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Abstract We consider the problem of local (quasi-)geoid
modelling from terrestrial gravity anomalies. Whereas this
problem is uniquely solvable (up to spherical harmonic
degree one) if gravity anomalies are globally available, the
problem is non-unique if gravity anomalies are only avail-
able within a local area, which is the typical situation in
local/regional gravity field modelling. We derive a math-
ematical description of the kernel of the gravity anomaly
operator. The non-uniqueness can be removed using external
height anomaly information, e.g., provided by GPS-levelling.
The corresponding problem is formulated as a Cauchy prob-
lem for the Laplace equation. The existence and uniqueness
of the solution of the Cauchy problem is guaranteed by the
Cauchy–Kowalevskaya theorem. We propose several
numerical procedures to compute the solution of the Cauchy
problem from given differences between gravimetric and
geometric height anomalies. We apply the numerical tech-
niques to real data over the Netherlands and Germany. We
show that we can compute a unique quasi-geoid from observed
gravimetric and geometric height anomalies, which agree
with the data within the expected noise level. We conclude
that observed differences between gravimetric height anom-
alies and geometric height anomalies derived from GPS and
levelling cannot only be attributed to systematic errors in the
data sets, but are also caused by the intrinsic non-uniqueness
of the problem of local quasi-geoid modelling from gravity
anomalies. Hence, GPS-levelling data are necessary to get a
unique solution, which also implies that they should not be
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used to validate local quasi-geoid solutions computed on the
basis of gravity anomalies.
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1 Introduction

The combination of gravimetrically derived quasi-geoid
heights over a target area with ellipsoidal heights provided
by GPS has become a standard procedure in quasi-geoid and
height reference surface modelling (e.g., Fotopoulos 2005
and many others). The main motivation for combining these
types of data seems to be: (i) to improve the quality of the
gravimetrically derived quasi-geoid model for the target area,
or (ii) to facilitate the more direct transformation of GPS
ellipsoidal heights into the heights of the adopted national
height system (cf. Featherstone 1998).

The reference surface for a national height system is the
quasi-geoid for normal and normal-orthometric heights or the
geoid for orthometric heights; in practice, there may be sig-
nificant differences between the quasi-geoid/geoid and the
national height reference surface. For instance, differences
may be caused by subsidence/uplift of the markers of the
first-order height control network (cf. Lysaker et al. 2007),
or by simplifications used in the computation of geopotential
numbers (e.g., Vanicek et al. 1980).

In the following, we assume: (i) the national height system
uses normal heights and (ii) from gravity anomalies and geo-
potential numbers, a global gravity field model, and a digital
terrain model, a quasi-geoid has been computed for the target
area. From levelling and gravimetry along the levelling lines,
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normal heights with respect to the datum point of the national
height system can be determined. When subtracted from GPS
ellipsoidal heights, we obtain what here we call geometric
height anomalies. From terrestrial (or airborne) gravity anom-
alies, a global gravity field model, and a digital terrain model,
we obtain so-called gravimetric height anomalies following
one of the many procedures of quasi-geoid determination;
we will not debate the different approaches here.

When geometric height anomalies are compared with
gravimetric height anomalies, one often observes systematic
differences, which can be quite large, on the order of
several decimeters (e.g., de Min 1996; Featherstone 1998;
Fotopoulos et al. 2003). They are commonly attributed to
datum inconsistencies, different tidal systems, long-wave-
length geoid errors, distortions in the vertical network, and
GPS errors. Therefore, the model

ζgrav − ζgeom = 0, (1)

where ζgeom is the geometric height anomaly and ζgrav is
the gravimetric height anomaly, is commonly augmented by
a so-called “corrector surface” term f to account for the
systematic differences between gravimetric and geometric
height anomalies, i.e.,

ζgrav − ζgeom − f = 0. (2)

Once a so-called “corrector surface” is available, the trans-
formation of a measured GPS ellipsoidal height h at a new
point P , into the national height H is obtained according to

HP = h P − ζgrav,P − fP . (3)

Usually, Eq. (2) is used as functional model, and the param-
eters of the “corrector surface” can be estimated by least-
squares. A more general model, involving a stochastic signal
term, has been introduced by Kotsakes and Sideris (1999),
see also Fotopoulos (2005) and Grebenitcharsky et al. (2005).
An alternative approach to the combination of geometric
and gravimetric height anomalies with the goal to obtain
an optimal transformation of GPS ellipsoidal heights into
the national height system, has been introduced by Dinter
et al. (1997) and refined by Jäger (1999, 2000) and Jäger
and Schneid (2001). Least squares collocation (LSC) is also
commonly used, but numerous other approaches have been
trialled (e.g., Soltanpour et al. 2006; Lysaker et al. 2007).

In practice, the “corrector surface” f is parameterized in
different ways. For instance, de Min (1996) uses a bivariate
linear algebraic polynomial in latitude and longitude for the
area of the Netherlands; de Bruijne et al. (1997) use a lin-
ear combination of a bilinear polynomial and a trigonometric
polynomial in latitude and longitude with 28 parameters for
the North Sea region; Grebenitcharsky et al. (2005) use a
four-parameter trigonometric model for Canada originally
suggested by Heiskanen and Moritz (1967); Jäger (1999)
uses a bivariate algebraic polynomial defined on triangular

meshes for parts of Germany; Featherstone (2000) compares
splines under tension and LSC; Nahavandchi and Soltanpour
(2006) use, among others, cubic splines. The proper choice of
a corrector surface, which is a model identification problem,
is still an open issue.

There is, however, another contributor to the systematic
differences between gravimetric and geometric height anom-
alies, which—as far as we know—has not been addressed
yet in the literature. It is caused by a non-trivial kernel of the
operator that maps height anomalies within a local area (or,
equivalently, disturbing potentials) into gravity anomalies.

The mathematical foundation of gravity field determina-
tion from gravity anomalies and geopotential numbers is
the scalar Molodensky problem (e.g., Sacerdote and Sanso
1987). We know that if global data are available, this prob-
lem has a non-trivial null space, which means that not all
parameters of the Earth’s gravity field can be uniquely deter-
mined from the given data. However, the non-uniqueness is
only related to the terms of degree-one of the spherical har-
monic expansion of the gravity field. Over a local area, this
non-uniqueness appears as an almost constant bias in the
computed quasi-geoid, which can easily be parameterized
using a low-degree polynomial.

However, the situation changes if data is only available
over a limited area of the Earth’s surface, which is typical for
local gravity field modelling. Then, the null space is much
larger, comprising all non-zero harmonic functions that pro-
duce zero gravity anomalies over the local area. Geometric
height anomalies are unique. Therefore, differences between
geometric and gravimetric height anomalies also contain the
part of the gravity field that cannot be determined from ter-
restrial gravity data. In that context, it is the role of geomet-
ric height anomalies to determine the part of the disturbing
potential that cannot be determined from terrestrial gravity
anomalies.

In this paper, we will construct a non-trivial function,
which is harmonic in the neighborhood of the target area
and has an almost zero gravity anomaly signal over the tar-
get area. We compute this function using differences between
gravimetric and geometric height anomalies as data. Differ-
ent areas are investigated, including the Netherlands and
Germany. We show that the function represents the differ-
ences between geometric and gravimetric height anomalies,
with residuals on the order of the data noise.

The paper is organized as follows: in Sect. 2, we give a
description of the kernel of the gravity anomaly operator. In
particular, we show that there exists a unique non-trivial har-
monic function in the neighborhood of the target area, which
produces almost zero gravity anomalies. This function is the
solution of a Cauchy problem for the Laplace equation and
can be determined from GPS-levelling data.

In Sect. 3, we propose a simple numerical procedure to
obtain an approximate solution of the Cauchy problem for
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the Laplace equation in the neighborhood of the target area
from observed differences between geometric and gravimet-
ric height anomalies. This simple scheme can be applied to
relatively small areas of several thousand square kilometers.
More general numerical procedures, which can be applied to
local areas of arbitrary size, are the subject of Sect. 4.

The numerical procedures of Sects. 3 and 4 are then
applied to real data over three test areas in Sect. 5. The fit
of the function to the data depends on the adopted noise
level. For the Netherlands, we compute a solution that fits
the data with an RMS of 0.3 cm. For Germany, the fit is
0.7 cm. We also compute a solution for a rectangular area
within Germany of 2◦ × 1.75◦, following a simpler numer-
ical procedure, which exploits the rectangular shape of the
target area. The RMS fit with the data is 0.7 cm. Section 6
contains a summary and the main conclusions.

2 Approximate description of the kernel

Suppose, T1 is the (residual) disturbing potential, correspond-
ing to gravity anomaly data, and T2 is the (residual) disturb-
ing potential, obtained from GPS-leveling data by means of
Bruns’s formula. With the term residual we mean that the
contribution of a global gravity field model and a model of the
topography are subtracted from the data, and, once a solution
has been obtained, are restored (remove–restore procedure,
see also Sjöberg 2005).

Let us assume that both solutions satisfy the given gravity
data. Then, on the part S of the telluroid surface that corre-
sponds to the local area, it is (in spherical approximation)

∆g = −∂T1

∂r

∣
∣
∣
S

− 2

r
T1

∣
∣
∣
S

= −∂T2

∂r

∣
∣
∣
S

− 2

r
T2

∣
∣
∣
S
. (4)

According to Eq. (4), the difference T̃ = T1−T2 corresponds
to zero gravity anomaly data, i.e., it belongs to the kernel of
the operator D∆g that maps the disturbing potential into grav-
ity anomalies according to ∆g = D∆g T . From Eq. (4), we
obtain:

∂(T1 − T2)

∂r

∣
∣
∣
S

= 2

r
(T2 − T1)

∣
∣
∣
S

(5)

The differences between (residual) gravimetric height
anomalies ζ1 and (residual) geometric height anomalies ζ2

are usually below 1 m. Then, the right-hand side of Eq. (5) is
of the order of 0.3 mGal. This is below the level of accuracy
of gravity anomaly data usually used in local gravity field
modelling. Therefore, Eq. (5) can be approximated by

∂(T1 − T2)

∂r

∣
∣
∣
S

= ∂ T̃

∂r

∣
∣
∣
S

= 0. (6)

The function T̃ should also be harmonic outside the tellu-
roid. Suppose its restriction to the local telluroid area S is

equal to f . Then, we obtain the following system of boundary
conditions for the harmonic function T̃ :

∂ T̃

∂r

∣
∣
∣
S

= 0, T̃
∣
∣
∣
S

= f. (7)

Since T̃ is harmonic, we end up with the following prob-
lem to be solved:

∆T̃ = 0, in D,

∂ T̃

∂r

∣
∣
∣
S

= 0, (8)

T̃
∣
∣
∣
S

= f,

where D ⊂ R
3 is a suitably chosen vicinity of the local area

S. Equation (8) is a Cauchy problem for the Laplace equa-
tion (Jost 2002). The existence and uniqueness of a solu-
tion in the vicinity of the local area S is guaranteed by the
Cauchy–Kovalevskaya theorem (e.g., Ebenfelt and Shapiro
1995). The function f is the difference between the gravi-
metric and geometric height anomalies scaled by the normal
gravity at the telluroid. In practice, f is given at a set of points
distributed over the target area S. The numerical solution of
Eq. (8) is the subject of Sect. 4.

For many practical applications, we can replace the prob-
lem in Eq. (8) by a simpler problem. To obtain its mathemat-
ical formulation, we consider the Taylor expansion of T̃ in
the radial direction:

T̃ = T̃ |S + ∂ T̃

∂r

∣
∣
∣
S

· δr + O(δr2), (9)

where δr is the increment in the radial direction. The second
term on the right-hand side of Eq. (9) is equal to zero, accord-
ing to Eq. (7). If we omit quadratic and higher order terms,
we obtain a function T̂ , which approximates every function
from the kernel of the operator D∆g with accuracy O(δr2),
and satisfies the stronger condition

∂ T̂

∂r
≡ 0.

Such a function can be easily described: it does not depend
on the radial distance r . If we write the expression of the
Laplace operator in spherical coordinates (r, θ, λ):

∆U = 1

r2

∂

∂r

(

r2 ∂U

∂r

)

+ 1

r2 sin ϑ

∂

∂ϑ

(

sin ϑ
∂U

∂ϑ

)

+ 1

r2 sin2 ϑ

∂2U

∂λ2 , (10)

then, to be harmonic, the function T̂ satisfies the differential
equation

1

sin ϑ

∂

∂ϑ

(

sin ϑ
∂ T̂

∂ϑ

)

+ 1

sin2 ϑ

∂2T̂

∂λ2 = 0 (11)
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in the area S. Moreover, the function T̂ takes boundary
values:

T̂ |∂S = f |∂S, (12)

where ∂S is the boundary of the target area S.
The solution T̂ of Eqs. (11) and (12) provides an approxi-

mation of the solution T̃ , Eq. (8). T̂ may be used if the size of
the local area S is not too large, e.g., 2◦ × 2◦. The numerical
solution of Eqs. (11) and (12) is the subject of Sect. 3.

3 Computation of the function T̂

In this section, we study three different approaches to find a
solution of the problem

1

sin ϑ

∂

∂ϑ

(

sin ϑ
∂ T̂

∂ϑ

)

+ 1

sin2 ϑ

∂2T̂

∂λ2 = 0, in S, (13)

T̂ |∂S = f |∂S .

(i) the method of finite differences, (ii) the method of finite
elements, and (iii) the piecewise finite difference method. To
keep the numerics simple, we consider the area S to be a part
of the surface of a sphere with radius R, denoted σR .

Assume that S is a rectangular area on the sphere, i.e.,
bounded by parallels and meridians. Then, the most nat-
ural and simple approach to solve Eqs. (11) and (12) are
finite difference methods. The boundary data f |∂S could be
obtained from the data f on S by some form of interpolation.
For irregular boundaries ∂S, finite differences are not the best
choice, so finite element methods (FEM) are preferred. Many
commercial and free FEM software packages are available
to perform the computations, e.g., NASTRAN, ABAQUS,
MODULEF, SLEFEA, and FreeFEM.

For those who do not want to make use of these pack-
ages, there is an alternative, which we call the piecewise
finite difference method. Suppose that data are given on the
area S, and S ⊆ S0, S0 = ∪i Si , where every Si represents a
rectangle on the sphere bounded by parallels and meridians.
Then we could solve Eqs. (11) and (12) for each rectangle. To
do this, we interpolate the observed data f to the boundary
∂Si of each rectangle Si (e.g., using thin-plate splines), and
compute a solution for this sub-area using finite differences.

In this way, we obtain a solution for each rectangle Si that
satisfies Eq. (11) inside the rectangle. The total solution is,
however, only continuous in S. To refine the solution, we
find all interior points of S0, take the piecewise solutions as
initial approximations, and apply an iterative procedure to
solve Eqs. (11) and (12) with finite differences for interior
points.

4 Computation of the function T̃

Equation (13) is an approximation of the more general
Cauchy problem, Eq. (8), which may be sufficiently accu-
rate provided that the local area S is not too large (e.g., not
larger than 2◦×2◦). For larger areas, we have to solve Eq. (8).
As in Sect. 3, we assume that the Cauchy data are given on a
sphere, i.e., the local area S is considered to be a sphere with
radius R, σR .

The proposed numerical techniques to solve Eq. (8) are
two-step procedures. The first step is common to all of them.
Its goal is to obtain an initial solution, which is refined in the
second step. The initial solution is obtained by applying the
FEM to Eq. (13). This provides a first-order approximation
T̂ to T̃ . The differences δ f := f − T̂ |S will be very small,
say, of the order of 10–20 cm. Moreover, δ f will be zero on
the boundary ∂S.

We set T̃ = T̂ + u and determine u as solution of the
problem

∆u = 0, in D,

∂u

∂r

∣
∣
∣
S

= 0, (14)

u|S = δ f,

which is the second step of the procedure. Once Eq. (14)
has been solved, we obtain the solution of Eq. (8) from T̃ =
T̂ + u.

Solving the Cauchy problem, Eq. (14), may be a tedious
task, as the problem is known to be extremely ill-conditioned
(Hadamard 1921). Therefore, we do not solve this problem
directly, but first solve the problem

∆u = 0, in D, (15)

u|S = δ f, (16)

and observe the boundary condition

∂u

∂r

∣
∣
∣
S

= 0 (17)

using the idea of reflexion, or in the spherical case, the Kelvin
transformation (e.g., Ito 1980).

We propose three approaches to compute the function u:
(i) the single-layer approach, (ii) the modified single-layer
approach, and (iii) the Poisson integral approach.

4.1 Single-layer approach

The solution of Eq. (14) is represented as the sum of two
single-layer potentials with unknown surface densities µ1

and µ2, defined on the spheres σR1 and σR2 with radii
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R1 = R + h and R2 = R − h, respectively, i.e.,

u(x) = u1(x) + u2(x), x ∈ D, (18)

u1(x) =
∫

σR1

µ1(y)

|x − y| dσR1(y), (19)

u2(x) =
∫

σR2

µ2(y)

|x − y| dσR2(y). (20)

The value h is chosen appropriately, i.e., such that the spheri-
cal shell R −h ≤ r ≤ R +h is contained in D. The functions
u1 and u2 are harmonic inside the spherical shell. With

u1(x) =
∑

n,m

c̄(u1)
n,m Ȳn,m(x̂)

( |x |
R1

)n

, (21)

u2(x) =
∑

n,m

c̄(u2)
n,m Ȳn,m(x̂)

(
R2

|x |
)n+1

, (22)

where x̂ = x
|x | is a point on the unit sphere, and

µ1(y) =
∑

n,m

c̄(µ1)
n,m Ȳn,m(ŷ), (23)

µ2(y) =
∑

n,m

c̄(µ2)
n,m Ȳn,m(ŷ), (24)

we obtain the following relation between the spherical har-
monic coefficients of u1, µ1 and u2, µ2, respectively:

c̄(u1)
n,m = 4π R1

2n + 1
c̄(µ1)

n,m , (25)

c̄(u2)
n,m = 4π R2

2n + 1
c̄(µ2)

n,m . (26)

The function δ f , which takes zero values on ∂S, is contin-
uously extended by zero to the whole surface of the sphere
σR ; this function is called g. Then, the boundary conditions
in Eq. (14) read, in terms of spherical harmonic coefficients

n

(
R

R1

)n−1

c̄(µ1)
n,m − (n + 1)

(
R2

R

)n+2

c̄(µ2)
n,m = 0, (27)

R1

(
R

R1

)n

c̄(µ1)
n,m + R2

(
R2

R

)n+1

c̄(µ2)
n,m = 2n + 1

4π
c̄(g)

n,m,

(28)

where c̄(g)
n,m are the spherical harmonic coefficients of the

function g, defined as

g(y) =
∞
∑

n=0

n
∑

m=−n

c̄(g)
n,mȲn,m(ŷ), ŷ = y

|y| .

From Eqs. (27) and (28), we obtain immediately an unique
representation of the spherical harmonic coefficients of the

single-layer densities

c̄(µ1)
n,m = c̄(g)

n,m
n + 1

4π R

(
R1

R

)n−1

, (29)

c̄(µ2)
n,m = c̄(g)

n,m
n

4π R2

(
R

R2

)n+1

, (30)

and, when observing Eqs. (25) and (26), of the potentials u1

and u2,

c̄(u1)
n,m = c̄(g)

n,m
n + 1

2n + 1

(
R1

R

)n

, (31)

c̄(u2)
n,m = c̄(g)

n,m
n

2n + 1

(
R

R2

)n+1

. (32)

Equations (18), (31), and (32) provide the solution u of
problem Eq. (14):

u(x)=
∑

n,m

c̄(g)
n,m

1

2n+1
Ȳn,m(x̂)

(

(n+1)

(|x |
R

)n

+n

(
R

|x |
)n+1

)

.

(33)

From Eq. (33) we also deduce that the solution exists and
is unique. Note that by construction, u, Eq. (33), fulfils the
boundary condition, Eq. (17).

From a numerical point of view, Eq. (33) is less effi-
cient, as harmonic expansions up to very high degree may
be necessary to represent the function g with sufficient accu-
racy. For instance, in the Netherlands (≈ 42, 000 km2), about
500 GPS-levelling points are currently available, i.e., about
1 point per 10 km. To resolve this signal, a spherical harmonic
expansion complete to degree 2000 would be necessary.
Therefore, in Sects. 4.2 and 4.3, we propose an alternative to
Eq. (33) that is numerically simpler.

4.2 Modified single-layer approach

An alternative to the approach proposed in Sect. 4.1 starts
with Eq. (14). The function u is represented as u = u1+u2

2 ,
where u1 and u2 are single-layer potentials with surface den-
sities µ1 and µ2, respectively, distributed over the surface of
the spheres σR1 and σR2 . However, the way, the single-layer
densities µ1 and µ2 are constructed from the boundary data
differs from Sect. 4.1.

We start with the representation of the potential u2,

u2(x) =
∫

σR2

µ2(y)

|x − y| dσ2(y). (34)

We discretize Eq. (34) and determine the single-layer density
µ2 at a set of points {Pj : j = 1, . . . , J } as solution of the
linear system

δ f (Qi ) =
J

∑

j=1

µ2(Pj )
1

|Pj − Qi | w j , j = 1, . . . , J,
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where {Qi : i = 1, . . . , J } are the given data points, and
{w j : j = 1, . . . , J } are suitably chosen weights. Note that
the solution has to be regularized so as to reduce the influ-
ence of noise in the data δ f on the solution µ2. We omit the
details and refer to Lavrent’ev et al. (1986). We only want to
remark that information about the data noise standard devi-
ation is used to determine the regularization parameter. The
latter determines how well the solution fits the data.

In order to guarantee the boundary condition, Eq. (17),
we use the set of points Pj to obtain another set of points
P̃j by Kelvin transformation with respect to the sphere σR .
With R1 · R2 = R2 and R2 = R − h, we obtain
R1 = R2

R−h ≈ R +h. Therefore, the points P̃j are considered

to be located on the sphere σR1 . We assign to the points P̃j the
same single-layer density values as to the points Pj , i.e., we
set {µ1(P̃j ) = µ2(Pj ), j = 1, . . . , J }. The corresponding
single-layer potential is u1. Then, the solution to Eq. (14),
u = u1+u2

2 , still approximates the given data and its radial
derivative equals exactly zero.

In this way, we have obtained a regularized solution to the
highly ill-conditioned Cauchy problem, Eq. (14). Of course,
alternative methods to solve the first-kind integral equation,
Eq. (34), are known; however, this is beyond the scope of this
paper. Moreover, in Sect. 5, we will show that the approach
to be discussed in Sect. 4.3 is sufficiently accurate to meet
the requirements of current geodetic practice.

4.3 Application of the Poisson integral

Suppose u2 is the harmonic solution of the exterior Dirichlet
problem for the sphere σR2 , where R2 = R − h, i.e.,

u2(x)=
(|x |2 − R2

2

)

4π R2

∫

y∈σR2

F(y)

|x−y|3/2 dσR2(y), x ∈σR2,ext .

(35)

We set u2(x) = δ f (x) for x ∈ S, and determine the function
F as a solution of the first-kind integral equation, Eq. (35).
We discretize the integral equation in the same way as used in
Sect. 4.2. Moreover, we use the method of residuals
(cf. Lavrent’ev et al. 1986), which exploits information about
data noise, to find a suitable regularization parameter.
Remember that the choice of the regularization parameter
decides how well the solution fits the data.

The solution u2 fulfils u2|S ≈ δ f . Next, we define the
harmonic solution of the interior Dirichlet problem for the
sphere σR1 , where R1 = R + h,

u1(x)=
(

R2
1 −|x |2)
4π R1

∫

y∈σR1

F(y)

|x−y|3/2 dσR1(y), x ∈σR1,int ,

(36)

where F is given in Eq. (35). This reduces to the numeri-
cal computation of a surface integral. Finally, the solution of
Eq. (14) is

u(x) = 1

2
(u1(x) + u2(x)) , x ∈ Ω, (37)

where Ω ∈ R
3 is the region enclosed by the spheres σR1

and σR2 .

5 Numerical results

Three different areas have been selected to apply the methods
proposed here. Geometric height anomalies are given at a set
of points located inside the area. They have been obtained
as differences between GPS ellipsoidal heights and normal
heights. The latter have been obtained by leveling and gra-
vimetry. When data are needed along the boundary of the
area, they are obtained by thin-plate spline interpolation.

Gravimetric height anomalies are usually given on an
equiangular grid. Then, they are interpolated at the location
of the GPS points using also thin-plate splines. Next, differ-
ences between the interpolated gravimetric height anoma-
lies and the given geometric height anomalies are computed.
They are the input data for the computation of the function
T̂ and T̃ , respectively. The following test areas have been
selected:

1. Test area 1 is a 2◦ × 1.75◦ area in Germany. We com-
puted a gravimetric quasi-geoid by least-squares using
radial basis functions. Geometric height anomalies at 61
points distributed over the area have been provided by
Bundesamt für Kartographie und Geodäsie (BKG). They
range between 0.440 and 0.690 m. We interpolate the
observed differences between gravimetric and geometric
height anomalies along the boundary of the rectangular
area using the program “Surface” (Smith and Wessel
1990) from the generic mapping tools (GMT) software
(Wessel and Smith 2004), which is based on thin-plate
splines. We apply the method of finite differences,
described in Sect. 3.

2. Test area 2 is in the Netherlands. A new gravimetric
quasi-geoid (GRAVGEO2006) has been computed fol-
lowing the approach in de Min (1996). It uses the EIGEN-
CG03C global gravity field model (Förste et al. 2005).
Differences between GPS ellipsoidal heights and levelled
heights are provided at 490 points by the Adviesdienst
Geo-informatie en ICT van Rijskwaterstaat (RWS-AGI),
see Fig. 2. The Dutch primary height network uses lev-
elled heights with respect to Normaal Amsterdams Peil
(NAP).
For the area of the Netherlands, differences between lev-
elled heights and normal heights are below a few
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Fig. 1 Observed (left) versus predicted (right) differences between geometric and gravimetric height anomalies. The latter represent a finite
difference solution of Eqs. (11) and (12). The RMS of ‘observed minus predicted’ is 0.7 cm
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Fig. 2 Left panel: 490 data points with given differences between gravimetric and geometric height anomalies over the Netherlands. Right panel:
FEM solution of Eqs. (11) and (12) using only data along the border of the Netherlands. It represents the data with an accuracy of 1.9 cm

millimetres, due to the small horizontal gravity gradient
over the country. Therefore, the levelled heights are con-
sidered as normal heights. We apply FEM and piecewise
finite differences (cf. Sect. 3), and the Poisson integral
method (cf. Sect. 4.3).

3. Test area 3 is in Germany. The data have been provided
by the BKG. The gravimetric height anomalies are identi-
cal with EGG97 (Denker and Torge 1998). At 894 points,
geometric height anomalies are given, see Fig 4. We apply
the method of Sect. 4.3.

Note that, in practice, the differences between gravimetric
and geometric height anomalies do not only reflect the con-
tribution of the kernel of D∆g to the height anomalies, but
may contain also systematic errors in GPS ellipsoidal heights,
normal heights, and gravimetric quasi-geoid solutions. A
separation between both contributors is not possible without
additional information (cf. Featherstone 2004). The results
presented below have to be understood in this sense.

Figure 1 shows the differences between geometric and
gravimetric height anomalies inside test area 1 (left panel)
and predicted differences computed from the solution T̂ of

Eqs. (11) and (12) (right panel). The latter is obtained with
the method of finite differences (cf. Sect. 3). This solution
needs information about the differences along the border of
the test area. Data inside the area are used to obtain these
values by interpolation. They are not involved in the process
of solving the problem Eqs. (11) and (12).

Nevertheless, the function T̂ represents the data inside the
area very well. The differences ’observed minus predicted’
vary between −0.033 and 0.028 m; the RMS difference is
0.007 m. This supports the idea that observed differences
between gravimetric and geometric height anomalies contain
a significant contribution from the kernel of the operator D∆g .

Figures 2 and 3 show the differences between geomet-
ric and gravimetric height anomalies for test area 2 (the
Netherlands) and the predicted differences using different
solutions: (i) a FEM solution of Eqs. (11) and (12) (cf. Fig. 2,
right panel), (ii) a piecewise finite difference solution of
Eqs. (11) and (12) (cf. Fig. 3, left panel), and (iii) the solution
of Eq. (8) using the Poisson integral (cf. Fig. 3, right panel).
Note that solutions (i) and (ii) only use the data along the
boundary of the Netherlands, whereas solution (iii) uses also
the data points inside the area.
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Fig. 3 Predicted differences
between geometric and
gravimetric height anomalies for
the Netherlands. Left panel:
piecewise finite difference
solution of Eqs. (11) and (12).
Right panel: Poisson-integral
solution of Eq. (8). The latter
represents the data with an
accuracy of 0.3 cm
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Fig. 4 Left panel: 894 data
points with given differences
between gravimetric and
geometric height anomalies over
Germany. Right panel:
Poisson-integral solution of
Eq. (8). The solution represents
the data with an accuracy of
1 cm
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To compute the FEM solution of Eqs. (11) and (12), we
use the free software package FreeFEM (Pironneau and
Prud’homme, 2001). FreeFEM expects as input a triangu-
lation of the area, which we computed using the triangulator
Triangle (Shewchuk, 2002). The RMS difference, computed
at 84 GPS control points distributed over the Netherlands,
is 0.019 m (minimum = −0.059 m, maximum = 0.055 m).
Note that the solution only uses data along the border of the
Netherlands.

The piecewise finite difference solution in Fig. 3, also uses
the data points inside the area to interpolate data along the
boundaries of the sub-rectangles. This allows us to obtain
a solution that fits the data better than the FEM solution of
Fig 2. The differences ‘predicted minus observed’ take up
values between −0.027 and 0.054 m. The RMS difference
reduces from 0.019 m (finite element solution) to 0.015 m.

The Poisson integral solution uses the FEM solution of
Eqs. (11) and (12) as initial solution (cf. Sect. 4.3). The ini-
tial solution is improved in step 2 as outlined in Sect. 4.3.
The final solution is shown in the right panel of Fig. 3. The
differences ’observed minus predicted’ are between −0.008
and 0.007 m. The RMS difference is only 0.003 m, i.e., the
solution T̃ fits the differences between gravimetric and geo-
metric height anomalies up to a few millimetres.

This is in agreement with our assumption about the noise
standard deviation of the differences, which is used in the

determination of the regularization parameter. The actual
noise standard deviation for differences between gravimetric
and geometric height anomalies for the Netherlands is likely
to be larger. However, a proper noise modeling is beyond the
scope of this study.

The two-step procedure of Sect. 4.3 is also applied to
Germany. Again, a FEM solution of Eqs. (11) and (12) serves
as initial solution, which is improved in the second step. BKG
reported a noise standard deviation of 0.01 m for differences
between gravimetric and geometric height anomalies, which
has been used in this study. Figure 4 shows the data and
the final solution. The residuals vary between −0.027 and
0.032 m; the RMS residual is 0.007 m. The latter is close to
the a priori data noise level, which indicates that the regular-
ization parameter has been chosen properly.

We also tested whether T̃ has zero radial derivatives (cf.
Eq. 8). For Germany, the radial derivatives take up values
between −1 and 1 µGal; the RMS radial derivative is 0.4
µGal.

6 Summary and conclusions

We have derived a mathematical description of the non-trivial
kernel of the gravity anomaly operator D∆g , which arises
in local gravity field modelling from gravity anomaly data.
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Functions from the kernel are harmonic and generate a zero
gravity anomaly signal inside the local area. Because they are
non-trivial, they contribute to the differences between gravi-
metric height anomalies and height anomalies derived from
GPS and levelling data, which have been reported in numer-
ous studies. To remove the non-uniqueness using geometric
height anomalies provided by GPS-levelling data, a Cauchy
problem for the Laplace equation has to be solved.

We have proposed several numerical procedures to com-
pute approximate solutions of the Cauchy problem for the
Laplace equation in the vicinity of the local area. When
applied to real data, the solution of the Cauchy problem for
the Laplace equation also absorbs systematic errors present
in GPS data, levelling data and gravimetric quasi-geoid solu-
tions that are larger than the adopted noise level in the differ-
ences between geometric and gravimetric height anomalies.
Without additional information about the systematic errors,
it is not possible to separate them from the contribution of
non-uniqueness.

We applied the numerical procedures to different test
areas, including the Netherlands and Germany. Data noise is
accounted for when choosing the appropriate regularization
parameter for downward continuation of the local data. For
the Netherlands and Germany, we assumed a standard devia-
tion of 0.005 and 0.01 m, respectively. The standard deviation
of the difference between the solution of the Cauchy problem
and the data are close to these values, as well. This indicates
that the chosen regularization procedure works correctly.

If one is only interested in an optimal transformation of
GPS ellipsoidal heights into the national height system, the
proposed numerical procedures provide an easy-to-handle
tool to do that. The procedures are easy to implement and
suited for the processing of large amount of data. Compared
with parametric methods, the user does not have to make
any decision about the proper choice of the model. However,
the user must provide information about the noise level in
the data. If the noise is underestimated, the solution will not
only model signal (essentially the contribution of functions
belonging to the kernel of D∆g), but will also capture a part
of the noise. Vice versa, if the noise is overestimated, the
solution is too smooth and some signal is lost.

Another implication of this study is that GPS-levelling
data should not be used to validate local quasi-geoid models
obtained from terrestrial gravity anomalies. They carry infor-
mation, which is not contained in a gravimetrically computed
quasi-geoid. Hence, they are mandatory to obtain a unique
local quasi-geoid.

A “corrector surface” is often used in local quasi-geoid
modelling to account for the various systematic errors in
geometric and gravimetric data. From the non-uniqueness
point of view of the local quasi-geoid modelling from grav-
ity anomalies, such a “corrector surface” could be used as
a first-order correction for the non-uniqueness, which needs

further refinements. This is also the idea behind the LSC
approach discussed in Kotsakes and Sideris (1999). How-
ever, all these approaches do not take the mathematical nature
of the non-uniqueness into account, hence may not provide
optimal solutions.
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