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Abstract We propose a methodology for local gravity field
modelling from gravity data using spherical radial basis func-
tions. The methodology comprises two steps: in step 1, grav-
ity data (gravity anomalies and/or gravity disturbances) are
used to estimate the disturbing potential using least-squares
techniques. The latter is represented as a linear combination
of spherical radial basis functions (SRBFs). A data-adaptive
strategy is used to select the optimal number, location, and
depths of the SRBFs using generalized cross validation.
Variance component estimation is used to determine the opti-
mal regularization parameter and to properly weight the dif-
ferent data sets. In the second step, the gravimetric height
anomalies are combined with observed differences between
global positioning system (GPS) ellipsoidal heights and nor-
mal heights. The data combination is written as the solution of
a Cauchy boundary-value problem for the Laplace equation.
This allows removal of the non-uniqueness of the problem of
local gravity field modelling from terrestrial gravity data. At
the same time, existing systematic distortions in the gravi-
metric and geometric height anomalies are also absorbed into
the combination. The approach is used to compute a height
reference surface for the Netherlands. The solution is com-
pared with NLGEO2004, the official Dutch height reference
surface, which has been computed using the same data but a
Stokes-based approach with kernel modification and a geo-
metric six-parameter “corrector surface” to fit the gravimetric
solution to the GPS-levelling points. A direct comparison of
both height reference surfaces shows an RMS difference
of 0.6 cm; the maximum difference is 2.1 cm. A test at
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independent GPS-levelling control points, confirms that our
solution is in no way inferior to NLGEO2004.
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1 Introduction

Spherical radial basis functions (SRBFs) are being used
extensively in gravity field modelling. Examples are the
point-mass kernel (e.g. Heikkinen 1981; Barthelmes 1986,
1988; Vermeer 1982, 1983, 1984, 1995), the radial multipoles
(e.g. Marchenko 1998; Marchenko et al. 2001), the Black-
man functions of Blackman and Tukey (1958) (Schmidt et al.
2004, 2005a, 2007), and the Poisson wavelets of Holschnei-
der et al. (2003) (e.g. Chambodut et al. 2005; Panet et al.
2006; Klees and Wittwer 2007b), see also Holschneider and
Iglewska-Nowak (2007). Other examples include the Dirac
approach by Bjerhammar (1976), the scaling functions used
in Freeden et al. (1998), spherical spline functions (e.g. Free-
den and Reuter 1983; Freeden et al. 1997; Kusche et al.
1998), and the Kelvin-transformed reproducing kernels used
in least-squares collocation (LSC) (e.g. Lelgemann 1981;
Tscherning 1986; Lelgemann and Marchenko 2001).

To our opinion, the reason for the popularity of SRBFs
in gravity field modelling is due to the following properties:
(1) when located inside the masses, the harmonicity outside
the masses in guaranteed; (2) they lead to simple functional
models for all relevant gravity field functionals; (3) they are
suited for global and local gravity field modelling; (4) they
allow for local refinements of a spherical harmonic represen-
tation of the global field; and (5) they can be easily adapted
to the data distribution and the signal variation.
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458 R. Klees et al.

When using SRBFs in gravity field modelling, the user has
to make a number of choices: (1) the type of the SRBF; (2) the
axis or horizontal position of the SRBF; (3) the bandwidth
of the SRBF; and (4) the number of SRBFs. The quality of
the gravity field model and/or the numerical efficiency may
depend on these choices. For instance, too many selected
SRBFs may cause overfitting; a bandwidth, which is too
large for a given set SRBFs, causes instabilities as the signifi-
cant support of neighboured SRBFs overlap too much, which
leads to similar columns in the design matrix; a bandwidth,
which is too small for a given number of SRBFs may lead
to a nice fit of the data to the model, but the fit at a set of
independent control points may be worse.

Little is known about the influence of the type of SRBF on
the estimated gravity field. In a recent paper by Tenzer and
Klees (2007), the performance of different SRBFs in regional
gravity field modelling from gravity anomaly data was inves-
tigated. No significant differences were found provided that
the bandwidths of the SRBFs were chosen properly. Similar
experiences are reported by Wittwer (personal communica-
tion, 2007) for the processing of data from the Gravity Field
and Climate Experiment (GRACE) mission.

Among the approaches commonly used to fix the centres
of the SRBFs are hierarchical or non-hierarchical subdivision
schemes, e.g. based on a triangulation of an icosahedron
(e.g. Eicker et al. 2004), homogeneous point distributions,
derived from the theory of numerical integration of spher-
ical functions (e.g. Schmidt et al. 2004), or equal angular
grids (e.g. Klees and Wittwer 2007a). Alternatively, some
approaches identify the centres of the SRBFs with those of the
data points (e.g. Heikkinen 1981; Vermeer 1982, 1983, 1984)
or a subset of the data points (e.g. Marchenko et al. 2001).
More sophisticated approaches apply (non-linear) optimiza-
tion algorithms, to fix centres and bandwidths simultaneously
(e.g. Barthelmes 1986). Sometimes, data are first gridded
using some interpolation or approximation algorithm, and
the SRBFs are placed below the grid points. Then, fast (fre-
quency domain) methods are used to estimate the unknown
gravity field parameters (e.g. Bottoni and Barzaghi 1993;
Sanso and Tscherning 2003).

Many studies have been conducted to find the optimal
bandwidths of the SRBFs, which for the majority of SRBFs
used in gravity field modelling is equivalent with the choice
of the depths of the SRBFs below the Bjerhammar sphere.
Often, the bandwidth is selected by “trial-and-error” or based
on empirically found relations with the data spacing or the
gravity anomaly autocovariance function (e.g. Blaha et al.
1986; Hardy and Göpfert 1975; Heikkinen 1981; Sünkel
1981). More advanced strategies involve generalized
cross validation (GCV) techniques (e.g. Klees and Wittwer
2007a,b) or the adaptation of the shape of the SRBF to the
local signal covariance function (Marchenko et al. 2001).

Sometimes, SRBF grids with different spacing on
several layers at various depth are used (e.g. Reilly and
Herbrechtsmeier 1978; Heikkinen 1981; Vermeer 1982, 1983,
1984).

Some authors determine the centres and bandwidths of
SRBFs directly, based on information contained in the data.
For instance, Barthelmes (1986) designed a fairly stable algo-
rithm for the optimization of point masses with free positions,
which solves essentially a non-linear optimization problem
with four parameters per point mass (three parameters to
describe the position in 3D space and one parameter to fix
the magnitude of the point mass). Optimization of the 3D
positions of SRBFs may significantly reduce the number of
point masses needed to approximate the data, which is an
advantage for gravity field synthesis. Moreover, it prevents
instability of the estimation process. However, the computa-
tional complexity of the gravity field analysis is significant.

An alternative to the method of Barthelmes (1986) has
been developed by Marchenko (1998) (see also Marchenko
et al. 2001; Marchenko 2003). He uses higher-order radial
multipoles and locates them below the data points. An opti-
mization algorithm (called sequential multipole algorithm
SMA) reduces the number of radial multipoles by exploiting
the (residual) signal at the data points (i.e. a multipole is not
necessarily assigned to each data point) and, at the same time,
selects the order of the radial multipole and the depth below
the data point. The latter two parameters are fixed using the
gravity anomaly covariance function in the neighbourhood
of the data point. Depth and shape of the radial multipoles
may differ from point to point. In that way, the number of
radial multipoles can be reduced significantly. At the same
time, the condition number of the normal equations improves.
Marchenko et al. (2001) report comparable accuracies as pro-
vided by LSC, but with a number of basis functions that is
about 70% less than the number of data points.

Klees and Wittwer (2007a) developed a data-adaptive
strategy to select the centres and bandwidths of the SRBFs,
which has been designed for heterogeneous data distributions
(i.e. data sets with local concentration and gaps). Centres
and bandwidths are selected as function of the data distrib-
ution and the signal variation using GCV techniques. This
approach allows for a significant reduction of the number of
SRBFs for areas with small spatial signal variations.

The subject of this paper is the development and applica-
tion of a data-adaptive strategy for local gravity field mod-
elling using a SRBF representation of the residual disturbing
potential. The approach differs from what has been proposed
so far in literature with respect to a number of aspects:

1. the number and axes of the SRBFs are selected auto-
matically from the data using a two-step procedure to
improve the numerical efficiency;
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2. the bandwidths of the SRBFs are selected from the data
using GCV;

3. weight factors of individual observation groups and the
regularization parameter are determined using VCE tech-
niques;

4. various terrestrial data types such as gravity anomalies,
gravity disturbances, and height anomalies can be dealt
with;

5. the combination of gravimetric data with GPS-levelling
data is done according to the method of Prutkin and Klees
(2007);

6. a penalized least-squares (LS) techniques is applied to
estimate the gravity field parameters;

7. the algorithms are designed to allow processing of large
data sets.

The integration of these elements into one approach pro-
vides a numerically very efficient and accurate description
of the local gravity field and paves the way for an integrated
approach to regional gravity field modelling from a combi-
nation of terrestrial data with airborne gravimetry data and
satellite gravity data.

The paper is organized as follows: in Sect. 2, SRBFs are
defined. In Sect. 3, the mathematical model and the estima-
tion principle are specified. We prefer a penalized LS prin-
ciple to estimate the unknown gravity field parameters. A
sketch of the overall data processing strategy is given in
Sect. 4. In Sect. 5, we describe a two-step procedure to
select the centres of the SRBFs in a numerically efficient
way, comprising a coarse grid step and a local refinement
step. Section 6 is devoted to the selection of the optimal
bandwidth using generalized cross validation (GCV) tech-
niques. In Sect. 7, we address the problem of optimal data
weighting of individual observation groups and the optimal
choice of the regularization parameter. For both tasks, we
propose to use variance component estimation (VCE) tech-
niques. In Sect. 8, the combination of gravity data with GPS-
levelling data is addressed. We apply the methodology of
Prutkin and Klees (2007). In Sect. 9, the developed method
is applied to real data in the Netherlands. The results are
compared with the official Dutch height reference surface
NLGEO2004 (Crombaghs and de Bruijne 2004), which has
been computed using a Stokes’s approach with kernel modifi-
cation and a bi-quadratic “corrector surface” to model differ-
ences between geometric and gravimetric height anomalies.
Finally, in Sect. 10, we provide a summary of the research
and draw conclusions.

2 Spherical radial basis functions

We denote by σR the surface of the sphere of radius R,
which is located completely inside the topographic masses

(Bjerhammar sphere), σR = {(x1, x2, x3) : x2
1 + x2

2 + x2
3 =

R2}. We denote by Int σR the interior and by Ext σR the
exterior. We consider two points x, y ∈ R

3, y �= 0, with
x = (x1, x2, x3)

T and y = (y1, y2, y3)
T. We define the exte-

rior SRBF at pole position y evaluated at x through

�(x, y) =
∞∑

l=0

ψl(y)
2l + 1

4πR2

(
R

|x |
)l+1

Pl(x̂
T ŷ),

x ∈ Ext σR, y ∈ Int σR, (1)

where Pl is the Legendre polynomial of degree l and x̂ = x
|x |

and ŷ = y
|y| are unit vectors in the direction x and y, respec-

tively. The exterior SRBF is a harmonic function in Ext σR . It
is a zonal function, that is, it is rotational symmetric around
the axis ŷ. The point y is called the centre (sometimes also the
pole or the nodal point) of the SRBF. Different choices of {ψl}
generate different types of SRBFs. Table 1 shows the Legen-
dre coefficients for a number of SRBFs used in gravity field
modelling and, if available, the analytical representation.

3 Mathematical model and estimation principle

We consider a residual gravity field, which is obtained after
the contributions of a global gravity field model complete to
degree L and of the topography computed from a digital ter-
rain model and a mean value of the crustal density or a digital
density model have been subtracted. The residual disturbing
potential, T , is expressed as a linear combination of N basis
functions {�n(x) : n = 1, . . . , N },

T (x) =
N∑

n=1

βn �n(x), (2)

where the real numbers βn are the coefficients to be deter-
mined from data, and

�n(x) = �(x, yn), (3)

with �(x, y) from Eq. (1). We work in the framework of
the Runge–Krarup theorem (Krarup 1969). That is, T is con-
sidered as a member of the function space of regular har-
monic functions outside the Bjerhammar sphere with radius
R located inside the topographic masses, and it is taken as
an approximation of the true residual disturbing potential at
points on and outside the Earth’s surface. The summation in
Eq. (1) may start with an index lmin > 0. Often, lmin = L +1
is chosen, as one assumes that the residual disturbing poten-
tial does not contain enough signal below degree L + 1 or
that the disturbing potential is represented by a series expan-
sion into spherical harmonics up to degree L and a finite
number of SRBFs (e.g. Schmidt et al. 2005b). From numer-
ous numerical experiments with terrestrial gravity data, we
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Table 1 Legendre coefficients and analytical expressions for several SRBFs often used in gravity field modelling

Point mass kernel ψl = 4πR
2l+1λ

l , λ = |y|
R �(x, y) = 1

|x−y|

Radial multipole of order m ψl =
{( l

m

)
λl−m

2l+1 l ≥ m

0 l < m
, λ = |y|

R �(x, y) = 1
m!

(
∂
∂|y|

)m
1

|x−y|

Poisson wavelet of order m ψl = lmλl , λ = |y|
R �(x, y) = 1

4πR2 (2χm+1 + χm),

χm =
(
|y| ∂

∂|y|
)m

1
|x−y|

Dirac approach of Bjerhammar ψl =
{

4πR3

l−1 l ≥ 2

0 l = 0, 1

Poisson kernel ψl = λl �(x, y) = 1
4πR

|x |2−|y|2
|x−y|3

found that lmin = 0 works fine even if the latest Gravity
Field and Climate Experiment (GRACE)-based global grav-
ity field model has been subtracted. The reason is that in local
gravity field modelling, the depth of the SRBFs is shallow
(a few kilometres) so that the sum of the contribution of the
low-degree Legendre coefficients cancel, i.e. they have no
significant influence on the shape of the SRBF.

The objective of local gravity field modelling is to deter-
mine the coefficients {βn : n = 1, . . . , N } from functionals
{Li T : i = 1, . . . , I } of the residual disturbing potential T ,
which have been measured at the Earth’s surface. Examples
of linear functionals used in local gravity field modelling
are (residual) gravity anomalies 	g, (residual) gravity dis-
turbances δg, and (residual) height anomalies ζ . The latter
are usually computed as differences between global posi-
tioning system (GPS) ellipsoidal heights and normal heights.
We assume that, after linearization and spherical approxima-
tion, these functionals are related to the (residual) disturbing
potential as

	g(x) = − 2

|x |T (x)− ∂T (x)

∂|x | , (4)

δg(x) = −∂T (x)

∂|x | , (5)

ζ(x) = T (x)

γ (x ′)
, (6)

where γ is normal gravity and x ′ is the point on the telluroid
associated with the surface point x by a telluroid mapping.

Depending on the data quality, the quantities on the left-
hand side of Eqs. (4), (5), and (6) may be corrected for e.g.
linearization and spherical approximation errors (e.g. Heck
and Seitz 1993, 2003).

Assuming that I linear functionals li = Li T have been
observed, we obtain the system of observation equations

li − εi =
N∑

n=1

βn Li�(x, yn), I ≥ N . (7)

For the (residual) gravity anomaly, the (residual) gravity dis-
turbance, and the (residual) height-anomaly, at the point ξi ,

we have

Li T = 	g(ξi ) =
N∑

n=1

βn D	g�(ξi , yn), (8)

Li T = δg(ξi ) =
N∑

n=1

βn Dδg�(ξi , yn), (9)

Li T = ζ(ξi ) =
N∑

n=1

βn Dζ�(ξi , yn), (10)

where D	g , Dδg and Dζ is the gravity anomaly operator, the
gravity disturbance operator, and the height-anomaly opera-
tor, respectively. In vector–matrix notation, Eq. (7) is rewrit-
ten as

l − e = A x, (11)

where A is the I × N design matrix with elements

Ai,n = Li�(x, yn), i = 1, . . . , I, n = 1, . . . , N ,

x is the N × 1 vector of unknown parameters with elements

xn = βn, n = 1, . . . , N ,

and e is the I ×1 vector of stochastic observation errors with
expectation E(e) = 0 and dispersion D(e) = C.

We assume that the observation vector l consists of P
disjunct groups lp. The corresponding vectors of stochastic
observation errors ep may be uncorrelated, but elements of a
particular vector ep may be correlated. Then,

C =

⎛

⎜⎜⎜⎝

C1 0 0 . . . 0
0 C2 0 . . . 0
...

...
... . . .

...

0 0 0 . . . Cp

⎞

⎟⎟⎟⎠ . (12)

For instance, all gravity anomalies may form one observation
group, all gravity disturbances may form another one, etc.
One may also split the gravity anomaly data set into several
observation groups, e.g. if one expects that the quality differs
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significantly. Then, Eq. (11) is written as
⎛

⎜⎝
l1
...

lp

⎞

⎟⎠ −
⎛

⎜⎝
e1
...

ep

⎞

⎟⎠ =
⎛

⎜⎝
A1
...

Ap

⎞

⎟⎠ x, (13)

where Ap is the design matrix of observation group p. The
chosen estimation principle is a penalized LS principle: for
some given α (the regularization parameter), we minimize
the quadratic functional

�(x) = ‖e‖2
C−1 + α J (T ), (14)

where

‖e‖2
C−1 =

P∑

p=1

‖ep‖2
C−1

p
, (15)

and

J (T ) = ‖x‖2
R. (16)

R is a positive definite (regularization) matrix. For a given
regularization parameter α and given variance factors {σ 2

p :
p = 1, . . . , P}, the minimum of the quadratic functional
�(x) is attained for

x̂ = N−1 h, (17)

with

N =
P∑

p=1

Np + αR, Np = AT
p C−1

p Ap, (18)

and

h =
P∑

p=1

hp, hp = AT
p C−1

p lp. (19)

How to determine α will be discussed in Sect. 7. Often, R =
IN , where IN is the N × N unit matrix.

4 Sketch of the data processing strategy

The data processing strategy consists of four steps; the first
three steps are devoted exclusively to the processing of grav-
ity data; the fourth step performs the combination of gravi-
metric height-anomalies (which is the result of steps 1–3)
with GPS-levelling data.

Step 1. A spherical grid is defined and the grid points are
used as the centres of the so-called coarse-grid SRBFs. A
penalized LS solution (the so-called coarse-grid solution)
is computed, and GCV is used to fix the bandwidth of the
coarse-grid SRBFs, which is the same for all coarse-grid
SRBFs.

Step 2. The LS residuals of step 1 are used to sequentially
add additional SRBFs, which are located below data points.

Whether a SRBF is located below a data point depends on
several criteria (Sect. 5). The optimal depth of each individ-
ual local-refinement SRBF is determined from the data in a
neighbourhood of the candidate SRBF using GCV. The result
of step 2 is a list of local refinement SRBFs with fixed centres
and bandwidths.

Step 3. The coarse-grid SRBFs and the local-refinement
SRBFs represent the complete parameterization of the dis-
turbing potential. The coefficients of the SRBFs are deter-
mined by penalized LS using all gravity data. The centres and
the bandwidths of the SRBFs are fixed to their values found
in step 1 and step 2, respectively. The regularization parame-
ter and the variance factors of individual observation groups
are estimated using VCE (Sect. 7). Depending on a statistical
analysis and a geographical plot of the LS residuals of step
3, a new local refinement iteration can be performed to add
additional SRBFs to the system. Then, the residuals of step
3 serve as input data. The solution obtained after finishing
step 3 is the gravity field solution based on residual gravity
anomaly and/or residual gravity disturbance data. We call this
solution the gravimetric quasi-geoid and the corresponding
height-anomalies, the gravimetric height-anomalies.

Step 4. From the estimated coefficients of step 3,
gravimetric height-anomalies at the GPS-levelling points are
predicted, and the differences between geometric height-
anomalies (differences between GPS-ellipsoidal heights and
normal heights) and gravimetric height-anomalies are
formed; they are called height-anomaly differences. The
height-anomaly differences are used to compute a function
T̃ , which is harmonic in the vicinity of the target area and
has almost zero gravity anomaly signal over the target area
(Prutkin and Klees 2007) (Sect. 8). From T̃ , we can compute
height-anomaly innovations ζ̃ at any point inside the target
area. The final height-anomaly is obtained as the sum of the
gravimetric height-anomaly (i.e. the result after step 3) and
the height-anomaly innovations.

5 Choice of SRBF centres

The coarse grid SRBFs represent a first-order parameteriza-
tion of the disturbing potential. The spherical grid can be any
homogeneous point distribution on the sphere, e.g. an equal-
angular grid or a grid generated by a subdivision scheme
based on a cube, an icosahedron, etc. The mesh size of the
grid, which has to be chosen by the user, must not be smaller
than the mean distance between the data points. Otherwise,
one takes the risk that too many SRBFs are used. Empir-
ically, we found that the mesh size can be chosen at least
50% larger than the mean distance between the data points.
Whether this is an appropriate choice, can be checked easily.
For instance, if no local-refinement SRBFs are selected, it
is an indication that the mesh size of the coarse grid is too
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fine. Then, one can select a coarser mesh size and repeat the
local-refinement procedure. Vice versa, too many selected
local-refinement SRBFs are an indication that the coarse-
grid mesh size was chosen too coarse. Notice that a potential
under-parameterization is automatically corrected for in step
2. Regularization [α �= 0 in Eq. (14)] is only applied if insta-
bilities are observed. The goal of the first step is to obtain
a coarse parameterization of the disturbing potential, which
is further refined in step 2. The main benefit of step 1 is an
improved numerical efficiency compared with a selection of
the complete parameterization solely using step 2.

The coarse-grid parameterization of the disturbing poten-
tial is refined by adding local-refinement SRBFs. A local-
refinement SRBF differs from a coarse-grid SRBF in two
respects: (1) it is always located below a data point, and (2)
each local refinement SRBF has its own bandwidth. Whether
or not a SRBF is located below a data point depends on the
following criteria:

1. The magnitude of the residual at the candidate SRBF
must be larger than some threshold τ1.

2. There must be at least q data points in the neighbour-
hood of the candidate SRBF, with sufficiently large resid-
uals. Sufficiently large means that the average absolute
residual taken over the q data points is larger than some
threshold τ2. The neighbourhood of a candidate SRBF
is defined as a spherical cap σc centered at the candidate
SRBF; the spherical radius of the cap is ψc.

3. The spherical distance between the candidate SRBF and
any already selected SRBF (coarse grid or local refine-
ment SRBF) must be larger than some minimum spher-
ical distance ψmin.

The parameters τ1, τ2, q, ψc, and ψmin are input parame-
ters to be chosen by the user.

These three criteria aim at avoiding over-parameterization
by adding too many SRBFs. For instance, criterion 2 should
avoid that a SRBF is placed below an isolated, large residual,
which is likely to be an artefact (e.g. a blunder) and not a
gravity field signal. Criterion 3 should avoid that there is a
local concentration of SRBFs, which do not model signal
but neutralize themselves. Of course, placing a SRBF makes
sense only if the magnitude of the residual is sufficiently
large. This is guaranteed by criterion 1 and 2. If more than
one local refinement is performed, the parameters τ1, τ2, q,
ψc, andψmin could be changed from one iteration to the next
one.

The local refinement procedure is a four-step procedure
(with “observations” in the local refinement procedure, we
mean the residuals of the coarse-grid LS adjustment or the
residuals of the previous local-refinement iteration):

Step 1. The largest “observation” is looked for. Then, it is
checked whether criteria 1, 2, and 3 are fulfilled. If not, this

point is removed from the list of candidate SRBFs and the
second largest “observation” is selected.

Step 2. If the check has passed successfully, a local LS
adjustment is performed: only the “observations” within the
spherical cap σc are used. The weight matrix is the unity
matrix. The coefficient of the SRBF is the only unknown
parameter; regularization is not needed. The optimal depth
of the SRBF is determined using GCV.

Step 3. The residuals of the local LS adjustment are com-
puted. They are taken as “observations” for the choice of
the next candidate SRBF. Data outside the spherical cap σc

are not corrected for the contribution of the SRBF, i.e. they
are left unchanged. This is justified because data outside the
neighbourhood are almost unaffected by the selected SRBF.
To ensure this, the minimum spherical distance ψmin should
be a factor two to three larger than the correlation length of the
selected local-refinement SRBF. This is a consistency check
to be done by the user. On the other hand, deviations from
this rule are not critical for the success of the local-refinement
procedure.

Step 4. The corresponding data point is removed from the
list of candidate SRBF locations and the procedure contin-
ues with the largest “observations” among the points left in
the list of candidate SRBF locations. The local refinement
procedure stops if the list of candidate SRBFs is empty.

6 Choice of the SRBF bandwidths

The most critical factor in optimal SRBF network design
seems to be the proper choice of the bandwidth of the SRBFs.
We use GCV (Golub et al. 1979) to select the optimal band-
widths of the SRBFs. Suppose the bandwidth of a SRBF is
fixed by a single parameter p. For instance, the parameter p
is the depth of a SRBF below the Bjerhammar sphere for the
Poisson kernel and the point mass kernel.

The principle of cross-validation is based on the leave-out-
one idea. Doing the LS adjustment without observation lk ,
the corresponding leave-out-one solution vector x̂(k), which
of course depends on the bandwidth of the SRBFs, i.e. x̂(k) =
x̂(k)(p), can be used to predict the missing observation. It is
natural to expect that a good choice of the bandwidth para-
meter p results in a small difference (misfit) between the pre-
dicted value and the observed value. Doing this step-by-step
for all observations, a good choice of the bandwidth should
lead to a small misfit in average over all possible lk . This
so-called ordinary cross-validation parameterλcv is obtained
as

λcv = arg min

{
1

I

I∑

i=1

wi (l̂i (p)− li )
2

}
, (20)
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in which the weights are given as

wi = 1

(1 − Qii,p)2
. (21)

l̂i (p) is the adjusted i th observation, Qp is the so-called influ-
ence matrix defined by A x̂ = Qp l, Qii,p is the i th diagonal
element of Qp , and I = ∑J

j=1 I j is the total number of obser-
vations. The generalized cross validation parameter pgcv is
obtained when the weights wi are replaced by their average
value 1

I trace (I − Qp):

pgcv = arg min

{
1

I

I∑

i=1

(l̂i (p)− li )2
( 1

I trace(I − Qp)
)2

}

= arg min

{
I∑

i=1

I (l̂i (p)− li )2

(trace(I − Qp))2

}
. (22)

For a non-unity noise variance–covariance matrix C =
σ 2 W−1, the GCV estimate of p reads

pgcv = arg min

{
I‖Ax̂(p)− l‖2

W

(trace(I − Qp))2

}
. (23)

7 Regularization and observation group weighting

We assume that every positive definite covariance matrix
Cp = σ 2

p W−1
p is only given up to an unknown variance

factor σ 2
p . The P variance factors are estimated using VCE.

This technique is also used to find the optimal regularization
parameter. To do this, we rewrite Eq. (14) as

�(x) =
P∑

p=1

‖ep‖2
C−1

p
+ ‖eP+1‖2

C−1
P+1
,

with the (P + 1)th “observation group”

eP+1 = IN x, D(eP+1) = CP+1 = 1

α
R−1. (24)

Then, Eq. (17) is the classical (unconstrained) LS solution
for P + 1 observation groups with the (P + 1)th observation
vector lP+1 = 0. Therefore, the determination of the reg-
ularization parameter is interpreted as the determination of
the variance factor of an additional observation group. This
observation group can be interpreted as directly observed
unknown parameters with observation vector 0 and noise
variance–covariance matrix 1

α
R−1. The relation between the

regularization parameter and the variance factor σ 2
P+1 is α =

1
σ 2

P+1
.

We implemented the almost unbiased estimator (AUE) of
the variance factors (e.g. Förstner 1979),

σ̂ 2
p = êT

pWp êp

rp
, p = 1, . . . , P + 1, (25)

where êp is the vector of residuals of observation group p.
The quantity

rp = Ip − trace(N−1 Np) (26)

is the group redundancy number. It is the difference of the
number of observations of this group, Ip, with the trace of
the observation group influence matrix N−1 Np. This trace
is a measure of the influence of the observations of group
p on the LS solution x̂. When this trace equals the number
of unknowns, the LS estimate of the unknowns, x̂, is solely
determined by this observation group. If the trace equals zero,
the observation group does not contribute at all to the determi-
nation of the unknowns, i.e. it could be also excluded from the
LS adjustment without changing the solution x̂. For instance,
rP+1 = IP+1 = N . The sum of all group redundancy num-
bers equals the total redundancy, i.e. the difference between
the number of observations and the number of unknown para-
meters.

The estimation of the variance factors is done iteratively,

starting with some a priori values
{
σ̂ 2

p,0 : p = 1, . . . , P
}

.

The LS solution x̂ is computed according to Eq. (17) using
these a priori variance factors. The residuals of the LS adjust-
ment are computed and improved values of the variance fac-
tors are obtained according to Eq. (25). In the next iteration,
they are used to define new noise variance-covariance matri-
ces Cp, to set up the normal equations, etc. The procedure is
repeated until convergence is achieved. We use

max
p=1,...,P+1

∣∣∣σ̂ 2
p,i − σ̂ 2

p,i−1

∣∣∣

σ̂ 2
p,i

≤ τ, (27)

as a criterion for convergence, where τ is a threshold (e.g.
τ = 0.01), and σ̂ 2

p,i is the variance factor of observation
group p after iteration i . Notice that in the case of conver-
gence, the AUE is equal to the ML estimator. To accelerate
the computation of the group redundancy numbers, we imple-
mented the Monte Carlo VCE technique of Koch and Kusche
(2002), see also Kusche (2003).

8 Combination of gravimetric and GPS-levelling data

Height anomalies, derived from GPS-ellipsoidal heights and
normal heights, have become a standard data type for local
gravity field modelling. We call them geometric height
anomalies to distinguish them from the gravimetric height
anomalies, which are determined from terrestrial gravity
anomalies and/or gravity disturbances. In practice, one often
observes systematic differences between gravimetric and
geometric height anomalies. These differences are often
attributed to systematic errors in the data, e.g. systematic
deformations of the national height system, different tide
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systems, multipath effects in GPS ellipsoidal heights, and
long-wavelength errors in the gravimetric height anomalies.

In practice, one can parameterize these systematic differ-
ences between gravimetric and geometric height anomalies
using a low-degree algebraic or trigonometric polynomial in
latitude and longitude (or any other parameterization). Then,
the parameters are estimated from the differences between
both types of height anomalies using a standard LS tech-
nique. The parametric model may be extended by a stochas-
tic signal term with given auto-covariance structure, which
leads to a LSC problem with parameters. The final height
reference surface is then obtained by adding the parametric
surface (and the random signal part) to the gravimetrically
determined quasi-geoid. This height reference surface does
not need to represent the quasi-geoid anymore, but a surface
that can best be used to transform GPS-ellipsoidal heights
into normal heights.

There is, however, another contributor to the systematic
differences between gravimetric and geometric height anom-
alies. It is caused by a non-trivial kernel of the operator that
maps height anomalies within a local area (or, equivalently,
disturbing potentials) into gravity anomalies and gravity dis-
turbances, respectively (Prutkin and Klees 2007). In the fol-
lowing, we will discuss this problem in more detail, thereby
restricting ourselves to the non-trivial kernel of gravity anom-
alies; the extension to gravity disturbances is straightforward.

The mathematical foundation of gravity field determina-
tion from gravity anomalies and geopotential numbers is the
scalar Molodensky boundary-value problem (BVP). If global
data are available, this problem has a non-trivial null space,
which means that not all parameters of the Earth’s gravity
field can be uniquely determined from the given data. How-
ever, the non-uniqueness is only related to the terms of degree
one of the spherical harmonic expansion of the gravity field.
Taken over a local area, this non-uniqueness appears as a
bias and tilt in the computed quasi-geoid, which can easily
be parameterized using a low-degree polynomial. The situ-
ation changes if data are only available over a limited area
of the Earth’s surface, which is typical for local gravity field
modelling. Then, the null space is much larger, comprising
all non-zero harmonic functions that produce zero gravity
anomalies over the local area. Geometric height anomalies
do not suffer from any such non-uniqueness. Therefore, dif-
ferences between geometric and gravimetric height anom-
alies also contain the part of the gravity field that cannot be
modelled from terrestrial gravity data. In this context, it is
the role of geometric height anomalies to determine the part
of the disturbing potential (or the quasi-geoid) that cannot be
determined from terrestrial gravity anomalies.

Nowadays, the contribution of functions that belong to
the kernel of the gravity anomaly operator to the height
anomalies may be significantly larger than the contribution
from systematic errors in geometric and gravimetric height

anomalies, respectively. Therefore, the following approach to
combine geometric height anomalies with gravimetric height
anomalies is pursued:

The differences between geometric and gravimetric height
anomalies at the GPS-levelling points are used as input data
to construct a non-trivial harmonic function T̃ that is (1)
harmonic in the vicinity of the target area and (2) produces
an almost zero gravity anomaly signal over the target area.
Once this function has been determined, its contribution to
the height anomalies is added to the gravimetric height anom-
alies, to give the final solution of the gravity field in terms
of height anomalies. The remaining differences at the GPS-
levelling points should almost reflect the influence of noise.
Note that this approach not only models the contribution of
the non-trivial kernel to the height anomalies, but also most
systematic errors that may be present in the gravity data, GPS
data, and levelling data. For more details, we refer to Prutkin
and Klees (2007).

It is important to note that the algorithm of Prutkin and
Klees (2007) needs information about the expected mean
noise standard deviation of the differences between geomet-
ric and gravimetric height anomalies (“mean” means aver-
aged over the target area). In practice, the standard devia-
tion may vary over the target area, but this is not taken into
account here. A possibility to account for a spatially vary-
ing standard deviation would be to split up the target area
into smaller sub-areas and to apply the methodology to each
sub-area individually.

If the noise standard deviation is chosen too small, the
solution T̃ is too rough, i.e. it does not only model signal
(essentially the contribution of functions that belong to the
kernel of D	g and some other systematic errors present in
the data), but will also model part of the noise. If the noise
standard deviation is chosen too large, the solution is too
smooth and some signal will remain unmodelled.

9 A new height reference surface for the Netherlands

We applied our data processing strategy to compute a height
reference surface for the Netherlands. All data sets are
described in detail in de Min (1996) and Crombaghs and
de Bruijne (2004). The main data consist of terrestrial and
ship-borne point-wise free-air gravity anomalies. According
to available a priori information about the standard devia-
tion provided by Adviesdienst Geoinformatie en ICT van
Rijkswaterstaat (RWS-AGI), three observation groups are
formed: a group “NL” (σ = 0.3 mGal), which contains the
gravity data on land, and two groups, “NL-IJsselmeer 1”
(σ = 0.6 mGal) and “NL-IJsselmeer 2” ( σ = 1.1 mGal),
which comprise ship-borne gravity anomalies collected over
the Ijsselmeer by different parties. This main data set is com-
plemented by 14155 point-wise free-air gravity anomalies
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over Belgium, and gridded mean free-air gravity anomalies
on the North-Sea (2757), Germany (2933), and France (160).
They are mainly used to reduce edge effects along the border
of the Netherlands.

Geometric height anomalies have been provided by RWS-
AGI at 82 points covering the Netherlands (cf. Fig. 1). Grav-
ity anomalies and geometric height anomalies have been
reduced for the contribution of the EIGEN-CG03C model
(Förste et al. 2005). A digital terrain model has not been
used, which will slightly reduce the accuracy in the South-
ern part of the country, where hills rise up to 300 m alti-
tude. A correction for ellipsoidal effects has been applied to
the gravity anomalies (cf. de Min 1996). The residual grav-
ity anomalies, obtained from the free-air gravity anomalies
after the contribution of the EIGEN-CG03C model and the
ellipsoidal effects are removed, are shown in Fig. 2. They
form the input data for the SRBF analysis. The use of free-
air gravity anomalies is justified because the differences with
the respect to the surface gravity anomalies are below 5-µGal
for the Netherlands.

The Poisson kernel is used as SRBF. The mesh size of the
coarse-grid SRBF network is chosen equal to 0.06◦; the grid
covers an area of 50◦–54◦ latitude and 3◦–8◦ longitude. The
grid contains 5,628 coarse grid SRBFs, which is about 20% of
all data points. The optimal depths of the coarse grid SRBFs
have been found with GCV using a search interval between 2
and 40 km with a step size of 1 km. Figure 3 shows the GCV
functional as function of the depth. It attains the minimum at

51

52

53

La
tit

ud
e

4 5 6 7
Longitude

Fig. 1 Location of the 82 AGI-RWS GPS-levelling points used to com-
pute the Dutch height-reference surface

a depth of 13.5 km, although it is quite flat between 11 and
14 km depth. Test computation have shown that the gravity
field solution does not change much for this range of depths.
The correlation length of D	g �, where � is the Poisson
kernel at 13.5 km depth, is about 7 km.

The optimal depth obtained with GCV was verified by
searching for the minimum RMS at 253 independent con-
trol points with observed residual gravity anomalies homoge-
neously distributed over the Netherlands. The search interval
was left unchanged. This yielded the same depth of 13.5 km.
For the selection of the local refinement SRBFs, a threshold
value for the residual of the coarse grid SRBF solution of
τ1 = 2.0 mGal is used. To avoid local over-fitting, the mini-
mum spherical distance between two SRBFs is set equal to
ψmin = 0.01◦. To avoid the modelling of large isolated resid-
uals, a threshold of τ2 = 2.0 mGal for the average residual
of the coarse grid SRBF solution in the neighbourhood of
the candidate SRBF is used. The minimum number of obser-
vations within a neighbourhood of the candidate SRBF is
set equal to q = 30. GCV is used to determine the optimal
depth of each local refinement SRBF, with a search interval
between 0.1 and 13.5 km and a step size of 0.2 km. Based on
this choice for the local refinement step, 52 local refinement
SRBFs have been selected within the Netherlands. They are
located in the Southern part of the Netherlands close to the
border to Belgium; some of them are located in the IJsselmeer
region.

Figure 4 shows the residuals of the LS adjustment with
5,628 coarse grid SRBFs and 52 local refinement SRBFs.
The RMS of the residuals is 0.6 mGal for the NL data set,
0.48 mGal for the NL-IJsselmeer 1 data set and 1.93 mGal
for the NL-IJsselmeer 2 data set. The RMS of the residuals
indicates a good LS approximation of the gravity anomalies
on land. An exception is the area of Limburg in the South-
ern part of the Netherlands. Here, we observe larger positive
and negative residuals of up to 5.0 mGal. They are partly cor-
related with topography (see earlier on omission of terrain
corrections) and partly caused by the lack of gravity data
in Belgium close to the area of Limburg. Moreover, larger
systematic residuals are noticeable in the ship-borne gravity
anomalies of the NL-IJsselmeer 2 data set. The residuals of
this data set are significantly larger than the residuals of the
NL-IJsselmeer 1 data set. This is due to the lower quality of
the ship-borne gravity data NL-IJsselmeer 2 compared with
NL-IJsselmeer 1.

VCE has been used to estimate the standard deviation
for each data set: 0.60 mGal for the NL data set, 0.36 mGal
for the NL-IJsselmeer data set 1, and 1.48 mGal for the
NL-IJsselmeer data set 2. The VCE estimates differ signif-
icantly from the a priori values 0.3 mGal (NL), 0.6 mGal
(NL-IJsselmeer 1), and 1.1 mGal (NL-IJsselmeer 2). The
VCE-values have been used as a priori values in the final
LS adjustment. Then, the RMS difference between predicted
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Fig. 2 Residual gravity anomalies used to compute the Dutch height-reference surface. For the Netherlands, the residual gravity anomalies range
from −28.7 to 15.0 mGal; the mean value is −5.9 mGal, and the standard deviation is 7.4 mGal

and observed gravity anomalies at the control points are
0.6 mGal (NL), 0.46 mGal (NL-IJsselmeer 1) and 2.14 mGal
(NL-IJsselmeer 2). Hence, the estimated gravity field seems
to be well balanced in terms of fit to the data and smoothness.

Gravimetric height anomalies are predicted at the 82 RWS-
AGI GPS-levelling points. Figure 5 shows the differences
between the geometric height anomalies and the gravimetric
height anomalies. They range between 0.310 and 0.583 m.
According to Crombaghs and de Bruijne (2004), the qual-
ity of the geometric height anomalies at the 82 RWS-AGI
GPS-levelling points is about 0.010–0.015 m. Therefore, we
used a noise level of 0.01 m to compute the height-anomaly
innovations. The latter are shown in the right panel of Fig. 5;
the RMS fit to the observed height-anomaly differences is
0.7 cm.

The sum of the SRBF model and the innovation func-
tion represents the new height reference surface, which we
call “NLGEO2007”. This model is compared with the offi-
cial Dutch height reference surface, the NLGEO2004 (Crom-
baghs and de Bruijne 2004). NLGEO2004 is computed using
the Stokes formula with a Meissl–Wong–Gore kernel modi-
fication (Heck and Grüninger 1988), an integration radius of

 1.2e-10

 1.22e-10

 1.24e-10

 1.26e-10

 1.28e-10

 1.3e-10

 1.32e-10

 1.34e-10

8  10  12  14  16  18
depth [km]

Fig. 3 The GCV functional as function of the depth of the coarse-grid
SRBFs. The minimum is attained at a depth of approximately 13.5 km

5◦, and a six-parameter corrector surface fitted through the
82 RWS-AGI GPS-levelling points:

δζ = a + b(λ− 5◦)+ c(ϕ − 52◦)+ d(λ− 5◦)2

+e(ϕ − 52◦)2 + f (λ− 5◦)(ϕ − 52◦). (28)
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Fig. 4 Residuals of the SRBF LS adjustment using 5628 coarse grid
SRBFs and 52 local refinement SRBFs. Min = −4.8 mGal, max =
5.0 mGal, mean = 0.0 mGal, RMS = 0.53 mGal

Table 2 shows the statistics of the residuals of NLGEO2004
and NLGEO2007, respectively, at the 82 RWS-AGI GPS-
levelling points. Both models achieve about the same quality
of fit. The six-parameter corrector surface, Eq. (28), performs
as well as the innovation function. The reason is that the
difference between geometric and gravimetric height anom-
alies at the 82 RWS-AGI GPS-levelling points represent a
very smooth surface (see Fig. 5), and, therefore, can be easily
approximated by the six-parameter corrector surface,
Eq. (28).

Figure 6 shows the differences between the innovation
function and the six-parameter “corrector surface”. They
range between −4.3 and 4.0 cm; the RMS difference is
1.0 cm. Prutkin and Klees (2007) have shown that for
Germany, these differences vary more irregularly, which
makes it difficult to find a suitable parameterization of the
“corrector surface”; the approach by Prutkin and Klees (2007)
solves this problem automatically.

Next, we compare NLGEO2004 and NLGEO2007 on a
1′ × 1′ grid covering the Netherlands (Fig. 7). The RMS dif-
ference is 0.6 cm (min = −1.0 cm, max = 2.7ċm, mean =
0.0 cm). The differences are very small, which indicates that
our approach is able to produce a high-quality height refer-
ence surface, which is competitive with NLGEO2004.

It is difficult to assess the quality of the NLGEO2004 and
NLGEO2007 height reference surfaces due to the lack of
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Fig. 5 The location of the 82 RWS-AGI GPS-levelling points and the
height-anomaly innovations. The differences between geometric height
anomalies and gravimetric height anomalies at the GPS-levelling points
range from 0.310 to 0.583 m; the mean difference is 0.488 m, and the
standard deviation is 0.053 m. The RMS fit of the height-anomaly inno-
vations to the given differences is 0.7 cm

independent high-quality control data. We used 405 GPS-
levelling control points, which have been provided by the
Netherlands Kadaster. These data have not been used in the
NLGEO2004 and NLGEO2007 solutions, because they are
expected to be of lower quality. This is mainly due to the
fact that the Netherlands Kadaster performs GPS measure-
ments at these points over a time span of 2 × 90 min; if
the ellipsoidal height difference between the two solutions is
below 3 cm, the measurements are accepted and the average
value is added to the data base. In contrast, the GPS mea-
surements at the 82 RWS-AGI GPS-levelling points lasted
24 h. As Table 3 reveals, there are no significant differences
between NLGEO2004 and NLGEO2007 at the 405 GPS-
levelling control points. The RMS difference is 1.9 cm for
the two models.

10 Summary and conclusions

We have developed a methodology for local gravity field
modelling using SRBFs. The advantage of a SRBF represen-
tation is that (1) it can be used at the same time to repre-
sent the global and the local gravity field, (2) it allows local
refinements depending on signal variation and data density,
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Fig. 6 Differences between the six-parameter “corrector” surface,
Eq. (28), and the height-anomaly innovations. Min = −4.3 cm, max =
4.0 cm, mean = 0.0 cm, RMS = 1.0 cm

distribution, and quality, (3) it can be combined easily with
an existing representation of the global gravity field in terms
of spherical harmonics as every linear combination of SRBFs
can directly be transformed into a spherical harmonic expan-
sion:

T (x)=
I∑

i=1

βi �(x, yi )=
∑

l,m

c̄l,m

(
R

r

)l+1

Ȳl,m(x̂) ⇒ c̄l,m

=ψl
1

4πR2

I∑

i=1

Ȳl,m(ŷi ). (29)

Therefore, a global gravity field model can be directly
included in a combined LS adjustment with local gravity
data. This offers a numerically simpler alternative to the joint
processing of GRACE and/or GOCE level 1B data and ter-
restrial gravity data. Moreover, we prefer it to the traditional
remove-restore technique used in local gravity field mod-
elling, because the remove–restore technique does not make
use of available information about variances and covariances
of geopotential coefficients.

When working with SRBFs, the proper selection of the
number and bandwidths of the SRBFs is crucial to guar-
antee a high-quality gravity field solution. The developed
algorithms selects the number and the optimal bandwidths
automatically, depending on signal variation, data distribu-
tion, and data accuracy. This helps avoiding over- and
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Fig. 7 Differences between the official Dutch height-reference surface
NLGEO2004 and the NLGEO2007. Min = −1.0 cm, max = 2.7 cm,
mean = 0.0 cm, RMS = 0.6 cm

under-parameterization and guarantees a smooth gravity field
solution. The numerical efficiency of the selection procedure
is superior to alternative procedure proposed in the past (e.g.
Barthelmes 1986; Marchenko et al. 2001) due to the two-
step procedure of coarse grid solution and local refinement.
Whether this is really an advantage in practical applications
depends on the available computer hardware. The price to
be paid for the improved numerical efficiency is a slightly
higher number of SRBFs compared with the approach by
Marchenko et al. (2001) (see also Klees et al. 2005).

Our methodology foresees two different approaches of
using GPS-levelling data: (1) the direct approach, which
means that GPS-levelling data are added to the functional
model and processed together with the gravity data in a LS
adjustment (this approach has not been addressed in this
paper), and (2) an indirect approach (Prutkin and Klees 2007).
The latter interprets the differences between gravimetric
height anomalies and geometric height anomalies as the con-
tribution of the non-trivial kernel of the gravity-anomaly
operator, which leads to the solution of a Cauchy BVP. This
approach is numerically more complicated than the direct
approach, but takes into account the physical nature of the
differences between geometric and gravimetric height anom-
alies. Compared with the more traditional approach of using
a “corrector surface”, it has the additional advantage that the
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Table 2 Residual differences of NLGEO2004 and NLGEO2007, respectively, at the 82 RWS-AGI GPS-levelling points

Model GPS-levelling points RMS (cm) min (cm) max (cm) mean (cm)

NLGEO2004 82 RWS-AGI 0.7 −1.5 2.4 0.0

NLGEO2007 82 RWS-AGI 0.7 −1.3 1.1 0.0

Table 3 Differences between NLGEO2004 and NLGEO2007, respectively, and geometric height anomalies at 405 independent GPS-levelling
control points provided by the Dutch Kadaster

Model GPS-levelling points RMS (cm) min (cm) max (cm) mean (cm)

NLGEO2004 405 Kadaster 1.9 −8.2 11.0 0.2

NLGEO2007 405 Kadaster 1.9 −9.2 9.1 0.0

user does not have to make any decision regarding the proper
choice of the model.

Compared with LSC, which provides in fact a minimum-
norm SRBF solution, the proposed methodology for the
processing of the gravity data offers more flexibility. LSC
uses SRBFs with the same bandwidth, which is determined
by the correlation length of the gravity field, whereas our
approach permits SRBFs with different bandwidths, and
selects them automatically from the data. In combination
with the coarse grid and local refinement step, this reduces
the number of SRBFs and may provide a better adaptation to
the data in the presence of local non-isotropy.

We found empirically that the number of SRBFs is usu-
ally less than 25% of the number of data points. LSC uses
formally as many SRBFs as data points, although in practice
often a subset of the data points is used either to reduce the
numerical complexity or because the data contain redundant
information. However, in LSC the selection of the subset is up
to the user and no objective measures appear to be used to do
this. We also want to mention that LSC is the minimum-norm
solution in the reproducing kernel Hilbert space of SRBFs,
whereas our solution is a discrete LS solution, which lacks
convergence if the data density goes to infinity.

The methodology has been applied to compute a new
height-reference surface for the Netherlands. A comparison
with the official Dutch height-reference surface has shown
that our solution has at least the same quality as the official
one. A more detailed analysis of the quality of the two height-
reference surfaces requires high quality GPS-levelling data,
which are not available yet.

There is some scope for further improvements of the pro-
posed methodology. For instance, the combination of gravi-
metric quasi-geoid with GPS-levelling points according to
Prutkin and Klees (2007) requires information about the
accuracy of the gravimetric quasi-geoid and the GPS-
levelling data. So far, only a single variance factor for the
complete data set can be taken into account. If the accuracy

is spatially non-homogeneous, the application of a single
(‘average’) variance factor could lead to overfit in one sub-
area and to underfit in another sub-area. A partial solution to
this problem could be to subdivide the area into sub-areas of
“homogeneous” accuracy and to process each sub-are a sep-
arately. Said earlier, sometimes full variance-covariances are
available for individual data sets; this information cannot be
easily combined with the proposed data combination strat-
egy based on the formulation as a Cauchy boundary-value
problem. Then, a generalized LSC approach as proposed by
Kotsakis and Sideris (1999) and applied by Fotopoulos et al.
(2003) may be appropriate.
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