
Mathematical Methods of Operations Research
https://doi.org/10.1007/s00186-024-00854-3

ORIG INAL ART ICLE

Augmenting bi-objective branch and bound by
scalarization-based information

Julius Bauß1 ·Michael Stiglmayr1

Received: 7 February 2023 / Revised: 10 January 2024 / Accepted: 10 February 2024
© The Author(s) 2024

Abstract
While branch and bound based algorithms are a standard approach to solve single-
objective (mixed-)integer optimization problems, multi-objective branch and bound
methods are only rarely applied compared to the predominant objective spacemethods.
In this paper we propose modifications to increase the performance of multi-objective
branch and bound algorithms by utilizing scalarization-based information. We use the
hypervolume indicator as a measure for the gap between lower and upper bound set to
implement a multi-objective best-first strategy. By adaptively solving scalarizations in
the root node to integer optimality we improve both, upper and lower bound set. The
obtained lower bound can then be integrated into the lower bounds of all active nodes,
while the determined solution is added to the upper bound set. Numerical experiments
show that the number of investigated nodes can be significantly reduced by up to 83%
and the total computation time can be reduced by up to 80%.

Keywords Multi-objective optimization · Multi-objective branch and bound · Integer
programming · Hypervolume indicator

1 Introduction

Many optimization problems occurring in real-word applications include a conflict of
interests and goals, or secondary objectives, in a word, they are multi-objective. Thus,
there is (in general) not one solution that optimizes all objectives at once. Following the
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a posteriori paradigm of decision making, we aim at determining the set of so-called
efficient solutions or the images, the so-called non-dominated points, which cannot be
improved in one objective without deterioration in at least one other objective. Thus,
efficient solutions are reasonable choices for decision makers.

As we are considering specifically bi-objective integer linear programs and their
solution with multi-objective branch and bound methods, the following literature sur-
vey will also focus on this and closely related topics. A comprehensive introduction to
multi-objective optimization in general is given, e.g., in Steuer (1986), Ehrgott (2005).

Solution approaches for multi-objective optimization problems are often cate-
gorized in: objective space and decision space methods. Objective space methods
scalarize the underlying problem, i. e., it is replaced by a series of single-objective
problems to determine successively the set of efficient solutions. In the case of
multi-objective integer programming, these scalarized problems can be solved with
commercial integer programming solvers like CPLEX or Gurobi. The utilization of
these optimized, single-criteria solvers are a major advantage and one of the reasons
why those methods are predominant in multi-objective optimization.

There are numerous objective space methods and a popular one is the ε-constraint
method that was introduced for two objectives by Haimes et al. (1971). In every
iteration the first objective is optimized with an updated constraint to ensure an
improvement regarding the second objective. In Laumanns et al. (2006) an extension
to three and more objectives is presented. Many approaches based on the ε-constraint
method have been published in the last decades, for example Boland et al. (2017) and
Kirlik and Sayın (2014) combine the method with reduction of dimension in the tri-
respectively multi-dimensional case.

Theweighted sum scalarization is an objective spacemethod based on the optimiza-
tion of aweighted sumof the objective functions using non-negativeweights. Note that
not all efficient solutions can be determined as optimal solutions of the weighted sum
scalarization using suitableweights (see, e. g. Aneja andNair 1979). Efficient solutions
which can be obtained by using weighted sum scalarization are denoted as supported
efficicent and their corresponding non-dominated points are located on the boundary
of the convex hull of feasible image points. Extensions of the weighted sum method
to the multi-objective case are proposed in Przybylski et al. (2010a), Özpeynirci and
Köksalan (2010), Bökler and Mutzel (2015), and Przybylski et al. (2019).

Ulungu and Teghem (1995) introduced the so-called two-phase method for bi-
objective problems. In the first phase the extreme supported non-dominated points are
generatedwith an algorithm similar to the initial weighted sum approach. In the second
phase the remaining non-dominated points are generated by searching in triangles
defined by two consecutive extreme supported non-dominated points. In Przybylski
et al. (2008) and Tuyttens et al. (2000) problem specific algorithms are suggested for
the second phase, while in Przybylski et al. (2010b) a two-phase method for problems
with more than two objectives is proposed.

The augmented weighted Tchebycheff method, first presented in Steuer and Choo
(1983), minimizes the augmented weighted Tchebycheff distance between a pre-
defined reference point and the set of feasible image points. Dächert et al. (2012)
suggested an adaptive choice of the augmentation term for the bi-objective case.
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In Boland et al. (2015a), Boland et al. (2015b) (for the bi-objective case), Dächert
and Klamroth (2014), and Klamroth et al. (2015) (for the tri- respectively multi-
objective case) search region splitting methods are proposed. In this class of objective
space methods, the search region (based on the already determined non-dominated
points) is splitted into so-called search zones on which scalarizations are solved ind-
pendently.

Besides their advantages, objective space methods share a shortcoming: In each
iteration a scalarized integer program is solved from scratch. Even though in some
objective space methods starting solutions can be transfered from previous iterations,
a large number of very similar problems has to be solved. In order to avoid this effort,
decision space methods, mainly the branch and bound method, have been increasingly
investigated in the recent years.

Klein and Hannan (1982) developed one of the first branch and bound algorithms
formulti-objective integeger programswith a typical one tree structure. InKiziltan and
Yucaoğlu (1983) a general branch and bound framework for multi-objective integer
programs with binary variables is presented. Ulungu and Teghem (1997) and Visée
et al. (1998) proposed problem specific branch and bound approaches for bi-objective
Knapsack problems, where the latter approach is integrated in a two-phase method.

Mavrotas and Diakoulaki (1998) extend the branch and bound approach to multi-
objective mixed integer programs. Parts of the algorithm are refined in Mavrotas
and Diakoulaki (2005). In Vincent et al. (2013) this algorithm is improved and it is
shown that the original algorithm is not correct because the final dominance test is
incomplete. In Belotti et al. (2012) a branch and bound method is presented that can
handle bi-objectivemixed integer programswith continious variables in both objective
functions.

The branch and bound method proposed in Sourd and Spanjaard (2008) uses a set
of points as lower bound instead of just using a single point. Furthermore hyperplanes
are used to fathom nodes by dominance. In Stidsen et al. (2014) this idea is continued.
They use hyperplanes as a lower bound set that are generated by solving weighted
sum scalarizations. Additionally they present the so-called Pareto branching and the
slicing technique. With Pareto branching it is possible to divide the objective space
to possibly ignore parts of it in specific nodes. Slicing partitions the objective space
in equally large parts and a respective slice can be fathomed if it is dominated by an
already found integer point. In Stidsen andAndersen (2018) this algorithm is improved
and an approach to parallelize the algorithm is presented. Based on this, the idea Pareto
branching is further investigated in Parragh and Tricoire (2019) and Gadegaard et al.
(2019) for the bi-objective case and Forget et al. (2022) for the tri-objective case.
A self-contained survey of multi-objective branch and bound approaches is given in
Przybylski and Gandibleux (2017).

In this paperwepresent a bi-objective branch andbound algorithm that is augmented
by scalarization-based information.Wemake use of optimized single-objective solvers
for scalar integer programs and integrate the resulting information into the bi-objective
branch and bound by improving lower and upper bounds. Furthermore, we propose a
new adaptive node selection strategy, which relies on objective space information. In
our numerical analysis we show the effectiveness of these improvements by comparing
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them with a generic multi-objective branch and bound algorithm, which we use as our
baseline algorithm.

The remainder of the article is organized as follows: In Sect. 2, we introduce nota-
tions and definitions for multi-objective optimization. In Sect. 3, we present a general
multi-objective branch and bound framework and its key components. Furthermore,
we describe a specific (however standard)multi-objective branch and bound algorithm,
which will be used as baseline implementation in our numerical tests. In Sect. 4, we
present augmentations of the multi-objective branch and bound, that utilize objective
space information to improve the node selection as well as the computation of upper
and lower bounds. We provide numerical results in Sect. 5 and in Sect. 6, we outline
conclusions and outlooks for further research.

2 Preliminaries

We introduce a general multi-objective integer linear program which can be written
in the form:

min
(
z1(x), . . . , z p(x)

)�
s.t. A x ≤ b

x ≥ 0
x ∈ Z

n .

(MOILP)

Thereby, z(x):=(z1(x), . . . , z p(x))� = C ·x ∈ R
p (with p ≥ 2) denotes the objective

function vector, withC ∈ R
p×n thematrix of objective coefficients. The set of feasible

solutions X :={x ∈ Z
n : A ≤ b, x ≥ 0} is a subset of the decision space R

n , while its
image Y :={C x : x ∈ X} is a subset of the objective space R

p.
We use the Pareto concept of optimality which relies on the componentwise order.

Let y1, y2 ∈ R
p, then we define the corresponding dominance relations as follows:

• y1 � y2, i.e., y1 weakly dominates y2 if y1k ≤ y2k for k = 1, . . . , p,
• y1 < y2, i.e., y1 strictly dominates y2 if y1k < y2k for k = 1, . . . , p,
• y1 ≤ y2, i.e., y1 dominates y2 if y1 � y2 and y1 �= y2.

A feasible solution x ∈ X is called efficient if there is no other solution x̂ ∈ X
dominating it, i.e., z(x̂) ≤ z(x). A feasible solution x ∈ X is called weakly efficient
if there is no x̂ ∈ X such that z(x̂) < z(x). The set of efficient solutions is denoted
by XE . By YN = {z(x) ∈ Y : x ∈ XE } we denote the set of the non-dominated points
in the objective space. Moreover, for any set Q ⊆ R

p we denote by QN the set of its
non-dominated points (i.e., q ∈ QN ⇐⇒ �q ′ ∈ Q : q ′ ≤ q). For a comprehensive
introduction to multi-objective optimization see, e. g., Ehrgott (2005).

In this article we consider a minimal complete set as solution of a multi-objective
optimization problem. A minimal complete set denotes the set of all non-dominated
points YN and one efficient solution for each non-dominated point. See Serafini (1987)
for a comparison of solution concepts in multi-objective optimization.
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A standard solution approach in multi-objective optimization is the weighted sum
scalarization given in (WSλ).

min WSλ(x):=λ�z(x) =
p∑

i=1

λi zi (x)

s.t. x ∈ X

(WSλ)

Obviously, every optimal solution of the weighted sum scalarization for λ ∈
R

p
>:={λ ∈ R

p : λ > 0} is efficient for (MOILP). However, in general not all effi-
cient solutions are optimal solutions of a corresponding weighted sum problem. An
efficient solution x ′ ∈ XE is called supported if there is a weighting vector λ′ ∈ R

p
>

such that x ′ is optimal for (WSλ) for λ = λ′, otherwise x ′ is unsupported. Note that
the non-dominated points corresponding to supported efficient solutions are located
on the boundary of the convex hull of Y , while the unsupported non-dominated points
are located in its (relative) interior.

As already mentioned in the introduction the computation of upper and lower
bounds on the non-dominated set is a crucial component of any multi-objective branch
and bound algorithm. The tightest componentwise upper and lower bounds of YN are
the ideal point y I and the Nadir point yN given by:

y Ik = min
y∈Y yk and yNk = max

y∈YN
yk for k = 1, . . . p.

Obviously, y I � y � yN holds for every y ∈ YN , i.e., YN is contained in the hyperbox
spanned by the corner points y I and yN . However, these single point bounds are in
general very weak except for the degenerate case of y I = yN . This motivates to
consider bound sets instead of bounds consisting of a single point. We will rely on the
definition of bound sets proposed in Ehrgott and Gandibleux (2007). Let R

p
�:={y ∈

R
p : y � 0}, then
• A lower bound set L ⊂ R

p for YN is a

– R
p
�-closed (i.e., the set L + R

p
� is closed),

– R
p
�-bounded (i.e., there exists a y ∈ R

p such that L ⊂ y + R
p
�)

– stable set (i.e., L ⊂ (L + R
p
�)N ),

such that YN ⊂ (L + R
p
�).

• An upper bound set U ⊂ R
p for YN is a

– R
p
�-closed,

– R
p
�-bounded,

– stable sets,

such that YN ⊂ cl
(
(U + R

p
�)�

)
.
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The upper bound and lower bound that we will define for our branch and bound
framework in Sect. 3 will suit these definitions. We say a lower bound L is weakly
dominated by an upper bound U if for all l ∈ L there exists an u ∈ U such that u � l.

In the following we restrict ourselves to bi-objective binary linear optimization
problems, i. e., problemswith two linear objective functions and variables x ∈ {0, 1}n :

min z(x) = (
z1(x), z2(x)

)�
s.t. A x ≤ b

x ∈ {0, 1}n .
(BO01LP)

3 A generic multi-objective branch and bound framework

In this section we present a generic multi-objective branch and bound framework,
which we specify and augment by using scalarization based information in the then
following sections.

Branch and boundmethods follow a “divide and conquer” paradigm.Aproblem that
is too hard to be solved directly, is divided into smaller and thus easier subproblems.
Thereby, subproblems are associated with nodes in a tree data structure according to
their descent, i.e., node i is a descendant node of node j iff the feasible set of the
subprobem associated with node i is a subset of the feasible set of the subproblem
associated with node j . The corresponding subproblems of the child nodes are created
by subdividing the feasible set of the corresponding (sub)problem of the parent node.
Starting with the root node, to which the original optimization problem is associated,
the algorithm selects in each iteration one active node and updates its lower bound and
upper bound. Then the active node can be fathomed if the corresponding subproblem
is either solved or irrelevant for the determination of a minimal complete set. If we
cannot prune we subdivide the corresponding problem into new subproblems and
create corresponding child nodes (branching). For a more detailed introduction and
survey ofmulti-objective branch and bound algorithms see Przybylski andGandibleux
(2017). A recent survey of single-objective branch and bound frameworks is given e.g.
in Morrison et al. (2016). In the following we specify the lower bound, upper bound,
branching rule and node selection we use in our framework.
Lower bound: Lower bound sets are often determined by solving relaxations of the
respective subproblem. Like in the single-objective case, the most frequently used
relaxations are linear and convex relaxations. In order to solve the linear relaxation
we are using in our framework, we apply Benson’s outer approximation algorithm
(Benson 1998; Ehrgott et al. 2012). The algorithm is initiated with a lower bound,
which is improved in every iteration by generating cuts.Due to the outer approximation
structure the algorithm can be aborted at any time returning a valid lower bound.
Alternatively, linear (or convex) relaxations canbeobtainedusing adichotomic scheme
(see, for example, Aneja and Nair 1979; Özpeynirci and Köksalan 2010; Przybylski
et al. 2010a). In the following we denote a lower bound set L as convex lower bound
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set or convex lower bound if L + R
2≥ is a convex set. Note that the set L is thereby

not necessarily convex.
Upper bound:The upper bound set, in the following denoted byU , is stored in the form
of a so-called incumbent list. Throughout the run of the algorithm, it contains all integer
feasible solutions and their corresponding outcome vectors that are not dominated
by another feasible solution found so far. In every iteration the extreme supported
solutions of the computed lower bound sets are checked for integer feasibility. An
integer feasible solution x̄ ∈ X is then appended to the incumbent list, if there is no
x ∈ U dominating x̄ , i. e., C(x) ≤ C(x̄). If a new solution x̄ is added to the incumbent
list U all solutions x ∈ U which are dominated by x̄ (C(x̄) ≤ C(x)) are removed from
it, that is

U � {x̄}:=
{
U if ∃x ∈ U : C(x) ≤ C(x̄)

{x̄} ∪ {x ∈ U : C(x̄) � C(x)} otherwise.

Note that an update of the incumbent list requires a subsequent update of the list of
local upper bounds. A detailed description of local upper bounds, their computation
and update in an arbitrary number of criteria is given in Klamroth et al. (2015). In
this framework we start with an empty upper bound set. However, it is also possible
to initialize the incumbent list by heuristic methods, or by solving scalarizations like,
e.g., in the two-phase method (Ulungu and Teghem 1995; Visée et al. 1998).
Node selection: In every iteration of the algorithm an unexplored node is selected
from the tree of subproblems. This node is called active node. The order in which
the nodes of the tree are considered has a significant impact on the number of created
nodes that have to be explored and thus on the computation time.

Two types of strategies need to be distinguished: static strategies anddynamic strate-
gies. The two most common examples of static strategies are the depth-first strategy
and the breadth-first strategy. Most multi-objective branch and bound algorithms in
literature follow a depth-first strategy. Thus, we use this strategy for our baseline
implementation as well.

In contrast to the single-objective case, dynamic node selection strategies are rarely
applied in themulti-objective case.Dynamic node selection strategies are, for example,
applied in Belotti et al. (2012), Stidsen et al. (2014), Jesus et al. (2021).
Fathoming: In order to avoid the total enumeration of all feasible solutions, nodes are
fathomed if the respective subproblem is either solved to optimality or does not contain
solutions which are necessary to determine a minimal complete set. In particular, there
are three different situations in which a node can be fathomed:

i) Fathoming by infeasibility: If the LP-relaxation of a subproblem is infeasible then
the corresponding subproblem is infeasible as well, since the feasible set of the
subproblem is a subset of the feasible set of its relaxation.

ii) Fathoming by optimality: Similar to the single-objective case we can fathom a
node by optimality if the lower bound L is equal to the upper bound U . This
implies the subproblem is solved to optimality and the associated node must not
be subdiveded further. However, this can happen in the multi-objective case only
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if the lower and upper bound consist of the same single point, namely the ideal
point.

iii) Fathoming by dominance: A node can be fathomed by dominance if all feasible
solutions of this subproblem are dominated by points in the incumbent list. In order
to check dominance for all feasible outcome vectors of a subproblem we compare
the lower bound L of the corresponding node to the current upper bound U . If for
all l ∈ L there is a point in the incumbent list u ∈ U with u � l then all feasible
points in the subtree are dominated by the current incumbent list. In other words,
if there is no local upper bound defined by U above the computed lower bound the
node can be fathomed by dominance.

Branching: As mentioned in the beginning of this section, one of the key aspects of
branch and bound is iterative subdivision into smaller subproblems. Thereby subprob-
lems are associated with nodes in a tree, such that the subproblem associated to a child
node is obtained by one branching step. Since we consider binary optimization prob-
lems (BO01LP), we can divide a (sub)problem into two new subproblems by fixing a
specific variable to 0 and respectively to 1 in the other subproblem. This results in a
binary branch and bound tree.

The branching rule determines which variable is selected as branching variable
in each iteration. Thereby, one distinguishes between static and dynamic strategies.
Static strategies determine an order of the variables in advance. In each iteration of
the algorithm the next variable in this list is used as branching variable. With dynamic
strategies the branching variable is selected by considering information obtained from
previous iterations, i.e., from the solution of (linear) relaxations of (sub)problems.

The basic idea of static strategies for single-objective problems is to sort the vari-
ables, beginning with the most promising according to the objective function values
(see, e. g., Kellerer et al. 2004). However, this cannot be easily extended to the multi-
objective case due to conflicting objective functions. Nevertheless there are some
approaches to extend static strategies to the multi-objective case (see for example
Ulungu and Teghem 1997; Bazgan et al. 2009).

In contrast to most of the published papers which apply static strategies we use a
dynamic strategy as proposed in Belotti et al. (2012). By solving the linear relaxation
of a (sub)problem we obtain the lower bound set L. For all extreme points of L we
check how often a variable is fractional in the corresponding solutions. As branching
variable we choose the one which is most often fractional.

4 Using objective space information inmulti-objective branch and
bound

In this section, we propose modifications which improve the computational effi-
ciency of bi-objective branch and bound algorithms in two critical aspects. One of the
weaknesses of multi-objective branch and bound as compared to its single-objective
counterpart is the bounding procedure. While any feasible solution x̄ ∈ X dominates
w.r.t. one (linear) objective a half-space in decision space (i.e., {x ∈ R

n : c�x ≥ c� x̄}),
the set of feasible solutions which are dominated by a solution x̄ in p ≥ 2 objective
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functions (C ∈ R
p×n) forms a cone {x ∈ R

n : C x � C x̄}. The cone of dominated
solutions is smaller the more the objective functions are in conflict, leading also to a
larger number of efficient solutions. This implies that a significant part of the branch
and bound tree has to be enumerated and only a small number of branches can be
pruned by dominance. Despite of this general problem in multi-objective optimiza-
tion, this asks for good bounding procedures to avoid the unnecessary evaluation of
dominated branches. This however, requires good solutions in the incumbent list as
well as tight lower bounds.

In order to achieve this,we suggest a newbranching strategy and the hybridization of
branch and boundwith objective spacemethods.Wedetermine scalarized subproblems
adapted to the state of the branch and bound and solve these to integer optimality.

4.1 Branching strategy

The branching strategy comprises two subsequent decisions: the choice of the active
node and its branching into subproblems, i. e. the decision on which variable the
subproblem is branched. This second step is denoted as branching rule. We discuss
these two steps together since the order in which the nodes are considered has a
significant impact on the branched variable. Instead of the static depth- or breadth-
first we use a dynamic node selection strategy, while we rely on the most fractional
rule as branching rule.

The basic idea of our strategy is quite simple and a natural extension of choosing the
largest gap in the single-objective case (see, for example, Dechter and Pearl 1985). For
every created node we compute the approximate hypervolume gap between lower and
upper bound. We use the definition of hypervolume proposed in Zitzler and Thiele
(1999). In every iteration we choose the node with the largest hypervolume gap as
active node (cf. Jesus et al. (2021)). Note that when a node is created during the
branching process, the approximated hypervolume gap of the parent node is assigned
to it. We distinguish two variants of the hypervolume gap: the total hypervolume gap
and the local hypervolume gap. While the total hypervolume gapmeasures the volume
of the search region, i. e. the volume between lower and upper bound set, the local
hypervolume gap approach considers only the volume of the largest search zone, i. e.
the gap between a local upper bound and the lower bound set. For a more detailed
definition of search regions and search zones we refer to Klamroth et al. (2015).

Figure1 illustrates the two different approaches. Here, z1, . . . , z4 ∈ K ⊂ U are
points of the incumbent list and lu1, . . . , lu3 are their corresponding local upper
bounds, where K is a subset of the incumbent list containing just the points above the
lower bound of node n̄. The green line represents the lower bound. Figure1a shows how
to measure the total hypervolume gap of a node n̄, in the following denoted by thg(n̄).
For this approach we consider the approximated search region of the corresponding
node. Since there is a natural order in the bi-objective case, it is possible to consider the
approximated search zone of the first local upper bound, i.e. the local upper boundwith
the smallest z1-value. Therefore we define the two spanning points, which, together
with the corresponding local upper bound, define a triangle. The spanning points of
a local upper bound lu are defined by spi (lu):={l ∈ L : l3−i = lu3−i }, i = 1, 2. So,
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Fig. 1 Example of computation of the two different approximated hypervolume gap approaches

the approximate hypervolume gap of lu is given by

hg(lu):=1

2

∣∣sp1(lu)1 − lu1
∣∣ · ∣∣sp2(lu)2 − lu2

∣∣.

For the remaining local upper bounds we compute the hypervolume of slices as shown
in the illustration. The hypervolume of the slice of lui , i = 1, . . . , |K | − 1 is defined
as

sl(lui ):=
∣∣zi2 − sp2(lui−1)2

∣∣ + ∣∣lui2 − sp2(lui )2
∣∣

2
· ∣∣zi1 − lui1

∣∣.
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So, the total (approximated) hypervolume gap, which is assigned to node n̄, is given
by

thg(n̄):=hg(lu1) + sl(lu2) + · · · + sl(lu|K |−1).

The Fig. 1b–d show the computation of the local hypervolume gap. The local hyper-
volume gap of a node n̄ is considered as the largest approximated hypervolume gap of a
local upper bound corresponding to points in K . Therefore, the the local hypervolume
gap, which is assigned to node n̄, is defined by

lhg(n̄):= max
i=1,...,|K |−1

hg(lui ).

In the given example, B is the largest approximated hypervolume and therefore is
assigned to node n̄.

Note that in our presented algorithms in Sect. 4.2 the local upper bound is initialized
with the point (∞,∞)�. Therefore, it is possible to apply the new branching strategies
immediately at the beginning of the algorithm. Obviously, this approximation may
neglect significantly large parts of the search regions and search zones. However, the
idea of the approximated hypervolume gap eases computation and saves time. The
efficiency of these new dynamic branching strategies is shown in Sect. 5.

4.2 Augmenting branch and boundwith IP scalarizations

In this subsection, we introduce a method to incorporate scalarizations into branch
and bound. We build a hybrid branch and bound algorithm combining the partial enu-
meration of decision space with objective space information by solving scalarizations
to integer optimality.

An integer optimal solution x̄ of a scalarization can be used to update upper and
lower bound. Obviously, the corresponding image point z(x̄) can be added to the
incumbent list. Moreover, a scalarizing function and its optimal solution x̄ define a
level set, which can be included in the lower bound set for all descendant nodes. In
order to utilize these improved lower bounds in all nodes we solve the IP scalarizations
in the root node.

4.2.1 Using weighted sum scalarization

During the run of the branch and bound algorithm, a strategy triggers the IP solution
of weighted sum scalarizations in the root node. Thus, we solve problem (WSλ) for
for adaptively chosen values of λ ∈ R

2
>. Although we solve the IP scalarization in

the root node the parameter λ is gained from the currently active node. Thereby, λ

is determined by the largest approximated local hypervolume gap in the active node.
This gap is spanned by two points in the incumbent list together with their local upper
bound. Note that these points spanning the largest gap are already determined if the
local hypervolume gap branching strategy is applied. The corresponding value of λ

is determined by computing the normal to the hyperplane that is defined by those
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Fig. 2 Example of updating the lower and upper bound with the usage of the weighted sum scalarization

two points. Once λ is obtained, we can solve problem (WSλ) with a single-objective
integer linear programming solver. Let x̄λ be the optimal solution of the weighted
sum scalarization with weighting vector λ, then z(x̄λ) is a supported non-dominated
point of (BO01LP). Thus, we can add this point to the incumbent list (if it was not
found in previous iterations) and filter the resulting list for non-dominance. Moreover,
the solution of integer scalarizations can also be used to tighten the lower bound
set, since the level set {z ∈ R

2 : λ�z = WSλ(x̄λ)} provides the valid inequality
λ�z(x) ≥ WSλ(x̄λ) for all x ∈ X .

Figure2 illustrates the update of the lower and upper bound set. In Fig. 2a, z1, . . . , z4

indicate points that are currently in the incumbent list U and lu1, . . . , lu3 are the
corresponding local upper bounds. The point z(x̄λ) is obtained by solving a weighted
sum scalarization (WSλ) to integer optimality. Since the new point is not contained in
the incumbent list so far, we can update the upper bound as it is shown in Fig. 2b. The
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new incumbent list then reads as U :={z(x̄λ)} ∪ {z ∈ U : z(x̄λ) � z}. Moreover, the
lower bound set L can be updated by integrating the blue hyperplane into the lower
bound set, i. e. L:={z ∈ L + R

2
� : λ�z ≥ WS(x̄λ)}N as it is shown in Fig. 2c, d. In

this situation, both—the lower and upper bound—are updated, which is not the case
in general.

The example illustrates the benefits of hybridizing multi-objective branch and
bound with IP scalarizations. Due to weak bounding, nodes may not be fathomed by
dominance even if they do not contain additional non-dominated points. The tighter
upper bound increases the probability of fathoming a node by dominance in later itera-
tions of the algorithm. Also, the lower bound might be improved. Since we are solving
an IP scalarization in the root node, the obtained optimal level set is a valid inequality
for all subproblems. We combine our new branching strategy and the augmentation
with IP scalarizations to our first hybrid branch and bound approach.

Hybrid Branch and Bound Algorithm using Weighted Sum Scalarization

• Lower bound: linear relaxation
• Upper bound: incumbent list
• Node selection: node with the largest total/local hypervolume gap
• Branching rule: most fractional
• Adaptively solveweighted sum scalarizations in the root node to integer optimality
to improve lower and upper bounds by objective space information

Instead of using a static depth-first strategy (as in the general branch and bound
framework in Sect. 3) we apply the dynamic strategy based on the hypervolume gap
(c.f. Sect. 4.1). Even though the extreme points of the lower bound sets might be
updated by the weighted sum scalarization, the branching variable is selected based on
the original lower bounds. This is due to the fact that the preimages of such intersection
points of IP scalarizations and the lower bound set are in general not available. Note
that the weighted sum IP scalarizations are included adaptively into the branch and
bound. The description of their algorithmic control, however, is postponed to Sect. 4.3.

In order to conclude the description of the proposed hybrid branch and bound algo-
rithm using weighted sum scalarizations, we want to briefly discuss its advantages and
shortcomings. Firstly, it is easy to determine the scalarization parameter λ and to inte-
grate the hyperplane into the lower bound set. Its advantage, however, is that the lower
bound remains convex. Therefore, the check for fathoming by dominance remains
intuitive. Unfortunately, the weighted sum scalarization can only find supported effi-
cient solutions and the lower bound cannot be improved beyond the convex hull of
YN . This motivates us to consider the augmented weighted Tchebycheff scalarization,
a scalarization approach which can determine also unsupported efficient solutions.

4.2.2 Using augmented weighted Tchebycheff scalarization

We start by defining the weighted Tchebycheff norm: Let wi > 0, i = 1, . . . , p be
positive weights with

∑p
i=1 wi = 1. Then the weighted Tchebycheff norm of a vector
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z ∈ R
p is defined by

‖z‖w∞ := max
i=1,...,p

{
wi |zi |

}
. (1)

So, the weighted Tchebycheff scalarization of a multi-objective optimization problem
(MOILP) with respect to a given reference point s ∈ R

p can be written as:

min
{‖z(x) − s‖w∞ : x ∈ X

}
. (2)

If the reference point is chosen such that s < z(x) for all x ∈ X , every efficient solution
can be determined as optimal solution of the weighted Tchebycheff scalarization (2)
by variation of w ∈ R

p
+ (see, e.g., Miettinen 1998). Nevertheless, optimal solutions of

the weighted Tchebycheff scalarization correspond in general only to weakly efficient
solutions of the multi-objective problem (Steuer and Choo 1983; Miettinen 1998).
This shortcoming is compensated by an additive augmentation term in the augmented
weighted Tchebycheff norm

‖z‖w
τ := ‖z‖w∞ + τ ‖z‖1, (3)

where ‖z‖1 = |z1|+· · ·+|z p| denotes the L1-norm,wi ≥ 0, i = 1, . . . , p,
∑p

i=1 wi =
1 and τ > 0. Steuer and Choo (1983) proposed the augmented weighted Tchebycheff
scalarization given in (AWTw

τ ).

min AWTw
τ (x):=‖z(x) − s‖w

τ

s.t. x ∈ X
(AWTw

τ )

Thereby, the augmentation term makes the augmented weighted Tchebycheff norm
a strongly monotone norm and thus the objective function of (AWTw

τ ) a strongly
increasing achievement scalarizing function (Miettinen 1998). Consequently, every
optimal solution of (AWTw

τ ) is efficient for (MOILP).
Note that an appropriate choice of the parameter τ is difficult in general. On the

one hand, too small values of τ may lead to numerical difficulties. On the other hand,
non-supported efficient solutions might be suboptimal for (AWTw

τ ) if the value of
τ is too large. However, for bi-objective integer programming (Dächert et al. 2012)
propose an adaptive method to determine an optimal value of τ . We use the proposed
parameters w1, w2 and τ for our method.

As a reference point s we use the local ideal point of two adjacent non-dominated
points. Since the augmented weighted Tchebycheff scalarization can only determine
non-dominated points (and the corresponding efficient solutions) which are (strictly)
dominated by the reference point, we obtain a non-dominated point in this box.

The goal to improve the lower bound set beyond the convex hull of non-dominated
points is the motivation to solve augmented weighted Tchebycheff scalarizations to
integer optimality. Figure3 shows an example how such an update of the bounds
could look like. Here, z1 and z2 are two known non-dominated points (obtained with
the weighted sum IP scalarization). Point z3 is a non-supported non-dominated point
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Fig. 3 Example of updating the lower and upper bound with the usage of the augmented weighted Tcheby-
cheff scalarization

that has not been found yet in Fig. 3a. By using the local ideal point of z1 and z2 as
the reference point s, Fig. 3b illustrates how the non-dominated point z3 is found by
applying the augmented weighted Tchebycheff scalarization. In Fig. 3c, d the resulting
improvements of the lower and upper bound are shown. Obviously the lower bound
is improved beyond the convex hull of YN . We now define our second hybrid branch
and bound approach:

Hybrid Branch and Bound Algorithm using Augmented Weighted Tchebycheff
Scalarization

• Lower bound: linear relaxation
• Upper bound: incumbent list
• Node selection: node with the biggest total/local hypervolume gap
• Branching rule: most fractional
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• Adaptively solve weighted sum and augmented weighted Tchebycheff scalariza-
tions in the root node to integer optimality to improve lower and upper bounds by
objective space information

In addition to the weighted sum scalarization, we use the augmented weighted
Tchebycheff scalarization. Since two adjacent non-dominated points are required as
input of the augmented weighted Tchebycheff scalarization, we cannot rely on points
in the incumbent list, which are only non-dominated so far. In fact,we apply augmented
weighted Tchebycheff IP scalarizations only to boxes spanned by points obtained as
optimal solutions of the weighted sum scalarization. Thus, we do not rely on param-
eters from the currently active node, but solve the augmented weighted Tchebycheff
scalarization in the largest area defined by two adjacent known non-dominated points.

When using augmented weighted Tchebycheff IP scalarizations, the lower bound
can become tighter than the convex hull of the set of non-dominated points, which
reduces the area where new non-dominated points can be found. Additionally, we
can find non-supported non-dominated points in early stages of the algorithm. This
improves the upper bound in the beginning resulting in a higher chance of fathoming a
node by dominance. However, this also implies that the lower bound gets non-convex
in general, which makes the fathoming tests significantly harder, and the lower bound
improves only locally.

4.3 Algorithmic control of IP scalarizations

In the previous subsections we did not specify when to solve IP scalarizations, which
implies a significant computational cost itself. However, this might be the most crucial
part within the presented methods. Obviously, we aim at gaining as much information
as possible by solving IP scalarizations. More objective space information will lead
to tighter bounds that reduce the number of created nodes, due to a higher probability
of fathoming by dominance and smaller search zones. Moreover, a reduced number
of created nodes will reduce the total computation time. At the same time, solving
overly many IP scalarizations will have a negative impact on the computation time.
Furthermore, at a certain point the lower and upper bound will not improve anymore
when solving additional IP scalarizations.

So, there exists a trade-off between the reduction of the number of created subprob-
lems and the decrease of the computation time. The difficulty is to find an appropriate
condition to trigger an IP scalarization. Obviously, solving IP scalarizations more fre-
quently in the beginning of the branch and bound algorithm is very promising. The
earlier the lower and upper bounds are improved the more nodes might be fathomed.
Moreover, solving the IP scalarization when the active node has weak bounds will
lead to stronger improvements than in later stages of the algorithm. This is comple-
mented by our adaptive branching strategy, which tends to select subproblems with
weak lower bounds first.

The hybrid branch and bound algorithm using augmented weighted Tchebycheff
scalarization entails also another problem. The augmented weighted Tchebycheff
scalarization improves the lower bound just locally. If we use this scalarization at
the beginning of the algorithm instead of the weighted sum scalarization, this could
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lead to an increase of created nodes. Once again, the intuitive idea is to start with
the weighted sum IP scalarization more frequently in the beginning of the algorithm.
This ensures that the lower bound improves globally at early stages of the branch and
bound. The augmented weighted Tchebycheff scalarization should be used in later
stages of the algorithm to find non-supported non-dominated points and to improve
the lower bound locally. The efficiency of this idea and other approaches will be shown
in the next section where we present numerical test results.

5 Numerical results

All algorithms were implemented in Julia 1.7.1 and the linear relaxations were solved
with Bensolve 2.1 (Löhne and Weißing 2017). The numerical tests were executed on
a single core of a 3.20 GHz Intel® Core™ i7-8700 CPU processor in a computer with
32 GB RAM, running under openSUSE linux Leap 15.3.

We present numerical results of our new approaches and compare them to the
general branch and bound framework presented in Sect. 3 which we use as baseline
implementation. We consider three different types of problems: multidimensional
knapsack problems, assignment problems and discrete facility location problems. The
implementation of the proposed multiobjective branch and bound method and the
considered benchmark instances are publicly available (Bauß and Stiglmayr 2023).
Multiple combinations of parameter settings are used to solve these test problems.
Thereby, we compare the average number of explored nodes, the average number of
solved IPs and the average computation time for 20 instances per problem size. The
different evaluated approaches are

• the generic bi-objective Branch and Bouch (BB),
• bi-objective branch and bound using the local (BS1) respectively global (BS2)
hypervolume gap as node selection criterion,

• hybrid branch and bound including weighted sum IP scalarizations (WS), and
• different combinations of the hybrid branch and bound algorithm using weighted
sum IP scalarization (M1.α.β) and hybrid branch and bound algorithm using
weighted sum and augmented weighted Tchebycheff IP scalarization (M2.α.β.γ ).

The parameter α ∈ {1, 2, 3} controls how often IP scalarizations are applied. Since
the number of IP scalarizations is chosen depending on the problem class, the meaning
of the different values for α is described in detail in the corresponding subsections.
In general, however, the larger the parameter α is chosen, the fewer IP scalarizations
are solved. With β we distinguish between the local (β = 1) and the global (β = 2)
hypervolume gap strategy. In the hybrid branch and bound algorithm using augmented
weighted Tchebycheff scalarizationwe also distinguish between integrating the objec-
tive space information of the augmented weighted Tchebycheff into the lower bound
(γ = 1) or not (γ = 2).

Note that the parameter values have been chosen based on preliminary results
obtained from a different sets of instances, where they shown to provide good results.
Thus, the parameter values are chosen depending on the problem class but are not

123



J. Bauß, M. Stiglmayr

optimized w.r.t. the specific test instances. Hence, we avoid an instance depending
fitting of the parameters to the data set.

5.1 Bi-objective multidimensional knapsack problems

We consider bi-objective, multidimensional knapsack problems with one, two and
three linear restrictions (i. e. m = 1, 2, 3). For every problem size we randomly gen-
erate 20 instances of the form

max
n∑

i=1

cki xi k = 1, 2

s.t.
n∑

i=1

wi xi ≤ b

n∑

i=1

vi j xi ≤ d j j = 1, . . . ,m − 1

x ∈ {0, 1}n

with cki ∈ [50, 100], wi ∈ [5, 15], b = 5 n, vi j ∈ [5, 15] and d j = ⌊ r n
2

⌋
with

r ∈ [5, 15]. Depending on the parameter α we specify when and how often IP scalar-
izations are solved. In M1.1.β andWS we apply the weighted sum scalarization every
10-th iterations. In M1.2.β we apply it every 10-th iteration but only within the first
n2 iterations. In M1.3.β we apply the weighted sum scalarization every 10-th iteration
within the first n2/3 iterations, every n-th iteration within the next n2/3 iterations
and every 2n-th iteration within the third n2/3 iterations. In M2.1.β.γ we apply the
weighted sum scalarization every 10-th iteration and every 50-th iteration the aug-
mented weighted Tchebycheff scalarization is used instead. In M2.2.β.γ we operate
like inM1.2.β but after thefirstn2 iterationsweapply the augmentedweightedTcheby-
cheff scalarization every 50-th iteration. In M2.3.β.γ we operate like in M1.3.β but
after the first n2 iterationswe apply the augmentedweighted Tchebycheff scalarization
every 50-th iteration. If a scalarization cannot be applied or the same IP scalarization
has already been solved before, no IP scalarization is solved in that iteration.

First of all, we notice that our branching strategies have a huge impact on the number
of explored nodes and the computation time in knapsack problems. We observe that in
general the local hypervolume gap strategy works better than the global hypervolume
gap strategy.With the local strategywe can reduce the number of explored nodes by up
to 76% (Table 1c, b) and the computation time by up to 73% (Table 1c). Although the
local strategy works better the global hypervolume gap strategy has also a significant
impact. The number of explored nodes can be reduced by up to 58% (Table 2c) and the
computation time by up to 52% (Table 2c). The number of nodes and the computation
time is reduced in all our approaches and we can notice that combinations with the
local hypervolume strategy work better.

By limiting the number of solved weighted sum IPs (i. e. in M1.2.β, M1.3.β,
M2.2.β.γ andM2.3.β.γ ) we notice two consequences. The number of nodes increases
while the number of solved IPs decreases. Although the number of nodes (and thus
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Table 1 Numerical results of the
bi-objective, multidimensional
knapsack problems

(a) Knapsack problem, m = 1, n = 50

Version Nodes Time (s) Solved IPs

BB 27916.3 18.153 0.0

BS1 11788.1 8.339 0.0

WS 14270.7 10.507 33.75

M1.1.1 10789.7 8.452 26.4

M1.2.1 10793.5 8.188 21.2

M1.3.1 10795.7 8.116 17.95

M2.1.1.1 9888.5 10.873 48.7

M2.2.1.1 10140.3 9.437 32.65

M2.3.1.1 10521.0 8.774 25.65

M2.1.1.2 9840.1 8.396 45.55

M2.2.1.2 10130.6 8.422 32.35

M2.3.1.2 10401.8 8.288 26.25

BS2 16739.8 11.397 0.0

M1.1.2 11026.3 8.861 26.1

M1.2.2 11024.5 8.860 19.85

M1.3.2 11047.4 8.645 16.05

M2.1.2.1 10071.8 10.907 45.85

M2.2.2.1 10421.4 9.587 31.8

M2.3.2.1 10583.2 9.448 24.45

M2.1.2.2 9994.1 8.940 46.65

M2.2.2.2 10413.4 8.820 32.55

M2.3.2.2 10568.9 8.727 25.15

(b) Knapsack problem, m = 1, n = 80

Version Nodes Time (s) Solved IPs

BB 153938.9 186.330 0.0

BS1 36392.0 50.952 0.0

WS 58825.7 79.545 54.0

M1.1.1 34337.7 50.431 41.65

M1.2.1 34333.9 50.312 33.1

M1.3.1 34307.1 50.505 26.35

M2.1.1.1 31643.7 81.625 100.2

M2.2.1.1 32708.9 68.939 76.2

M2.3.1.1 32986.3 69.848 63.6

M2.1.1.2 31274.5 46.721 102.85

M2.2.1.2 32795.7 48.576 76.3

M2.3.1.2 33025.8 48.358 63.4
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Table 1 continued (b) Knapsack problem, m = 1, n = 80

Version Nodes Time (s) Solved IPs

BS2 90976.0 116.847 0.0

M1.1.2 39745.1 59.321 45.25

M1.2.2 40083.2 59.350 31.2

M1.3.2 39918.1 58.999 24.5

M2.1.2.1 31905.8 80.505 99.7

M2.2.2.1 34496.9 79.444 84.0

M2.3.2.1 34571.7 72.955 65.15

M2.1.2.2 32074.9 48.510 104.85

M2.2.2.2 34169.8 51.464 87.15

M2.3.2.2 34943.3 51.887 63.1

(c) Knapsack problem, m = 1, n = 100

Version Nodes Time (s) Solved IPs

BB 297345.3 484.676 0.0

BS1 68920.5 128.967 0.0

WS 128080.8 224.587 66.95

M1.1.1 67369.1 128.665 54.1

M1.2.1 67370.1 128.924 39.95

M1.3.1 67353.3 128.993 32.9

M2.1.1.1 58214.2 198.683 156.85

M2.2.1.1 61533.1 179.516 123.0

M2.3.1.1 62127.3 177.621 104.55

M2.1.1.2 58151.3 112.575 158.1

M2.2.1.2 61490.6 118.600 120.1

M2.3.1.2 61762.6 118.306 108.65

BS2 187306.9 318.524 0.0

M1.1.2 73766.2 144.684 54.75

M1.2.2 74065.4 144.677 37.9

M1.3.2 73865.0 144.306 31.0

M2.1.2.1 59512.7 200.754 158.05

M2.2.2.1 64489.2 192.211 127.0

M2.3.2.1 64330.5 187.803 114.65

M2.1.2.2 60470.8 118.479 157.75

M2.2.2.2 64943.8 127.428 123.5

M2.3.2.2 64711.1 126.525 113.5

(d) Knapsack problem, m = 2, n = 50

Version Nodes Time (s) Solved IPs

BB 32655.6 25.8684 0.0

BS1 10982.3 9.6578 0.0
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Table 1 continued (d) Knapsack problem, m = 2, n = 50

Version Nodes Time (s) Solved IPs

WS 14180.9 13.1749 33.25

M1.1.1 9784.7 9.5159 26.6

M1.2.1 9782.5 9.2684 19.65

M1.3.1 9791.1 9.1580 14.85

M2.1.1.1 8900.7 12.6639 47.75

M2.2.1.1 9407.5 11.5112 34.5

M2.3.1.1 9507.5 11.0256 24.8

M2.1.1.2 8892.9 9.2702 47.0

M2.2.1.2 9370.2 9.2053 33.05

M2.3.1.2 9484.3 9.1161 24.75

BS2 15639.2 13.1246 0.0

M1.1.2 10665.3 10.8423 28.5

M1.2.2 10671.3 10.5141 19.4

M1.3.2 10854.2 10.5765 15.7

M2.1.2.1 9045.3 12.8916 48.9

M2.2.2.1 9629.7 12.1913 34.9

M2.3.2.1 9814.7 11.6068 28.1

M2.1.2.2 9030.0 9.5854 48.2

M2.2.2.2 9608.5 9.7621 36.05

M2.3.2.2 9787.6 9.6722 28.35

the number of considered subproblems) is increasing, the total computation time
decreases. This implies that the reduced computation time to solve IP scalarizations
compensates the increase of nodes, which results in a trade-off between the num-
ber of explored nodes and the computation time. Another interesting aspect can be
observed in M2.α.β.1 and M2.α.β.2. The computation time can be reduced if we do
not integrate the augmented weighted Tchebycheff objective level set into the lower
bound. This can be explained by the fact that the lower bound improvements of aug-
mented weighted Tchebycheff are only local and do not compensate the computation
time needed to integrate the information. The intuitive assumption that the number of
explored nodes will then rise significantly is false. So, both our branching strategies
work better, if we do not consider the local updates of the lower bound.

We can reach a reduction of the explored nodes by up to 83% (Table 2b) and a reduc-
tion of the computation time by up to 80% (Table 2b) in the best case. The strategies
M2.1.1.1 and M2.1.1.2 seem to work best for knapsack problems. In most cases these
two strategies have the largest impact on the number of explored nodes. Nevertheless,
M2.1.1.2 achieves for all instance sizes the best computation times, since computa-
tion time is saved by not integrating the augmented weighted Tchebycheff objective
space information into the lower bound. Note that with rising numbers of variables
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Table 2 Numerical results of the
bi-objective, multidimensional
knapsack problems

(a) Knapsack problem, m = 2, n = 80

Version Nodes Time (s) Solved IPs

BB 159911.4 287.925 0.0

BS1 41092.0 88.121 0.0

WS 63215.0 130.338 55.0

M1.1.1 37799.1 82.654 43.9

M1.2.1 37835.8 82.544 30.55

M1.3.1 37811.3 82.369 24.75

M2.1.1.1 31615.0 115.164 102.55

M2.2.1.1 34772.5 102.965 72.5

M2.3.1.1 35127.1 100.706 60.6

M2.1.1.2 31590.2 69.290 104.7

M2.2.1.2 34977.7 77.063 72.45

M2.3.1.2 35170.3 77.279 61.3

BS2 115223.3 224.926 0.0

M1.1.2 43581.8 97.039 47.8

M1.2.2 43744.8 97.874 29.1

M1.3.2 45481.1 102.689 23.45

M2.1.2.1 32388.8 116.173 106.25

M2.2.2.1 36453.2 120.161 78.3

M2.3.2.1 35942.7 116.972 69.05

M2.1.2.2 33264.8 74.207 104.75

M2.2.2.2 36578.1 81.915 77.2

M2.3.2.2 35505.1 77.971 69.55

(b) Knapsack problem, m = 2, n = 100

Version Nodes Time (s) Solved IPs

BB 428526.3 1074.21 0.0

BS1 100962.6 326.98 0.0

WS 166108.1 464.71 67.25

M1.1.1 98831.5 323.54 54.8

M1.2.1 99313.5 325.32 38.95

M1.3.1 98770.6 322.65 32.6

M2.1.1.1 69951.9 402.48 149.35

M2.2.1.1 73433.8 379.33 119.6

M2.3.1.1 73424.7 371.63 102.95

M2.1.1.2 70172.3 212.40 153.15

M2.2.1.2 72824.8 219.73 121.55

M2.3.1.2 73651.5 221.96 107.5
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Table 2 continued (b) Knapsack problem, m = 2, n = 100

Version Nodes Time (s) Solved IPs

BS2 271110.8 720.46 0.0

M1.1.2 113605.9 381.46 57.45

M1.2.2 117188.3 394.57 36.45

M1.3.2 113665.3 378.63 29.85

M2.1.2.1 70603.0 404.28 150.8

M2.2.2.1 77836.0 400.18 121.4

M2.3.2.1 76818.2 399.89 110.8

M2.1.2.2 72316.9 219.91 148.4

M2.2.2.2 78135.2 240.57 121.3

M2.3.2.2 77073.0 235.49 112.45

(c) Knapsack problem, m = 3, n = 50

Version Nodes Time (s) Solved IPs

BB 54430.4 51.5026 0.0

BS1 15260.1 17.9276 0.0

WS 18112.9 20.5208 36.2

M1.1.1 13522.4 16.8431 28.8

M1.2.1 13530.7 16.4735 19.0

M1.3.1 13576.5 16.4442 14.95

M2.1.1.1 12345.3 22.1289 51.15

M2.2.1.1 12973.5 19.7592 34.5

M2.3.1.1 13014.0 19.6348 28.8

M2.1.1.2 12241.1 16.1190 53.55

M2.2.1.2 12934.3 16.2933 35.15

M2.3.1.2 12908.3 16.1009 30.35

BS2 22597.3 24.5736 0.0

M1.1.2 14645.7 18.6425 29.55

M1.2.2 14573.2 18.0521 16.75

M1.3.2 14597.0 17.9793 14.5

M2.1.2.1 12617.9 22.3518 54.65

M2.2.2.1 13324.9 20.7655 33.4

M2.3.2.1 13252.3 20.4366 30.55

M2.1.2.2 12682.4 16.8670 56.65

M2.2.2.2 13180.2 16.7601 33.6

M2.3.2.2 13274.4 16.8497 32.15

(d) Knapsack problem, m = 3, n = 80

Version Nodes Time (s) Solved IPs

BB 263971.6 724.999 0.0

BS1 81609.9 287.899 0.0
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Table 2 continued (d) Knapsack problem, m = 3, n = 80

Version Nodes Time (s) Solved IPs

WS 121360.8 376.247 56.4

M1.1.1 80406.5 282.897 47.35

M1.2.1 79971.5 279.885 32.2

M1.3.1 80089.6 279.686 26.55

M2.1.1.1 54187.1 340.389 115.7

M2.2.1.1 55915.9 328.411 85.45

M2.3.1.1 58486.8 330.347 66.9

M2.1.1.2 53396.0 164.755 116.0

M2.2.1.2 56572.6 174.131 86.25

M2.3.1.2 57452.9 176.657 67.85

BS2 140681.4 390.578 0.0

M1.1.2 92175.8 334.414 50.45

M1.2.2 96339.3 350.148 29.05

M1.3.2 96099.5 348.915 24.0

M2.1.2.1 54119.5 349.261 112.5

M2.2.2.1 59379.8 344.899 89.1

M2.3.2.1 60326.6 349.874 74.15

M2.1.2.2 54595.6 176.090 119.65

M2.2.2.2 62851.9 211.373 88.9

M2.3.2.2 61200.8 205.413 76.6

and constraints the hybridization techniques have larger impact on the performance
of the branch and bound algorithm.

5.2 Bi-objective assignment problems

We consider bi-objective assignment problems having n = �2 variables,

max
�∑

i=1

�∑

j=1

cki j xi j k = 1, 2

s.t.
�∑

i=1

xi j = 1 j = 1, . . . , �

�∑

j=1

xi j = 1 i = 1, . . . , �

x ∈ {0, 1}�×�

where the cost coefficients cki j ∈ [50, 100]. The algorithmic strategy for the solution
of IP scalarizations depending on the value of the parameter α is chosen similarly to
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the previous case of knapsack problems. However, we adapt the boundaries due to the
different number of nodes to explore in assignment problems. In M1.1.β weighted
sum scalarizations are solved every 10-th iteration to integer optimality. In M1.2.β we
apply the weighted sum every 10-th iteration within the first n ·� iterations. In M1.3.β
we apply the weighted sum every 10-th iteration within the first n ·�/3 iterations, every
�-th iteration in the next n · �/3 iterations and every n-th iteration in the third n · �/3
iterations. For M.2.α.β.γ we use the same algorithmic strategy as in hybrid branch
and bound for knapsack problems. If a scalarization cannot be applied or an IP with
identical objective function has been solved prior, no IP is solved in that iteration.

Due to the total unimodularity of the assignment problem, the weighted sum scalar-
izations do in general not improve the lower bound sets of subproblems. However, in
situationswhere theweighted sum IP scalarization generates a supported efficient solu-
tion, whose corresponding non-dominated point is not an extreme point of the lower
bound set, the local upper bounds move closer to the lower bound set. This reduces
the gap between upper and lower bound and may lead to a decrease of the explored
subproblems. Note that this update of the upper bound set may also have the contrary
effect (the number of considered subproblems increases), since it can change the order
in which the subproblems are considered. Although in general the weighted sum IP
scalarizations are necessary to determine non-dominated points based on which the
augmented weighted Tchebycheff scalarization can be applied, they are redundant for
assignment problems due to the total unimodularity of their constraint matrix. Thus,
all extreme supported non-dominated points (and their corresponding solutions) are
obtained as extreme points of the lower bound set by the linear relaxation of the original
problem which is solved in the root node of the branch and bound tree. However, we
do not adjust our branch and bound algorithm for totally unimodular problem classes
to maintain comparable numerical results and general applicability.

Our branching strategies have a significant impact on the number of explored nodes
and the computation time. Again, the local hypervolume gap performs better than the
global hypervolume gap strategy. With the local strategy we can reduce the number
of explored nodes by up to 39% (Table 3c) and the computation time by up to 33%
(Table 3c). Using the global hypervolume gap strategy we can reduce the number
of explored nodes by up to 12% (Table 3b) and the computation time by up to 12%
(Table 3b). We reach a reduction of the explored nodes by up to 46% (Table 3d) and
a reduction of the computation time by up to 42% (Table 3d), in the best case. Again,
the strategies M2.1.1.1 and M2.1.1.2 seem to work the best for assignment problems
in terms of explored nodes. Nevertheless, M2.1.1.2 leads to a better computation
time which can be explained by the same argument as before. Furthermore, strategy
BS1 works very well and is able to compete with the previously mentioned strategies
with respect to number of nodes and computation time without solving a single IP
scalarization.
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Table 3 Numerical results of the
bi-objective assignment
problems

(a) Assignment problem, n = 100

Version Nodes Time (s) Solved IPs

BB 3117.0 5.1507 0.0

BS1 2422.2 4.1182 0.0

WS 3117.0 5.2631 19.2

M1.1.1 2425.1 4.1937 13.95

M1.2.1 2425.1 4.1564 11.95

M1.3.1 2425.1 4.1996 8.4

M2.1.1.1 2418.2 4.4063 19.8

M2.2.1.1 2420.5 4.2726 14.4

M2.3.1.1 2419.5 4.2242 9.65

M2.1.1.2 2420.5 4.3474 19.9

M2.2.1.2 2420.5 4.2014 14.55

M2.3.1.2 2423.0 4.2055 9.8

BS2 2948.9 4.9644 0.0

M1.1.2 2519.8 4.4349 14.1

M1.2.2 2518.7 4.4211 11.05

M1.3.2 2516.2 4.4203 7.65

M2.1.2.1 2499.7 4.6173 20.4

M2.2.2.1 2518.7 4.4661 12.2

M2.3.2.1 2516.2 4.4214 8.35

M2.1.2.2 2498.1 4.5400 19.55

M2.2.2.2 2518.7 4.4451 12.25

M2.3.2.2 2516.2 4.3972 8.4

(b) Assignment problem n = 144

Version Nodes Time (s) Solved IPs

BB 9661.9 28.2667 0.0

BS1 6255.4 18.9362 0.0

WS 9610.8 28.1363 33.35

M1.1.1 6274.5 18.9323 22.3

M1.2.1 6274.5 18.9869 14.3

M1.3.1 6274.5 18.9318 9.85

M2.1.1.1 6210.9 20.0216 46.0

M2.2.1.1 6279.9 19.4670 23.55

M2.3.1.1 6271.2 19.1542 12.65

M2.1.1.2 6171.0 19.4994 43.6

M2.2.1.2 6261.5 19.2851 24.65

M2.3.1.2 6270.5 18.8676 12.45
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Table 3 continued (b) Assignment problem n = 144

Version Nodes Time (s) Solved IPs

BS2 8448.0 24.7742 0.0

M1.1.2 6781.8 20.6825 24.05

M1.2.2 6779.4 20.5940 13.25

M1.3.2 6734.2 20.4270 9.3

M2.1.2.1 6472.8 20.8732 44.1

M2.2.2.1 6724.2 20.6838 16.8

M2.3.2.1 6682.3 20.4212 12.6

M2.1.2.2 6500.3 20.2536 42.55

M2.2.2.2 6737.7 20.5214 16.75

M2.3.2.2 6689.0 20.3987 12.95

(c) Assignment problem n = 225

Version Nodes Time (s) Solved IPs

BB 26810.5 160.712 0.0

BS1 16142.2 107.909 0.0

WS 26810.5 163.666 46.85

M1.1.1 16150.0 107.842 32.8

M1.2.1 16151.2 109.687 19.7

M1.3.1 16164.7 109.073 12.05

M2.1.1.1 15424.1 111.181 87.4

M2.2.1.1 15964.3 110.004 43.05

M2.3.1.1 16112.2 110.372 19.5

M2.1.1.2 15554.1 106.748 89.5

M2.2.1.2 16008.4 107.641 41.35

M2.3.1.2 16106.5 109.735 19.25

BS2 24566.2 152.341 0.0

M1.1.2 17499.1 117.481 34.15

M1.2.2 17591.4 118.804 16.75

M1.3.2 17287.8 116.681 11.3

M2.1.2.1 16095.7 115.012 85.8

M2.2.2.1 17048.8 116.275 31.55

M2.3.2.1 17093.3 117.976 17.75

M2.1.2.2 16183.0 110.920 79.55
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Table 3 continued (c) Assignment problem n = 225

Version Nodes Time (s) Solved IPs

M2.2.2.2 17104.7 117.885 32.2

M2.3.2.2 17070.0 117.557 16.65

(d) Assignment problem n = 324

Version Nodes Time (s) Solved IPs

BB 76643.0 798.644 0.0

BS1 47311.6 527.471 0.0

WS 75179.2 786.036 61.75

M1.1.1 47327.0 530.055 47.75

M1.2.1 47332.8 523.562 21.9

M1.3.1 47375.6 524.610 15.25

M2.1.1.1 40978.0 477.927 157.5

M2.2.1.1 43760.5 497.812 82.0

M2.3.1.1 44343.9 499.678 52.35

M2.1.1.2 41294.4 457.120 159.05

M2.2.1.2 43864.6 487.051 81.25

M2.3.1.2 44499.7 489.744 52.05

BS2 69042.4 723.853 0.0

M1.1.2 49367.5 565.719 48.45

M1.2.2 49053.0 553.130 22.95

M1.3.2 49221.4 554.594 15.2

M2.1.2.1 41840.5 489.647 150.2

M2.2.2.1 45621.0 520.469 67.15

M2.3.2.1 46915.9 533.692 39.35

M2.1.2.2 42726.6 474.220 156.15

M2.2.2.2 45901.6 513.111 67.05

M2.3.2.2 46902.8 526.440 43.45

5.3 Bi-objective discrete facility location problems

We consider discrete facility location problems of the form

min
�∑

i=1

q∑

j=1

cki j xi j +
q∑

j=1

f kj y j k = 1, 2

s.t.
q∑

j=1

xi j = 1 i = 1, . . . , �

xi j ≤ y j i = 1, . . . , �, j = 1, . . . , q

x ∈ {0, 1}�×q

y ∈ {0, 1}q
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where � is the number of customers and q the number of facilities. We randomly
generate coordinates of � customers and q facilities in a square with length 200.
The costs of the first objective function correspond to the l1-distances between the
customers and facilities, while the costs of the second objective function are randomly
generated (i. e. c2i j ∈ [1, 200]) and f kj ∈ [200, 400]. The number of variables is
n = (� + 1) q. We restrict the numerical tests to problems where the number of
facilities is 20% of the number of customers. Again, we need to specify when and
how often integer scalarizations are applied: We use the same methods as before but
adapt the boundaries due to the different number of nodes to explore in discrete facility
location problems. In M1.1.β we apply the weighted sum IP scalarization every 10-
th iteration. In M1.2.β we apply the weighted sum every 10-th iteration within the
first n2/4 iterations. In M1.3.β we apply the weighted sum scalarization every 10-th
iteration in the first n2/4 iterations, every n/2-th iteration in the next n2/4 iterations
and every n-th iteration in the third n2/4 iterations. InM.2.α.β.γ we operate analogous
to the methods used for knapsack and assignment problems. If a scalarization cannot
be applied or an IP with identical objective function has been solved prior, no IP is
solved in that iteration.

Again, both new branching strategies have an impact on the number of explored
nodes and the computation time. The local strategy, once more, leads to better results,
namely reduction of the explored nodes by up to 52% (Table 4d) and reduction of
the computation time by up to 45% (Table 4d). With the global hypervolume gap
strategy we can reach a reduction of the explored nodes by up to 24% (Table 4d)
and a reduction of the computation time by up to 21% (Table 4d). In the best case
we can reach a reduction of the explored nodes by up to 57% (Table 4d) and of the
computation time by up to 50% (Table 4d). Once again, M2.1.1.2 seems to be the
best choice with respect to the number of explored nodes and with a rising number
of variables it is also the best choice regarding the computation time. With a smaller
number of variables, BS1 leads to good results with respect to both aspects without
solving a single IP.

5.4 Summary

In all of the three tested problem classes (knapsack, assignment, discrete facility
location) a significant reduction of the number of explored nodes and the compu-
tation time can be realized with all presented combinations of the hybrid branch and
bound approach. With increasing problem size (number of variables) the impact of
the presented augmentations increases. Furthermore, the approaches perform better
on problems where the gap between YN and the solution of the linear relaxation is
larger compared to totally unimodular problems. The reduction in terms of the num-
ber of branch and bound nodes and runtime we achieve with the proposed methods as
compared to plain branch and bound is visualized in Fig. 4 for varying instance sizes.

The local hypervolume gap strategy for the node selection outperforms the global
hypervolume gap strategy in our numerical tests. A reason for this is that in the global
hypervolume gap strategy many small search zones can add up to a large gap although
the lower bound might be quite close to the non-dominated points. The local hyper-
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Table 4 Numerical results of the
bi-objective integer facility
location problem

(a) Facility location problem, n = 48

Version Nodes Time (s) Solved IPs

BB 1431.1 1.0851 0.0

BS1 999.8 0.7640 0.0

WS 1431.1 1.4550 15.35

M1.1.1 1000.2 0.8354 10.95

M1.2.1 1000.2 0.8219 8.8

M1.3.1 1000.2 0.8243 6.95

M2.1.1.1 999.7 0.9361 13.2

M2.2.1.1 1000.2 0.8361 9.85

M2.3.1.1 1000.2 0.8079 7.85

M2.1.1.2 999.3 0.8536 12.8

M2.2.1.2 1000.2 0.8182 9.85

M2.3.1.2 1000.2 0.8037 7.85

BS2 1268.6 0.9714 0.0

M1.1.2 1041.8 0.8654 12.3

M1.2.2 1041.8 0.8527 9.35

M1.3.2 1041.8 0.8592 7.35

M2.1.2.1 1036.5 0.9722 15.65

M2.2.2.1 1041.8 0.8761 10.25

M2.3.2.1 1041.8 0.8735 7.6

M2.1.2.2 1034.6 0.9678 15.1

M2.2.2.2 1041.8 0.8843 10.4

M2.3.2.2 1041.8 0.8654 7.6

(b) Facility location problem n = 84

Version Nodes Time (s) Solved IPs

BB 7949.1 12.6393 0.0

BS1 4626.7 7.9303 0.0

WS 7490.2 12.2058 35.0

M1.1.1 4627.2 8.1249 26.45

M1.2.1 4627.2 8.1149 18.2

M1.3.1 4626.4 8.0610 13.85

M2.1.1.1 4527.8 9.2394 49.0

M2.2.1.1 4601.6 8.4311 26.45

M2.3.1.1 4610.4 8.2569 18.9

M2.1.1.2 4526.1 8.4415 45.3

M2.2.1.2 4591.1 8.1289 24.25

M2.3.1.2 4605.2 8.1312 19.8
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Table 4 continued (b) Facility location problem n = 84

Version Nodes Time (s) Solved IPs

BS2 7084.4 11.5822 0.0

M1.1.2 4873.8 8.7719 26.35

M1.2.2 4874.8 8.7534 17.45

M1.3.2 4894.1 8.7031 12.6

M2.1.2.1 4673.6 9.5755 49.65

M2.2.2.1 4832.0 8.9275 23.6

M2.3.2.1 4812.8 8.8050 17.4

M2.1.2.2 4628.9 8.7019 46.15

M2.2.2.2 4825.9 8.7491 24.4

M2.3.2.2 4807.5 8.5984 17.5

(c) Facility location problem n = 130

Version Nodes Time (s) Solved IPs

BB 17461.9 51.6307 0.0

BS1 10684.0 34.5157 0.0

WS 16795.9 50.9317 51.35

M1.1.1 10753.9 35.4356 37.1

M1.2.1 10753.9 35.2764 25.5

M1.3.1 10753.9 35.1007 19.15

M2.1.1.1 10104.4 38.3909 89.65

M2.2.1.1 10678.1 35.7434 39.35

M2.3.1.1 10722.3 35.6262 27.7

M2.1.1.2 10103.0 34.5003 85.95

M2.2.1.2 10691.2 35.3730 39.05

M2.3.1.2 10718.6 35.1690 27.45

BS2 15474.7 46.5130 0.0

M1.1.2 11548.8 38.4891 39.3

M1.2.2 11601.4 38.5848 24.6

M1.3.2 11535.1 38.2917 18.0

M2.1.2.1 10684.3 39.8639 81.5

M2.2.2.1 11381.8 39.1988 37.15

M2.3.2.1 11336.0 38.7754 28.45

M2.1.2.2 10695.5 36.9098 78.25

volume gap strategy chooses the node with the largest search zone, which has the
biggest potential to reduce this gap. Moreover, the local hypervolume gap strategy
aims at an uniform distribution of points in the incumbent list. In our numerical test,
M2.1.1.2 turn out to be the best choice in most cases with respect to the number of
explored nodes and computation time. In this version, we use the local hypervolume
gap strategy for the choice of the active node, every 10-th iteration the weighted sum
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Table 4 continued (c) Facility location problem n = 130

Version Nodes Time (s) Solved IPs

M2.2.2.2 11341.6 38.2646 39.55

M2.3.2.2 11352.1 38.0063 25.9

(d) Facility location problem n = 186

Version Nodes Time (s) Solved IPs

BB 67369.3 373.238 0.0

BS1 31844.1 203.145 0.0

WS 62192.8 349.741 69.95

M1.1.1 32106.6 206.244 53.05

M1.2.1 32097.9 206.851 33.4

M1.3.1 32148.5 207.199 23.75

M2.1.1.1 28384.2 224.486 186.8

M2.2.1.1 31074.5 218.314 101.15

M2.3.1.1 32004.8 209.608 50.1

M2.1.1.2 28558.8 186.010 172.7

M2.2.1.2 30946.4 202.329 97.75

M2.3.1.2 32011.8 207.715 47.5

BS2 50759.0 292.344 0.0

M1.1.2 35150.1 230.687 55.5

M1.2.2 35789.8 233.967 30.8

M1.3.2 35255.0 233.163 21.95

M2.1.2.1 29704.3 230.016 172.65

M2.2.2.1 33959.7 236.351 81.75

M2.3.2.1 34228.0 233.553 50.2

M2.1.2.2 30412.6 202.719 167.4

M2.2.2.2 34511.8 229.970 69.95

M2.3.2.2 34405.0 229.021 47.1

IP scalarization is applied and every 50-th iteration we apply the augmented weighted
Tchebycheff scalarization instead. Futhermore, the objective space information gained
by the augmented weighted Tchebycheff scalarization is not used to update the lower
bound set, since its local improvements do not compensate the increased computation
time. Although we need to solve more IPs than in most other approaches, the compu-
tation time is the lowest compared to the others. So, using the augmented weighted
Tchebycheff scalarization in the beginning of the branch and bound works best. Due
to the likelihood of finding non-supported non-dominated points in the early stages
of the algorithm, the upper bound can be further improved. This results to a higher
probability of fathoming a node by dominance. Nevertheless, with version BS1 we
also achive a remarkable reduction in terms of the number of explored nodes and
computation time by using the local hypervolume gap strategy for node selection.
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Fig. 4 Visualization of branch and bound node reduction and runtime reduction for varying test instance
sizes on a selection of approaches
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6 Conclusion and outlook

In this paper, we propose two approaches to incorporate objective space informa-
tion in bi-objective branch and bound. By using the local or global (approximated)
hypervolume gap as a node selection criterion, we adapt the run of the branch and
bound algorithm to the problem instance. Additionally, we adaptively solve scalar-
izations to integer optimality to improve the lower and the upper bound set by the
obtained objective space information. Our numerical results show the effectiveness of
both approaches and in particular of their combination. The dynamic branching rule
based on the local (approximated) hypervolume gap has large impact on the number
of explored subproblems, is compuationally efficient and can be easily integrated in
other multi-objective branch and bound algorithms.

While we tested in this paper the individual contributions of our augmentations
on a generic bi-objective branch and bound, we will continue to extend our ideas to
multiple dimensions and integrate them into a competetive multi-objective branch and
bound framework. Particularly in higher dimensions, it may be promising to combine
our approaches with objective space branching.
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