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Abstract The findings of this paper are summarized as fol-
lows: (1) We propose a sign-constrained robust estimation
method, which can tolerate 50% of data contamination and
meanwhile achieve high, least-squares-comparable efficiency.
Since the objective function is identical with least squares,
the method may also be called sign-constrained robust least
squares. An iterative version of the method has been imple-
mented and shown to be capable of resisting against more
than 50% of contamination. As a by-product, a robust esti-
mate of scale parameter can also be obtained. Unlike the least
median of squares method and repeated medians, which use a
least possible number of data to derive the solution, the sign-
constrained robust least squares method attempts to employ a
maximum possible number of good data to derive the robust
solution, and thus will not be affected by partial near multi-
collinearity among part of the data or if some of the data
are clustered together; (2) although M-estimates have been
reported to have a breakdown point of 1/(t + 1), we have
shown that the weights of observations can readily deteriorate
such results and bring the breakdown point of M-estimates
of Huber’s type to zero. The same zero breakdown point of
the L1-norm method is also derived, again due to the weights
of observations; (3) by assuming a prior distribution for the
signs of outliers, we have developed the concept of subjective
breakdown point, which may be thought of as an extension
of stochastic breakdown by Donoho and Huber but can be
important in explaining real-life problems in Earth Sciences
and image reconstruction; and finally, (4) We have shown that
the least median of squares method can still break down with
a single outlier, even if no highly concentrated good data nor
highly concentrated outliers exist.
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1 Introduction

Motivated by the challenge of solving practical geodetic/ast-
ronomical problems of the eighteenth century, least squares
(LS) was invented by Gauss in 1795 (and likely indepen-
dently by Legendre in 1805) (see e.g. Gauss 1964, 1995;
Stigler 1986). The method of least squares had since re-
mained almost unchallenged until Huber published his land-
mark paper on robust estimation in 1964. Extracting correct
or meaningful information on quantities of interest from con-
taminated data has been substantially investigated in almost
every area of engineering and science since then, because
least squares is vulnerable to even a single outlier. Identifica-
tion and removal of contaminated data have been attempted
and realized in two different ways, either (1) by first cleaning
the data and then applying the classical least squares criterion
to the remaining data (see e.g.Anscombe 1960; Baarda 1968;
Pope 1976; Belsley et al. 1980; Chatterjee and Hadi 1986;
Barnett and Lewis 1994); or (2) by designing robust esti-
mation criteria and applying them directly to contaminated
data (see e.g. Huber 1981; Hampel et al. 1986; Jurec̆ková and
Sen 1996; Koch 1999). Although the idea of cleaning data is
very old, statistical procedures for detecting outliers practi-
cally work well only in the case of one single outlier but can
often fail in the case of multiple outliers, in particular, if out-
liers are masked (see e.g. Chatterjee and Hadi 1986; Rocke
and Woodruff 1996). If an initial robust estimate of the model
parameters can be obtained, correct detection of multiple out-
liers is indeed possible by using a two-phase approach (see
e.g. Xu 1989a; Rocke and Woodruff 1996).

The second line of development, namely robust estimation,
has become one of the most intensive research topics in
statistics since the publication of Huber (1964) pioneering
paper, and has found widest possible applications in sci-
ence and engineering. Many robust estimation methods have
been investigated and proposed since then, of which the most
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important classes include the sample median and the trimmed
mean (see e.g. Stigler 1977; Welsh 1987), least absolute devi-
ation or L1 norm (see e.g. Bloomfield and Steiger 1983;
Dodge 1997), robustified maximum likelihood or M-esti-
mates (Huber 1964, 1981;Andrews 1974; Hampel et al. 1986;
Jurec̆ková and Sen 1996), order-based or L-estimates (Bickel
1973; Huber 1981; Hampel et al. 1986; Jurec̆ková and Sen
1996), and rank-based or R-estimates (Hodges and Lehmann
1963; Adichie 1967; Jurec̆ková 1971; Jaeckel 1972; Koul
1977). M-estimates have also been extended to correlated
observations (see e.g. Gastwirth and Rubin 1975; Portnoy
1977; Boente and Fraiman 1989; Xu 1989b;Yang et al. 2002)
and to heterogenous models (Beran 1982; Carroll and Rup-
pert 1982). However, we may note that only the methods
proposed by Xu (1989b) and Yang et al. (2002) are gener-
ally applicable, since a particular structure of correlation has
been presumed in the case of Gastwirth and Rubin (1975),
Portnoy (1977) and Boente and Fraiman (1989).

To measure robustness of a robust estimator, Hampel in-
vented two most important concepts: influence curves/func-
tions and breakdown points (see e.g. Hampel 1971, 1974;
Hampel et al. 1986). They are designed to measure local
and global robustness of a robust estimator, respectively.
Since these measures are distribution-dependent, Donoho
and Huber (1983) developed the concept of distribution-free
breakdown points. Roughly speaking, the breakdown point
of a robust estimator is the maximum percentage of con-
taminated data beyond which the estimator can no longer be
able to produce (physically) meaningful solutions, since they
can be arbitrarily far away from the true values of the model
parameters. The best possible breakdown point that one can
expect of a robust estimator has reported to be 0.5 (see e.g.
Rousseeuw 1984; Hampel et al. 1986). Since a robust estima-
tor with a high breakdown point has been statistically ineffi-
cient up to the present (Stefanski 1991; He 1994), a common
practice to achieve both high breakdown point and efficiency
is to first use a high breakdown robust estimator in order
to remove the outliers and then apply classical techniques
or M-estimation in order to achieve high efficiency (see e.g.
Yohai 1987). Although the sample median, α-trimmed mean
and M-estimates can reach the maximum breakdown point
in the one-dimensional case of location estimation (see e.g.
Huber 1984; Donoho and Huber 1983; Hampel et al. 1986),
the same is not quite true in the multi-dimensional case or
linear models. The exception may be the repeated medi-
ans (Siegel 1982) in the well designed setting. Rousseeuw
(1984) investigated the least median of squares (LMS) and
reported that it can obtain the breakdown point of 0.5 (see also
Rousseeuw and Leroy 1987). This may explain why the LMS
method has attracted much attention in the last two decades,
statistically and numerically. Hettmansperger and Sheather
(1992) demonstrated that the LMS method is not necessar-
ily of 0.5 breakdown point, which should have already been
implied by Fig.1 of Stefanski (1991) (see also Dodge 1992).
Recently, Wang and Suter (2003) demonstrated that the LMS
method cannot resist against clustered outliers, and its break-
down point can be below 0.4. These examples, however, have

a common feature that most or all of outliers, together with
some good data, are either highly concentrated or follow a
certain particular pattern. Since highly concentrated observa-
tions (good or bad) are relatively easy to identify, it might not
be appropriate to use them to denounce the high breakdown
property of the LMS method. In the case of the least trimmed
squares, the breakdown point can even be lower than 0.3
(see also Wang and Suter 2003). In this paper, we will further
show in Sect. 2 that a single influential outlier can completely
nullify the LMS results, even if no obvious phenomenon of
clustering or concentration can be seen.

The paper is organized as follows. First of all, we will
use simulations to demonstrate that the LMS method could
break down with a single outlier, even if neither good data nor
outliers exhibit any phenomenon of clustering or concentra-
tion. Then in Sect. 3, by assuming a prior distribution for the
signs of outliers, we will develop the concept of subjective
breakdown points, which can take the values from zero to
one, depending on the prior distribution. This extension in
concept is important in explaining some real-life problems.
Although the finite sample breakdown point of Donoho and
Huber (1983) can also be as large as 1.0, ours is fundamen-
tally different from theirs in two ways: (i) up to the present
time, the maximum breakdown point of Donoho and Huber
(1983) is only valid either in the case of constant estimates
or Bayesian estimates with compact support. These two spe-
cial cases are practically not meaningful. In the first case, the
reason should be obvious, since the estimate has nothing to
do with data. In the second case, the Bayesian estimate is
always driven to the boundary of the compact support and
thus does not make much sense practically. We will inves-
tigate the effect of weights of observations on robustness in
Sect. 4. Although M-estimates have been reported to have a
breakdown point of 1/(t + 1), we will show that the weights
of observations can readily invalidate such results and bring
the breakdown point of M-estimates to zero. Here t is the
number of unknowns to be estimated. In Sect. 5, we will pro-
pose the sign-constrained robust method, which can achieve
both the maximum breakdown point of 0.5 and high effi-
ciency. Since the objective function is essentially identical
with least squares, the sign-constrained robust method may
be also called sign-constrained robust least squares. In par-
ticular, the iterative version of the method is shown to be
capable of resisting against more than 50% of data contam-
ination, which can be of significant importance in practical
applications in Earth Sciences and object reconstruction. A
number of simulated examples will be given in Sect. 6 to
demonstrate the performance of the new robust method.

In the rest of this paper, we assume the following linear
model:

y = Aβ + ε, D(y) = �0σ
2, (1)

where y is an observation vector of dimension n, A is a design
matrix of full rank, β is the unknown vector of dimension t ,
ε is the observational error vector, �0 is a given positive defi-
nite matrix. The inverse of �0 is also called weight matrix
in adjustment theory and is almost always denoted by P,
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namely, P = �−1
0 . σ 2 is an unknown scale parameter or

variance of unit weight. If the elements of the first column
of A are all equal to unity, (1) becomes the standard regres-
sion model. In this paper, we will focus only on outliers in
the observations y and in the design matrix A. Outliers will
be treated in terms of shifts of observations from their true
values. In other words, if an observation, say yi , contains an
outlier, we will rewrite its corresponding functional model
as yi = aiβ + εi + δyi, where δyi is the size of the outlier.
If δyi = 0, then the observation yi is a good one. In order
to identify outliers, one also has to further assume that for
each model parameter, there must, at least, exist two good
data that contain the information on such a parameter.

2 Zero breakdown examples of the LMS method

Previous results (Stefanski 1991; Dodge 1992; Hettmansper-
ger and Sheather 1992; Wang and Suter 2003) suggested that
the breakdown point of the LMS method could be lower than
the claimed maximum value of 0.5, if outliers, together with
some good data, are highly clustered and concentrated. As a
consequence, we decide to further investigate quantitatively
the breakdown point of the LMS method through simula-
tions by removing the implicit condition of clustering and
concentration of outliers from the previous works. To our
surprise, the designed experiments have found a great num-
ber of examples for which the LMS method breaks down with
a single influential outlier, although no obvious phenomenon
of clustering and concentration can be seen any more. We
will report our experiment design and one of such identified
examples in this section.

The linear model is involved with two parameters, namely,

yi = 10β1 + xiβ2 + εi, i = 1, 2, ..., n. (2)

The true values of β1 and β2 are set to −2.0 and 0.7 in all
our experiments, respectively. For each experiment, we gen-
erate one hundred xi by using a uniform distribution over
the interval of [2.0, 10.7], and further one hundred random
errors εi by using a normal distribution with mean zero. The
standard deviation of εi is equal to 3.0. The true values of
one hundred observations yi can thus be computed from the
true values of β1 and β2 and the generated data of xi . Adding
the generated random errors to these true values will make
100 observations yi . We then simulate one outlier by setting
x101 and its corresponding observation y101 to 1500.0 and a
number around −15.6356, respectively. If y101 would not be
an outlier, then it should be equal to 1030.0 plus a random
error from the normal distribution.

We have used the same experiment setting and conducted
a great number of experiments, each of which is designed by
generating a new set of xi(i = 1, 2, ..., 100) and a new set of
random errors εi(i = 1, 2, ..., 100). While x101 remains un-
changed, we only slightly modify y101. The LMS solution in
each experiment is obtained by implementing the exact LMS
algorithm of Cheney (1966) and Stromberg (1993). In this
simulation study, we have found many examples for which
the LMS method have broken down.

Shown in Fig.1 are the 100 data points and the true line of
regression. Since the outlier point is far away, it is not depicted
here. The least squares estimates of the two parameters with-
out the outlier are −1.940 and 0.605, with the standard devi-
ations of 0.081 and 0.121, respectively. The LMS estimates
of β1 and β2 have been found to be involved with the outlier
and are equal to −1.525 and −0.001, respectively. Obviously,
the difference between the LS and LMS estimates of the two
parameters cannot reasonably be explained in terms of the
standard deviations of the LS estimate. Since the only outlier
has been used by the LMS method, this should clearly indi-
cate that the LMS method has a zero breakdown point for this
specific example. In fact, we have identified a great many of
examples of this kind during the experiments, which are not
reported here, however.

3 Subjective breakdown point

The concept of breakdown point was first mathematically for-
mulated by Hampel (1971, 1974) as a most important global
measure of robustness against outliers. The breakdown point
of Hampel (1971) is only asymptotic and is not completely
free of the distribution of data. It can be difficult to compute
in some cases. As a result, Donoho and Huber (1983) further
developed significantly the concept of breakdown point by
extending it to the case of finite sample. Since the breakdown
point of Donoho and Huber (1983) is valid for finite sample
and does not depend on the specified distribution of data,
it has been widely adopted in both theoretical and practical
literatures of robust statistics.

The maximum breakdown point of a robust procedure
has been known to be 0.5, except for two cases of no prac-
tical importance as defined and given in Donoho and Huber
(1983). This might be interpreted as that no robust procedure
could produce meaningful results for a practical problem, if
more than 50% of the data are contaminated by outliers. A
widely accepted argument to support this position is that no
robust methods are capable of discriminating the minority of
good data from the majority of bad data. Should this indicate
that problems of this kind are of no practical and/or physi-
cal meaning? If we would follow the reasonings as given in
the above, our answer to this question is undoubtedly affir-
mative. In reality, we do have to deal with such kinds of
problems. For example, we know that in the determination
of stress tensors from earthquake focal mechanisms, one of
the (two) nodal planes is the (correct) fault plane (good data)
and the other is the auxiliary plane (bad data) (see e.g. Ange-
lier 2002; Xu 2004). In addition, some of many earthquake
focal mechanisms may not come from the effect of the same
stress tensor, and should be further treated as truly erroneous
data. In other words, we have to deal with at least 50% of data
contamination in the stress inversion from earthquake focal
mechanisms. In image processing, we have also seen a lot of
noise other than signal. In this section, we will assume that we
have some (rough) prior information about the nature of out-
liers or bad data. By incorporating the prior information into



Sign-constrained robust least squares and the effect of weights of observations on robustness 149

Fig. 1 The simulated data of the example, except for the only outlier which is too far away to be nicely plotted in this figure. Also shown in this
figure are the true line of regression (solid line), the line by the LMS solution which has broken down due to the only outlier (dashed line), and the
line by the sign-constrained robust estimator to be presented later in Sect. 5 (dash-dotted line). The horizontal and vertical axes show the values
of xi and yi , respectively

robustness, we will naturally develop the concept of subjec-
tive breakdown point, which might be thought of as a kind of
extension or realization of stochastic breakdown proposed by
Donoho and Huber (1983). This new breakdown point is said
to be subjective, since: (1) it is based on certain prior informa-
tion on the nature of outliers; and (2) such prior information
may only reflect the subjective belief of the data analyst on
outliers. We will show that a subjective breakdown point can
indeed take value beyond the current maximum of 0.5. Con-
sequently, the concept of subjective breakdown point may
be meaningfully used to interpret solutions to problems with
more than 50% contamination physically.

For simplicity of discussion, assume in the linear model
(1) that A = e and Σ0 = I. Here e is a vector of dimension n
with all its elements equal to unity. In other words, we assume
n independently, identically distributed random samples y1,
y2, ..., yn. Following the replacement approach of Donoho
and Huber (1983), we replace part of these samples with out-
liers, say m outliers. Without loss of generality, we assume
that the first m data are outliers, namely, (yi + δyi)(i ≤ m).

Although the magnitude of the shift δyi can take on any
large number, we assume that the sign of δyi has a Bernoulli
distribution, namely,

f (si) = psi q1−si I{0,1}(si), (3)

where I{0,1}(si) is an indicator function, and si is either equal
to zero or unity. In other words, we assume that the proba-
bilities of δyi being positive (si = 1) and negative (si = 0)
are equal to p and q, respectively. For convenience but with-
out loss of generality, we assume that the signs of the other
(m−1) δyj (j �= i) are independent and have the same distri-

butions as that of δyi . Then the joint probability distribution
for the signs of the m outliers has a binomial distribution:

f (s) = f (s; m, p) =
(
m
s

)
psqm−sI{0,1,...,m}(s), (4)

(see e.g. Mood et al. 1974), where f (s) is the probability of
s positive δyi and (m − s) negative δyj (j �= i).

It is well known that if m ≥ [n/2] + 1, robust procedures
will break down, where [x] stands for the integer around but
smaller than x. The question of interest now is: with what
probability will a robust procedure break down? If a robust
method breaks down almost surely or with a large probabil-
ity, we can no longer trust and physically interpret the results
from the set of contaminated data. On the contrary, if a robust
method would break down only with a very small probability,
we know that it hardly breaks down and will have confidence
in the computed results from contaminated data either for
interpretation or practical use.

Obviously, the arithmetic mean of the samples will al-
ways break down if m ≥ 1, no matter whether we have the
prior information (4) or not. It is nowhere robust. In the rest
of this section, we will focus on the sample median and the
α-trimmed mean. As the first example, let us examine the
sample median. It is well known that the median does not
break down if m ≤ [n/2] (n odd) or m < [n/2](n even). Thus
we will focus on [n/2]+1 ≤ m ≤ n. Given n, m(≥ [n/2]+1)
and p, we know the subjective breakdown point of the median
is equal to m/n(> 0.5) and we can compute the probability
for this breakdown point as follows:

P(breakdown) =
m−[n/2]−1∑

i=0

(
m
i

)
piqm−i
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A B

C D

Fig. 2 The subjective breakdown points of the sample median and their corresponding probabilities of breakdown. The horizontal and vertical
axes show the number of contaminated data and the probability of breakdown, respectively. The six curves in each subplot are the subjective
breakdown points of the sample median (black line) and their corresponding probabilities of breakdown with different probabilities for positive
sign of shifts δyi (red line: p = 0.1; green line: p = 0.2; blue line: p = 0.3; yellow line: p = 0.4; and purple-red line: p = 0.5). The four
subplots A, B, C and D correspond to the sizes of samples 11, 21, 51 and 101, respectively

+
m∑

i=[n/2]+1

(
m
i

)
piqm−i .

Alternatively, we can also compute the probability that the
median does not break down as follows:

P(not breakdown) = 1 − P(breakdown)

=
[n/2]∑

i=m−[n/2]

(
m
i

)
piqm−i . (5a)

In particular, if p = 1 (or q = 1) and if m ≥ [n/2] + 1,
then P(breakdown) = 1 or P(not breakdown) = 0. In this
special case, we know the median always breaks down with
probability one, and it does not make sense to talk about a
subjective breakdown point higher than 0.5. In other words,
if p = 1 (or q = 1), the median has the maximum break-
down point of 0.5. On the other hand, if m ≤ [n/2], then
we always have P(breakdown) = 0 or P(not breakdown) =
1, which confirms common sense that the sample median
will never break down if the contamination of data is less
than 50%. If p = q = 0.5, and let us assume that n =
101 and m = 55, then the subjective breakdown point is
0.5446 and the probability for the median to break down
is 2.0474 × 10−11 – an almost zero! If the number of con-
taminated data is increased to 75, the subjective breakdown
point is 0.7426 and the corresponding probability of break-
down is still as small as 0.0024442. These two examples have

clearly demonstrated that with the prior information (4), the
sample median can bear a far more than 50% contamina-
tion in the data with a negligible probability to break down.
In order to see how the subjective breakdown point and its
corresponding probability change with p, m and n, we have
chosen p = 0.1, 0.2, 0.3, 0.4, 0.5 and n = 11, 21, 51, 101,
and shown the results in Fig. 2. Obviously, the probability of
a subjective breakdown increases rapidly with the decrease of
p from 0.5 to 0. However, it decreases significantly with the
increase of sample size n. In the ideal situation of p = 0.5,
with the increase of samples, the median can bear more per-
centage of contamination without worrying to break down
(compare the purple-red lines in Fig. 2).

In the similar manner, we can use (4) to investigate the
subjective breakdown point of the α-trimmed mean and its
corresponding probability of breakdown. As in the case of
the sample median, the subjective breakdown point of the
α-trimmed mean can be twice as large as that in the sense
of Hampel (1971) and/or Donoho and Huber (1983). For
demonstration purpose, we use the third example in Fig. 2
by setting a breakdown point α in the sense of Hampel to
0.3. The subjective breakdown points will then be between
0.3 and 0.6. Since the number of contaminated data is not
necessarily an integer, we slightly reduce the size of samples
from 51 to 50 such that the product of 50 × 0.3 makes an
integer. The probabilities of subjective breakdown points are
shown in Fig. 3. It can be clearly seen from this figure that
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Fig. 3 Probabilities of subjective breakdown points of the α-trimmed mean with respect to subjective breakdown points and p. Here the break-
down point α is 0.3 (in the sense of Hampel). The two horizontal axes show the subjective breakdown points and the probabilities of positive sign
of shifts δyi

if p is between 0.3 and 0.5, then the α-trimmed mean has a
good subjective breakdown point of up to 0.5, although the
original breakdown point is only 0.3 (in the sense of Hampel).
In other words, the α-trimmed mean can bear more contam-
ination in the data if the signs of outliers follow the binomial
distribution with p sufficiently close to 0.5. The subjective
breakdown points of other robust estimators and their cor-
responding probabilities of (subjective) breakdown can be
studied in the similar manner but will be omitted here.

4 The effect of weights of observations on robustness

The weights or weight matrix P of the observations y in the
linear model (1) has been one of the indispensable compo-
nents in the Gauss–Markoff theorem (see e.g. Rao 1973).
The property of minimum variance of a linear estimate of
the parameters β cannot be obtained without use of P. In the
literature of robust statistics, the weight matrix P has rarely
attracted due attention. When weights of observations and
correlations are incorporated into robust procedures, empha-
sis has been solely focused on efficiency, consistency and
other asymptotic behaviours of robust estimators (see e.g.
Gastwirth and Rubin 1975; Koul 1977; Portnoy 1977; Carroll
and Ruppert 1982; Boente and Fraiman 1989; Xu 1989b;
Yang et al. 2002).

Although the weights of observations P, together with
the design matrix A and the observations with contaminated
outliers, are the three basic components in regression or the

linear model (1), they have surprisingly played almost no role
in the development of concepts in robust statistics. Concepts
used in regression diagnostics such as influential observa-
tions, leverage points and hat matrices are solely based on
the design matrix A (see e.g. Belsley et al. 1980; Chatterjee
and Hadi 1986; Barnett and Lewis 1994). Fortunately, the
need of practical application of these concepts has led geo-
desists to incorporate the weight matrix into the measures
related to these concepts (see e.g. Baarda 1968; Schaffrin
1997; Hekimoǧlu 1998). In particular, as soon as the concept
of breakdown point (in the sense of Hampel) is concerned,
it has been always referred either to outliers in the x-direc-
tion (the design matrix A) or outliers in observations (see e.g.
Donoho and Huber 1983; Rousseeuw 1984).

It is well known that the least absolute deviation (or L1-
norm method) and M-estimates are robust if there exist no
outliers in the data of the matrix A (see e.g. Donoho and
Huber 1983; Bloomfield and Steiger 1983; Dodge 1997).
In this section, we will show that robust statistical meth-
ods can still not be robust against outliers in observations,
even if the design matrix A is assumed to contain no out-
liers. More specifically, we will first demonstrate that the
(weighted) L1-norm method and M-estimates are indeed vul-
nerable to outliers in observations. Since the least median of
squares method has been claimed to have a maximum break-
down point of 0.5 and has been widely applied practically, we
will try to further explain the low breakdown phenomenon
observed by Wang and Suter (2003) from the point of view
of weights, although the simulated examples in Sect. 2 have
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already shown that a single outlier can still break the LMS
method down, even without clustering and concentration.

As in Sect. 2, we assume n independently, identically dis-
tributed samples y1, y2, ..., yn with variance σ 2 and mean y.
In order to investigate the effect of large weights on robustness
of the L1-norm method and M-estimates, we replace the ith
sample yi . The new sample is assumed to come from the same
family of distributions but with a different variance σ 2

0 and
σ 2

0 � σ 2. In other words, the relative weight pi = σ 2/σ 2
0

is significantly large such that the root of pi is much larger
than the size of samples n. We further assume that this new
sample yi is an outlier. Then the weighted L1-norm criterion
becomes:

min:
n∑

j=1,j �=i

|yj − y| + √
pi |yi − y|, (6)

where |x| stands for the absolute value of x. If pi = 1, then
(6) is the well-known method of least absolute deviation and
will result in the median of samples as the estimate of y.

Since pi has been assumed to be very large and yi is
an outlier, the optimization problem (6) must produce the
estimate of y that is very close to yi itself. In this case, the
objective value of (6) is roughly equal to (n − 1)�, where
� is the absolute value of the mean of (yj − yi) for all j =
1, 2, ..., (i − 1), (i + 1), ..., n. Otherwise, if (6) would have
produced something that is close to any of the samples other
than the outlier yi , then the objective value of (6) would have
roughly been equal to

√
pi�. Since

√
pi has been assumed

to be much larger than n,
√

pi� should be much larger than
(n − 1)�. Thus the weighted L1-estimate must be close to
the outlier yi and is obviously not robust at all. The same
reasoning is true in the linear model (1).

In the case of M-estimation of location, we have the
objective function:

min:
n∑

j=1,j �=i

ρ(yj − y) + ρ(
√

pi(yi − y)), (7)

where ρ(·) is an appropriately chosen symmetric function
with a unique minimum at zero (see e.g. Huber 1981; Donoho
and Huber 1983; Rousseeuw and Leroy 1987; Jurec̆ková and
Sen 1996). If ρ(·) is convex and its derivative is bounded,
the M-estimate of y has been reported to have a maximum
breakdown point of 0.5 (see e.g. Donoho and Huber 1983)
in the one dimensional case. Taking the Huber’s ρ(·) func-
tion as an example, and by using the same assumptions as in
the case of the weighted L1-norm method above, we should
immediately conclude that the M-estimate of y must be close
to the outlier yi in order to minimize the objective function
(7). In fact, the condition can even be weakened as that pi is
larger than n. Once again, we see that an outlier with a sig-
nificantly large weight can simply nullify the robustness of
Huber’s M-estimates. Of course, the same argument applies
to M-estimates of Huber’s type in the linear model (1) but
will not be repeated here.

The effect of weights of observations may also be used
to explain why clustered outliers are most difficult to detect.

In fact, by rewriting, for example, the second term of (6)

as
∑√

pi

j=1 |yi − y|, we may re-interpret this second term as
an idealized model of clustered outliers which consists of√

pi independent observations yi of unit weight, although, in
reality, clustered outliers would (slightly) be different from
each other. Thus a sufficient number of clustered outliers may
likely fail some of robust estimators. For example, assume
that clustered outliers are sufficiently concentrated together
and their number is sufficiently large such that together with
a minority of good data, they form a majority of data to fit
the model. Then, we can expect theoretically that such a data
set will almost certainly fail the LMS method; this explains
very well the results of low breakdown points for the LMS
method reported by Wang and Suter (2003).

5 Sign-constrained robust estimation

Although M-estimates, L-estimates and R-estimates are most
popular in the robust estimation of the parameters in the linear
model (1) and the scale parameter or the unknown variance
of unit weight (see e.g. Huber 1981; Hampel et al. 1986;
Rousseeuw and Leroy 1987; Jurec̆ková and Sen 1996), they
can tolerate only up to about 30% of data contamination
(Rousseeuw 1984), except for some special situations, for
example, one-dimensional M-estimation of location (Donoho
and Huber 1983). The most promising robust methods,
namely, the least median of squares and the least trimmed
squares (Rousseeuw 1984; Rousseeuw and Leroy 1987),
though claimed or proved to have a (maximum) breakdown
point of 0.5, have been shown to break down by a less than
40% of contamination or clustered outliers (Wang and Suter
2003) and even worse, by a single outlier without obvious
clustering and concentration, as demonstrated in Sect. 2.

The two most robust estimators with a 0.5 breakdown
point are the sample median and the repeated median.The for-
mer has been well known but is valid only in the one-dimen-
sional case. Since the median is irrelevant to the weights of
the observations, its robustness is not affected by the weight
matrix P.The repeated median was proposed by Siegel (1982).
Unlike the sample median, it is applicable, in principle, to
problems of any dimension. However, since the repeated
median is based on the generalized least squares solutions
of all the fundamental subsystems with t observations, near
multi-collinearity in only some of the good data can sig-
nificantly deteriorate the reliability of the method. With the
increase of percentage of contamination, near multi-collin-
earity among some of good data may cause the method to fail,
since a small random error can result in an arbitrarily large
error in the solution to such near multi-collinear fundamen-
tal subsystems. As a cost of achieving the highest possible
breakdown point (in the sense of Hampel), the efficiency of
these two robust estimators is not satisfactory, however. The
LMS method is also known to have a low efficiency.

The question now is whether one can really construct
alternative robust estimators with the maximum breakdown
point of 0.5 in the multiple dimensional case or linear model,
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in addition to the repeated median. For simplicity of discus-
sion but without loss of generality, we will assume P is diag-
onal with the elements pi (i = 1, 2, ..., n), since the idea to
be presented can be readily extended to a full positive definite
matrix. Although prior information on the signs of outliers
was assumed in Sect. 3 to define the concept of subjective
breakdown point, we assume no such prior information in
this section. As an attempt to provide an affirmative answer
to the above question, we propose a new robust estimator,
which is defined and formulated as follows:

min: (y − Aβ)T PR(y − Aβ)/rPR
, (8a)

subject to the following constraints:

n∑
i=1

sgn(yi − aiβ) = 0, (8b)

where the ith diagonal element of PR is determined as
follows:

pR
i =

{
pi, if |yi − aiβ| ≤ c σ̂ /

√
pi;

0, otherwise.
(8c)

Here c is a positive constant. If necessary, one can also use
a variable parameter for each observation proposed by Xu
(1993). σ̂ is an estimate of the standard deviation of unit
weight. As a common practice, we suggest that σ̂ is set to
1.483 med(

√
pi |yi−aiβ|), where med(

√
pi |yi−aiβ|) is the

median of the absolute values of the residuals
√

pi(yi −aiβ).
Alternatively, one may also use half of the observations with
least absolute residuals to estimate σ̂ . ai has been given in
Sect. 1, rPR

is the rank or number of non-zero (diagonal)
elements of PR , the sign function sgn(x) is defined by

sgn(x) =




1, if x > 0;
0, if x = 0; and
−1, if x < 0.

After the minimization problem (8) is solved, we meanwhile
obtain a subset of observations satisfying both (8b) and (8a).
We then solve the unconstrained least squares problem by
using the identified observations to derive the final robust
estimate of the parameters β, which is defined to be the sign-
constrained robust solution. This last step is technically trivial
but can be rather important in further improving the efficiency
of the robust solution, depending on the percentage of data
contamination. We say the step is trivial, since we do nothing
more but simply use the observations from the minimization
process to compute the final robust solution. From this point
of view, the sign-constrained robust method is fundamentally
different from other multi-step robust procedures in the liter-
ature (see e.g. Yohai 1987), not to mention that high break-
down robust estimators used as an initial robust estimate may
not be of the high breakdown point as claimed. If contamina-
tion is sufficiently significant or close to 50 percent, the step
will become rather important; otherwise, the improvement
in efficiency should be marginal. If the number of observa-
tions is even, the estimate of β would have to be limited to

the rounding error of a computer in order to satisfy the sec-
ond constraint (8b) for some problems. If the problem of the
machine error is to be avoided, (8b) is, in this case, numeri-
cally equivalent to∣∣∣∣∣

n∑
i=1

sgn(yi − aiβ)

∣∣∣∣∣ = 1,

which does not affect the final robust solution, nevertheless.
In fact, the above condition would frequently be encountered
as an intermediate solution in the search for the global opti-
mal solution of (8), if the number of observations is even.

The robust estimator defined above should be intuitively
very interesting for a number of reasons: (1) The robustness
of the method is directly implemented as constraints. In fact,
the constraint (8b) is essentially a key point of the sample
median. The objective function (8a) and the constraint (8c) is
then to force the fitted hyperplane to the good data or majority
of good data. The method is therefore robust and is expected
to have the maximum breakdown point of 0.5. This should
be intuitively obvious by itself, since, for example, in the
extreme or worst case that half of the data are supposed to
be outliers, the constraint (8b) will force the estimate to cut
the data into two parts with the same numbers of positive
and negative residuals. The minimization formulation (8a),
together with the constraint (8c), will force the cutting to
clearly separate the good data from the outliers, and will fur-
ther push it to the side of the good data in order to attain
the minimum value of the objective function (8a). If some of
good data or outliers are highly concentrated, then extra work
will be needed to find a correct estimate, as will be clear in the
next section of examples. The sign constraint (8b) is justified,
since the event of a residual (a continuous random variable)
being equal to zero theoretically has zero probability, unless
the corresponding observation is completely occupied by an
unknown parameter. In this latter (trivial) case, the residuals
of such observations always have zero residuals, which again
does not bother the justification of use of sign constraint (8b);
(2) The robustness of the method should not be affected by
the weight system P, since the weights have no role to play in
one of the key constraints (8b); (3) Unlike other robust esti-
mators such as the trimmed mean, the sign-constrained robust
method is flexible and automatically adapts itself to the data
at hand through both constraints (8b) and (8c). For example,
if contamination of the data is supposed to be of 10%, while
removing the effect of this 10% contaminated data on the esti-
mated parameters, the robust method should be able to retain
nearly the rest of 90% of the data, or as many good data as
possible, as a direct consequence of (8c); and finally, (4) The
method is directly based on the least squares principle (8a).
Thus the method may be called sign-constrained robust least
squares. This confirms the argument by Rousseeuw (1984)
that it is not the squares that are responsible for the vulnera-
bility of the least squares method to outliers.

On the other hand, we have also clearly seen that the oper-
ation sum in least squares is innocent as well, as otherwise
might be implied in Rousseeuw (1984). Since the LMS
method of Rousseeuw (1984), the repeated median of Siegel
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(1982) and/or other median-based robust estimators only uti-
lize a least possible number of good data to derive the robust
solution, the robustness and solution are easily affected by
partial near multi-collinearity among part of the data or if
some of the data are clustered together (Rousseeuw 1984;
Stefanski 1991; Hettmansperger and Sheather 1992; Sheather
et al. 1997; Ellis 1998). However, our robust method will
adapt itself to and attempt to utilize all the good data to
achieve the robustness for the estimate of β and, as a re-
sult, will not be affected by partial multi-collinearity. There-
fore, our robust least squares will be able to achieve both
high breakdown point and high efficiency simultaneously.
This has clearly invalidated the statement on page 357 by
Stefanski (1991):

“Thus it can be stated quite generally that any esti-
mator possessing the exact fit property of any order
> 1/n has arbitrarily low efficiency with respect to
least-squares in finite samples.”

Therefore, our robust method should bring the dilemma of
conflict between high breakdown and efficiency (see also He
1994) to a happy end. The variance–covariance matrix of the
robust estimator is also easy to compute.

Since the method is obviously nonlinear and nonsmooth,
we will have to resort to global optimization methods (see
e.g. Hansen 1992; Xu 2002, 2003a) to solve (8) numerically.
Although (8) appears to be a global optimization without con-
straints on β, and in order not to pre-set too small a box and
miss the global optimal solution(s), one can actually deter-
mine a suboptimal solution to (8), without any difficulty, by
slightly adjusting the least squares solution of β to satisfy
the constraint (8b). Assuming that the suboptimal solution
corresponds to the suboptimal objective value, say F0, then
one can readily determine from F0 the initial bounding box
for β by using interval analysis, as in the case of determining
the bounding box in mixed integer linear models for Voronoi
cells (Xu 2003b).

6 Examples

In this section, we will simulate a number of typical exam-
ples to demonstrate how the sign-constrained robust method
works and performs. More specifically, we will design exam-
ples with influential observations, with 50% contamination,
with scattered and highly concentrated clustering outliers,
and with more than 50% contamination. In the rest of this
section, we will use a critical value of c equivalent to 2.5
times standard deviation for data with up to 50% of contam-
ination, and equivalent to 2.0 times standard deviation for
data with more than 50% of contamination

Let us first have a look at examples of one dimension. We
simulate five random numbers by using a Gaussian distribu-
tion with mean 0 and variance 0.5 and five outliers. The five
good data are generated by using MATLAB and are given
as follows: 0.0805, 0.7543, 0.0419, −0.0676 and −0.5885.
Five outliers are arbitrarily given as follows: 10.0, 10.1, 20.0,

35.0 and 50.0. Because of the constraint (8b), the solution to
the minimization problem (8) must be between 0.7543 and
10.0. If the solution would approach 10.0 from left, then we
have the median of 9.9581 for med{|yi − 10.0|} and the cost
value of 74.5658. On the other hand, if the estimate of the
mean approaches 0.7543 from right, we obtain the median of
1.3428 for med{|yi − 0.7543|} and the cost value of 0.6880.
Thus the solution to the minimization problem is 0.7543.As a
last step of our robust method, we leave all the constraints (8b)
and (8c) out, and obtain the final robust estimate of the mean
by solving the unconstrained least squares problem (8a) with
the observations identified by the optimal solution. The final
robust solution is equal to 0.0441 – exactly the average of the
five good data. We can also see from this example that the last
(trivial) step in our robust method does improve the efficiency
significantly. Here due to the 50% data contamination, our
first step of minimization is focused on achieving robustness
by kicking out outliers but at the cost of forcing the solu-
tion to the margin of the good data. The unconstrained least
squares is simply to adjust among the good data.As a result of
the adjustment, the best possible efficiency is obtained. Note,
however, that in this special case, even the sample median will
fail, since the median in the case of even number of samples
is equal to the average of 0.7543 and 10.0 by definition. The
same can be said of the repeated median of Siegel (1982),
since it also requires at least one more good data than the
number of outliers.

Now let us replace some of outliers with good data and
see how the sign-constrained robust method would perform.
For example, if we replace the last two outliers by −0.4892
and 0.6067 from the same distribution as the five good data,
then the solution to the minimization problem must be be-
tween 0.0805 and 0.6067, again due to the constraint (8b).
By repeating the same procedure as in the case before the
replacement of outliers with the good data, we have removed
the three outliers, retained the seven good data and obtained
the robust mean of 0.0483 with variance 0.0714. From this
second simple example, we also expect that if the rate of
contamination is not sufficiently significant, the least squares
adjustment will improve the final robust solution only mar-
ginally. With the further decrease of number of outliers, this
improvement should be even smaller. Obviously, the mean
has adapted itself to the good data. Thus from this point of
view, the sign-constrained least squares method may also be
called adaptive trimmed mean.

The second example is to test the sign-constrained ro-
bust method with the example of Sect. 2, which failed the
LMS method with a single influential outlier. The sign-con-
strained robust method has correctly identified the 100 good
data. The two parameters have been estimated to be −1.9400
and 0.6048 with standard deviations of 0.0811 and 0.1209,
respectively, which are essentially the LS solution of the
example without the contaminated influential point. The fit-
ted line has been shown in Fig.1 (the dash-dotted line).

As the third group of examples, we will demonstrate the
ability of the sign-constrained robust method against exactly
50% contamination of data in the linear model (1). We know
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Fig. 4 50 simulated good data, 50 scattered outliers, and the fitted (dash-dotted) line obtained by the sign-constrained robust method. The
horizontal and vertical axes show the values of xi and yi , respectively

from Sect. 3 that if all outliers are one-sided, they are most
challenging to a robust method. This is exactly the scenario
we would like to investigate. As a first step, we simulated the
following regression line

yi = β1 + xiβ2 + εi, (9)

by using the true parameters β1 = 2.0 and β2 = −0.9 and
by generating 50 xi uniformly distributed over [1, 6] and 50
Gaussian errors εi with mean 0 and standard deviation 0.2.
We then simulated the same number of scattered outliers,
influential outliers and highly concentrated outliers. All the
simulated outliers are put on one side of the regression line.
We generated 50 scattered outliers by using a normal distribu-
tion with standard deviation 0.5 for both x and y components
and centered at the point [4.5, 2.5], 50 highly concentrated
outliers by using a normal distribution with standard devia-
tion 0.1 – half of the standard deviation of good data, again
for both x and y components, and centered at the same point
as above, and finally 50 influential points by using a uniform
distribution with xi over [1000, 2000] and yi over [0, 1000].
Since these 50 influential outliers cannot nicely displayed to-
gether with the 50 good data, we will not show them here. For
the example with either 50 scattered or 50 influential outliers,
the sign-constrained robust method has correctly removed the
outliers and kept 50 good data. The final estimation results
are β̂1 = 2.0050 and β̂2 = −0.8992, with standard devia-
tions of 0.0744 and 0.0194, respectively. Of course, they are
exactly the LS solution with the 50 good data points. Thus
for these two examples, the sign-constrained robust method
has successfully removed the effect of outliers and achieved
the maximum possible efficiency. The 50 good data and 50
scattered outliers, together with the fitted line of regression,
are shown in Fig. 4. For the example with 50 highly concen-

trated outliers, one may readily use Euclidean norm to find
them before applying any robust methods.

In order to see whether the sign-constrained robust method
can handle such data by separating the good data from the
outliers, we first simply apply the method to the original data.
As the second step, we apply the method first to the removed
data. Then if an original data point is not violated by the
new fitting, it is added into this second step. By doing so,
we obtained two fitted lines shown in Fig. 5. Obviously, the
sign-constrained robust method can correctly separate the
good data from the highly concentrated outliers. The final
estimates of the two parameters are obtained from 48 good
data and are equal to 1.9530 and −0.8854, with standard
deviations of 0.0868 and 0.0216, respectively. We can also
expect from this example that if about 50% of good data
are extremely concentrated (at a point in the two-dimen-
sional case or on a (t − 1)-dimensional subspace in the
t-dimensional case), then we will encounter the same prob-
lem as in the case of 50% of highly concentrated outliers and
have to resort to the above two-step procedure in order to
obtain a correct estimate.

As the last set of examples, we will investigate how the
sign-constrained robust method can be used to handle more
than 50% of data contamination, which may often be encoun-
tered in object reconstruction from noisy data. To begin with,
we simulated 150 good data by using a normal distribution
with mean 0 and standard deviation 0.1. The 150 variables xi

were generated by using a uniform distribution over [1, 100].
The true values of two parameters are equal to 1.0 and 2.0101,
respectively. We then simulated 400 outliers by using a uni-
form distribution with x-component over [1, 100] and y-
component over [1, 200]. In order to further complex the
problem, we simulated the second example by adding two
different sets of scattered outliers at different positions to the
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Fig. 5 50 simulated good data, 50 highly concentrated outliers and the fitted lines obtained by the sign-constrained robust method. The dashed
line is obtained without applying the two-step procedure, while the final (dash-dotted) line is found after applying the two-step procedure. The
horizontal and vertical axes show the values of xi and yi , respectively

simulated data or the first example, the number of each set of
scattered outliers being equal to 25. Thus the two examples
contain 72.73% and 75% of data contamination, respectively.
More specifically, the two examples have 211 and 261 out-
liers above the true line, respectively.

Since no robust methods could directly handle more than
50% of contamination, we will implement the iterative ver-
sion of the sign-constrained robust method and see how it
handles such data sets. The iterative version is to repeatedly
apply the sign-constrained robust method to the newly identi-
fied data until the same set of data is found. In other words, we
first apply the method to the original data set. After obtaining
the new set of data satisfying the conditions of the sign-con-
strained robust method, we apply the method to the new data
set. We repeat the same procedure until no more data can be
removed by the sign-constrained robust method. The itera-
tive version of the method has produced the same results for
both data sets and, in total, 128 good data have been identi-
fied and used to compute the final robust solution, although
the numbers of iteration are different and equal to 8 and 9
for the first and second example, respectively. The estimates
of the two parameters are equal to 1.0093 and 2.0097, with
standard deviations of 0.0173 and 0.0003, respectively. The
150 good data, 450 uniformly distributed outliers, 50 scat-
tered outliers and the fitted line are all shown in Fig. 6. The
iterative version of the sign-constrained robust method has
been shown to perform excellently in removing the effect of
more than 50% data contamination and meanwhile achieving
excellent efficiency. In fact, even if the contamination is not
more than 50%, but if almost all of the outliers are one-sided,
we still strongly recommend running the iterative version. In
such a case, since the scale parameter used in the constraint

(8c) is over-estimated, outliers of intermediate size, say three
to ten times of standard deviation, will remain if they do
exist in the data. By implementing the iterative version, the
issue of over-estimation will be rectified and the effect of
such intermediate-sized outliers on the estimated parameters
is removed. Of course, if outliers are found to scatter on both
sides of the fitted hyperplane by the sign-constrained robust
method, then running the iterative version is not necessary.

7 Conclusions

Robust estimation has been one of the most intensive research
topics in statistics since the publication of Huber (1964) pio-
neering paper and has found widest possible applications
in science and engineering. All robust estimators have been
known to have a breakdown point of only up to around 0.3
in linear models with at least two unknown parameters, ex-
cept for repeated medians (Siegel 1982), the LMS and least
trimmed squares methods (Rousseeuw 1984). Although the
method of repeated medians is known to have a 0.5 break-
down point, this can only be true for noiseless or well designed
data. If data contamination is sufficiently large and if some of
the good data are close to each other, the failure of repeated
medians should be routinely observed. The LMS and least
trimmed squares methods have been found to break down if
some of data (good or bad) are concentrated together (see
e.g. Stefanski 1991; Dodge 1992; Wang and Suter 2003). In
this paper, we have further shown that the LMS can still
break down due to a single outlier, even if no clustering
phenomenon can be observed in the data. On the other hand,
a high breakdown robust method has been known to be least
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Fig. 6 150 simulated good data (with mark +), 400 uniformly distributed outliers (with square mark), 50 scattered outliers (with triangle mark)
around two different points and the fitted (solid) line obtained by the iterative version of the sign-constrained robust method. The horizontal and
vertical axes show the values of xi and yi , respectively

efficient (see e.g. Stefanski 1991; He 1994). To achieve both a
high breakdown point and efficiency, one has to combine high
breakdown methods with diagnostic tools or M-estimation
(see e.g. Yohai 1987). Unfortunately, (prerequisite) high
breakdown robust estimators such as repeated medians and
the LMS method can break down routinely.

We have proposed the sign-constrained robust method,
which is intuitively very appealing and has a maximum break-
down point of 0.5. Unlike other robust estimators with a high
breakdown point such as repeated medians (and/or the LMS
method), which are based on a least possible number of data
to derive the corresponding estimate of the parameters, the
sign-constrained robust method automatically adapts itself
to the data and attempts to use a maximum possible num-
ber of good data to estimate the model parameters. Thus it
is also highly efficient. Since the objective function is essen-
tially identical with least squares, the sign-constrained robust
method may also be properly called sign-constrained robust
least squares and is straightforwardly applicable to correlated
data/observations; and consequently the estimated results are
undoubtedly unbiased and comparable with least squares in
terms of efficiency or accuracy. Thus the sign-constrained
robust least squares method is the first perfect combination
of best robustness and best efficiency.

Unlike the least median of squares method and repeated
medians, the sign-constrained robust least squares method at-
tempts to employ a maximum possible number of good data
to derive the robust solution and thus will not be affected
by partial multi-collinearity among part of the data. Because
of the constraints (8b) and (8c), robustness of the method is
not affected by the weights of observations either. As a by-
product, we can also obtain a robust and efficient estimate
of scale parameter or unknown variance of unit weight. In

Earth sciences and image processing, one often has to recon-
struct objects from data which may contain more than 50%
of contamination, for example, due to the ambiguity of earth-
quake focal mechanism or due to scanning noise. As a result,
the iterative version of the sign-constrained robust method
has been implemented and shown to be capable of resisting
against more than 50% of data contamination. In fact, if the
contamination is sufficiently large (though only up to 50%)
and lies on one side of the fitted surface, then the iterative
version should be applied in order to further eliminate the ef-
fect of outliers of intermediate size (if any) on the estimated
parameters.

Although M-estimates have been proved to have a break-
down point of 1/(t +1) (see e.g. Maronna 1976; Donoho and
Huber 1983), we have shown that the weights of observations
can invalidate this result and bring the breakdown point of
M-estimates of Huber’s type to zero. We have also shown
that the weights of observations can also bring the breakdown
point of the L1 method to zero, even if no influential outliers
are contained in the data. In fact, the weighting system is one
of the three basic components in the linear model and should
be incorporated in the development of robustness measures.
By assuming a prior distribution for the signs of outliers, we
have developed the concept of subjective breakdown point,
which may be thought of as an extension of stochastic break-
down by Donoho and Huber (1983) but can be important
in explaining real-life problems in Earth sciences and image
reconstruction.

Finally, we would like to note that the sign-constrained
robust least squares method is simply a robust version of
the least squares method with the ability to resist against
outliers. Thus it is applicable, in principle, to any science and
engineering problems, for which the least squares method
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can be used to solve, not to mention geodetic problems which
motivated the invention of least squares more than two cen-
turies ago, as far as outliers are an issue of concern. Since
the new method is of the nature of global optimization, a big
problem (of high dimension) will need a good computing
resource to support.
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