:

φi = a0 + a1t + 1

2
a2t2, (8)

where t represents time, the coefficient a0 the orientation
angle, and a1 and a2 represent the angular rotation rate and
acceleration, respectively. Depending on the noise charac-
teristics of the star-tracker, a longer or shorter time window
might be required. The end-to-end simulator data were used
to determine the length of the window (see below).

In all cases to be described in this paper, use has been
made of one day of simulated GOCE observations (11 April
2008, similar results were found for other days) from the
end-to-end simulator (Catastini et al. 2007, Visser 2007).
The following accelerometer error sources were taken into
account by this end-to-end simulator: frequency dependent
accelerometer observation noise, quadratic terms, couplings,
misalignments of the axes of the individual accelerometers,
biases, bias drifts and scale factor values. In addition, the
star-tracker observations were corrupted by realistic mea-
surement errors. Moreover, the satellite environment is mod-
eled in great detail, including the full EGM96 gravity field
model (Lemoine et al. 1998) and non-gravitational forces.
The thrusting and actuation by the DFC and magnetic tor-
quers were taken ito account as well. The star-tracker obser-
vation errors are typically of the order of 10′′ (arcsec) for the
more precise rotation axes and up to 50′′ for the bore sight
axis (Visser 2007) and are provided with a 0.5 s time interval
(1 s for the accelerometer observations). A time window of
100 s was found by trial and error to lead to small errors of
derived angular rotation rates and accelerations for all three
axes (Eq. (8)). In fact, by comparison with the known values
provided as part of the end-to-end data set, the angular accel-
eration errors were found to be of the order of 1×10−8 rad/s2

around the Y and Z axes (pitch and yaw) and 3×10−8 rad/s2

around the X axis (roll). It has to be noted that the accelerom-
eter scale factor deviations from one that have been applied
to the simulated data are less than 0.001 (0.1%), which is
thus the accuracy level to which the proposed method can be
tested.

In reality, the true angular acceleration values are not
known. The question might therefore be raised how to

determine the value for the length of the time window
(Eq. (8)). One possibility is to use values that are based on the
predicted behavior of the entire GOCE satellite as modeled
by the end-to-end simulator (as was done in this paper). After
launch of GOCE, the actual performance of all instruments
(such as noise characteristics) will be carefully assessed and
this might then be used for a new end-to-end simulator run
possibly resulting in updates of the time window length.

Time-series of observations for accelerometers 1 and 2
are displayed in Fig. 2 after reducing for the full 360 × 360
EGM96 gravity gradients and rotational terms derived from
the star-tracker observations, and after subtracting the mean
of the reduced observations. Already a close match can be
observed. Differences between the observations of acceler-
ometers 1 and 2 are displayed in Fig. 3, before and after
reducing for gravity gradients and rotational terms.

It can be observed in Fig. 3 that a close match between
the individual accelerometers is obtained after correcting for
both gravity gradient and rotational terms, apart from sys-
tematic effects. It can now be seen that the accelerometers
do not only suffer from biases, but also drifts (as part of
the colored noise). Therefore, the accelerometer observation
model (Eq. (1)) has been optionally extended by bias drift
factors as well, or:

bi = bi,0 + bi,t t, (9)

where, bi,0 and bi,t represent the bias at the starting epoch
and the bias drift, respectively.

3.2 Validation by star-tracker observations

By imposing that each accelerometer observes the same non-
gravitational accelerations and by comparing accelerometer
i with accelerometer j , Eq. (6) leads to:

Si
−1(aobs,i − bi − εi ) − Sj

−1(aobs, j − b j − ε j )

= (� + R)(xi − xj). (10)

By using an a priori model for the gravity gradients, deriving
the rotational terms from the star-tracker observations and
assuming that the observation noise is negligible, Eq. (10)
can be solved for the accelerometer biases and scale factors.
Please note that for each axis a singularity arises, namely one
bias value. Therefore, one accelerometer needs to be defined
as being the so-called reference accelerometer, which means
that all biases will be relative to the biases of this accelerom-
eter. As an example, the following observation equation can
be derived for the X -axis component (indicated by x) of the
first and second accelerometers (applying Eq. (7)):
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X-axis Y-axis Z-axis

Fig. 2 Observations of accelerometers 1 (top) and 2 (bottom) in the gradiometer reference frame after correcting for both rotational and gravity
gradient terms, and after taking away the mean. Note that the signal along the X axis is relatively small and displays a noisy behavior

aobs,1,x − b1,x

S1,x
− aobs,2,x − b2,x

S2,x

= (rxx + �xx )
Lx

2
− (rxy + �xy)

L y

2
. (11)

In this case, only the relative bias b2,x − b1,x can be deter-
mined. Eq. (11) is also an example of an equation that can be
used to estimate the arm lengths of the gradiometer (Sect. 4).
In fact, the inverse of the scale factors (Si,k

−1) is estimated
and the relative biases divided by the scale factors ((b2,x −
b1,x )/Si,k) in order to have observation equations that are
linear for the estimated parameters. The actual values for
the scale factors and relative biases (and possibly also for-
mal errors, see below) can then easily be derived from these
estimated parameters.

In all cases, the observation equations are solved by the
method of unweighted least-squares, i.e. each accelerome-
ter observation is assigned the same weight. In addition, the
estimation is regularization-free and thus unbiased. It might
be argued that uniform weighting is sub-optimal considering
the anticipated colored noise behavior of the accelerometers,
the different noise level for the star tracker bore sight and
other directions, and also considering that each accelerome-
ter will have two sensitive and one less-sensitive axes (ESA
1999). It is anticipated that the accelerometers will have the
highest sensitivity in the MB (0.005–0.1 Hz), but it has to be

realized that the non-gravitational accelerations will be dom-
inant at the low frequencies (see e.g. Fig. 2). Thus, applying
for example a frequency-dependent weighting commensu-
rate with the noise behavior would on the one hand reduce
the negative impact of low-frequency accelerometer obser-
vation noise, but on the other hand significantly degrade the
signal-to-noise ratio (i.e. only a small non-gravitational sig-
nal is then left for calibration). Not having to rely on prior
knowledge about the observation error characteristics (which
might in reality turn out to be different) makes the method
more robust/rigorous, and can be considered as an advantage.
In addition, it has to be realized that applying a bandpass fil-
ter to the observation equations will lead to unobservability
of, for example, accelerometer biases. Therefore, frequency-
dependent weighting has not been investigated for the current
implementation of the method.

It has to be noted that all calibration parameters are esti-
mated simultaneously, whereas the uniform weighting in fact
leads to a situation where parameters for different axes are
uncorrelated. Thus the same results would be obtained by
having three separate estimations of calibration parameters,
one for each axis. This would be computationally more effi-
cient. However, the computations are not computationally
demanding (typically less than one minute CPU time on
a 3 GHz Linux PC). Moreover, the current implementation
would allow the inclusion of frequency dependent weighting
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Uncorrected STR corrected STR+GG corrected

Fig. 3 Difference between observations of accelerometers 1 and 2
before corrections (left), after correcting for rotation terms derived from
the star-tracker observations (middle), after applying gravity gradient
corrections (right) in the gradiometer reference frame, and after taking

away the mean. “STR” indicates that the accelerometer observations are
corrected for rotational terms derived from the star-tracker, and “GG”
corrected for gravity gradient terms

and correlated observation errors between different axes if
this is found to be valuable in the future.

4 Results

A least-squares estimation of accelerometer biases, bias drifts
(optionally) and scale factors has been conducted using one
day (11 April 2008) of simulated end-to-end star-tracker and
accelerometer observations. In addition, orbital information
was included in the end-to-end data package, which allowed
for the computation of gravity gradients. The orbital informa-
tion includes rotation parameters connecting the J2000 and
Earth-fixed reference frames. Together with the star-tracker

observations, this enabled the computation of gravity gradi-
ents in the gradiometer reference frame.

4.1 Verification of assumptions

A number of tests was conducted first to verify some of the
assumptions that have been made. First, relative scale factors
were estimated. By imposing that each accelerometer experi-
ences the same non-gravitational accelerations, the following
equation can be derived from Eqs. 6 and 10:

S−1
i (aobs,i − bi − εi ) − (� + R)xi

= S−1
j (aobs, j − b j − ε j ) − (� + R)xj. (12)
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By taking into account the rotational and gravity gradient
terms, relative scale factors (Si,k/S j,k) and biases (bi − b j )
were estimated for every possible pair of accelerometers. It
was found that relative scale factors could deviate from 1 by
as much as 0.18 for the X components when bias drifts are
not estimated. When these drifts are included in the estima-
tion process, the relative scale factors deviate from 1 by less
than 0.001 for the Y and Z axes. The scale factors for the
X direction can still deviate from 1 by more than 0.10, but
the mean value does not deviate from 1 significantly. It has
to be noted that the drag-free control especially compensates
the non-gravitational accelerations in the X direction (Fig. 2)
reducing the accelerations in this direction to a noisy signal
with a relatively small variance. For such a signal, the estima-
tion of scale factors becomes less reliable (a large signal with
systematic features is easier to scale). This result indicates
that a frequency dependent weighting where the low frequen-
cies are assigned a low weight, most likely results in a reduced
observability of accelerometer biases and scale factors. The
obtained results do not contradict the assumption that the
end-to-end simulated accelerometer observations have scale
factors that deviate from 1 by more than 0.001.

Second, upper bounds for the misalignments were esti-
mated. By assuming that the scale factors are close to one
(S = I), the following equation can be derived from Eq. (1):

Mi
−1(aobs,i − bi − εi ) − Mj

−1(aobs, j − b j − ε j )

= (� + R)(xi − xj). (13)

Again, by using an a priori gravity field model for computing
the gravity gradients � and the star-trackers to derive rota-
tional terms, this time the misalignments αi , βi , γi can be
estimated together with relative bias values bi −b j . The first
accelerometer was used as reference for the relative bias esti-
mates. The upper bound of the misalignments was found to
be below 0.01 rad. It has to be noted that the estimated mis-
alignments include the deviation of the accelerometer scale
factors from one. In fact, the values represent the product of S
and M and thus implicitly also reflect the value or uncertainty
of the accelerometer scale factors.

Finally, by assuming that the scale factors are close to 1,
Eqs. 10 and 7 can be used to estimate the arm lengths of the
three orthogonal pairs of accelerometers:

(aobs,i − bi − εi ) − (aobs, j − b j − ε j )

= (� + R)(xi − xj). (14)

By using an a priori gravity field model for computing the
gravity gradients � and the star-trackers to derive rotational
terms, the values for Lx , L y and Lz were found to be close
to 50 cm, which was the value used for all arms in the end-
to-end simulation. The maximum deviation was found to be
less than 0.4 cm.

Table 1 Estimated scale factors for the individual accelerometers using
the star-tracker observations nominally using an averaging window of
100 s

Acc. SF X SF Y SF Z

No bias drifts

1 0.966 0.751 0.977

2 0.976 0.742 0.967

3 0.898 0.737 0.973

4 0.982 0.737 0.969

5 0.987 0.743 0.977

6 0.972 0.751 0.972

Including bias drifts

1 0.994 0.977 0.993

2 0.991 0.977 0.992

3 0.989 0.976 0.992

4 0.996 0.976 0.989

5 0.992 0.977 0.992

6 0.992 0.978 0.991

Including bias drifts & 100 s averaging

1 1.004 0.990 1.007

2 0.993 0.989 1.007

3 1.019 0.989 1.007

4 1.002 0.989 1.006

5 0.993 0.989 1.005

6 1.013 0.991 1.005

Including bias drifts & 25 s window + averaging

1 1.001 0.998 0.982

2 0.984 0.999 0.979

3 0.973 1.000 0.972

4 0.999 1.000 0.958

5 0.985 0.999 0.977

6 0.962 0.999 0.974

In certain cases, bias drifts have been estimated for all axes of the indi-
vidual accelerometers. In all cases, the first accelerometer served as ref-
erence and a truncated 20 × 20 EGM96 gravity field model was used.
Also, results are included for the case where the observation equations
were averaged over the same time interval as used for the polynomials
that represent the angular motion (Eq. (8))
SF scale factor

4.2 Calibration by star-tracker observations

The calibration method as outlined in Sect. 3.2 was applied
to the selected one day of simulated end-to-end observa-
tions as well. The estimated scale factors are included in
Table 1 for different combinations of estimated parameters
(i.e. inclusion or exclusion of bias drifts), and also for the
case where the effect of the estimation window applied to the
star-tracker observations (Eq. (8)) was taken into account in
the observation equations (Eq. (10)). The estimation window
was taken equal to 100 s, which results in angular and cen-
trifugal acceleration terms that can be considered as averages
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over this window. Therefore, the possibility to average the
observation equations (Eq. (10)) over this window was built
in as well.

The values for the estimated relative biases and bias drifts
are in the range of 10−8 to 10−7 m/s2 and less than
10−12 m/s3, respectively. Accelerometer bias and bias drift
values are not very critical for the GOCE gravity field mission
performance considering the bandwidth requirement (0.005–
0.1 Hz). For example, a constant bias can be considered as
an error with a frequency of 0 Hz and is thus outside the gra-
diometer measurement bandwidth that will be used for the
gravity field recovery. It was found that the magnitude of the
simulated accelerometer bias drifts necessitate their inclu-
sion in the estimation process. The scale factors improve
considerably, i.e. are much closer to 1, when co-estimating
accelerometer bias drifts. Especially for the Y direction the
scale factors improve from about 0.75 (25% error) to 0.98
(2% error, Table 1). Relatively large bias drifts were found
for the Y direction, which can be attributed to the configu-
ration of sensitive and less-sensitive axes of the individual
accelerometers (ESA 1999, Cesare 2005).

A significant improvement is also obtained for the Y direc-
tion when taking into account the averaging window used for
estimating the star-tracker polynomials. In the Y direction,
relatively sharp changes in the rotational accelerations are
due to the yaw motion, causing relatively large modeling
errors when the averaging is not taken into account. All scale
factors now typically deviate less than 0.01–0.02 from 1, all
scale factors for the Y direction being a bit too small, and for
the Z direction being a bit too big.

These small systematic deviations can probably still be
explained by small modeling errors, since the contribution
of the centrifugal accelerations is in fact not based on the
average over the 100 s window of these accelerations but on
the average of the angular rate (which is then e.g. squared
for the diagonal matrix elements, Eq. (5)). It has to be noted
as well that these systematic deviations are different for the
X , Y and Z axis. It has to be realized that the satellite will
experience different accelerations along the different axes,
resulting in different averaging errors. It might therefore be
argued that improvements can be obtained by using differ-
ent averaging windows for different axes. For example, best
results for the X , Y and Z axes are obtained with averaging
window close to 100, 25 and 100 s, respectively.

However, it has been shown that the proposed method of
estimating scale factors by star-tracker observations is fea-
sible and can serve as a valuable addition to other proposed
methods, such as described in Bouman et al. (2004).

Both the full 360×360 (i.e. the “real-world” model) and a
truncated 20×20 version of the EGM96 gravity field model
were used as a priori model for computing the gravity gradi-
ents. In addition, also estimations were done with the JGM3
gravity field model (Tapley et al. 1996). This was done in

Table 2 Estimated scale factors for the individual accelerometers using
the star-tracker observations and using an averaging window of 100 s.
In all cases, bias drifts have been estimated for all axes of the individual
accelerometers and the averaging window was applied to the acceler-
ometer observations as well. Different gravity field modeling has been
used. The first accelerometer was used as reference

Acc. SF X SF Y SF Z

EGM96, central term only

1 0.949 0.991 1.001

2 0.991 0.990 1.008

3 1.020 0.990 0.999

4 0.942 0.990 1.013

5 0.999 0.991 1.006

6 1.016 0.992 1.014

EGM96, 20×20

1 1.004 0.990 1.007

2 0.993 0.989 1.007

3 1.019 0.989 1.007

4 1.002 0.989 1.006

5 0.993 0.989 1.005

6 1.013 0.991 1.005

EGM96, 360×360

1 1.004 0.990 1.007

2 0.993 0.989 1.007

3 1.019 0.989 1.007

4 1.002 0.989 1.006

5 0.993 0.989 1.005

6 1.013 0.991 1.005

JGM3, 70 × 70

1 1.004 0.990 1.007

2 0.993 0.989 1.007

3 1.019 0.989 1.007

4 1.002 0.989 1.006

5 0.993 0.989 1.005

6 1.013 0.991 1.005

SF scale factor

order to study the sensitivity of the calibration method to a
priori gravity field model error. Scale factor differences are
typically less than 0.001 (Table 2), except when only the
central term is used. Even in the latter case, the scale factor
estimates change generally by at most 0.01 (except for one
scale factor value of about 0.94) showing that using a state-of-
the-art gravity field model will be more than adequate for the
proposed calibration method. In fact, the contribution to the
accelerometer observation of errors in the gravity gradient
terms due to gravity field model uncertainty is much smaller
than the end-to-end predicted non-gravitational accelerations
and the accelerations caused by rotational effects (an indica-
tion for this is already given by Fig. 3).
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Table 3 Estimated scale factors for the individual accelerometers using
the orientation angles derived from the differential accelerometer obser-
vations themselves (optimally combined with the star-tracker observa-
tions). In all cases, bias drifts have been estimated for all axes of the
individual accelerometers and the averaging window was applied to the
accelerometer observations as well. The total 360×360 EGM96 model
was selected (i.e. no gravity field model error). The first accelerometer
was used as reference

Acc. SF X SF Y SF Z

10 s window & averaging

1 1.001 0.927 1.025

2 0.942 0.924 1.029

3 1.005 0.924 1.029

4 1.001 0.921 1.031

5 0.942 0.924 1.034

6 1.003 0.925 1.027

25 s window & averaging

1 1.001 0.992 1.000

2 0.999 0.992 1.001

3 0.999 0.992 1.000

4 1.001 0.992 1.000

5 1.000 0.992 1.000

6 1.004 0.993 1.000

100 s window & averaging

1 1.005 0.983 1.010

2 0.993 0.982 1.012

3 1.018 0.982 1.011

4 1.004 0.981 1.012

5 0.994 0.982 1.009

6 1.015 0.983 1.010

SF scale factor

In order to assess the effect of star-tracker observation
errors, the method was also tested with quaternions from
the end-to-end simulator that were derived from the gra-
diometer differential accelerometer observations. By taking
appropriate combinations of these differential accelerometer
observations, angular accelerations can be obtained that are
integrated in time and merged optimally through a Kalman
filter in order to obtain orientation angles with a very low
noise level (Cesare and Catastini 2005). Almost per defini-
tion, these orientation angles and their time evolution should
match perfectly with the angular and centrifugal accelera-
tions contributions to the total accelerometer observations.
As can be seen in Table 3, all the scale factor deviations from
1 are now significantly below 0.01 for an averaging window
of 25 s.

Statistical information about the estimated parameters
can be retrieved from the estimation process itself. The
unweighted least-squares estimation results in invertible
normal equation systems. When estimating accelerometer

scale factor parameters in conjunction with both relative
biases and bias drifts, the minimum and maximum corre-
lation between the estimated parameters is equal to −0.8793
and 0.9851, respectively (obtained from the inverse of the
least-squares normal matrix). In fact, for each axis of each
accelerometer a correlation of about −0.87 was found
between the bias and bias drift (15 combinations). The rel-
atively high correlations of around 0.97–0.98 were found
between all scale factor parameters for the Y axes of the
accelerometers, which is due to the relatively large common
signal in this direction caused by the yaw motion (see also
Fig. 2). The normal equation system is built for all estimated
parameters together, although it was noted before that the
correlations between parameters for the X , Y and Z axes are
uncorrelated.

Based on a uniform observation weight of 1.5 ×
10−8 m/s2, obtained by multiplying the upper level of the
angular acceleration reconstruction error (see Sect. 3.1) with
the arm length of 0.5, the formal error is about 1 nm/s2 for
the relative biases and 2 × 10−5 nm/s3 for the relative bias
drifts. The formal errors for the scale factors range between
0.011 and 0.038 for the X axis, 0.0079 and 0.0084 for the
Y axis, and 0.0041 and 0.0070 for the Z axis. These error
levels are of the same order of magnitude as the estimated
deviations from 1 for the scale factors.

5 Conclusions

A calibration method has been proposed for the six individ-
ual accelerometers of the GOCE gradiometer that predom-
inantly relies on the availability of high-quality star-tracker
observations. The method requires the use of an a priori grav-
ity field model, but it was found that the effect of errors of
state-of-the-art or even older generation gravity field model
errors is negligible (for example, the differences between the
EGM96 and JGM3 gravity fiel models are much larger than
the claimed accuracy of the most recent global gravity mod-
els, such as those including data from GRACE (Reigber et al.
2005). It was found that with this method scale factors can be
obtained with an accuracy of 0.01–0.02 or better based on a
test data set of end-to-end observations, where all anticipated
error sources were modeled and taken into account. Such an
accuracy level is; however, a few orders of magnitude worse
than the level aimed at for GOCE (Cesare 2005). Therefore,
the method outlined in this paper should be considered to
serve as a possible additional check of the accelerometer
observations. All the results are based on the assumption that
observations of only one star-tracker are nominally available,
where the bore sight is rotated by 60◦ with respect to the gra-
diometer reference frame. In reality, improvements might be
obtained by combining observations of two star-trackers that
are always observing on board of GOCE.

123



600 P. N. A. M. Visser

For obtaining the best accelerometer scale factor values,
it is required to use an averaging window in the estimation of
angular rotation rates and accelerations from the star tracker
observations in order to reduce their noise (typically of the
order of 10–50′′). In addition, it can be concluded that it is
required to apply the same averaging window to the accel-
erometer observation equations. Finally, best results were
obtained by including the estimation of accelerometer bias
drifts.
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