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Abstract
In multi-criteria optimization problems that originate from real-world decision mak-
ing tasks, we often find the following structure: There is an underlying continuous,
possibly even convex model for the multiple outcome measures depending on the
design variables, but these outcomes are additionally assigned to discrete categories
according to their desirability for the decision maker. Multi-criteria deliberations may
then take place at the level of these discrete labels, while the calculation of a specific
design remains a continuous problem. In this work, we analyze this type of problem
and provide theoretical results about its solution set. We prove that the discrete deci-
sion problem can be tackled by solving scalarizations of the underlying continuous
model. Based on our analysis we propose multiple algorithmic approaches that are
specifically suited to handle these problems. We compare the algorithms based on a
set of test problems. Furthermore, we apply our methods to a real-world radiotherapy
planning example.

Keywords Multi-criteria optimization · Decision making · Non-linear optimization ·
Pareto front approximation

1 Introduction

In many practical applications, the decision maker’s utility function is of a step-wise
nature even though the underlying measure and its dependence on the real-valued
optimization variables is continuous. For example, in radiotherapy one tries to have a
sufficiently high dose in the target and then, provided this is the case, as little dose in
surrounding organs at risk as possible. While the dose values in those nearby organs
are continuously dependent on administered radiation, from a physician’s point of
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view they are judged on whether they exceed certain threshold values associated with
particular side effects. Thereby, a dose in an organ might be labeled as either “danger-
ously high”, “acceptable”, or “ideal”. The multi-criteria decision making would then
deliberate on the trade-offs between different organs based on these broad categoriza-
tions.

We formalize this observation by defining the following type of multi-criteria opti-
mization problem:

P : min
x∈M d1( f1(x)), . . . , dk( fk(x)) (1)

where we assume M ⊆ R
n to be compact and non-empty, f1, . . . , fk : M → R

to be continuous functions, and d1, . . . , dk : R → R to be monotone increasing.
We let f := ( f1, . . . , fk) and d := (d1 ◦ π1, . . . , dk ◦ πk), where πi denotes the
projection from a vector in R

k to the i-th component. We assume that there is no a
priori preference between the objectives.

To establish the discrete nature of our problem,we require the following assumption
for the monotone increasing utility functions di :

Assumption 1.1 (Discrete utility) For i ∈ {1, . . . , k} there is a finite set �i ⊂ R such
that di : R → �i .

In the literature, there is a vast amount of general-purpose approaches that can be
applied to multi-criteria problems with discrete and continuous decision variables and
objectives alike (Steuer and Choo 1983; Benson and Sayin 1997; Das and Dennis
1998; Schandl et al. 2002). While these are applicable to P , they do not take into
account its special structure. An efficient algorithm for P should ideally combine
certain characteristics of algorithms intended specifically for continuous problems
with those specific for discrete problems.

When facing a problemwith the structure ofP , the aim is to find the non-dominated
solutions with respect to the discrete utility function evaluations di . However, we also
have an underlying continuous problem that we can potentially capitalize on:

Pc : min
x∈M f1(x), . . . , fk(x). (2)

Similar to how non-dominated solutions are obtained in the purely continuous
setting, efficient solutions to (2) can be calculated with potentially very efficient
general-purpose continuous solvers, such as IPOPT (Wächter andBiegler 2006) or kni-
tro (Byrd et al. 2006). Suitable scalarization methods are weighted sum if the problem
is convex, and ε-constraint (see e.g. Ehrgott 2005), or Pascoletti–Serafini scalarization
(Pascoletti and Serafini 1984) in the case of non-convex problems. Particularly suited
approaches for approximating the Pareto front of a continuous problem are sandwich-
ing (Serna 2012; Bokrantz and Forsgren 2012) in case the problem is convex, and
hypervolume or hyperboxing algorithms (Bringmann and Friedrich 2010; Teichert
2014) if the problem is non-convex.

However, algorithms for continuous problems are approximation algorithms: they
aim at calculating a discrete set of non-dominated solutions that represent the Pareto
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front up to some approximation error measure, often by establishing lower and/or
upper bounds on the front (Sayın 2000; Klamroth et al. 2002; Eichfelder 2009). In
contrast, for our setting we do not aim at an approximation of the Pareto front, but
a full representation. That is, we want to find at least one efficient solution for each
non-dominated point in the image space of the discrete utility functions. In this regard,
our approach is in line with many algorithmic approaches for calculating the Pareto
front of a purely discrete problem (Ulungu and Teghem 1994; Holzmann and Smith
2018).

While it is in fact possible to solve the multi-criteria problem P analogously to
a purely discrete problem with those techniques, such an approach is unnecessarily
computationally expensive, as the more difficult discrete problem is solved repeatedly
and not the potentially simpler continuous problem. On the other hand, one could
solve the continuous problem Pc in the approximative sense and, in a second step,
infer the discrete front. But then many points on the continuous Pareto front may be
calculated that are redundant for the discrete Pareto front of P . This is why in this
paperwe aim to combine bothworlds.Wewill present algorithms that avoid solving the
discrete problem and rather solve the simpler continuous problemPc. Simultaneously,
the algorithms will incorporate the discrete aspects of P to avoid solving redundant
continuous problems.

The outline for this paper is as follows.We first investigate the relationship between
the solutions of P and Pc (Sect. 2). Based on this theoretical insight, we then pro-
pose different algorithms to find all non-dominated points for P (Sect. 3). Finally, we
demonstrate and evaluate these algorithms using a set of test problems and an example
from radiotherapy (Sect. 4). We conclude with a discussion of our results (Sect. 5).

2 Theoretical results

In this section, we investigate the theoretical properties of P (1). In particular, we
describe the relationship between peculiar solutions of P and their corresponding
counterparts with respect to the underlying continuous problem Pc (2). This is crucial
for the development and the analysis of the algorithms described later in this paper.
Note that for all observations within this section, Assumption 1.1 is not required; they
hold for arbitrary monotone functions.

Before we present the theoretical results, we summarize some notation used
throughout this paper. For two vectors y1, y2 ∈ R

k we write y1 � y2 if the inequality
y1i ≤ y2i holds for every component i = 1, . . . k (analogously for �,<,>). We say
that a point y ∈ R

k dominates a point y′ ∈ R
k if:

yi ≤ y′
i for all i ∈ {1, . . . , k}

yi < y′
i for at least one i ∈ {1, . . . , k}.

We say that a point y ∈ R
k strictly dominates a point y′ ∈ R

k if for all i ∈ {1, . . . , k}
the inequality yi < y′

i holds. The image of the combined MCO problem P is denoted
by
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Y := (d ◦ f )(M). (3)

For the the underlying continuous problem Pc the image is denoted by

Yc := f (M). (4)

A point x ∈ M is called efficient solution forP (forPc) if there is no y ∈ Y ( y ∈ Yc)

such that y dominates (d ◦ f )(x) (dominates f (x)). The corresponding image point
is called non-dominated. A point x ∈ M is called weakly efficient solution for P (for
Pc) if there is no y ∈ Y ( y ∈ Yc) such that y strictly dominates (d ◦ f )(x) (strictly
dominates f (x)). The corresponding image point is called weakly non-dominated.

We can now begin to introduce statements about the relationship between particular
solutions ofP andPc.Wefirst observe the connection betweenweakly non-dominated
points of the two problems.

Lemma 2.1 If yc,∗ ∈ Yc is a weakly non-dominated point ofPc then y∗ := d( yc,∗) ∈
Y is weakly non-dominated for P .

Proof For an arbitrary point y in the image Y of P there is at least one point yc ∈ Yc

such that y = d( yc). Now consider the weakly non-dominated point yc,∗ ∈ Yc. There
must be at least one index i ∈ {1, . . . , k} such that

yc,∗i ≤ yci ,

as otherwise yc would strictly dominate yc,∗ and yc,∗ could not be a weakly non-
dominated point. For the same index i it follows by monotonicity of di that

y∗
i = di (y

c,∗
i ) ≤ di (y

c
i ) = yi .

This shows that y does not strictly dominate y∗. As y was chosen arbitrary in Y , this
shows that also y∗ is a weakly non-dominated point. 
�

Lemma 2.1 also implies that a non-dominated point is mapped to a weakly non-
dominated point. Unfortunately this point is not necessarily non-dominated anymore,
as the following example shows:

Example 2.2 Consider the following example (illustrated in Fig. 1):

• M = {x ∈ R
2 | ‖x‖2 ≤ 1}

• k = 2, f1(x) = x1, f2(x) = x2
• for t ∈ R: d1(t) = d2(t) and

d1(t) =
{
1 if t ≤ −0.5,

2 if t > −0.5.

The point (−1, 0) is a non-dominated point for problem Pc. However, by d it is
mapped to the point (1, 2). This point is dominated by (1, 1), which is the image of
the feasible solution (−0.5,−0.5) under d ◦ f .
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Fig. 1 Illustration of Example
2.2. The image set Yc of the
inner problem Pc is depicted in
gray and its Pareto front in blue.
The non-dominated point
(−1, 0), depicted in red, is
mapped by d to the weakly
non-dominated point (1, 2). This
point is dominated by (1, 1)

The example also shows that the reverse relationship does not hold. If d( yc)
is a weakly non-dominated point, then the preimage can be strictly dominated.

The point (−0.5,−0.5) is dominated in Pc by the point (−
√
2
2 ,−

√
2
2 ). However,

d((−0.5,−0.5)) is a non-dominated point. This means that not all preimages of a
non-dominated point are again (weakly) non-dominated. The following can be shown
about the existence of non-dominated points in the preimage:

Lemma 2.3 Let y∗ ∈ Y be a non-dominated point of P . Then there exists a non-
dominated point yc,∗ ∈ Yc of Pc such that

y∗ = d( yc,∗).

Proof Let

Z = d−1( y∗) ∩ Yc

denote the preimage of the non-dominated point y∗ ∈ Y given in the statement. By
assumption this set is nonempty. We want to show that we can find a point in Z that is
non-dominated for Pc. First consider any point z ∈ Z and a point z′ ∈ Yc such that:

z′i ≤ zi for all i ∈ {1, . . . , k}. (5)

Then by monotonicity of di we have:

di (z
′
i ) ≤ di (zi ) = y∗

i for all i ∈ {1, . . . , k}

As y∗ is non-dominated, we must have:

d(z′) = y∗.
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This means that every point z ∈ Yc satisfying the inequalities in Eq. (5) is already
contained in Z .

As we did not assume any continuity properties for d, the set Z is not necessarily
closed. This is why we consider the closure of this set denoted by Z . As we assumed
that f is continuous andM is compact, the set Z is as a subset ofYc = f (M) compact.

Nowfix an arbitrary point z∗ ∈ Z and consider the following optimization problem:

min
z∈Z

k∑
i=1

zi

s.t. zi ≤ z∗i for all i ∈ {1, . . . , k}

The feasible set is compact and non-empty by construction. Moreover every feasible
point of this problem is by the arguments given above in Z . This means that also an
optimal solution yc,∗ ∈ Yc to this problem is again in Z , which then means that

d( yc,∗) = d( y∗).

It remains to argue that yc,∗ is instead a non-dominated point for Pc. Because of
optimality, yc,∗ cannot be dominated by any point in Z . Moreover, every point in
Yc that would dominate z also satisfies (5) and is again in Z . Together this means
that the constructed point cannot be dominated by any point in Yc and is indeed a
non-dominated point for problem Pc. 
�
This Lemma is crucial for an algorithmic approach. It shows that we can find the Pareto
front of the perhaps more complex problemP by calculating points of the Pareto front
of the continuous problemPc. For completeness we show in the next example that the
statement of Lemma 2.3 does not hold true, if one replaces non-dominated by weakly
non-dominated.

Example 2.4 Consider the same feasible set and the same objectives as in Example 2.2
but consider the following utility function:

• for t ∈ R : d1(t) = d2(t) and

d1(t) =
{
1 if t ≤ 0.5,

2 if t > 0.5.

For an illustration, see Fig. 2. In this example, the point (2, 1) is a weakly non-
dominated point for P . However, all points in Yc that are mapped to this point are
strictly dominated in Pc, e.g. by (−1, 0).

3 Algorithms

In this section, we discuss different algorithms tailored at calculating the Pareto front
for a problem P with discrete utility mappings. That is, for the algorithms presented
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Fig. 2 Illustration of Example
2.4. The image set Yc of the
inner problem Pc is depicted in
gray and its Pareto front in blue.
Every point in the dark area is
strictly dominated in the inner
problem Pc , but it is the
preimage of a weakly
non-dominated point (1,2) of P

Fig. 3 Illustration of exhaustively solving the multi-criteria problem P . The preimages of the points y ∈∏k
i=1 �i divide the image space of the continuous problem Pc into boxes. By finding specific solutions to

the inner problem—whichmap to points on the continuous Pareto front depicted in blue—we can determine
whether each box, and thus each y ∈ ∏k

i=1 �i , is non-dominated, dominated, or unattainable

in this section to be applicable, we from now on explicitly require that Assumption
1.1 is satisfied. This means that for the image of P we have:

Y ⊆
k∏

i=1

�i .

The proposed algorithms utilize the special structure of P . On the one hand, all
proposed methods employ a gradient-based solver to find either feasible or weakly
efficient solutions x of P by iteratively solving particular single-criteria optimization
problems—so-called scalarizations—derived from the continuous inner problem Pc.
On the other hand, the algorithms also take the discrete utility mappings into account,
namely when choosing which scalarization to solve next and when evaluating their
progress.
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The proposed algorithms aim to exhaustively solve the multi-criteria problem P
(see Fig. 3). This means that:

• For all y ∈ ∏k
i=1 �i , the algorithm determines whether y is non-dominated,

dominated or unattainable.
• For any y ∈ ∏k

i=1 �i that is non-dominated, the algorithm calculates a solution
x ∈ M such that y = (d ◦ f )(x).

In the applications we will introduce in Sect. 4 the cardinality of each individual �i

will not only be finite but also small (3–5). Additionally we will not have arbitrary
many objectives in mind (in the examples 2–4). This means that it is possible to iterate
over all elements in

∏k
i=1 �i and to save information for each element. However, our

goal is to keep the computational effort – in the sense of optimization problems to
solve over all elements – small.

During application of the following algorithms a point y ∈ ∏k
i=1 �i can have four

different current states encoded by σ( y):

• σ( y) = attainable: The algorithm found an x with

(d ◦ f )(x) � y.

In this case we save x in X∗( y).
• σ( y) = dominated: The algorithm determined a point ỹ ∈ Y that is attainable and
that dominates y.

• σ( y) = unattainable: The algorithm checked that there is no point x that is mapped
to y or any point that dominates y.

• σ( y) = unknown: The algorithm did not make any statement about this point, yet.

Note that we do not need to explicitly encode all points that are attainable but non-
dominated. Ifwe found correctly all points that are attainable and of these points all that
are dominated, then the complement of the dominated points are the non-dominated
ones. We can also be sure to have calculated a preimage x for each non-dominated y.
As for each attainable point y we found an x with:

(d ◦ f )(x) � y.

For a non-dominated point none of these inequalities can be strict and we must have:

(d ◦ f )(x) = y.

In the following, we call a point y a supported point of Pc with weights w (see e.g.
Ehrgott 2005) if it solves the following optimization problem:

min
y∈Yc

k∑
i=1

wi · yi .
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3.1 Propagation rules

An immediate approach to exhaustively solve the problem P consists of solving, for
each y ∈ ∏k

i=1 �i , the individual feasibility problem

Find x ∈ M

such that (d ◦ f )(x) � y.
(6)

However, solving all these problems without additional considerations would be
very inefficient. Efficiency can be improved by propagating information on a found
solution x of (6) and its image points yc and y, and thereby deducing the attainability or
unattainability of other points ỹ ∈ ∏k

i=1 �i . These propagation rules are the following:

I. If y is unattainable, and ỹ � y, then ỹ is unattainable.
II. If y is attainable, and ỹ � y, ỹ �= y, then ỹ is dominated.
III. Let yc be a weakly non-dominated point of Pc.

If ỹ < d( yc), then ỹ is unattainable.
IV. Let yc be a supported point of Pc with weights w.

If (sup(d−1( ỹ)) − yc)Tw < 0, then ỹ is unattainable.

Note that the supremum over the set in the last rule is understood componentwise.

Lemma 3.1 The propagation rules I to IV, introduced above, are valid.

Proof The first two rules are self evident. For the third rule, note that as yc is weakly
non-dominated for Pc, d( yc) is weakly non-dominated for P according to Lemma
2.1, and therefore there cannot be a point ỹ that strictly dominates d( yc). For the last
rule, as yc is supported, by definition wT yc ≤ wT ỹc for all ỹc from the image Yc of
the feasible set. This can be rewritten as

( ỹc − yc)Tw ≥ 0

for all ỹc ∈ Yc. Now assume for a point ỹ ∈ ∏k
i=1 �i we have

0 > (sup(d−1( ỹ)) − yc)Tw

= sup(d−1( ỹ))Tw − wT yc.

Now observe that sup(d−1( ỹ))Tw ≥ wT ỹc for all ỹc ∈ d−1( ỹ) as w � 0 and
therefore the dot product with w is a positive map. Hence

0 > wT ỹc − wT yc

= ( ỹc − yc)Tw

for all ỹc ∈ d−1( ỹ), which proves that the preimage d−1( ỹ) and the image of the
feasible set are disjoint, and hence ỹ is unattainable. 
�
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Fig. 4 Illustration of the
Pascoletti-Serafini scalarization,
which can be used in the box
checking algorithm. The
scalarization finds the
intersection point of the box
diagonal and the Pareto front

3.2 Box checking algorithm

The first algorithm we discuss is called the box checking algorithm. It systematically
checks the attainability of points y ∈ ∏k

i=1 �i , making effective use of the propagation
rules I.- III. Attainability is checked by solving specific scalarizations of the underlying
continuous problem Pc.

Definition 3.2 We call a single-criteria optimization problem a y-constraint scalariza-
tion of Pc, and denote it with S(Pc, y), if the following hold:

i.) The optimization problem has an optimal solution if and only if y is attainable.
ii.) For any optimal solution x of the problem, the relation (d ◦ f )(x) � y holds.

Such a y-constraint scalarization solves the feasibility problem (6). Under the
assumption that all utility functions di are left-continuous, a version of a y-constraint
scalarization is the following Pascoletti-Serafini scalarization (Pascoletti and Serafini
1984), where p := sup(d−1( y)) and q := p − inf(d−1( y)):

min
x∈M,α≤0

α

p + αq � f (x).
(7)

The applicable propagation rules depend on the chosen scalarization. If the feasi-
bility problem (6) is solved, only the basic propagation rules I. and II. can be applied.
If the Pascoletti–Serafini problem (7) is used as scalarization, propagation rule III. can
additionally be applied, as any optimal solution to (7) is weakly Pareto efficient. The
observations result in Algorithm 1.

At the beginning of Algorithm 1, the state map σ and the solution map X∗ are
initialized (ll 1–2). Then, in each iteration a point y is picked whose state is unknown,
and a y-constraint scalarization is set up (ll 4–5). If the scalarization can be solved to
feasibility, σ( y) is set to attainable and the solution is stored in the solution map (ll
6–9); otherwise, σ( y) is set to unattainable (l 11). The state information is additionally
updated according to the applicable propagation rules (l 13). When no point with state
unknown remains, the algorithm returns the status map σ and the solution map X∗ (l
16).

Note that the algorithm is guaranteed to terminate, as in each iteration at least one
point y is removed from the set of points with σ( y) unknown. Also, for all points
y ∈ ∏k

i=1 �i that have been found to be non-dominated, the algorithm will have
found a solution x ∈ M with y = (d ◦ f )(x). That is, on termination of the algorithm,
the problem P is solved exhaustively.
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Algorithm 1 Box checking algorithm

1: Set σ( y) to unknown for all y ∈ ∏k
i=1 �i

2: Set X∗( y) to ∅ for all y ∈ ∏k
i=1 �i

3: while ∃ y with σ( y) unknown do
4: Pick y with σ( y) unknown
5: Solve y-constraint scalarization S(Pc, y)
6: if solution x∗ found then
7: Let y∗ := d( f (x∗))

8: Set σ( y∗) to attainable
9: Set X∗( y∗) to x∗
10: else
11: Set σ( y) to unattainable
12: end if
13: Apply propagation rules I., II. and possibly III.
14: end while
15: return status map σ and solution map X∗

One crucial aspect of the box checking algorithm is the strategy employed to pick the
next y with σ( y) unknown at the beginning of each iteration. In our implementation,
the strategy is as follows. For a given unknown y, denote N 1( y) the number of unknown
ỹ that would be found unattainable if y was unattainable (according to propagation
rule I). Conversely, denote N 2( y) the number of unknown ỹ that would be found
attainable if y was attainable (according to propagation rule II). Pick the unknown
y for which min

{
N 1( y), N 2( y)

}
is largest. If this leaves more than one option to

choose, pick one with largest N 1( y) + N 2( y) among those.

3.3 Algorithm using supported solutions

This algorithm (given in Algorithm 2) utilizes weighted sum scalarizations (see Eq.6)
of the inner continuous problem Pc. As the points obtained through a weighted sum
scalarization are, by definition, not only non-dominated but even supported, all of the
propagation rules I.-IV. can be applied.

Algorithm 2 Supported solutions algorithm

1: Set σ( y) to unknown for all y ∈ ∏k
i=1 �i

2: Set X∗( y) to ∅ for all y ∈ ∏k
i=1 �i

3: while ∃ y with σ( y) unknown do
4: Pick w

5: Solve weighted sum scalarization with weights w and obtain x∗
6: Let y∗ := d( f (x∗))

7: Set X∗( y∗) to x∗
8: Set σ( y∗) to attainable
9: Apply propagation rules I.-IV.
10: end while
11: return status map σ and solution map X∗
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Fig. 5 An example of bad performance of the supported solutions algorithm. While the first three iterations
reduced the number of y ∈ ∏k

i=1 �i with state unknown (white area) to one, in the next four iterations no
further progress was made

After initialization (ll 1–2), Algorithm 2 iteratively calculates a new point y∗ as
the image of a solution x∗ of a weighted sum scalarization (ll 5–6). In each iteration,
the solution map is updated, and the state information is refreshed according to the
propagation rules (ll 7–9). The algorithm returns the status map σ and the solution
map X∗ when no point y with state unknown remains (l 16).

The algorithm can be used effectively as a first phase algorithm for both convex
and non-convex problems. As all four propagation rules I.-IV. can be applied, a lot of
progress can be achieved early on. However, a switch to the box checking Algorithm
1 should be triggered the moment no meaningful progress is achieved any more.

Even for convex problems, the algorithm on its own is in later iterations not themost
effective choice. Unlike the box checking algorithm, its termination is not guaranteed.
The reason for this is that the calculated points are determined indirectly through
the weights. If only a few particular y ∈ ∏k

i=1 �i remain unknown, they cannot be
targeted directly. Figure5 shows a worst-case scenario, where the algorithm does not
make progress over many iterations.

The strategy for picking the next weight vectorw at the beginning of each iteration
(line 4) is as follows. For the first k iterations, we choose the extreme compromises,
where one of the entries ofw is set to one and the rest are set to zero. For later iterations,
we calculate the convex hull of the previously found solutions. We determine the face
that intersects with the greatest number of preimage sets d−1( y) and pick its normal
as the new w.

3.4 Algorithm for convex problems

If Pc is a convex problem, Algorithm 2 can be modified to, in each iteration, calculate
and employ the convex hull of the images f (X∗), where X∗ denotes the set of all
solutions found so far. The following Lemma will be needed.
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Lemma 3.3 Let {x1, ..., xn} ∈ M be a set of efficient solutions to the convex problem
Pc, and let

d−1( y) ∩ conv( f (x1), .., f (xn)) �= ∅

for a point y ∈ ∏k
i=1 �i . Then there is xint ∈ M such that (d ◦ f )(xint) � y.

Proof Let yc ∈ d−1( y) ∩ conv( f (x1), .., f (xn)).Then by definition

d( yc) = y,

and there are coefficients 0 ≤ ci ≤ 1 (i = 1, .., n) such that

yc =
n∑

i=1

ci f (xi ).

Now let xint := ∑n
i=1 ci xi . Because of convexity of f , we have

f (xint) � yc.

By the componentwise monotonicity of d, we obtain (d ◦ f )(xint) � y, which shows
the claim. 
�

Algorithm 3 Algorithm for convex problems

1: Set σ( y) to unknown for all y ∈ ∏k
i=1 �i

2: Set X∗( y) to ∅ for all y ∈ ∏k
i=1 �i

3: while ∃ y with σ( y) unknown do
4: Pick w

5: Solve weighted sum scalarization with weights w and obtain x∗
6: Let y∗ := d( f (x∗))

7: Set X∗( y∗) to x∗
8: Set σ( y∗) to attainable
9: Apply propagation rules I.-IV.
10: for y with σ( y) unknown and d−1( y) ∩ conv( f (X∗)) �= ∅ do
11: Set σ( y) to attainable
12: Set X∗( y) to the interpolated solution xint

13: Apply propagation rule II.
14: end for
15: end while
16: return status map σ and solution map X∗

Along the lines of Algorithm 2, Algorithm 3 iteratively calculates a new point y∗ as
the image of the solution x∗ of a weighted sum scalarization (ll 5–6). After updating
the solution set and the state information according to the propagation rules (ll 7–9),
Lemma 3.3 is applied to potentially identify additional points y as attainable. If that
is the case, the interpolated solution xint is stored in the solution map (ll 10–14).
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In accordance with Lemma 3.3, the interpolated solution xint in Algorithm 3 is
defined as follows: if d−1( y)∩conv( f (X∗)) �= ∅ is established by finding coefficients
0 ≤ ci ≤ 1 (i = 1, .., n) such that for yc := ∑n

i=1 ci f (xi ) we have d( yc) = y, then
xint := ∑n

i=1 ci x
i (see proof of Lemma 3.3 for the rationale behind this.)

For picking the weight vector w at the beginning of each iteration (line 4), we
choose the same strategy as the one described above for the algorithm using supported
solutions.

4 Examples

In this section, we will investigate the performance of the described algorithms over
both a set of test problems and a real world example from radiotherapy plan optimiza-
tion. The three algorithms we will compare are the following:

(A) Box checking Algorithm 1 using the Pascoletti–Serafini scalarization (7).
(B) Combined algorithm where, in a first phase, the supported solutions algorithm

(Algorithm 2) is employed until no further progress is made (i.e. an iteration
occurs where the number of boxes with status unknown is not reduced.) From
then on, the box checking algorithm with Pascoletti-Serafini scalarization is used
until the problem is solved exhaustively.

(C) Combined algorithm where, in the first phase, the algorithm for convex problems
(Algorithm 3) is used instead.

4.1 Randomized problems

We consider the following problem

(dK
1 (x1), ..., d

K
k (xk)) → min

s.t .
k∑

i=1

(
xi − ci

ri

)2

≤ 0

0 ≤ xi ≤ 1 ∀i = 1, .., k

(8)

where the coordinates ci are randomly chosen from [0.6, 1.0] and the half lengths ri
are randomly chosen from [0.2, 0.5]. We investigate different utility functions dK that
differ in the cardinality K of their image sets �i . Namely,

d3i (xi ) =

⎧⎪⎨
⎪⎩
0.4 if 0 ≤ xi ≤ 0.4,

0.7 if 0.4 < xi ≤ 0.7,

1.0 if xi > 0.7

∀i = 1, .., k
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Fig. 6 The box checking algorithm, using the Pascoletti-Serafini scalarization, for a problem instance of 8
with k = 2 and K = 4. In total, six iterations are necessary to exhaustively solve the problem

d4i (xi ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0.4 if 0 ≤ xi ≤ 0.4,

0.6 if 0.4 < xi ≤ 0.6,

0.8 if 0.6 < xi ≤ 0.8,

1.0 if xi > 0.8

∀i = 1, .., k

d5i (xi ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.4 if 0 ≤ xi ≤ 0.4,

0.5 if 0.4 < xi ≤ 0.5,

0.6 if 0.5 < xi ≤ 0.6,

0.8 if 0.6 < xi ≤ 0.8,

1.0 if xi > 0.8

∀i = 1, .., k.

The underlying continuous problem Pc of the randomized problems (8) is convex,
allowing the application of all algorithms (A), (B) and (C). For a specific problem
instance with k = 2 and K = 4, Fig. 6 illustrates the course of the box checking
algorithm (A), and Fig. 7 depicts the course when using the combined algorithm for
convex problems (C) instead. We see that for this instance, the combined algorithm
for convex problems outperforms the box checking algorithm, finishing in 3 rather
than 6 iterations.

We can compare the performance of algorithms (A)–(C) by measuring the progress
p over the iterations, with p being defined as:
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Fig. 7 The convex algorithm applied to a problem instance of Eq.8 with k = 2 and K = 4. Only three
iterations are necessary to determine all non-dominated points. Note that the solution for one of the non-
dominated outcomes is obtained by convex combination of previously calculated points according to Lemma
3.3 (orange)

p = 1 − |{ y ∈ ∏k
i=1 �i |σ( y)unknown}|
| ∏k

i=1 �i |
. (9)

Figure8 shows the averaged progress for the artificial problem 8 over varying
number of objectives k ∈ {2, 3, 4} and image set cardinalities K ∈ {3, 4, 5}. To create
each of the averaged plots, 10 randomly created problem instances were solved and
the mean of obtained progress values p after each iteration was calculated.

The combined convex algorithm (C) performs best by exploiting the convexity of
the problem. The next best choice is the combined algorithm that uses the supported
solutions algorithm as a first phase. The box checking algorithm on its own does not
perform as well. With higher dimension k and higher image set cardinality K , the
differences in algorithm performance become more pronounced.

4.2 Radiotherapy planning example

In radiotherapy planning, the aim is to deliver the prescribed dose to the target volumes
while sparing nearby organs at risk. In intensity-modulated radiation therapy (IMRT),
the irradiation—the so-called fluence—is delivered from different angles around the
patient and can additionally be modulated over the cross section of each beam by
moving collimator leaves in and out of the beam field.

The fluence is represented by a vector x � 0 and constitutes the optimization
variable of the multi-criteria radiotherapy planning problem (Küfer et al. 2002; Küfer
et al. 2003; Craft et al. 2012). The dose influence matrix D depends on the patient
anatomy as established by a CT scan and promotes the mapping from the fluence to
the dose, such that the entries of Dx represent the dose for each voxel in the voxelized
patient anatomy.

The optimization objectives then evaluate the dose vector entries over the target
volumes and organs at risk. These evaluation functions are continuous and often con-
vex. Possible choices are minimum, maximum, mean, p-norms or one-sided p-norms.
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Fig. 8 Averaged progress for algorithms (A)–(C): box checking algorithm (dark blue), combined algorithm
with supported solutions algorithm as first phase (purple dotted) and combined algorithm with convex
algorithm as first phase (red). The averages were taken over 10 randomized problem instances of 8. The
number of objectives k was varied from 2 to 4 and the image set cardinality K was varied from 3 to 5

Thus, the (continuous) multi-criteria radiotherapy planning problem has the properties
required for the inner problem Pc in our setting.

In clinical practice, certain threshold values for the objectives play a crucial role.
In the case of organs at risk, violating a threshold is linked to specific side effects.
For the targets, failing to meet a specific value may increase the probability of the
tumor recurring. Often, these clinical goals are further categorized into those which
represent the absolute minimum requirement, and others that correspond to an average
or an ideal dose distribution in the volume. Taking these discretizations (“minimum”,
“average”, “ideal”) into account, we obtain the structure of the continuous problem
with discretized utility P .

As an example, we consider the TG119 case. The anatomy of the case has a U-
shaped target volume, an organ at risk (OAR) in the center of the target, and the
surrounding normal tissue region. We define the beam geometry as 7 equidistantly
spaces beams, see Fig. 9.

To set up the optimization problem, we formulate one objective for each structure
as detailed in Table 1. Additionally, for each objective we define the discretization
mappings into the categories 3 (“minimum”), 2 (“average”), and 1 (“ideal”) by certain
upper bounds, also given in Table 1, such that the discretized utility functions di
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Fig. 9 Geometry of the TG119
case. It has a U-shaped target
volume (white), an organ at risk
(magenta) in the center of the
target, and surrounding normal
tissue. Seven beams are spaced
equidistantly (white lines)

Table 1 Optimization model for the TG119 case: optimization objectives for target, OAR and tissue, and
threshold values for the discretization into categories 1–3

Volume Objective Categories: 3 2 1

OAR 1
|OAR|

∑
v∈OAR(Dx)v 25.0 23.0 20.0

Tissue 1
|tissue|

∑
v∈OAR(Dx)v 8.0 6.0 5.0

Target
∑

v∈target‖max {0, 60 − (Dx)v}‖2 2.0 1.5 1.0

(i = 1, 2, 3)map to the smallest category for which fi (Dx) falls below the category’s
upper bound.

Again, we compared the algorithms (A)–(C). Figure10 shows the result obtained
with all three algorithms. There are two Pareto-optimal solutions to the discretized
problem: one where the target and the tissue dose quality are ideal while the OAR
dose quality is average, and one where the OAR and tissue dose quality are ideal and
the target dose quality is average. This is reflected in the dose volume histograms for
the two solutions, where the first solution shows a better slope at the prescription dose
level of 60 Gy, while the other solution exhibits a lower OAR curve.

Figure11 shows the progress—as defined in (9)—for the different algorithms over
the iterations. For this particular example, the algorithms do not differ much in their
efficiency. The combined algorithm that uses the convex algorithm as a first phase
performs the best, followed by the box checking algorithm and the other combined
algorithm.

5 Conclusion

In this paper we considered multi-criteria optimization problems which are based on a
continuous problem. The outputs of the objectives are mapped using a discrete utility
function making the overall multi-criteria optimization a discrete one. For example,
such categories can be used to quickly find candidate solutions for a decision maker,
especially when the Pareto front is no longer easily visualized. In a first step a decision
maker might want to get a rough overview of the different alternatives instead of
navigating locally.
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Fig. 10 The result for the TG119 example. On the left side, the OAR mean objective and its discretization
into categories is plotted against the tissue mean objective and its discretization for each of the 3 categories
of the target underdose objective. There are two Pareto optimal outcomes in the discretized space. These
are achieved by two efficient solutions x mapping to the marked points under the continuous objectives
defined in Table 1 (the target objective value being shown in purple.) The dose distributions for the two
solutions—displayed as dose-volume histograms at the right—represent two distinct compromises, with
the upper solution achieving a better target coverage and the lower solution a better sparing of the OAR

Fig. 11 Progress for algorithms
(A)–(C) for the TG119
radiotherapy planning example:
box checking algorithm (dark
blue), combined algorithm with
supported solutions algorithm as
first phase (purple), and
combined algorithm with convex
algorithm as first phase (red)
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In this paper, we first studied the connection between solutions of the underlying
continuous problem and the combined multi-criteria problem. The results were used
to introduce several algorithms that combine the discrete and continuous structure.
In numerical examples, we were able to show that our approaches can save a lot of
computation compared to a naive approach. For larger problems with more objectives
and more categories, the experiments showed that it is beneficial to use as much
information as possible and also to exploit convexity.

Several aspects were beyond the scope of this paper, butmay be of interest for future
investigations. We focused on fully discrete utilities. In Sect. 2 we already pointed
out that this is not necessarily required from a theoretical point of view. All results
hold for monotone functions in general. It would be interesting to look at combined
continuous and discrete utilities.We also focused on problemswith amoderate number
of categories and objectives. This way it was not a problem to iterate over all possible
category combinations. It would be interesting to study how the developed strategies
transfer to this larger setting.
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