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Abstract
We consider rather a general class of multi-level optimization problems, where a con-
vex objective function is to be minimized subject to constraints of optimality of nested
convex optimization problems. As a special case, we consider a trilevel optimization
problem, where the objective of the two lower layers consists of a sum of a smooth and
a non-smooth term. Based on fixed-point theory and related arguments, we present a
natural first-order algorithm and analyze its convergence and rates of convergence in
several regimes of parameters.

Keywords Variational inequality · Bi-level optimization · Tri-level optimization ·
Multi-level minimization · Non-expansive mappings

1 Introduction

Hierarchical Optimization Problems, also known as Multilevel Optimization Prob-
lems (MOP), were first introduced by Bialas and Karwan (1973) and Wilfred
(1977) as a class of constrained optimization problems, wherein the feasible set is
determined—implicitly—as the optima of multiple optimization problems, nested in
a predetermined sequence. In theory, MOP has applications in game theory, robust
optimization, chance-constrained programming, and adversarial machine learning
(Ben-Tal et al. 2009). In practice, MOP models are widely used in security applica-
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tions, where they model so-called interdiction problems. See Iiduka (2011); Moudafi
(2007); Xu (2010); Isao (2001) for several examples.

Tri-level programming problems are challenging, even when one considers con-
tinuous linear problems (Blair 1992) due to their computational complexity and the
interactions between decision-makers based on the numbers of variables at different
levels. Moreover, at each level, we have limited or incomplete information about the
decisions made at the other levels. This interdependency makes it difficult to decouple
the optimization problem into separate sub-problems. This, in turn, requires techniques
that can handle the hierarchical nature of the problem.
The article is structured as follows. Section1 introduces the necessary notations,
assumptions, and the problemmodel. Additionally, it establishes fundamental notation
and background information pertaining to the proximal-gradient algorithm. Section2
delves into convergence analysis for a variety of assumptions on the step sizes. Fur-
thermore, in this section, we present the methodological approach employed in our
study regarding error bounds that enables us to provide the convergence of sequence
generated by the algorithm for tri-level problems. In Sect. 3, the paper introduces the
convergence rate analysis for variants of the proximal-gradient algorithm. It shows,
among others, that our convergence rate in the middle layer, which is O( 1

(k+1)
√
k
),

improves upon the rate of Sabach and Shtern (2017). Finally, in Sect. 4, we formal-
ize multi-level optimization, followed by an exploration of both convergence and the
corresponding convergence rate.

1.1 The problem

In particular, our goal is to formulate and analyze an optimization algorithm for a class
of hierarchically-defined problems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
x∈X∗

N

ω(x)

X∗
i = argmin

x∈X∗
i−1

[ fi (x) + gi (x)], i ∈ {1, . . . , N }
X∗
0 = R

n,

(1)

where themiddle layers (for i ∈ {1, . . . , N }) exhibit the so-called composite structure,
where ω is a strongly convex differentiable function and there are smooth terms fi
and non-smooth terms gi . In machine-learning applications, the smooth functions are
chosen to be loss functions and the non-smooth functions gi are regularizers.

We begin by considering a hierarchical optimization with three layers, wherein the
middle and lower layers exhibit the composite structure:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
x∈X∗ ω(x)

X∗ = argmin
x∈Y ∗

[φ2(x) := f2(x) + g2(x)]
Y ∗ = argmin

x∈Rn
[φ1(x) := f1(x) + g1(x)].

(2)
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By leveraging fixed-point theory and related reasoning, we propose a straightforward
first-order algorithm and analyze its convergence and convergence rates across various
parameter regimes. The algorithm exhibits the following non-asymptotic behaviour:
The first layer exhibits a convergence rate of O( 1k ), the second layer (middle layer)
exhibits a convergence rate O( 1

(k+1)
√
k
), and finally, the third layer exhibits O( 1√

k
)

global rate of convergence concerning the inner objective function values.By accessing
the main iteration in terms of the inner objective function values, we observe the
convergence rate O( 1k ).

1.2 Related work

Our work is inspired by a long history of work on bilevel optimization problems (see,
e.g, Al-Khayyal et al. (1992); Dempe et al. (2007, 2014); Zhang (1994)). Our work
extends proximal-gradient optimization algorithms (Sabach and Shtern 2017) for a
related bilevel optimization problem and is informed by Moudafi (2007).

Notably, Solodov (2007) gave an explicit descent method for bi-level optimization
in the form of

{
min ω(x)
x ∈ S := argmin

x∈F
f (x) = argmin

x∈Rn
[ f (x) + iF ], (3)

inwhich iF is the indicator function on F and f is convex and smooth function andω is
strongly convex. Subsequently, Sabach and Shtern (2017) proposed and Lampariello
et al. (2020) further developed the so-called BIG-SAM method for solving the more
general problem of,

{
min ω(x)
x ∈ Y ∗ := argmin

x∈Rn
[ f (x) + g(x)], (4)

in which f is smooth and g is convex and lower semi-continuous and possibly non-
smooth. We consider a similar structure in a multi-level problem.

There are only a few solution approaches presented in the literature for tri-level
problems, addressing very restricted classes of problems, and mostly without guaran-
tees of global optimality. For example, error-bound conditions were used by Senter
and Dotson (1974) to assure the existence of strong convergence results for Mann
iterates. Typically, error bounds are essential for assessing the accuracy and relia-
bility of numerical approximations or algorithms and, providing a measure of how
close the approximate solution is to the true solution, given certain assumptions or
conditions. These conditions may include properties of the problem, the algorithm
used, the precision of numerical calculations, and any assumptions made during the
approximation process. Very recently, Sato et al. (2021) presented a gradient-based
algorithm for multilevel optimization, where the lower-level problems are replaced by
steepest descent update equations. They present conditions when this reformulation
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asymptotically converges to the original multilevel problem. Based on our knowledge,
no other solution approach can tackle the class of problems considered in this work.

1.3 Examples

We present several concrete examples of trilevel optimization problems.

1. Pursuit-evasion-intercept, or alternatively described as pursuit-evade-defend (see,
e.g. Fisac et al. 2015) is a (sequential) gamewherein one player is seeking to follow
and capture another in a dynamic setting, with a third tasked with intercepting the
pursuer or

2. Bilevel optimization with robust uncertainty. Robust optimization, i.e., choosing
the optimal outcome upon the worst case realization of a parameter. This can
be expressed as a nested optimization problem, wherein the inner problem is a
maximum over the parameter set (Lampariello et al. 2019). Any classic bilevel
optimization, for instance Stackelberg games, can become trilevel when the leader
makes a decision under robust uncertainty consideration.

3. Mixture models with training and validation: consider some convex loss function
on data with a regularization (e.g., LASSO), wherein the validation (for instance,
a coreset) data set is considered more significant and thus an inner problem, the
training set presents the middle problem, and the tuning of mixture weights of
different models is the uppermost layer.

1.4 Preliminaries

Let � ⊆ R
n be closed and convex and let T be a mapping from R

n into itself. Recall
that the notion of the variational inequality (VI), denoted by V I (T ,�), is to find a
vector x∗ ∈ � such that

V I (T ,�)
〈
x∗ − T (x∗), x − x∗〉 ≥ 0 ∀x ∈ �. (5)

Note that (5) is equivalent to finding the fixed point of the problem

Find x∗ ∈ � such that x∗ = P�T (x∗),

where P� is the metric projection of Rn onto �, i.e., it maps x ∈ R
n to the unique

point in � defined as, where throughout the paper we use the Euclidean norm,

P�(x) := argmin
y∈�

‖x − y‖ ∀x ∈ R
n,

satisfying

‖x − P�(x)‖ = inf {‖x − y‖ : y ∈ �} := d(x,�), P�(x) ∈ �.

We also use the notation Fix(T ) = {x ∈ R
n : T (x) = x} for the set of fixed points of

T . This set Fix(T ) is closed and convex for non-expansive mappings T .
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Wenow review somewell-known facts about non-expansivemappings that we shall
henceforth use in the paper without reference.

• Let T : Rn → R
n be a non-expansive mapping. Then I − T is monotone; that is

〈x − y, (I − T )x − (I − T )y〉 ≥ 0.

• Let S : Rn → R
n be a contraction mapping with coefficient r ∈ (0, 1). Then I −S

called (1 − r)-strongly monotone; that is

〈x − y, (I − S)x − (I − S)y〉 ≥ (1 − r)‖x − y‖2, ∀x, y ∈ R
n .

• Let x ∈ R
n and z ∈ � be given. Then z = P�(x) if and only if the following

inequality holds

〈x − z, z − y〉 ≥ 0 ∀y ∈ �,

and also if and only if

‖x − z‖2 + ‖y − z‖2 ≤ ‖x − y‖2, ∀y ∈ �.

• For all x, y ∈ R
n one has

‖P�(x) − P�(y)‖2 ≤ 〈P�(x) − P�(y), x − y〉 .

2 Convergence analysis for trilevel optimization problems

Let us consider the trilevel problem (2). After presenting our assumptions and pre-
liminaries, we analyze the convergence of a proximal-gradient algorithm first under a
variety of conditions on the step sizes (Sect. 2.3, using lemmas from Sect. 2.2). Alter-
natively, one can assume a certain error-bound condition (Sect. 2.4).

2.1 Assumptions and the algorithm

We shall make the following standing assumptions:

Assumption 1 (i) fi : R
n → R are convex and continuously differentiable with

L fi -Lipschitz gradient, that is,

‖∇ fi (x) − ∇ fi (y)‖ ≤ L fi ‖x − y‖, ∀x, y ∈ R
n, i = 1, 2.

(ii) gi : Rn → (−∞,+∞] is proper, lower semi-continuous and convex.
(iii) the optimal solution set of the inner layers is non-empty, i.e., X∗ �= ∅ and Y ∗ �= ∅.
(iv) ω : Rn → R is strongly convex with strong convexity parameter μ.
(v) ω is a continuously differentiable function so that ∇ω(·) is Lipschitz continuous

with constant Lω.
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Table 1 The three layers of a trilevel problem and the corresponding operators

Layer Function Operator Solution set Optimality condition

Top ω(x) S 〈x∗ − S(x∗), x − x∗〉 ≥ 0, ∀x ∈ X∗
Middle f2(x) + g2(x) T X∗ ⊆ Y ∗ 〈x∗ − T (x∗), x − x∗〉 ≥ 0, ∀x ∈ Fix(W ) = Y ∗
Bottom f1(x) + g1(x) W Y ∗ x∗ ∈ Fix(W )

Consider three operators corresponding to the three layers of objective functions,

S(x) := Su(x) = x − u∇ω(x),
T (x) := Tt (x) = proxtg2(x − t∇ f2(x)),
W (x) := Ws(x) = proxsg1(x − s∇ f1(x)).

(6)

Note that each of these corresponds to a fixed point map of their respective problems.
It can be easily seen that X∗ ∩Fix(T ) = Fix(T )∩Fix(W ), however, in general, we are
only interested in a (specific subset) of Fix(W ) = Y ∗ and we expect Fix(T )∩Fix(W )

to be empty.
It iswell known thatmappings T andW are non-expansive and S is an r -contraction,

i.e., for any u ∈ (0, 2
Lω+μ

], one has

‖S(x) − S(y)‖ ≤
√

1 − 2uμLω

μ + Lω

‖x − y‖, (7)

[For more details, see (Nesterov 2003, Theorem 2.1.12, p. 66].
For any proper, lower semi-continuous and convex function g : Rn → (−∞,+∞]

the Moreau proximal mapping is defined by

proxg(x) = argmin
u∈Rn

{

g(u) + 1

2
‖u − x‖2

}

. (8)

In general, a proximal-gradient algorithm (Beck and Sabach 2014) is based on an
iterated mapping:

Tt (x) = proxtg(x − t∇ f (x)),

which has the following properties:
(i) Tt is non-expansive for sufficiently small t , i.e.,

‖Tt (x) − Tt (y)‖ ≤ ‖x − y‖ ∀x, y ∈ R
n, ∀t ∈

(

0,
1

L f

]

. (9)
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(ii) Its fixed points are equivalent to the set of minimizers to the corresponding mini-
mization problem, i.e.,

Fix(Tt ) = argmin
x∈Rn

[ f (x) + g(x)] ∀t > 0. (10)

We shall denote the proximal gradient mapping as T in the Algorithm, instead of Tt ,
because of property (ii).

A solution x∗ of (2) satisfies the following inequalities,

Find x∗ ∈ Y ∗ = Fix(W )

〈x∗ − T (x∗), x − x∗〉 ≥ 0, ∀x ∈ Fix(W ) = Y ∗
〈x∗ − S(x∗), x − x∗〉 ≥ 0, ∀x ∈ X∗.

(11)

Note that x ∈ X∗ is equivalent to 〈x∗ − T (x∗), x − x∗〉 ≥ 0, ∀x ∈ Fix(W ) = Y ∗ so
the third condition can be modified to: 〈x∗ − S(x∗), x − x∗〉 ≥ 0, for all x satisfying
this relation.

For reference regarding problems (2) and (4), we presentTable 1.
Throughout this section, we are concerned with Algorithm 1, which is based on the

proximal-gradient maps and their following combination:

xk+1 = αk S(xk) + (1 − αk)βkT (xk) + (1 − αk)(1 − βk)W (xk). (12)

Define the following quantities regarding the relative limit behaviors of the two
parameters:

δ := lim sup
k→∞

βk

αk
∈ [0,∞] and δ̃ := lim

k→∞
βk

αk
∈ [0,∞]. (13)

These quantities play a central role in analyzing the convergence of the proposed
algorithms. For more details, you may see Example 4.

The following key Assumptions will be needed throughout the paper:

Assumption 2 αk → 0 (as k → ∞) and
+∞∑
k=1

αk = ∞.

Assumption 3 There exists K > 0 such that lim supk→∞ 1
αk

| 1
βk

− 1
βk−1

| ≤ K .

Assumption 4 lim sup
k→∞

|βk−βk−1|+|αk−αk−1|
αkβk

= 0.

2.2 Properties of the limit points

We now derive a set of results regarding the properties of limit points generated by
the sequence (12). First, we present the following powerful lemma that we shall use
in the analysis below:
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Algorithm 1 Proximal Gradient for Tri-level Optimization

(t!) Input: t ∈
(

0, 1
L f1

]

, s ∈
(

0, 1
L f2

]

, r ∈
(
0, 2

Lω+μ

]
and the real sequences αk and βk satisfy the

assumptions
Initialization: Select an arbitrary starting point x0 ∈ R

n

For k = 1, 2, . . . do

yk := proxtg2

[
xk−1 − t∇ f2(x

k−1)
]

zk := proxsg1

[
xk−1 − s∇ f1(x

k−1)
]

vk := xk−1 − r∇ω(xk−1)

xk = αkv
k + (1 − αk )βk y

k + (1 − βk )(1 − αk )z
k

End For

Lemma 5 (Xu 2002, Lemma 2.1) Assume that ak be a sequence of non-negative real
numbers such that

ak+1 ≤ (1 − γk)ak + δk,

where γk is a sequences in (0, 1) and δk is a sequence in R, such that

(1)
∑∞

k=1 γk =∞,

(2) either lim supk→∞
δk
γk

≤ 0 or
∞∑
k=1

|δk | <∞.

Then limk→∞ ak = 0.

From now on and throughout the paper, we denote by {xk} the sequence generated by
the algorithm (12). The convergence of the algorithm crucially depends on the starting
points x0 ∈ R

n and the parameters (step-sizes)αk andβk , which are chosen in advance.
Three different cases can be distinguished: δ = 0, δ > 0 and δ = ∞, each associated
with some other Assumptions. Initially, we are going to seek the conditions ensuring
boundedness of the sequence of iterates {xk}. Our proof techniques are similar to those
that (Sabach and Shtern 2017) used to prove their Lemma 2.

Throughout this paper, to simplify the notation, we will use w({xk}) to denote the
set of cluster points of sequence {xk}, i.e.,

w({xk}) =
{
x ∈ R

n : xki → x for some sub-sequence {xki } of {xk}
}

,

and also for every k ≥ 1, we define

Qk(x) = βkT (x) + (1 − βk)W (x).

It is straightforward to see that Qk is non-expansive.

Lemma 6 Assume δ < ∞. Then {xk} is bounded, i.e., for every x ∈ Fix(W ) there
exists a constant Cx such that ‖xk − x‖ ≤ Cx and constants CS and CT such that

‖W (xk) − x‖ ≤ Cx , ‖S(xk) − x‖ ≤ CS + Cx , ‖T (xk) − x‖ ≤ CT + Cx .
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Moreover, for all x ∈ Fix(W ) one has

lim sup
k

(
‖xk+1 − x‖ − ‖xk − x‖

)
≤ 0.

Proof Taking into account δ ∈ [0,+∞), from Assumption (13) one sees that there
exists δ0 > δ and k0 ∈ N such that for every k ≥ k0, one has βk < δ0αk . On the other
hand the sequence {xk+1} can easily be rewritten as

xk+1 = αk S(xk) + (1 − αk)Qk(x
k).

Now, for given x ∈ Fix(W ) we obtain

‖xk+1 − x‖ = ‖αk(S(xk) − S(x)) + αk(S(x) − x)

+ (1 − αk)(Qk(x
k) − Qk(x)) + (1 − αk)(Qk(x) − x)‖

≤ αkr‖xk − x‖ + αk‖S(x) − x‖
+ (1 − αk)‖xk − x‖ + (1 − αk)βk‖T (x) − x‖

≤ (1 − (1 − r)αk)‖xk − x‖ + αk(‖S(x) − x‖ + δ0‖T (x) − x‖)
≤ max

{

‖xk − x‖, 1

1 − r
(‖S(x) − x‖ + δ0‖T (x) − x‖)

}

≤ max

{

‖xk−1 − x‖, 1

1 − r
(‖S(x) − x‖ + δ0‖T (x) − x‖)

}

≤ . . . ≤ max

{

‖xk0 − x‖, 1

1 − r
(‖S(x) − x‖ + δ0‖T (x) − x‖)

}

:= Cx .

(14)

There, r is the coefficient of the contraction map S. Therefore, {xk} is bounded. Also,
for given x ∈ Fix(W ) from (14) one can observe that

‖xk+1 − x‖ ≤ (1 − (1 − r)αk)‖xk − x‖ + αk‖S(x) − x‖ + (1 − αk)βk‖T (x) − x‖,(15)

which implies that

lim sup
k

(‖xk+1 − x‖ − ‖xk − x‖) ≤ 0.

��

Remark 7 One can see that if Fix(W ) ∩ Fix(T ) �= ∅, then {xk} is bounded, without
taking into consideration the condition δ ∈ [0,∞]. Indeed when x ∈ Fix(W )∩Fix(T )
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by (15) we then have

‖xk+1 − x‖ ≤ (1 − (1 − r)αk)‖xk − x‖ + αk‖S(x) − x‖
≤ max{‖xk − x‖, ‖S(x) − x‖

1 − r
}

≤ · · · ≤ max{‖xk0 − x‖, ‖S(x) − x‖
1 − r

},

which shows that {xk} is bounded.

The following simple example shows that the boundedness of {xk} does not neces-
sarily hold when δ = ∞.

Example 1 Take X = R andαk = 1
k andβk = 1√

k
. Furthermore, let S(x) = x

4 , T (x) =
x +5,W (x) = x . Clearly, S is contraction, and T andW are non-expansive. It is easy
to check that δ = lim sup

k

βk
αk

= ∞, and xk → ∞ from starting point x0 = 1.

The next Lemma will be useful in the sequel the proof is slightly similar to (Lu
et al. 2009, Theorem 4.1)

Lemma 8 Suppose that {xk} is bounded.
(a) If Assumption 4 holds, then {xk} is asymptotically regular, i.e,

lim
k→∞

∥
∥
∥xk+1 − xk

∥
∥
∥ = 0.

(b) If Assumptions 2, 3 and 4 hold, then lim
k→∞

∥
∥
∥ xk+1−xk

βk

∥
∥
∥ = 0.

(c) one has w({xk}) ⊆ Fix(W ).

Proof Since {xk} is bounded then there exists constant M such that

M ≥ sup
k≥1

{
‖S(xk−1)‖, ‖T (xk−1)‖, ‖W (xk−1)‖

}
.

So we have

‖Qk(x
k) − Qk−1(x

k−1)‖ = ‖Qk(x
k) − Qk(x

k−1) + Qk(x
k−1) − Qk−1(x

k−1)‖
= ‖Qk(x

k) − Qk(x
k−1) + (βk − βk−1)(T (xk−1) − W (xk−1))‖

≤ ‖xk − xk−1‖ + 2M |βk − βk−1|.
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Now, one can write

‖xk+1 − xk‖ = ‖(αk S(xk)

+ (1 − αk)Qk(x
k)) − (αk−1S(xk−1) + (1 − αk−1)Qk−1(x

k−1))‖
= ‖(1 − αk)(Qk(x

k) − Qk−1(x
k−1)) + (αk − αk−1)(S(xk−1) − Qk−1(x

k−1))

+ αk(S(xk) − S(xk−1))‖
≤ (1 − (1 − r)αk)‖xk − xk−1‖ + 2M |βk − βk−1| + 2M |αk − αk−1|
≤ (1 − (1 − r)αk)‖xk − xk−1‖ + 2M |βk − βk−1| + 2M |αk − αk−1|

βk
. (16)

Noticing Assumption 4 and setting ak = ‖xk+1 − xk‖, γk = (1 − r)αk , and

δk = 2M |βk − βk−1| + 2M |αk − αk−1|
βk

,

one can apply Lemma 5 and the proof of part (a) is complete.
To prove part (b): Dividing both sides of the inequality (16) by βk , we obtain

‖xk+1 − xk‖
βk

≤ (1 − (1 − r)αk)

(
1

βk
+ 1

βk−1
− 1

βk−1

)

‖xk − xk−1‖

+ 2M

( |βk − βk−1| + |αk − αk−1|
βk

)

≤ (1 − (1 − r)αk)

(‖xk − xk−1‖
βk−1

)

+
∣
∣
∣
∣
1

βk
− 1

βk−1

∣
∣
∣
∣

(
‖xk − xk−1‖

)

+ 2M

( |βk − βk−1| + |αk − αk−1|
βk

)

.

Using Assumptions 2, 3, 4 and by similar reasoning at part (a) the assertion follows
from Lemma 5.

To prove part (c) : By boundednes of {xk} and αk → 0 and βk → 0 it is clear to
see that

‖xk+1 − W (xk)‖ = ‖αk S(xk) + (1 − αk)βkT (xk)

+ (1 − αk)(1 − βk)W (xk) − W (xk)‖
= ‖αk S(xk) + (1 − αk)βkT (xk) + (αkβk + αk + βk)W (xk)‖
≤ αk‖S(xk)‖ + (1 − αk)βk‖T (xk)‖ + (αkβk + αk + βk)‖W (xk)‖

and we have ‖xk+1 − W (xk)‖ → 0 which together with part (a) gives the conclusion
of part (c). ��

Byvirtue of the prior lemma,we are able, inmany situations, to get a unique solution
for the multilevel variational inequality without additional conditions on mappings
S, T ,W .
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Table 2 An overview of our results in Sects. 2.3—with the corresponding assumptions on αk and βk and
examples of the series

Assumptions δ := lim sup βk
αk

δ̃ := lim βk
αk

An example Results

Ass. 2, 11 δ = 0 .. Ex. 5 (a) Thm. 12

Ass. 2, 3, 4 δ ∈ [0, +∞) .. Ex. 5 (c) Prop. 15

Ass. 2, 3, 4, (A2), (A3) .. δ̃ = ∞ Ex. 5 (d) Thm. 19

Ass.2, 3, 4, 11, (A2) δ ∈ [0, ∞) .. Ex. 5 (f) Prop. 20

2.3 Convergence analysis under assumptions on step-sizes˛k andˇk

Next, we shall explore the convergence guarantees associated with different cases of
δ. We summarize these results, which depend on problem assumptions and parameter
regimes, in Table 2. Let us consider the existence of a solution for the convex trilevel
optimization problem (2). We will analyze this in multiple stages. It is worthwhile to
note that the convergence behavior towards X∗ ismade complex by the interconnection
among the three layers. On the whole, the non-expansive operators T and W do not
increase the distance between any two points in the iteration for k large enough, and S
contracts the distance between points in the sequence. As step size αk goes to zero, the
ascendancy of the contraction mapping S diminishes, and the sequence {xk} becomes
dominated by the non-expansive mappings T andW . The exact convergence behavior
to a specific fixed point in X∗ will depend on additional properties of the individual
operator Fix(W ) = Y ∗ or its corresponding level φ1, such as the quadratic growth
condition and linearly regular bound. First, let us consider the consistent case, i.e.,
Fix(T ) ∩ Fix(W ) �= ∅, and subsequently, further cases depending on the error bound
condition.

Let us now present the key technical lemma concerning the case of δ̃ = ∞, which
relates to the convergence of the iteration. It establishes a connection between the set
of cluster points of the sequence xk and the solution set of the variational inequality
V I (T ,Fix(W )):

Lemma 9 Assume δ̃ = ∞, together with Assumptions 2, 3, and 4. Furthermore,
suppose that {xk} is bounded. Then every cluster point of the sequence {xk} is in
V I (T ,Fix(W )), i.e.,

w({xk}) ⊆ {x ∈ Fix(W ) : 〈(I − T )x, y−x〉 ≥ 0, ∀y ∈ Fix(W )} .

Proof Let yk = 1
βk

(xk − xk+1) and x ∈ w({xk}) be given. It was shown that (27)
holds for every y ∈ Fix(W ). Therefore,

〈
yk, xk − y

〉
≥ αk

βk

〈
(I − S)(xk), xk − y

〉
+ (1 − αk)

〈
(I − T )(xk), xk − y

〉
.

Upon letting k → ∞ in the previous inequality and utilizing the Assumption that
δ̃ = ∞ ⇐⇒ limk

αk
βk

= 0, part (b) of Lemma 8 (yk → 0), and also boundedness of
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{xk}, we are led to the following

lim sup
k

〈
(I − T )xk, xk − y

〉
≤ 0, ∀y ∈ Fix(W ),

which upon executing the limit,

〈(I − T )x, x − y〉 ≤ 0, ∀y ∈ Fix(W ),

and which in turn yields x ∈ V I (T ,Fix(W )). ��
Fact 10 If the interior of X∗ is non-empty then X∗ = Fix(T ) ∩ Fix(W ), and as well
{xk} is bounded.
Proof First, we show X∗ = Fix(T ) ∩ Fix(W ). Let there exist x0 ∈ intX∗ and let
x ∈ R

n be given. Hence for sufficiently small t ∈ (0, 1), we have that x0+ t(x− x0) ∈
X∗ ⊂ Fix(W ), which further implies

φ1(x0) = φ1(x0 + t(x − x0)) ≤ (1 − t)φ1(x0) + tφ1(x),

and so φ1(x0) ≤ φ1(x). This means that x0 ∈ Fix(T ). Therefore, intX∗ ⊆ Fix(T). On
the other hand, since X∗ is closed and convex, we therefore have

X∗ = cl(int(X∗)) ⊆ Fix(T ).

Consequently, as we already have X∗ ∩ Fix(T ) = Fix(T ) ∩ Fix(W ), one can deduce
that X∗ = Fix(T )∩Fix(W ), which verifies the desired equality. Notably, asmentioned
in Remark 7, it is evident that the sequence xk is bounded. ��
Assumption 11 (Quadratic growth condition) Suppose now that φ1 grows quadrati-
cally (globally) away from a part of its minimizing set Y ∗ = Fix(W ), i.e., X∗, meaning
there is a real number μ > 0 such that

φ1(x) ≥ φ∗
1 + μ

2
dist2(x, X∗) ∀x ∈ �1\Fix(W ) (17)

where �1 = B(0,Cx0) for given x0 ∈ Fix(W ) and φ∗
1 represents the optimal value of

φ1.

The quadratic growth condition can be interpreted as a notion of sharpness assump-
tion on the function φ1, which describes functions that exhibit at least the behavior of
dist(x, X∗).
Originally introduced to establish the convergence of trajectories for the gradient flow
of analytic functions, Bolte et al. proposed an extension to non-smooth functions in
their work published in Bolte et al. (2007).
As a simple example, let us assume thatφ1(x, y) = 0 for (x, y) ∈ [−1, 1]×[−1, 1] and
for otherwise φ1(x, y) ≥ 2 and �1 = B2(0, 0), we get Fix(W ) = [−1, 1] × [−1, 1]
now, considering X∗ = [− 1

2 ,
1
2 ]×[− 1

2 ,
1
2 ], wewill observe, through a straightforward

investigation, that (17) is verified.
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Theorem 12 LetAssumption11hold, and δ = 0. Then {xk} converges to some x∗ ∈ X∗
such that

〈
x∗ − S(x∗), x − x∗〉 ≥ 0 ∀x ∈ X∗.

Proof Strong convexity of ω, and contractivity of the operator S, together implies that
there is unique x∗ ∈ X∗ such that x∗ = PX∗ Sx∗ and x∗ ∈ V I (S, X∗), i.e.,

〈
x∗ − S(x∗), x − x∗〉 ≥ 0, ∀x ∈ X∗. (18)

Since the sequence {xk} is bounded, one sees that xk ∈ �1. Furthermore, utilizing
assumption 11, one may be readily verified that w(xk) ⊂ X∗. Moreover, one can
extract a convergent sub-sequence {xki } of {xk+1} or any sub-sequence thereof to
x

′ ∈ X∗, which holds by Lemma 8, part c, and (69) so that

lim sup
k

〈
S(x∗) − x∗, xk+1 − x∗〉 = lim

i

〈
S(x∗) − x∗, xki − x∗〉

=
〈
S(x∗) − x∗, x ′ − x∗〉 ≤ 0. (19)

Next, we show xk → x∗. Let the sequences ck and dk are defined as

ck : = αk(S(xk) − S(x∗)) + (1 − αk)βk(T (xk) − T (x∗))
+ (1 − αk)(1 − βk)(W (xk) − W (x∗)),

dk : = αk(S(x∗) − x∗) + (1 − αk)βk(T (x∗) − x∗).

From above it is immediate that ck+dk = xk+1−x∗, and ‖ck‖ ≤ (1−(1−r)αk)‖xk−
x∗‖. By a simple calculation, one has

‖ck + dk‖2 ≤ ‖ck‖2 + 2 〈dk, ck + dk〉 ,

and finally by plugging ck and dk in the previous inequality follows that

‖xk+1 − x∗‖2 ≤ (1 − (1 − r)αk)‖xk − x∗‖2 + 2αk

〈
S(x∗) − x∗, xk+1 − x∗〉

+ 2(1 − αk)βk

〈
T (x∗) − x∗, xk+1 − x∗〉 . (20)

Now, setting

⎧
⎨

⎩

ak = ‖xk − x∗‖2,
γk = (1 − r)αk,

δk = 2αk
〈
S(x∗) − x∗, xk+1 − x∗〉+ 2(1 − αk)βk

〈
T (x∗) − x∗, xk+1 − x∗〉 .

(21)
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One has that

ak+1 ≤ (1 − γk)ak + δk .

Also, using the boundedness of {xk} together with δ = 0 we can conclude that
lim sup

k

δk
γk

≤ 0. Indeed, taking into account (19) and δ = 0 gives

lim sup
k

δk

γk

= lim sup
k

⎡

⎣
2αk

〈
S(x∗) − x∗, xk+1 − x∗〉+ 2(1 − αk)βk

〈
T (x∗) − x∗, xk+1 − x∗〉

(1 − r)αk

⎤

⎦

≤ 2

1 − r
lim sup

k

〈
S(x∗) − x∗, xk+1 − x∗〉

+ 2

1 − r
lim sup

k
(1 − αk)

βk

αk

〈
T (x∗) − x∗, xk+1 − x∗〉 ≤ 0.

The desired assertion now follows from Lemma 5. ��
Theorem 13 Let Assumption 11 hold, and δ = ∞. Moreover, assume that {xk} is
bounded. Then {xk} converges to some x∗ ∈ X∗ such that

〈
x∗ − S(x∗), x − x∗〉 ≥ 0 ∀x ∈ X∗,

i.e, minx∈X∗ ω(x) = ω(x∗).

Proof As before, there is a unique x∗ ∈ X∗ fixed point of the contraction map PX∗ S,
i.e., x∗ = PX∗ Sx∗. Therefore x∗ ∈ V I (S, X∗) and

〈
x∗ − S(x∗), x − x∗〉 ≥ 0, ∀x ∈ X∗

as a same method, due to the boundedness of xk we may get a subsequence {xki }
converges to x

′ ∈ X∗ such that

lim sup
k

〈
S(x∗) − x∗, xk+1 − x∗〉 = lim

i

〈
S(x∗) − x∗, xki − x∗〉

=
〈
S(x∗) − x∗, x ′ − x∗〉 ≤ 0,

and also there is subsequence xk j converges to x
′′ ∈ X∗ such that

lim sup
k

〈
T (x∗) − x∗, xk+1 − x∗〉 = lim

i

〈
T (x∗) − x∗, xki − x∗〉

=
〈
T (x∗) − x∗, x ′′ − x∗〉 ≤ 0. (22)
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Weshow the last inequality.UsingLemma9, onederives that x
′′ ∈ V I (I−T ,Fix(W )),

i.e.,

〈
T (x

′′
) − x

′′
, x − x

′′〉 ≤ 0 ∀x ∈ Fix(W )

Taking x = x∗ ∈ X∗ ⊆ Fix(W ), gives
〈
T (x

′′
) − x

′′
, x∗ − x

′′〉 ≤ 0. Using mono-

tonicity of I − T yields that 〈T (x∗) − x∗, x ′′ − x∗〉 ≤ 0 and this follows (22). The
rest of the proof follows from (20) and (21), and Lemma 5. ��

As another application of Theorem 12, one may point to Theorem 6.1 of Xu (2002)
for solving the following quadratic minimization problem:

min
x∈K [ω(x) := μ

2
〈Ax, x〉 + 1

2
‖x − u‖2 − 〈x, b〉], (23)

where K is a nonempty closed convex and μ ≥ 0 is a real number, u, b ∈ R
n and

A is a bounded linear operator which is positive (〈Ax, x〉 ≥ 0 for all x ∈ R
n). Set

S(x) := x − r∇ω(x) and T (x) := proxδK
(x) = PK (x). Then the sequence {xk}

generated by xk+1 = αk S(xk) + (1 − αk)T (xk) converges to the unique solution
x∗ of problem (23) under the mild assumption αk → 0 and

∑

k
αk = ∞. We drop

the assumption that lim
k

αk+1
αk

= 1. Notice that when we take K = R
n , then problem

(23) reduces to a classical convex quadratic optimization problem, in which case
xk → prox f (u)where f (u) = 1

2 〈Au, u〉+〈u, b〉 and prox f (u) = (A+ I )−1(u−b).

Remark 14 Knowing relation (20) andAssumption2,wefindout that the two following
conditions together imply the convergence of the sequence {xk}:

lim sup
k

〈
(S − I )x∗, xk − x∗〉 ≤ 0, (24)

and

lim sup
k

βk

αk

〈
(T − I )x∗, xk − x∗〉 ≤ 0. (25)

Thanks to the Assumptions of Theorem 12, x∗ solves V I (S, X∗). This is due to the
fact that δ = 0, which means βk → 0 faster than αk → 0. Afterwards, the term
αk S(xk) dominates, while the term βkT (xk) becomes negligible. When δ = ∞, it is
difficult to confirm the verification of condition (25) without assuming bounded linear
regularity to control the growth of ‖x − T (x)‖.
Up to now, we have shown that the sequence {xk} is bounded and convergent, provided
that δ = 0. A natural question is to askwhether the sequence {xk} is convergent when δ

is non-zero. The following proposition guarantees, under the assumption δ ∈ [0,+∞),
that there is a particular variational inequality that is satisfied for any limit point of the
sequence generated by the Algorithm.
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Proposition 15 Assume δ < ∞, together with Assumptions 2, 3 and 4. Then sequence
{xk} converges to the unique solution of the variational inequality

∃x̃ ∈ Fix(W ) 〈(I − S)̃x + δ(I − T )̃x, x − x̃〉 ≥ 0, ∀x ∈ Fix(W ). (26)

Proof Set yk = 1
βk

(xk−xk+1). From part (b) of Lemma 8we have yk → 0 as k → ∞.
By the definition of iteration (12) and monotonicity of I −W for all y ∈ Fix(W ), one
sees easily that

〈
yk, xk − y

〉
= αk

βk

〈
(I − S)xk, xk − y

〉
+ (1 − αk)

〈
(I − T )xk, xk − y

〉

+ (1 − αk)(1 − βk)

βk

〈
(I − W )xk − (I − W )y, xk − y

〉

≥ αk

βk

〈
(I − S)xk, xk − y

〉
+ (1 − αk)

〈
(I − T )xk, xk − y

〉
, (27)

which implies that

βk

αk

〈
yk, xk − y

〉
≥
〈
(I − S)xk, xk − y

〉
+ βk(1 − αk)

αk

〈
(I − T )xk, xk − y

〉
. (28)

Now, for given x1, x2 ∈ w({xk}), there exist sub-sequences {xki } and {xk j } of {xk},
such that xki → x1 and xk j → x2. On taking the limsup of (28) and using the fact
that yk → 0 and lim sup

k

βk
αk

= δ ∈ [0,∞), we deduce that,

{ 〈δ(I − T )x1 + (I − S)x1, x1 − y〉 ≤ 0,
〈δ(I − T )x2 + (I − S)x2, x2 − y〉 ≤ 0,

∀y ∈ Fix(W ). (29)

Rearranging (29) by substituting y = x1 and y = x2 shows that

〈(I − S)x1, x1 − x2〉 ≤ −δ 〈(I − T )x1, x1 − x2〉 , (30)

−〈(I − S)x2, x1 − x2〉 ≤ δ 〈(I − T )x2, x1 − x2〉 . (31)

On the other hand, since I − S is (1 − r)-strongly monotone and I − T is monotone
by adding up inequalities (30) and (31), one obtains that

(1 − r)‖x1 − x2‖2 ≤ 〈(I − S)x1 − (I − S)x2, x1 − x2〉
≤ −δ 〈(I − T )x1 − (I − T )x2, x1 − x2〉
≤ 0.

So, x1 = x2. This shows that {xk} converges. (Here, we have used the fact that
the sequence {xk} converges if and only if every sub-sequence of {xk} contains a
convergent sub-sequence.) Setting x̃ := lim

k→∞ xk , we then see from (29) that

〈(I − S)̃x + δ(I − T )̃x, x − x̃〉 ≥ 0, ∀x ∈ Fix(W ).
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This completes the proof. ��
Corollary 16 For each operator P ∈ [I − S, I − T ] one has V I (P,Fix(W )) �= ∅
where c ∈ [a, b] means that there is t ∈ [0, 1] such that c = ta + (1 − t)b.

2.4 Convergence analysis under an error-bound condition

Here, we introduce an error-bound condition that facilitates additional convergence
guarantees. Let us denote the closed ball of radius ρ centred at 0 by B(0, ρ).

Definition 17 (Error bound condition), Borwein et al. (2017) Let W : X → X be
such that Fix(W ) �= ∅. We say that W is boundedly linearly regular if

∀ρ > 0 (∃θ > 0) (∀x ∈ B(0; ρ)) d(x,Fix(W )) ≤ θ‖x − W (x)‖.

note that in general θ depends onρ, whichwe sometimes indicate bywriting θ = θ(ρ).

The notion of a bounded linear regularity is a valuable property in optimization and
variational analysis. It ensures that a function behaves well near its critical points, and
has been used in Bauschke et al. (2015) to analyze linear convergence of algorithms
involving nonexpansive mappings. An exemplary and practically significant illustra-
tion of an objective that is non-quasi-strongly convex yet satisfies the quadratic growth
condition is the LASSO problem:

min
x∈Rn

[1
2
‖Qx − b‖2 + λ‖x‖1] (32)

when the operator Q has a nontrivial kernel. Further classes of functions that possess
a regular error-bound property include the following:

Example 2

X = R
n, ‖.‖ = ‖.‖2 f (x) = ‖Ax − b‖22, g(x) = ‖x‖1

X = R
n, ‖.‖ = ‖.‖2 f (x) = ‖Ax − b‖22, g(x) =

{

0 x ∈ B
n
2
2+∞ else

‖.‖ = ‖.‖F , X = R
p×n, f (x) = ‖Ax − b‖22, g(x) = ‖x‖nuc

Proposition 18 For all t ∈
(
0, 1

L f2

]
and x ∈ dom(∂φ2) one has

‖x − Tt (x)‖ ≤ td(0, ∂ϕ2(x)).

Proof For every x ∈ dom(∂φ2) we have ∂ϕ2(x) = ∇ f2(x) + ∂g2(x). For given
t ∈ (0, 1

L f2
] and z ∈ ∂φ2(x) one has

(x − t∇ f2(x)) + t z ∈ x + t∂g2(x) = (I + t∂g2)(x),
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we must then have

(I + t∂g2)
−1((x − t∇ f2(x)) + t z) = x,

or equivalently, Tt (x + t z) = proxtg2(x + t z − t∇ f2(x)) = x . Since the proximal
mapping is non-expansive, we deduce that

‖x − Tt (x)‖ = ‖Tt (x + t z) − Tt (x)‖ ≤ t‖z‖, ∀z ∈ ∂ϕ2(x).

Letting z be the minimal norm element of ∂ϕ2(x), we derived the claimed inequality
‖x − Tt (x)‖ ≤ td(0, ∂ϕ1(x)). ��

We shall now study cases wherein δ is not finite. From now on, we use � :=
V I (T ,Fix(W )) and assume it is non-empty.

Theorem 19 Assume δ̃ = ∞, together with Assumptions 2, 3, and 4. Assume also that
{xk} is bounded. Moreover, if the following assumptions hold

(A2) W is boundedly linearly regular,

(A3) lim sup
k

βk
2

αk
= 0,

then the sequence {xk} converges to x∗, the unique solution of

〈x∗ − S(x∗), x − x∗〉 ≥ 0, ∀x ∈ �. (33)

Furthermore, this implies that x∗ minimizes ω over �, i.e.,

min
x∈�

ω(x) = ω(x∗).

Proof Since � is closed and convex and S is a contraction, there exists x∗ ∈ �, which
is a unique fixed point of the projection map P�S(x∗) = x∗, i.e.,

〈
x∗ − S(x∗), x − x∗〉 ≥ 0, ∀x ∈ �. (34)

To deduce xk → x∗, we first note that x∗ ∈ � := V I (T ,Fix(W )), which implies
that

〈
(T − I )x∗, x − x∗〉 ≤ 0 ∀x ∈ Fix(W ),

and since PFix(W )(xk) ∈ Fix(W ), one gets

〈
(T − I )x∗, PFix(W )(x

k+1) − x∗〉 ≤ 0. (35)

On the other hand, since {xk} is bounded, there exists M > 0 and k0 ≥ 0 such that for
all k ≥ k0, one has xk ∈ B(0, M). So, by applying Assumption (A1), one can easily
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observe that there exists θ > 0 such that

d(xk,Fix(W )) ≤ θ‖xk − W (xk)‖. (36)

Employing (35) and (36), one has

〈
(T − I )x∗, xk+1 − x∗〉

=
〈
(T − I )x∗, xk+1 − PFix(W )(x

k+1) + PFix(W )(x
k+1) − x∗〉

=
〈
(T − I )x∗, xk+1 − PFix(W )(x

k+1)
〉

+
〈
(T − I )x∗, PFix(W )(x

k+1) − x∗〉

≤
〈
(T − I )x∗, xk+1 − PFix(W )(x

k+1)
〉

≤ ‖T (x∗) − x∗‖ ‖xk+1 − PFix(W )(x
k+1)‖

= ‖T (x∗) − x∗‖d
(
xk+1,Fix(W )

)

≤ θ‖T (x∗) − x∗‖‖xk+1 − W (xk+1)‖.

Hence

〈
(T − I )x∗, xk+1 − x∗〉 ≤ θ‖T (x∗) − x∗‖‖xk+1 − W (xk+1)‖. (37)

Now, since {xk} is bounded, one can find a constant C > 0 so that

C ≥ sup
k≥1

{
‖S(xk)‖, ‖T (xk)‖, ‖W (xk)‖

}
,

and we will then have

‖xk+1 − Wxk+1‖
≤ ‖xk+1 − W (xk)‖ + ‖W (xk+1) − W (xk)‖
≤ ‖xk+1 − Wxk‖ + ‖xk+1 − xk‖
≤ αk‖S(xk)‖ + βk‖T (xk)‖ + (αk + βk + αkβk)‖W (xk)‖ + ‖xk+1 − xk‖
≤ (2αk + 2βk + αkβk)C + ‖xk+1 − xk‖.

Therefore, by combining the previous inequality and (37), we get:

〈
(T − I )x∗, xk+1 − x∗〉 ≤ θ‖T (x∗) − x∗‖

[
(2αk + 2βk + αkβk)C + ‖xk+1 − xk‖

]
.

(38)
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Now, multiplication (38) with βk
αk

yields

βk

αk

〈
(T − I )x∗, xk+1 − x∗〉

≤ θ‖T (x∗) − x∗‖
[(

2βk + 2
β2
k

αk
+ β2

k

)

C + β2
k

αk
.
‖xk+1 − xk‖

βk

]

. (39)

Using (39), Assumption (A4), and part (b) of Lemma 8, we will observe that

lim sup
k

βk

αk

〈
(T − I )x∗, xk+1 − x∗〉 ≤ 0. (40)

Moreover by Lemma 9, we have w({xk}) ⊆ �. Now, since {xk+1} is bounded there
exists a convergent sub-sequence {xki } of {xk+1} to x

′ ∈ �. From (34), it can be seen
that

lim sup
k

〈
(S − I )x∗, xk+1 − x∗〉 = lim

k

〈
(S − I )x∗, xki − x∗〉

=
〈
(S − I )x∗, x ′ − x∗〉 ≤ 0. (41)

Recall that we still have inequality (20). By a similar argument as in Remark 14, from
(40) and (41) and in view of Lemma 5, we see that xk → x∗ and the proof is complete.
��

Notice that by Lemma 9, we know that when δ̃ = ∞, then w({xk}) ⊆ �. The
following example shows that this is not a necessary condition.

Example 3 Take the choices

S(x) = x

4
, T (x) =

⎧
⎨

⎩

x x ∈ [−1, 1],
1 x ≥ 1,
−1 x ≤ −1,

, W (x) =
⎧
⎨

⎩

x x ∈ [0, 2],
2 x ≥ 2,
0 x ≤ 0.

Also, consider αk = 1
k and βk = 1

k2
. It can be seen that δ = 0 and � =

V I (T ,Fix(W )) = [0, 1] and also w({xk}) = {0} ⊂ �.

The following result asserts the existence of a limit point satisfying a variational
inequality under a mild assumption related to the preceding theorem without any
condition on δ.

Proposition 20 Assume δ < ∞, together with Assumptions 2, 3, 4, and (A2) of Theo-
rem 19. Moreover, assume that Assumption 11 holds for � in replace of X∗. Then the
sequence {xk} converges to x∗, which is the unique solution of

〈x∗ − S(x∗), x − x∗〉 ≥ 0, ∀x ∈ �. (42)
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Proof This is immediate from Theorem (19). ��
The following fact provides the limit of distance between {xk} and Fix(W ) and X∗,

respectively.

Fact 21 Let Assumption 4 hold and hk = d(xk, X∗). Also suppose that {xk} is
bounded. Then the following assertion holds

a) If hk �= 0 then lim
k→∞

(h2k+1−h2k )
+

hk+1
= 0.

b) lim
k→∞ d(xk,Fix(W )) = 0.

Proof We just prove the first assertion. (The second is straightforward from the bound-
edness of {xk}.) The proof relies on the study of the sequence {hk}. Since PX∗ is the
projection operator onto the convex set X∗, we have

1

2
h2k = 1

2
‖xk − PX∗(xk)‖2

= 1

2
‖(xk − PX∗(xk)) − (xk+1 − PX∗(xk+1)) + (xk+1 − PX∗(xk+1))‖2

= 1

2
‖(xk − PX∗(xk)) − (xk+1 − PX∗(xk+1))‖2 + 1

2
‖xk+1 − PX∗(xk+1)‖2

+
〈
(xk − PX∗(xk)) − (xk+1 − PX∗(xk+1)), xk+1 − PX∗(xk+1)

〉

≥ 1

2
h2k+1 +

〈
xk − xk+1, xk+1 − PX∗(xk+1)

〉

+
〈
PX∗(xk+1) − PX∗(xk), xk+1 − PX∗(xk+1)

〉
.

Now, PX∗(xk) ∈ X∗ and consequently

〈
PX∗(xk+1) − PX∗(xk), xk+1 − PX∗(xk+1)

〉
≥ 0.

Therefore

1

2
h2k+1 − 1

2
h2k ≤

〈
xk+1 − xk, xk+1 − PX∗(xk+1)

〉

≤
∣
∣
∣

〈
xk+1 − xk, xk+1 − PX∗(xk+1)

〉∣
∣
∣

≤
∥
∥
∥xk+1 − xk

∥
∥
∥

∥
∥
∥xk+1 − PX∗(xk+1)

∥
∥
∥

=
∥
∥
∥xk+1 − xk

∥
∥
∥ hk+1. (43)

Since hk+1 �= 0 the last inequality follows that

0 ≤ (h2k+1 − h2k)
+

hk+1
≤ 2

∥
∥
∥xk − xk+1

∥
∥
∥ .
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Finally, the proof is completed by part (a) of Lemma 8. ��
Remark 22 We would also like to point out that if in Theorems 19 and Proposition 20
we had � := V I (T ,Fix(W )) = X∗ then the trilevel optimization problem (2) would
have a solution.

Remark 23 Our assumptions on αk and βk are weaker that of assumptions (Maingé
and Abdellatif 2007; Moudafi 2007). For instance, consider that lim

k

βk
αk

need not exist.

Instead, we consider lim
k

sup βk
αk
. See Example 4 below, where there is no limit βk

αk
, but

our results still apply.

Example 4 Let βk = 1
(k+1)(3+(−1)k )

, αk = 1
(k+1)(2+(−1)k )

clearly lim
k

βk
αk

does not

exist, but lim sup
k

βk
αk

= 3
4 and also

∞∑

k=1

αk = ∞, αk → 0.

Now, we are ready to give an example related to the step-sizes αk and βk that
guarantee the convergence {xk} of all of our results. Note that in all cases lim

k

βk
αk

may

not exist.

Example 5 Consider αk = 1
(k+1)λ(2+(−1)k )

and βk = 1
(k+1)γ (3+(−1)k )

with λ > 0, γ >

0. Now for large sufficient k, we have the following estimation

|αk+1 − αk | ≈ 1

(k + 1)λ
, |βk+1 − βk | ≈ 1

(k + 1)γ
.

It is easy to check that

δ = lim sup
k

βk

αk
=
⎧
⎨

⎩

0 λ < γ,

1 λ = γ,

+∞ λ > γ.

Furthermore,

• Assumption 2 holds when 0 < λ ≤ 1.
• Assumption 3 holds when 0 < λ + γ ≤ 1.
• Assumption 4 holds when 0 < λ, γ < 1.
• Assumption (A4) holds when λ ≤ 2γ .

Remark that for the case δ̃ = ∞, it is sufficient to consider αk = 1
(k+1)λ

and βk =
1

(k+1)γ with lim
k

βk
αk

= ∞ for λ > γ . Now we are ready to present a taxonomy of

assumptions with respect to αk and βk , as referenced in Table 2

• (a): λ < γ .
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• (b): 0 < λ ≤ γ < 1 or 0 < γ < λ < 1.
• (c): 0 < λ ≤ γ < 1 and 0 < λ + γ < 1.
• (d): 0 < γ < λ ≤ 1, 0 < λ + γ ≤ 1 and λ ≤ 2γ .
• (e): 0 < γ < λ ≤ 1, 0 < λ + γ ≤ 1.
• (f): 0 < γ = λ < 1.

3 Convergence rate analysis for trilevel optimization problems

In this section, we present the main result of this paper. This addresses the rate of
convergence of the sequence {xk} generated by Algorithm 1 with a particular choice
of step-sizes.

3.1 Technical lemmas

The technical lemmawhich we state next, and for which we refer to Sabach and Shtern
(2017), will play a crucial role in the convergence analysis.

Lemma 24 (Sabach and Shtern 2017, Lemma 3) Let M > 0. Suppose that {ak} is a
sequence of non-negative real numbers which satisfy a1 ≤ M and

ak+1 ≤ (1 − γ bk+1)ak + (bk − bk+1)ck k ≥ 1,

where γ ∈ (0, 1], {bk} is a sequence defined as bk := min{ 2
γ k , 1} and {ck} is a

sequence of real numbers such that ck ≤ M < ∞.
Then, the sequence {ak} satisfies

ak ≤ MJ

γ k
k ≥ 1, where J =

⌊
2

γ

⌋

.

The next result will be useful for the rate of convergence.

Lemma 25 One has the following

φi (x − tψi (x)) − φi (y) ≤ 1

2t
‖x − y‖2, ∀x, y ∈ R

n, t ∈
(

0,
1

L fi

]

(44)

where φi (x) := fi (x)+gi (x) andψi (x) := 1
t (x−proxtgi (x− t∇ fi (x))) and i = 1, 2

Proof Let i = 1. Using Lipschitz continuity of f1 with parameter L f1 it is well-known
that convexity of f1 is equivalent to

f1(y) ≤ f1(x) + ∇ f1(x)
T (y − x) + L f1

2
‖x − y‖2, ∀x, y ∈ R

n . (45)
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Assume that x ∈ R
n and t ∈ (0, 1

L f1
] be given. Plugging y = x − tψ1(x) in the

previous inequality one obtains that

f1(x − tψ1(x)) ≤ f1(x) + ∇ f1(x)
T ((x − tψ1(x)) − x) + L f1 t

2

2
‖ψ1(x)‖2

≤ f1(x) − t∇ f1(x)
T (ψ1(x)) + t

2
‖ψ1(x)‖2.

Now from x − tψ1(x) = proxtg1(x − t∇ f1(x)), we get to

ψ1(x) − ∇ f1(x) ∈ ∂g1(x − tψ1(x)).

Therefore,

g1(y) − g1(x − tψ1(x)) ≥ (ψ1(x) − ∇ f1(x))
T (y − x + tψ1(x)). (46)

Now by simplifying and taking into account (46) one has

φ1(x − tψ1(x)) = f1(x − tψ1(x)) + g1(x − tψ1(x))

≤ f1(x) − t∇ f1(x)
T (ψ1(x)) + t

2
‖ψ1(x)‖2 + g1(x − tψ1(x))

≤ f1(y) − ∇ f1(x)
T (y − x) − t∇ f1(x)

T (ψ1(x)) + t

2
‖ψ1(x)‖2 + g1(x − tψ1(x))

≤ f1(y) − ∇ f1(x)
T (y − x) − t∇ f1(x)

T (ψ1(x)) + t

2
‖ψ1(x)‖2

+ g1(y) − (ψ1(x) − ∇ f1(x)
T (y − x + tψ1(x))

≤ φ1(y) − ‖ψ1(x)‖‖x − y‖ − t‖ψ1(x)‖2

≤ φ1(y) + 1

2t
[‖x − y‖2 − ‖(x − y) − tψ1(x)‖2] ≤ φ1(y) + 1

2t
‖x − y‖2, (47)

and therefore it follows

φ1(x − tψ1(x)) − φ1(y) ≤ 1

2t
‖x − y‖2, ∀x, y ∈ R

n, t ∈
(

0,
1

L f1

]

.

��
We are now in a position to derive the following result which appeared in a similar

form Beck and Teboulle (2009), Sabach and Shtern (2017), however for our context
the proof had to be modified.

Proposition 26 (Sabach and Shtern 2017, Proposition1) Let x ∈ R
n and denote x+ =

Tt (x). Then

φ2(x
+) − φ2(u) ≤ 1

t

〈
x − x+, x − u

〉− 1

2t
‖x − x+‖2, ∀(u, t) ∈ R

n ×
(

0,
1

L f2

]

.
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and also if z = Ws(x). Then

φ1(z) − φ1(u) ≤ 2

s
〈x − z, x − u〉 − 1

2s
‖x − z‖2, ∀(u, s) ∈ R

n ×
(

0,
1

L f1

]

.

Proof We will just prove the first part. The second part can be proved by the same
method. Assume that x+ = Tt (x) so we have

ψ2(x) = 1

t
(x − proxtg2(x − t∇ f2(x)) = 1

t
(x − Tt (x)) = 1

t
(x − x+).

From (47) of Lemma 25 we obtain

φ2(x − tψ1(x)) − φ2(u)

≤ −‖ψ1(x)‖ ‖x − u‖ − t‖ψ1(x)‖2 ≤ 〈ψ1(x), x − u〉 − t

2
‖ψ1(x)‖2,

and then by plugging ψ1(x) = x−x+
t in the previous inequality one get

φ2(x
+) − φ2(u) ≤ 1

t

〈
x − x+, x − u

〉− 1

2t
‖x − x+‖2, ∀(u, t) ∈ R

n ×
(

0,
1

L f2

]

.

and the desired result follows. ��
Now, we set up the sequences αk and βk and define the constant J as

αk = min

{
2

(1 − r)k
, 1

}

, βk = αk − αk+1

2(2 − αk)
, J =

⌊
2

(1 − r)

⌋

, k ≥ 1 (48)

where r ∈ (0, 1]. Clearly, Assumptions 2, 3, 4 are satisfied under (48).
To begin, we present the following lemma, which plays a key role in the sequel.

Lemma 27 Assume that {xk}, {yk}, {zk} and {vk} be the sequences generated by Algo-
rithm 1 and also x ∈ Fix(W ) be given, defining y = T (x) and v = S(x). Then, for
every k ≥ 1 the following relations hold true.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

‖yk+1 − yk‖ ≤ ‖xk − xk−1‖,
‖zk+1 − zk‖ ≤ ‖xk − xk−1‖,
‖vk+1 − vk‖ ≤ r‖xk − xk−1‖,
‖zk+1 − x‖ ≤ ‖xk − x‖,
‖yk+1 − y‖ ≤ ‖xk − x‖,
‖vk+1 − v‖ ≤ r‖xk − x‖,

(49)

and there exists positive constants CS,CT and Cx so that

⎧
⎨

⎩

‖yk − zk‖ ≤ CT + 2Cx ,

‖yk − vk‖ ≤ CS + CT + 2Cx ,

‖vk − zk‖ ≤ CS + 2Cx .

(50)
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Proof All parts are a direct consequence of non-expansively of T ,W and the contrac-
tion property of S and Lemma 6. ��
Lemma 28 Let {xk}, {yk},{zk} and {vk} be sequences generated by the Algorithm (1),
where {αk} and {βk} are defined by (48). Then for every x ∈ Fix(W ) one has

⎧
⎪⎨

⎪⎩

‖xk − xk−1‖ ≤ (CS+2CT +5Cx )J
(1−r)k

and
‖zk − xk−1‖ ≤ (CS+2CT +5Cx )(J+2)

(1−r)k ,

(51)

where CS,CT ,Cx are defined in Lemma 6 and J =
⌊

2
(1−r)

⌋
.

Proof One can write

xk+1 − xk = αk+1[vk+1 − vk]
+(1 − αk+1)[βk+1(yk+1 − yk) + (1 − βk+1)(zk+1 − zk)]
+(αk+1 − αk)[vk − βk+1yk − (1 − βk)zk]
+(1 − αk+1)(βk+1 − βk)[yk − zk].

Now, one gets that

‖xk+1 − xk‖ ≤ (1 − (1 − r)αk+1)‖xk − xk−1‖
+ (αk − αk+1)‖vk − βk+1y

k − (1 − βk)z
k

+ (1 − αk+1)(βk+1 − βk)(y
k − zk)‖

≤ (1 − (1 − r)αk+1)‖xk − xk−1‖ + (αk − αk+1)ck

as well as one can easily follow that

ck : = ‖vk − βk+1y
k − (1 − βk)z

k + (1 − αk+1)(βk+1 − βk)(y
k − zk)‖

= ‖(vk − x) − βk(z
k − x) − (1 − βk)(y

k − x)

+ (1 − αk+1)((z
k − x) − (yk − x))‖ ≤ ‖vk − x‖ + βk‖zk − x‖

+ (1 − βk)‖yk − x‖ + (1 − αk+1)‖zk − x‖ + (1 − αk)‖yk − x‖
≤ (CS + Cx ) + (CT + Cx ) + Cx + (CT + Cx ) + Cx = CS + +2CT + 5Cx .

(52)

Moreover,

‖x1 − x0‖ = ‖(x1 − x) − (x0 − x)‖ ≤ ‖x1 − x‖ + ‖x0 − x‖
≤ 2Cx ≤ CS + 2CT + 5Cx ,

therefore all hypotheses of Lemma 24 are hold. Hence, the rate of convergence
{‖xk+1−xk‖} is immediately implied by setting ak = ‖xk−xk−1‖,bk = αk , γ = 1−r
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and ck as (52). By the following arguments, the rate for {‖zk − xk+1‖} can be derived

‖zk − xk‖ = ‖zk − (
αkv

k + (1 − αk)βk yk + (1 − αk)(1 − βk)zk
) ‖

= ‖αk(zk − vk) + (1 − αk)βk(zk − yk) + (1 − αk)(1 − βk)(zk − zk)‖
≤ αk‖vk − zk‖ + (1 − αk)βk‖zk − yk‖ = αk‖vk − zk‖ + αk‖zk − yk‖
= αk

(‖vk − zk‖ + ‖zk − yk‖) ≤ 2
(1−r)k (CS + CT + 4Cx ) ,

(53)

where have used the fact that (1 − αk)βk ≤ αk , and we also have

‖zk − xk−1‖ ≤ ‖zk − xk‖ + ‖xk − xk−1‖
≤ 2

(1 − r)k
(CS + CT + 4Cx ) + (CS + 2CT + 5Cx )J

(1 − r)k

≤ (CS + 2CT + 5Cx )(J + 2)

(1 − r)k
.

��

3.2 Themain result

Now, we are in a position to conclude our main result concerning the rate of conver-
gence for convex trilevel optimization.Havingproved that‖zk−xk−1‖ → 0 as k → ∞
and considering the lower semi-continuity of φ1, one obtains that {φ1(zk)}k∈N con-
verges to the optimal value. Furthermore, this implies the convergence of the sequence
{φ1(xk)}k∈N to the same value.

We note that the same argument holds for the sequence {φ2(zk)}k∈N. The following
theorem presents the convergence rate in function values to their optima:

Theorem 29 Let {xk}, {vk}, {zk} and {yk} be sequences generated by Algorithm (1),
where αk is proposed by (48). Then

φ1(z
k+1) − φ1(x

∗)

≤ (J + 2)(CS + 2CT + 5Cx∗)
√
JCx∗(CT + Cx∗)

s
√
1 − r(1 − r)(k + 1)

√
k

∀(s, k) ∈
(

0,
1

L f2

]

× N,

(54)
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where CS,CT ,Cx∗ are the same constants as in Lemma 6, J is defined in (48), Fur-
thermore, one has

φ2(y
k+1) − φ2(x

∗) ≤ Cx∗ J

2t(1 − r)k
, ∀(t, k) ∈

(

0,
1

L f1

]

× N (55)

φi (x
k) − φi (x

∗) ≤
√
4(CT + Cx∗)J

Cx∗(1 − r)k
for i = 1, 2 and k ∈ N (56)

ω(xk) − ω(x∗) ≤
(

Lω + L2
ω

2μ
rCx∗

)

r

√
Cx∗(CT + Cx∗)J

γ k
. (57)

Proof Since x∗ is a solution of tri-level Problem 2 of Theorem 12, the following result
was obtained:

‖xk+1 − x∗‖2 ≤ (1 − (1 − r)αk)‖xk − x∗‖2 + 2(1 − αk)βk〈T (x∗)
−x∗, xk+1 − x∗〉. (58)

Let us take

ak = ‖xk − x∗‖2, ck = ‖〈T (x∗) − x∗, xk+1 − x∗〉‖

and αk ,βk be as in (48). From (58), it follows that

ak+1 ≤ (1 − (1 − r)αk) ak + 2(1 − αk)βkck
≤ (1 − (1 − r)αk+1) ak + (αk − αk+1)ck

where we used the facts 2(1− αk)βk ≤ αk − αk+1, and αk+1 ≤ αk . By Lemma 6, we
then have ck ≤ (CT + Cx∗)Cx∗ . By utilizing Lemma 24, we obtain

∥
∥
∥xk − x∗

∥
∥
∥
2 ≤ Cx∗(CT + Cx∗)J

(1 − r)k
, ∀k ∈ N. (59)

Let us consider thefirst assertion (54).According toProposition 26 and zk+1 = W (xk),
for every step-size s ≤ 1

L f1
the following inequality holds

φ1(z
k+1) − φ1(x

∗) ≤ 1

s

〈
xk − zk+1, xk − x∗〉− 1

2s
‖xk − zk+1‖2 (60)

≤ 1

s

〈
xk − zk+1, xk − x∗〉 . (61)
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Combining with (51) and (59) for x∗ ∈ X∗ ⊆ Fix(W ) = Y ∗, one obtains

〈
xk − zk+1, xk − x∗〉 ≤ ‖xk − zk+1‖.‖xk − x∗‖

≤ (J + 2)(CS + 2CT + 5Cx∗)
√
JCx∗(CT + Cx∗)√

1 − r(1 − r)(k + 1)
√
k

. (62)

Thus, the assertion (54) follows from (60) and (62).
Now, we obtain the rate of convergence for φ1(yk)−φ1(x∗). In Algorithm 1, we have
yk+1 = T (xk) and so using Lemma 25, one gets that

φ1(y
k) − φ1(x

∗) = φ1(T (xk)) − φ1(x
∗) ≤ 1

2t
‖xk − x∗‖2. (63)

Plugging inequality (59) into (63) gives the desired assertion (55).
To establish the assertion (56), since φi , (i = 1, 2) is convex and bounded above
on compact set B(x∗,Cx∗), by invoking (Borwein and Vanderwerff 2010, Theorem
2.1.10) one concludes that φi is Lipschitz on this set. Note thanks to xk ∈ B(x∗,Cx∗),
one has

φi (x
k) − φ1(x

∗) ≤ 2

Cx∗
‖xk − x∗‖ (64)

which combined with (59) gives the desired assertion.
Finally, to bound the rate of convergence ω(xk) − ω(x∗), we take into consideration
(49), (59), and strong convexity of ω, for all k ∈ N \ {1}. We obtain:

ω(xk) − ω(x∗) ≤ ∇ω(x∗)T (xk − x∗) + 1

2μ

∥
∥
∥∇ω(xk) − ∇ω(x∗)

∥
∥
∥
2

≤
(

Lω + L2
ω

2μ

∥
∥
∥xk − x∗

∥
∥
∥

)∥
∥
∥xk − x∗

∥
∥
∥

≤
(

Lω + L2
ω

2μ
rCx∗

)

r

√
Cx∗(CT + Cx∗)J

γ k
.

��

Remark 30 It is worth pointing out that step-size {αk} depends on the parameter r ,
which needs to be chosen so that the map S is a contraction. Notice, however, that
knowing Lω and μ, one can consider r such that r ∈ (0, 2

Lω+μ
]. In this case, the map

S is guaranteed to be a contraction.
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4 An extension tomultilevel optimization problems

In this section, we extend our results to a multilevel convex optimization problem
wherein we have an arbitrary number of nested minimization problems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argmin
x∈X∗

N

ω(x),

X∗
N = argmin

x∈X∗
N−1

[ fN (x) + gN (x)],
.

.

.

X∗
2 = argmin

x∈X∗
1

[ f2(x) + g2(x)],
X∗
1 = argmin

x∈Rn
[ f1(x) + g1(x)],

It is then natural to define the following algorithm

xk+1 = αk
(0)S(xk) + αk

(1)T1(x
k) + · · · + αk

(N )TN (xk), (65)

in which T1, T2, . . . , TN are computed as the corresponding equation, i.e., (1), i.e.,

Ti (x) = proxti gi [x − ti∇ fi (x)], ∀i ∈ {1, 2, . . . , N },

and where the step-sizes
(
αk

(0), αk
(1), αk

(2), . . . , αk
(N )
)
satisfy the following:

(P1) for all k ∈ N, one has
∑N

j=0 α
( j)
k = 1.

(P2) limk→∞ α
(0)
k = 0 ,

∑+∞
k=1 α

(0)
k = ∞ and, lim supk

1
α

(0)
k

∑N
i=2 α

(i)
k = δ∗ ∈

[0,+∞).
(P3) X∗

N �= ∅, limk→∞ α
(1)
k = 1 and for all j ∈ {0, 2, . . . , N } one has limk→∞ α

( j)
k =

0.

The following facts hold:

• X∗
N ⊆ X∗

N−1 ⊆ . . . ⊆ X∗
1 = Fix(T1).

• for every ti ∈ (0, 1
L fi

] and i ∈ {1, 2, . . . , N } one has X̃∗
i = Fix(Ti ) where

X̃∗
i = argmin

x∈Rn
[ fi (x) + gi (x)].

• for every x ∈ V I (Ti+1,Fix(Ti )) one has

φi (Ti+1(x)) ≤ φi (y) ∀y ∈ Fix(Ti ),

where φi (x) := fi (x) + gi (x) for all i ∈ {1, 2, . . . , N }.
• for each i ∈ {1, 2, . . . , N − 1} one has X∗

i+1 ∩ Fix(Ti+1) = Fix(Ti+1) ∩ Fix(Ti )
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• for i ∈ {1, 2, .., N }, one has

φi (Ti (x)) − φi (y) ≤ 1

2t
‖x − y‖2, ∀x, y ∈ R

n, ∀t ∈
(

0,
1

L fi

]

, (66)

this follows from Lemma 25.
• for every x ∈ dom(∂φi ) one has

‖x − Ti (x)‖ ≤ d(0, ∂φi ),

where dom(∂φi ) = {x ∈ R
n : ∂φi (x) �= ∅}.

Assumption 31 (Quadratic growth condition) Suppose now that φ1 grows quadrat-
ically (globally) away from a part of its minimizing set X∗

1 = Fix(T1), i.e., X∗
N ,

meaning there is a real number η > 0 such that

φ1(x) ≥ φ∗
1 + η

2
dist2(x, X∗

N ) ∀x ∈ �∗\Fix(T1) (67)

where �∗ = B(x0,Cx0) for given x0 ∈ Fix(T1) and φ∗
1 represents the optimal value

of φ1.

In view of Fact 10 the following general result, however, holds true in having the
qualification condition of being a non-empty interior X∗

N . We omit the proof.

Lemma 32 If X∗
N has non-empty interior then X∗

N = ∩N
i=1 Fix(Ti ).

Lemma 33 Let Assumption (P2) hold. Then the sequence {xk} generated by algorithm
(65) is bounded.

Proof Define

Rk(x) = αk
(1)

1 − αk
(0)

T1(x) + αk
(2)

1 − αk
(0)

T2(x) + · · · αk
(N )

1 − αk
(0)

TN (x), ∀k ∈ N.

Then, one can rewrite the sequence {xk+1} as

xk+1 = αk
(0)S(xk) + (1 − αk

(0))Rk(x
k),

and since Rk is a convex combination of non-expansive operators, then it is non-
expansive. Now, as in Lemma 6, for every x ∈ Fix(T1) one has

‖xk+1 − x‖ ≤ max

{

‖xk0 − x‖, 1

1 − r
(‖S(x) − x‖ + δ∗‖Tj (x) − x‖)

}

,

in which

‖Tj (x) − x‖ = max
2≤i≤N

‖Ti (x) − x‖

��
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Lemma 34 (Bauschke et al. 2011) Let T1, T2, . . . , TN be non-expansive mappings
fromR

n to itself such that∩N
i=1Ti is non-empty and let λ1, λ2, . . . , λn be real numbers

such that
∑N

i=1 λi = 1. Then

Fix

(
N∑

i=1

λi Ti

)

=
N⋂

i=1

Fix(Ti ).

Lemma 35 Let Assumption (P2) hold. Then for every x ∈ Fix(T1), one has

‖xk+1 − x‖2 ≤ (1 − (1 − r)αk
(0))‖xk − x‖2 + α

(0)
k

〈
S(x) − x, xk+1 − x

〉

+
N∑

i=2

αk
(i)
〈
Ti (x) − x, xk+1 − x

〉
.

Proof Suppose that x ∈ Fix(T1) is given. First, consider

Ck := αk
(0)(S(xk) − S(x)) + αk

(1)(T1(xk) − T1(x)) + · · ·
+ αk

(N )(TN (xk) − TN (x)),
and
Dk := αk

(0)(S(x) − x) + αk
(2)(T2(x) − x) + · · · + αk

(N )(TN (x) − x).

Therefore, we have

Ck + Dk = xk+1 − x, ‖Ck‖ ≤ (1 − (1 − r)αk
(0))‖xk − x‖. (68)

To see the second part, for all k ∈ N we have

‖Ck‖ ≤ rα(0)
k

∥
∥xk − x

∥
∥+ α

(1)
k

∥
∥xk − x

∥
∥+ · · · + α

(N )
k

∥
∥xk − x

∥
∥

= (rα(0)
k + α

(1)
k + · · · + α

(N )
k )

∥
∥xk − x

∥
∥

= (1 − (1 − r)α(0)
k )

∥
∥xk − x

∥
∥ .

Now, by plugging (68) in the following inequality

‖Ck + Dk‖2 ≤ ‖Ck‖2 + 〈Dk,Ck + Dk〉 ,

the assertion follows immediately. ��
Now, we are in a position to present our main result regarding multi-level scenarios.

Theorem 36 Assume that X∗ has non-empty interior. Moreover the following holds

(A∗
1) lim supk

∑N
i=1 ‖α(i)

k − 1−α
(0)
k

N ‖
α

(0)
k

= 0.
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Then {xk} convergence to some unique x∗
N such that

〈
x∗
N − S(x∗

N ), y − x∗
N

〉 ≥ 0, ∀y ∈ X∗
N .

Proof First, we note that by looking at Lemma 32 we observe that

X∗ = Fix

(∑N
i=1 Ti
N

)

.

Let us now, consider the auxiliary sequence

yk+1 = α
(0)
k S(yk) + (1 − α

(0)
k )

∑N
i=1 Ti (y

k)

N
.

By employing (Xu 2004, Theorem 3.2) along with Lemma 34, one establishes the
convergence of the sequence yk to a specific point denoted as x∗

N . Consequently, we
deduce the following:

‖xk+1 − yk+1‖ ≤ rα(0)
k ‖xk − yk‖ +

∥
∥
∥
∥
∥

N∑

i=1

α
(i)
k Ti (x

k) − (1 − α
(0)
k )

∑N
i=1 Ti (y

k)

N

∥
∥
∥
∥
∥

≤ (1 − (1 − r)α(0)
k )‖xk − yk‖ +

∥
∥
∥
∥
∥

N∑

i=1

(α
(i)
k − 1 − α

(0)
k

N
)Ti (y

k)

∥
∥
∥
∥
∥

≤ (1 − (1 − r)α(0)
k )‖xk − yk‖ +

(
N∑

i=1

∥
∥
∥
∥
∥
α

(i)
k − 1 − α

(0)
k

N

∥
∥
∥
∥
∥

)

‖Ti (yk)‖

using Lemma 5 follows that ‖xk − yk‖ goes to zero as k → ∞. ��
Theorem 37 Let Assumption (P2) hold with δ∗ = 0, together with 31. Then the
sequence {xk} generated by algorithm (65) converges to some unique x∗

N ∈ X∗
N

such that

〈
x∗
N − S(x∗

N ), y − x∗
N

〉 ≥ 0, ∀y ∈ X∗
N ,

and

min
x∈X∗

N

ω(x) = ω(x∗
N ).

Proof Let x∗
N ∈ X∗

N be the unique fixed point of the contraction PX∗
N
S, namely the

unique solution of V I (S, X∗
N ), i.e.,

〈
x∗
N − S(x∗

N ), x − x∗
N

〉 ≥ 0, ∀x ∈ X∗
N . (69)
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Invoking Assumption (P2), one gives that {xk} is bounded, and so xk ∈ �∗. Fur-
thermore, utilizing assumption 31, it is straightforward to show that w(xk) ⊂ X∗

N .
Moreover, one can extract a convergent sub-sequence {xki } of {xk+1} or any sub-
sequence thereof to x

′
N ∈ X∗

N , which holds by Lemma 8, part c, and (69) so that

lim sup
k

〈
S(x∗

N ) − x∗
N , xk+1 − x∗

N

〉
= lim

i

〈
S(x∗

N ) − x∗
N , xki − x∗

N

〉

=
〈
S(x∗

N ) − x∗
N , x

′
N − x∗

N

〉
≤ 0. (70)

and now, using Lemma 35 follows that

‖xk+1 − x∗
N‖2 ≤ (1 − (1 − r)αk

(0))‖xk − x∗
N‖2 + α

(0)
k

〈
S(x∗

N ) − x∗
N , xk+1 − x∗

N

〉

+
N∑

i=2

αk
(i)
〈
Ti (x

∗
N ) − x∗

N , xk+1 − x∗
N

〉
. (71)

Next, set

⎧
⎪⎪⎨

⎪⎪⎩

ak = ‖xk − x∗‖2,
γk = (1 − r)α(0)

k ,

δk = α
(0)
k

〈
S(x∗

N ) − x∗
N , xk+1 − x∗

N

〉+
N∑

i=2
αk

(i)
〈
Ti (x∗

N ) − x∗
N , xk+1 − x∗

N

〉
.

(72)

One has that

ak+1 ≤ (1 − γk)ak + δk .

Additionally, utilizing the boundedness of {xk} together with δ∗ = 0 it can be inferred
that lim sup

k

δk
γk

≤ 0. Indeed, taking into account (70) and δ∗ = 0 gives

lim sup
k

δk

γk
= lim sup

k
[

α
(0)
k

〈
S(x∗

N ) − x∗
N , xk+1 − x∗

N

〉+∑N
i=2 α

(i)
k

〈
Ti (x∗

N ) − x∗
N , xk+1 − x∗

N

〉

α
(0)
k

]

≤ lim sup
k

〈
S(x∗

N ) − x∗
N , xk+1 − x∗

N

〉
+ C lim sup

k

∑N
i=2 α

(i)
k

α
(0)
k

≤ 0

where C = max1≤i≤N supk ‖Ti (x∗
N ) − x∗

N‖‖xk+1 − x∗
N‖. The desired claim can now

be deduced from Lemma 5. ��
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We will now show the rate of convergence for the general case. To study this, let
us take the sequences y(i)

k = Ti (xk−1) and step-sizes

α
(i)
k = min{ 2

(1 − r)k
, 1}, β

(i)
k = α

(i)
k − α

(i)
k+1

2(2 − α
(i)
k )

, J = � 2

1 − r
� (73)

Theorem 38 Let y(i)
k = Ti (xk−1) be sequences generated by Algorithm (65), where

αk is proposed by (73). Then

φ1(y
(1)
k ) − φ1(x

∗
N )

≤
(J + 2)(CS + 2CT1 + 5Cx∗

N
)
√
JCx∗

N
(CT1 + Cx∗

N
)

s
√
1 − r(1 − r)(k + 1)

√
k

∀(s, k) ∈
(

0,
1

L f2

]

× N,

(74)

where CS,CT 1,Cx∗
N
are the same constants as in Lemma 6 from Lemma 33, J is

defined in, Furthermore, one has

φi (y
(i)
k ) − φi (x

∗
N ) ≤ Cx∗

N
J

2t(1 − r)k
, ∀(t, k) ∈

(

0,
1

L fi

]

× N, i �= 1 (75)

ω(xk) − ω(x∗
N ) ≤

(

Lω + L2
ω

2μ
rCx∗

)

r

√
Cx∗

N
(CT1 + Cx∗

N
)J

γ k
. (76)

Proof As (59) and Lemma 35 and utilizing of Lemma 24 one can conclude that

‖xk − x∗
N‖ ≤ Cx∗

N
(CT1 + Cx∗

N
)J

(1 − r)k
,

and the rest of the proof is similar to the one for the trilevel Theorem 29. ��

5 Conclusion

We have shown how to approach a broad class of hierarchical convex optimization
problems wherein the inner problems optimize the so-called composite functions,
i.e., sums of a convex smooth function and a convex non-smooth one, and all but
the inner-most problem consider a constraint set composed of minimizers of another
problem. We have used proximal gradient operators in an iterative proximal-gradient
algorithm related to “SAM” of Sabach and Shtern (2017). For the first time, we con-
sider diminishing sequences αk and βk such that the large limit of βk

αk
need not exist.

The convergence is studied in a number of cases, depending on the relative speed of
convergence ofαk andβk and in some cases regularity properties of the problem layers.

We showed standard O(

√
1
k ), O( 1k ), O( 1

(k+1)
√
k
) rates of convergence for appropri-
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ate corresponding quantities. Future work can include introducing stochasticity to the
problems.
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