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Abstract
Inmulti-objectivemixed-integer convex optimization, multiple convex objective func-
tions need to be optimized simultaneously while some of the variables are restricted to
take integer values. In this paper, we present a new algorithm to compute an enclosure
of the nondominated set of such optimization problems.More precisely,we decompose
the multi-objective mixed-integer convex optimization problem into several multi-
objective continuous convex optimization problems, which we refer to as patches.
We then dynamically compute and improve coverages of the nondominated sets of
those patches to finally combine them to obtain an enclosure of the nondominated set
of the multi-objective mixed-integer convex optimization problem. Additionally, we
introduce a mechanism to reduce the number of patches that need to be considered in
total. Our new algorithm is the first of its kind and guaranteed to return an enclosure
of prescribed quality within a finite number of iterations. For selected numerical test
instances we compare our new criterion space based approach to other algorithms
from the literature and show that much larger instances can be solved with our new
algorithm.
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1 Introduction

Multi-objective optimizationdealswith problemswhere not only onebut several objec-
tive functions are minimized simultaneously. If those problems have some continuous
and also some integer variables, we denote them multi-objective mixed-integer opti-
mization problems. This kind of optimization problems arises for various practical
applications, such as allocation, supply-chain, and financial problems (e.g. Roozba-
hani et al. 2015; Singh and Goh 2018; Xidonas et al. 2009).

We propose a new numerical solution method for such problems in this paper.
More precisely, for once continuously differentiable convex objective functions
fi : R

n+m → R, i ∈ [p] and once continuously differentiable convex constraint
functions g j : R

n+m → R, j ∈ [q] we consider the optimization problem

min
x

f (x) s.t. g(x) ≤ 0q , x ∈ X := XC × XI (MOMICP)

where [p] := {1, . . . , p}, f = ( f1, . . . , f p) : R
n+m → R

p, g = (g1, . . . , gq) :
R
n+m → R

q , and 0q ∈ R
q denotes the all-zeros vector. We assume that XC :=

[lC , uC ] ⊆ R
n is a nonempty box with lC , uC ∈ R

n and XI := [lI , uI ] ∩ Z
m is a

(finite) nonempty subset of Z
m with lI , uI ∈ Z

m .
Since the objectives of multi-objective optimization problems are usually con-

flicting, the aim is to compute so-called efficient solutions in the decision space,
which correspond to nondominated points in the criterion space. Efficient solutions
are defined by their property that it is not possible to find another feasible point that
improves any objective without deteriorating another, see also Ehrgott (2005). In gen-
eral, there is an infinite number of nondominated points for (MOMICP).

Many strategies to solve purely continuous multi-objective optimization problems
have been studied in the last decades. In contrast to linear problems, for nonlinear
(purely continuous) multi-objective optimization problems there exists no method to
compute the nondominated set exactly. Instead, only approximations given by a finite
representation or a coverage (e.g. using sandwiching techniques) of the nondominated
set are computed, see also the survey by Ruzika and Wiecek (2005).

For the mixed-integer setting several papers focus on linear optimization problems.
For those, the nondominated set can be computed exactly. This is a major difference
compared to multi-objective mixed-integer convex optimization problems where this
is, in general, not possible. For example, the nondominated set of bi-objective mixed-
integer linear optimization problems basically consists of line segments and isolated
points. Thus, by computing the isolated points and the end points defining the line
segments, one obtains an exact and finite representation of the complete nondominated
set (which in general still contains infinitely many points). Such a finite representation
that fully describes the nondominated set is, in general, not available formulti-objective
mixed-integer convex optimization problems.

Oneof thefirst approaches for the special settingof bi-objectivemixed-integer linear
optimization problems was the Triangle Splitting Method presented in Boland et al.
(2015). Besides that, algorithms for the bi-objective linear setting have been presented
for example in Soylu and Yıldız (2016) and more recently in Perini et al. (2020) with
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the Boxed Line Method. Also for an arbitrary number of linear objectives, algorithms
have been proposed in Özpeynirci and Köksalan (2010) as well as in Przybylski et al.
(2019).However, the latter focus onfindingonly the so-called supported nondominated
extreme points. An approach to find the exact nondominated set is the GoNDEF
algorithm from Rasmi and Türkay (2019). For a survey of algorithms to solve multi-
objective mixed-integer linear optimization problems, we refer to Halffmann et al.
(2022). Once again, it is important to point out that all these algorithms rely heavily
on the linear structure of the optimization problems. In particular, they make use of
the fact that in the linear setting the nondominated set can be computed exactly since
it can be completely represented by a finite number of points. This is not the case for
general multi-objective mixed-integer convex optimization problems.

Within the last years, first algorithms to solve multi-objective mixed-integer non-
linear optimization problems have been published. One approach is to make use of
scalarization-techniques, i.e., to solve the multi-objective optimization problem by
solving several (parameterized) single-objective optimization problems. This is a very
common approach from continuous multi-objective optimization and it is used in
Burachik et al. (2022) to solve mixed-integer optimization problems as well. The
downside of this approach is that a prohibitive amount of single-objective mixed-
integer nonlinear optimization problems has to be solved.Moreover, it is not clear how
many and which of these problems need to be solved in order to obtain a represen-
tation of the nondominated set of certain quality. Another downside of scalarization
approaches is that the subproblems obtained by a scalarization of (MOMICP) are
single-objective mixed-integer convex optimization problems, which still require a lot
of computational effort to be solved fast and reliably.

Just recently, in Cabrera-Guerrero et al. (2022) the authors presented an approach to
solve bi-objective mixed-integer convex optimization problems. That approach makes
use of both the bi-objective and the mixed-integer structure of the problem. Also the
quality of the computed approximation of the nondominated set can be controlled by
that algorithm. What we have in common with the approach from Cabrera-Guerrero
et al. (2022) is that we also work with the same class of subproblems that are obtained
from (MOMICP) by fixing the integer variables. However, the approach fromCabrera-
Guerrero et al. (2022) is only designed to solve bi-objective optimization problems
and it cannot be extended, at least not directly, to solve general problems (MOMICP)
with more than two objective functions. Moreover, in Cabrera-Guerrero et al. (2022)
the authors assume that the set of feasible integer assignments is known, which is not
needed for the algorithm presented in this paper.

Another approach to approximate the nondominated set of bi-objective mixed-
integer convex optimization problems is presented in Diessel (2022). The main idea
of that approach is to use line segments in the criterion space and refine those in order
to obtain an approximation of the nondominated set. Also this approachworks only for
bi-objective instances, and so far it is not known whether or how it can be generalized
for optimization problems (MOMICP) with three and more objective functions.

To the best of our knowledge, the only algorithms to solve arbitrary multi-objective
mixed-integer convex optimization problems without using scalarization techniques
and with a guaranteed quality of the computed approximation are the ones presented
in De Santis et al. (2020) and Eichfelder et al. (2022). Both of these algorithms are
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based on a branch-and-bound approach in the decision space. The downside of such
branch-and-bound approaches is that they are typically notwell-suited for optimization
problems with a larger number of decision variables. Another shortcoming of the
method from De Santis et al. (2020) is that it can only use its full potential for multi-
objective mixed-integer quadratic instances.

In this paper, we follow a completely different approach which relies on neither
scalarization-first nor decision space based methods like branch-and-bound. Instead,
we introduce a new method that works almost entirely in the criterion space and
computes an enclosure of the nondominated set of (MOMICP) of prescribed quality
within a finite number of iterations. What is more, our algorithm works not only for
bi-objective but for general multi-objective optimization problems (MOMICP) with
an arbitrary number of objective functions.

A key ingredient of our new method is to make use of the finiteness of the set XI of
integer assignments. More precisely, we decompose themulti-objective mixed-integer
convex optimization problem (MOMICP) into several multi-objective (continuous)
convex optimization problems, which we refer to as patches, by fixing the integer
assignments. This allows us to compute an enclosure for the nondominated set of
(MOMICP) as a combination of coverages of the nondominated sets of these patches.
Such a decomposition technique is also used in Cabrera-Guerrero et al. (2022).

Since the nondominated sets of the patches can either contribute completely, par-
tially, or not at all to the nondominated set of (MOMICP), we introduce a strategy
to iteratively improve the coverages of the nondominated sets of those patches that
contribute to the overall nondominated set and discard the other ones. We also present
a technique to reduce the number of patches that need to be considered in total. In par-
ticular, this allows us to avoid full enumeration of all possible integer assignments. Our
new algorithm alternates between two tasks: Computing integer assignments xI ∈ XI

to obtain new patches and dynamically improving the coverages of the nondomi-
nated sets of those patches that have already been found. More precisely, it combines
the outer approximation approach from mixed-integer optimization to compute new
integer assignments with techniques from multi-objective continuous optimization to
approximate the nondominated sets of the patches. For this reason, i.e., since we have
that interplay of searching for new patches and dynamically improving patches from
previous iterations, we call our algorithm a hybrid approach. To the best of our knowl-
edge, this new strategy to dynamically improve the coverages of the patches and then
combining them to obtain an enclosure of the nondominated set of (MOMICP) with-
out having an explicit representation of the set XI of integer assignments is the first
of its kind.

The remaining paper is organized as follows. In Sect. 2, we introduce notations and
definitions used throughout this paper.We briefly recall the concept of an enclosure for
the nondominated set of (MOMICP) as well as a corresponding strategy to compute
lower and upper bounds in Sect. 3. In Sect. 4, we give a formal definition of the patches
and discuss their role within our algorithm. Our strategy to compute integer assign-
ments (to obtain new patches) and to reduce the number of patches that our algorithm
needs to consider is presented in Sect. 5. In Sect. 6, we combine all these techniques
and present our new algorithm to compute an enclosure of the nondominated set of
(MOMICP) of prescribed quality. Finally, we present numerical results on selected
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test instances in Sect. 7 where we also compare our results to those from De Santis
et al. (2020) and Eichfelder et al. (2022).

2 Notations and definitions

In this paper, all relations, e.g., x ≤ x ′ for x, x ′ ∈ R
n , are meant to be read component-

wise. We denote by e ∈ R
p the all-ones vector in R

p. Further, for l, u ∈ R
p we define

the (closed) box [l, u] := ({l} + R
p
+) ∩ ({u} − R

p
+) and the open box (l, u) :=

({l} + int(Rp
+)) ∩ ({u} − int(Rp

+)).
Wewrite x = (xC , xI ) for all x ∈ X to distinguish between the continuous and inte-

ger variables of our optimization problem (MOMICP). The feasible set of (MOMICP)
is denoted by S and is assumed to be nonempty. Its projection on R

m is defined by

SI = {xI ∈ Z
m | ∃ xC ∈ R

n : (xC , xI ) ∈ S}.

We call xI ∈ SI a feasible integer assignment. Since we will often fix the integer
variables, we define for x̂ I ∈ Z

m

Sx̂I = {x ∈ S | xI = x̂ I } and Xx̂I = {x ∈ X | xI = x̂ I }.

By our assumptions, all objective functions fi , i ∈ [p] are continuous and the
feasible set S is compact. As a result, we have that

∃ z, Z ∈ R
p : f (S) ⊆ int(B) with B := [z, Z ]. (1)

We assume that such a box B, which we also refer to as initial box B, is known.
The objective functions of (MOMICP) are usually competing with each other. For

this reason, in general, it is not possible to find a feasible point that minimizes all
objectives at the same time. Hence, we use the concept of efficiency.

Definition 2.1 A point x̄ ∈ S is called an efficient solution of (MOMICP) if there
exists no x ∈ S with

fi (x) ≤ fi (x̄) for all i ∈ [p],
f j (x) < f j (x̄) for at least one j ∈ [p].

It is called a weakly efficient solution of (MOMICP) if there exists no x ∈ S with

fi (x) < fi (x̄) for all i ∈ [p].

We also need two concepts of dominance. Since we make use of lower and upper
bound concepts, see Sect. 3, we need a dominance concept with respect to the relation
≤ and one with respect to ≥.
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Definition 2.2 Let y1, y2 ∈ R
p and 
 ∈ {≤,≥}. Then y2 is dominated by y1 with

respect to (w.r.t.) 
 if

y1 �= y2, y1 
 y2.

For a set N ⊆ R
p a vector y ∈ R

p is dominated given N w.r.t. 
 if

∃ ŷ ∈ N : ŷ �= y, ŷ 
 y.

If y is not dominated given N w.r.t. 
, it is called nondominated given N w.r.t. 
.
Analogously, for ≺ ∈ {<,>} we say y2 is strictly dominated by y1 w.r.t. ≺ if

y1 ≺ y2

and a vector y ∈ R
m is strictly dominated given a set N ⊆ R

m w.r.t. ≺ if

∃ ŷ ∈ N : ŷ ≺ y.

If y is not strictly dominated given N w.r.t. ≺, it is called weakly nondominated given
N w.r.t. ≺.

Usually the specification of the relation
/≺ is known from the context. Thus, we do
not explicitly mention it in most cases. As the images f (x̄) of efficient solutions x̄ ∈ S
of (MOMICP) are nondominated given f (S) w.r.t. ≤, they are called nondominated
points of (MOMICP). We denote by E the set of efficient solutions (also efficient set)
and by N the set of nondominated points (also nondominated set) of (MOMICP),
i.e., N := { f (x) ∈ R

p | x ∈ E}. We point out that even if the objective and
constraint functions are all assumed to be continuous and convex, the nondominated
set of (MOMICP) can be a disconnected set due to the integrality constraints. For an
illustration,we refer to the forthcoming Fig. 1 for a bi-objective examplewith |SI | = 2,
where the nondominated set is highlighted in orange.

3 Enclosure

In general, there is an infinite number of nondominated points for (MOMICP). In
contrast to the linear case, there exists nofinite and at the same time exact representation
of the complete nondominated set in the general convex setting. Hence, the aim of this
paper is to compute an approximation of the nondominated set.More precisely, wewill
make use of a concept that allows to compute an approximation of the nondominated
set of the overall problem (MOMICP) as a combination of approximations of the
nondominated sets of patches. Thereby, a patch corresponds to (MOMICP) with a
fixed integer assignment x̂ I ∈ SI . We provide a formal definition of patches in the
next section.

In general, there are two classes of approximation concepts in multi-objective opti-
mization. The first is what we refer to as representation approaches. There, the goal is
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to compute a finite number of nondominated points to represent the overall nondomi-
nated set. The distance of these points is then often used as a quality criterion for the
representation. However, due to gaps and potentially even isolated points in the non-
dominated set of (MOMICP), this can be hard to apply in the setting of multi-objective
mixed-integer optimization.

We focus on the second class, where the goal is to compute a superset of the
nondominated set, referred to as coverage approaches. A suitable concept for such a
coverage is the enclosure as presented in Eichfelder et al. (2021). In particular, that
concept respects the natural ordering since it is a box-based approach. This enables
us to compute the overall coverage of the nondominated set N of (MOMICP) as a
combination of the coverages of the nondominated sets of the patches.

Definition 3.1 Let L,U ⊆ R
p be two finite sets with

N ⊆ L + R
p
+ and N ⊆ U − R

p
+.

Then L is called a lower bound set, U is called an upper bound set, and the set A
which is given as

A = A(L,U ) := (L + R
p
+) ∩ (U − R

p
+) =

⋃

l∈L

⋃

u∈U ,
l≤u

[l, u]

is called the enclosure of the nondominated set N of (MOMICP) given L and U .

Besides the enclosure itself, we also need a corresponding quality criterion which
serves as a termination criterion for our algorithm. Therefore, we use a quality concept
from Eichfelder et al. (2021) called the width ofA. It is denoted by w(A) and equals

sup {s(l, u) ∈ R | l ∈ L, u ∈ U , l ≤ u} (2)

where s(l, u) := min{ui −li | i ∈ [p]} denotes the shortest edge length of a box [l, u].
While in single-objective global optimization one is typically interested in the largest
edge length of boxes in the decision space, it might seem surprising that here the
shortest edge length (in the criterion space) is used. However, it turns out that working
with exactly this quality measure is a natural extension from the width of the interval
containing the optimal value in the single-objective case and yields to some desirable
properties. It is shown in Eichfelder et al. (2021, Lemma 3.1) that for an enclosure A
with w(A) < ε for some ε > 0 we have that all y ∈ A ∩ f (S) are ε-nondominated
points. For more details on the motivation and a discussion of this quality measure,
we refer to Eichfelder et al. (2021), Eichfelder and Warnow (2021a).

Before we present a sketch of our algorithm to compute an enclosure, we first
present a method to compute the lower and upper bound sets from Definition 3.1.
More precisely, we use the concept of so-called Local Upper Bounds (LUBs) from
Klamroth et al. (2015), which is related to the bound concept that appeared earlier in
Ehrgott and Gandibleux (2007). The authors from Klamroth et al. (2015) call a set
Y ⊆ R

p stable if the elements of Y are not pairwise comparable, i.e., for all y1, y2 ∈ Y
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with y1 �= y2 there exists i, j ∈ [p] such that y1i < y2i and y1j > y2j . In Klamroth
et al. (2015), only the concept to compute an upper bound set is presented. We use the
idea from Klamroth et al. (2015) to compute also a lower bound set. For this reason,
we slightly extended the notation to be able to distinguish between these two cases.

Definition 3.2 Let B ⊆ R
p denote the box from (1) with f (S) ⊆ int(B). Further, let

N ⊆ f (S) be a finite and stable set. Then the lower search region for N is s(N ) :=
{y ∈ int(B) | y′

� y for every y′ ∈ N } and the lower search zone for some u ∈ R
p is

c(u) := {y ∈ int(B) | y < u}. A set U = U (N ) is called local upper bound set given
N if

1. s(N ) = ⋃
u∈U (N ) c(u),

2. c(u1) � c(u2) for all u1, u2 ∈ U (N ), u1 �= u2.

Each point u ∈ U (N ) is called a local upper bound (LUB).

As already mentioned, the same concept can be used to obtain so-called local lower
bounds as follows.

Definition 3.3 Let B ⊆ R
p denote the box from (1) with f (S) ⊆ int(B). Further,

let N ⊆ int(B) be a finite and stable set. Then the upper search region for N is
S(N ) := {y ∈ int(B) | y′

� y for every y′ ∈ N } and the upper search zone for some
l ∈ R

p is C(l) := {y ∈ int(B) | y > l}. A set L = L(N ) is called local lower bound
set given N if

1. S(N ) = ⋃
l∈L(N ) C(l),

2. C(l1) � C(l2) for all l1, l2 ∈ L(N ), l1 �= l2.

Each point l ∈ L(N ) is called a local lower bound (LLB).

The local upper bound set and the local lower bound set from Definition 3.2 and
Definition 3.3 are uniquely determined and finite, see Eichfelder et al. (2021). We
provide an illustration of both concepts in Fig. 1.

The following result provides a relation between local lower/upper bounds and
lower/upper bounds as used in Definition 3.1.

Lemma 3.4 Let N 1 ⊆ f (S) and N 2 ⊆ int(B)\( f (S) + int(Rp
+)) be finite and stable.

Then U (N 1) is an upper bound set and L(N 2) is a lower bound set, i.e., N ⊆
U (N 1) − R

p
+ and N ⊆ L(N 2) + R

p
+.

Proof Let N 1 ⊆ f (S)be afinite and stable set. Then itwas already shown inEichfelder
and Warnow (2021a, Lemma 3.3) that N ⊆ U (N 1) − R

p
+.

Let N 2 ⊆ int(B) \ ( f (S) + int(Rp
+)) be a finite and stable set. First, we show that

it holds N ⊆ cl(S(N 2)). Let ȳ ∈ N ⊆ f (S) ⊆ int(B) be a nondominated point.
Assume that ȳ /∈ S(N 2). Then, by Definition 3.3, there exists y′ ∈ N 2 with y′ ≥ ȳ.
Since y′ ∈ N 2 and ȳ ∈ f (S) it also holds that y′ �> ȳ. As a result, there exists an
index i ∈ [p] such that y′

i = ȳi . Since y′ ∈ N 2 ⊆ int(B) there exists ε > 0 such
that y′ + εe ∈ int(B). Also, B is a box and hence int(B) is a convex set. Thus, for all
λ ∈ [0, 1] it holds that ȳ+λ((y′+εe)− ȳ) ∈ int(B). This implies that for all k ∈ Nwe
have that yk := ȳ + 1

k ((y
′ + εe) − ȳ) ∈ int(B). Moreover, since y′ ≥ ȳ and εe > 0p
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Fig. 1 Approximation A(L,U ) of N with N = {y1, y2, y3}, local lower bound set L = L(N ) =
{l1, l2, l3, l4}, and local upper bound set U = U (N ) = {u1, u2, u3, u4}

we obtain that yk > ȳ. In particular, for all k ∈ N it holds that yki = ȳi + 1
k ε = y′

i + 1
k ε

and hence y′
� yk . Further, there exists no y′′ ∈ N 2 with y′′ ≥ yk > ȳ ∈ f (S)

since this contradicts the choice of N 2. As a result, yk ∈ S(N 2) for all k ∈ N

and ȳ = limk→∞ yk ∈ cl(S(N 2)). Finally, by Definition 3.3 and since L(N 2) is
finite, we obtain that N ⊆ cl(S(N 2)) = cl(

⋃
l∈L(N2) C(l)) = ⋃

l∈L(N2) cl(C(l)) ⊆⋃
l∈L(N2){l} + R

p
+ = L(N 2) + R

p
+. ��

It is also important to mention that for Definition 3.2 and Definition 3.3 one does
not necessarily need to assume N to be stable, see Klamroth et al. (2015, Remark 2.2).

Remark 3.5 Let N 1 ⊆ f (S) be an arbitrary set and denote by N̂ 1 := {y ∈ N 1 |
y is nondominated given N 1 w.r.t. ≤}. Then it holds that s(N 1) = s(N̂ 1), which also
implies U (N 1) = U (N̂ 1). Analogously, let N 2 ⊆ int(B)\( f (S) + int(Rp

+)) be an
arbitrary set and denote by N̂ 2 := {y ∈ N 2 | y is nondominated given N 2 w.r.t. ≥}.
Then it holds that S(N 2) = S(N̂ 2), which also implies L(N 2) = L(N̂ 2).

In our new algorithm, the sets N 1 and N 2 from Remark 3.5 and hence the local
lower and local upper bound sets are constructed iteratively. It is known fromKlamroth
et al. (2015) that in such a setting it is not necessary to recompute the whole local upper
or local lower bound set each time those sets are updated. Instead, whenever a new
point y ∈ R

p is added to the set N from Definition 3.2 or Definition 3.3 only certain
local upper or local lower bounds need to be updated. We denote these points y ∈ R

p

as update points. To update a local upper bound set, we use Klamroth et al. (2015,
Algorithm 3), see Algorithm 1. While in Klamroth et al. (2015) only the concept of
local upper bounds is considered, it is an easy task to apply the same technique to
update the set of local lower bounds, see Algorithm 2. Within both algorithms we use
the following notation from Klamroth et al. (2015).

123



G. Eichfelder, L. Warnow

For y ∈ R
p, α ∈ R and an index i ∈ [p] we define

y−i := (y1, . . . , yi−1, yi+1, . . . , yp)
� as well as

(α, y−i ) := (y1, . . . , yi−1, α, yi+1, . . . , yp)
�.

Algorithm 1 Updating a local upper bound set
Input: Local upper bound set U (N ) and update point y ∈ f (S)

Output: Updated local upper bound set U (N ∪ {y})
1: procedure UpdateLUB(U (N ), y)
2: A = {u ∈ U (N ) | y < u}
3: for i ∈ [p] do
4: Bi = {u ∈ U (N ) | yi = ui and y−i < u−i }
5: Pi = ∅
6: end for
7: for i ∈ [p] do
8: for u ∈ A do
9: Pi = Pi ∪ {(yi , u−i )}
10: end for
11: end for
12: for i ∈ [p] do
13: Pi = {u ∈ Pi | u � u′ for all u′ ∈ Pi ∪ Bi , u′ �= u}
14: end for
15: U (N ∪ {y}) = (U (N ) \ A) ∪ ⋃

i∈[p] Pi
16: end procedure

Algorithm 2 Updating a local lower bound set
Input: Local lower bound set L(N ) and update point y ∈ int(B)

Output: Updated local lower bound set L(N ∪ {y})
1: procedure UpdateLLB(L(N ), y)
2: A = {l ∈ L(N ) | y > l}
3: for i ∈ [p] do
4: Bi = {l ∈ L(N ) | yi = li and y−i > l−i }
5: Pi = ∅
6: end for
7: for i ∈ [p] do
8: for l ∈ A do
9: Pi = Pi ∪ {(yi , l−i )}
10: end for
11: end for
12: for i ∈ [p] do
13: Pi = {l ∈ Pi | l � l ′ for all l ′ ∈ Pi ∪ Bi , l ′ �= l}
14: end for
15: L(N ∪ {y}) = (L(N ) \ A) ∪ ⋃

i∈[p] Pi
16: end procedure

Next, we briefly present a sketch of our algorithm to compute an enclosure of the
nondominated set N of (MOMICP).
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An upper bound set will be computed based on all images of feasible points that
are generated within our algorithm. These will be weakly nondominated points of the
patches. Since we expect the upper bounds to improve and get smaller, this also allows
us to quickly discard certain patches (and hence certain integer assignments) that do
not contribute to the nondominated set of (MOMICP). In particular, we will be able
to detect if a patch is in some sense dominated by the upper bound set.

For the lower bound set, two strategies are applied simultaneously. The first strategy
is to compute an individual lower bound set for every patch. We start with a single
point that dominates all image points of the patch and then improve this lower bound
set iteratively. The second strategy is to simultaneously compute a global lower bound
set for the nondominated set of the original problem (MOMICP). We add here the
word global to emphasize that this lower bound set corresponds to the overall problem
(MOMICP) and to clearly distinguish between this second strategy to compute a
lower bound set and the first strategy on the patch-level. This global lower bound
set, in general, converges towards the upper bound set before all integer assignments
have been computed. This allows us to avoid that we need to do some computations
for all feasible integer assignments xI ∈ SI which can be very time consuming. In
particular, without this second strategy we would need to compute at least one lower
bound for all patches in order to compute the overall enclosure. This is also one of the
key differences between our approach and the approach from Cabrera-Guerrero et al.
(2022) for the bi-objective case. There the authors assume that the set SI of feasible
integer assignments is known and they have to perform at least some computations for
each xI ∈ SI , see Cabrera-Guerreroet al. (2022, Algorithm 1). The interplay of both
strategies, i.e., computing a lower bound set for the nondominated set of the overall
problem and improving the coverages of the patches, is also the reason why we call
our algorithm a hybrid approach.

In the next section, we give a formal definition of the patches and describe their
algorithmic treatment in more detail. This also includes the computation of the upper
bound set and the individual lower bound sets. Since a patch always belongs to a
feasible integer assignment, we need to compute such an assignment as a prerequisite
to perform computations for the patches. We present a technique to do that in Sect. 5.
We will also show that this step can be combined with the computation of a global
lower bound set. Finally, in Sect. 6 we combine all these mechanisms to obtain our
new algorithm to compute an enclosure of the nondominated set N of (MOMICP).

4 Algorithmic treatment of the patches

As already mentioned, we obtain a patch of (MOMICP) by fixing the integer assign-
ment xI ∈ XI . Thus, for x̂ I ∈ SI we define the corresponding patch (problem) as

min
xC

f (xC , x̂ I ) s.t. g(xC , x̂ I ) ≤ 0q , xC ∈ XC . (P(x̂ I ))

In multi-objective mixed-integer linear optimization, this is also referred to as slice
problem, see for instance Soylu and Yıldız (2016). For a patch, we always need a
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feasible integer assignment x̂ I ∈ SI . In general, the set of feasible integer assignments
SI is not known a priori and is hard or impossible to compute. In this section, we
focus entirely on the algorithmic treatment of the patches, but we present a technique
to compute feasible integer assignments in the next section.

Since it holds for all x̂ I ∈ SI and all feasible points xC of (P(x̂ I )) that f (xC , x̂ I ) ∈
f (S), image points of patches can be used to generate an upper bound set for
(MOMICP), see also Lemma 3.4, Remark 3.5, and in particular the forthcoming
Lemma 6.6 in which this statement is finally proved for the overall algorithm. We
denote by Nx̂ I the nondominated set of (P(x̂ I )). Then for the lower bound set Lx̂I of
(P(x̂ I )) we need thatNx̂ I ⊆ Lx̂I +R

p
+. Such a lower bound set can be computed using

the concept of local lower bounds. Thus, we need a mechanism to compute update
points for the upper bound set U and the lower bound set Lx̂I . For this purpose, we
use the following approach. The overall enclosure A of the nondominated set N of
(MOMICP) can be interpreted as a combination of box coverages of the nondominated
sets of certain patches (P(x̂ I )), i.e., coverages of the form (Lx̂I + R

p
+) ∩ (U − R

p
+).

For this reason, we aim for such update points that quickly improve those coverages.
Consider a patch (P(x̂ I )) for fixed x̂ I ∈ SI . When searching for an update point, the
algorithm loops through the lower bound set Lx̂I . Since it holds Nx̂ I ⊆ Lx̂I + R

p
+,

this also implies that the search covers the whole nondominated set of the patch. For
each of the lower bounds l ∈ Lx̂I it computes an upper bound u ∈ U with maximal
shortest edge length s(l, u). We use this selection criterion since the width of the over-
all enclosure A of N is the supremum of such shortest edge lengths and hence it is a
reasonable approach to update those boxes with the largest shortest edge length first.
More precisely, given x̂ I ∈ SI and l, u ∈ R

p with l < u, the search for update points
is performed by solving

min
xC ,t

t s.t. f (xC , x̂ I ) − l − t(u − l) ≤ 0p,

g(xC , x̂ I ) ≤ 0q ,

xC ∈ XC , t ∈ R.

(SUP(x̂ I , l, u))

By Göpfert et al. (2003, Proposition 2.3.4 and Theorem 2.3.1) we know that for
all x̂ I ∈ SI and all l, u ∈ R

p with l < u there exists an optimal solution (x̄C , t̄)
of (SUP(x̂ I , l, u)). In Pascoletti and Serafini (1984, Theorem 3.2), it is shown that
for every optimal solution (x̄C , t̄) of (SUP(x̂ I , l, u)) the point f (x̄C , x̂ I ) ∈ f (S) is a
weakly nondominated point of (P(x̂ I )). In particular, for every optimal solution (x̄C , t̄)
of (SUP(x̂ I , l, u)) it holds that f (x̄C , x̂ I ) ∈ f (S) and l+ t̄(u−l) /∈ f (Sx̂I )+ int(Rp

+).
Hence, those points can be used to update U and Lx̂I .

To keep track of the lower bounds for the different patches, we introduce a new data
structure.We denote this structure byD and refer to it as the integer data structure since
it consists of data related to certain integer assignments. For each integer assignment
x̂ I ∈ SI this data structure has an entry D(x̂ I ) that consists of four substructures.

The first substructure is the set of local lower bounds of (P(x̂ I )), denoted by
D(x̂ I ).L . The second one is a boolean valueD(x̂ I ).S that indicates whether the cover-
age of the nondominated setNx̂ I needs further improvement. For example, this value
is set to false in case it is recognized thatNx̂ I does not contribute to the nondominated
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set N of (MOMICP). We call the integer assignment x̂ I active if D(x̂ I ).S is set to
true and inactive otherwise. All weakly efficient points x ∈ Sx̂I of the subproblem
(P(x̂ I )) computed when solving (SUP(x̂ I , l, u)) are saved in the set D(x̂ I ).E . Analo-
gously, the fourth and last substructure D(x̂ I ).N contains the weakly nondominated
points y ∈ R

p of the subproblem (P(x̂ I )) that are generated within the algorithm. We
denote by D.L,D.E and D.N the union of the sets for all integer assignments, e.g.,
D.N := {y ∈ R

p | y ∈ D(x̂ I ).N for some x̂ I ∈ SI }.
In the following, we present the algorithms that initialize and update the integer data

structureD. Any entryD(x̂ I ) of the integer data structure is initialized byAlgorithm 3.
The lower bound ẑ ∈ R

p in line 2 of Algorithm 3 can be computed using the ideal
point ẑ′ ∈ R

p of (P(x̂ I )) and a small offset σ > 0, i.e., ẑi = ẑ′i − σ for all i ∈ [p].
Depending on how exactly the lower bound ẑ ∈ R

p is computed, it is also possible
that some first weakly efficient points or weakly nondominated points of (P(x̂ I )) are
computed. In that case,D(x̂ I ).E andD(x̂ I ).N are not necessarily initialized as empty
sets in Algorithm 3.

Algorithm 3 Initialization of D(x̂ I ) for a new integer assignment x̂ I ∈ SI
Input: New integer assignment x̂ I ∈ SI
Output: Initialized entry D(x̂ I ) of the integer data structure
1: procedure InitIDS(x̂ I )
2: Compute lower bound ẑ ∈ R

p with f (Sx̂I ) ⊆ {ẑ} + int(Rp
+)

3: Initialize D(x̂ I ).L = {ẑ}, D(x̂ I ).S = true, D(x̂ I ).E = ∅, D(x̂ I ).N = ∅
4: end procedure

If the same integer assignment x̂ I is visited again, then D(x̂ I ) is updated. This
procedure computes update points for U and Lx̂I as described above and is presented
in Algorithm 4.

As explained in the previous section, our new algorithm applies two strategies to
compute lower bounds simultaneously. The first strategy is to compute the lower bound
set L for the enclosureAofN as a combinationof the lower bound sets Lx̂I for different
integer assignments x̂ I ∈ SI . The proof of finiteness of our algorithm is largely based
on this strategy.More precisely, by our assumptions there are only finitelymany integer
assignments x̂ I ∈ SI . If for each of these feasible integer assignments x̂ I ∈ SI the
number of computations related to the patch (P(x̂ I )) is finite, i.e., D(x̂ I ).S = false
after a finite number of calls of Algorithm 4, then the overall algorithm is finite as
well, see Theorem 6.5.

The next theorem guarantees an improvement of the coverage of a patch (P(x̂ I ))
with each call of Algorithm 4. Within the theorem we make use of the following
notation. For x̂ I ∈ SI , the corresponding lower bound set Lx̂I �= ∅, and the upper
bound set U �= ∅ we denote the corresponding coverage of Nx̂ I by

C = C(Lx̂I ,U ) := (Lx̂I + R
p
+) ∩ (U − R

p
+).

Since C is just a combination of boxes, its volume vol(C) can be easily evaluated.
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Algorithm 4 Updating D(x̂ I ) for an integer assignment x̂ I ∈ SI
Input: Integer assignment x̂ I ∈ SI , quality ε > 0, upper bound set U , and data structure D
Output: Updated set U and updated integer data structure D
1: procedure UpdateIDS(x̂ I , ε,U ,D)
2: Initialize Lx̂I = D(x̂ I ).L , done = true
3: Choose a small offset σ ∈ (0, ε/2)
4: for l ∈ Lx̂I do

5: if ({l + εe} + int(Rp
+)) ∩U �= ∅ then

6: done = false
7: Select u ∈ ({l + εe} + int(Rp

+)) ∩U with maximal s(l, u)

8: Solve (SUP(x̂ I , l, u)) with optimal solution (x̄C , t̄) and set
x̄ := (x̄C , x̂ I ), ȳ := f (x̄) and ỹ := l + t̄(u − l)

9: if ỹ �< Z then
10: Set t̄ := min{(Zi − li )/(ui − li ) | i ∈ [p]} and

ỹ := l + t̄(u − l) − σe
11: end if
12: D(x̂ I ).E = D(x̂ I ).E ∪ {x̄}
13: D(x̂ I ).N = D(x̂ I ).N ∪ {ȳ}
14: D(x̂ I ).L = UpdateLLB(D(x̂ I ).L, ỹ)
15: U = UpdateLUB(U , ȳ)
16: end if
17: end for
18: if done == true then
19: Set integer assignment inactive: D(x̂ I ).S = false
20: end if
21: end procedure

Theorem 4.1 Let x̂I ∈ SI , ε > 0,U , and D be the input parameters for Algorithm 4.
Assume that D(x̂ I ) is already initialized. Denote by Lstart

x̂ I
:= D(x̂ I ).L and Ustart the

lower and upper bound sets at the beginning of the current call of Algorithm 4 and by
Lend
x̂I

,Uend the sets afterwards. Additionally, assume that there exist l ∈ Lstart
x̂ I

and u ∈
Ustart with u ∈ ({l + εe}+ int(Rp

+)). Then, the volume of the corresponding coverage
C is reduced by at least ( ε

2 )
p, i.e., vol(C(Lend

x̂I
,Uend)) ≤ vol(C(Lstart

x̂ I
,Ustart))− ( ε

2 )
p.

Proof In the following, we use the notation from Algorithm 4. By our assumptions
there exist l ∈ Lstart

x̂ I
, u ∈ U start with u ∈ ({l + εe} + int(Rp

+)), i.e., ui − li > ε for
all i ∈ [p]. We can assume without loss of generality that these bounds correspond
exactly to the assignment of l and u when line 7 of Algorithm 4 is reached for the first
time.

First, we consider the case that t̄ ≥ 1 which implies that the lower bound set Lx̂I is
updated by Algorithm 2 using ỹ ∈ int(B) as the update point. As a result, the open box
(l, ỹ) is removed from C. We have that ỹ ≥ l+ t̄(u−l)−σe ≥ u−σe, 0 < σ < 0.5 ε,
and ui − li > ε for all i ∈ [p]. This implies that

vol((l, ỹ)) =
p∏

i=1

(ỹi − li ) ≥
p∏

i=1

((ui − σ) − li ) ≥
p∏

i=1

0.5 ε =
(ε

2

)p
.

Consequently, we obtain that vol(C(Lend
x̂ I

,U end)) ≤ vol(C(Lstart
x̂ I

,U start)) − ( ε
2 )

p.
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Next, we consider the case t̄ ∈ (0.5, 1). In this case, we update the lower bound
set D(x̂ I ).L using Algorithm 2 with update point ỹ := l + t̄(u − l) ≥ 0.5(u + l). By
Definition 3.3 this implies that the open box (l, ỹ) is removed from the upper search
region and in particular from C. Since we have that

vol((l, ỹ)) =
p∏

i=1

(ỹi − li ) ≥
p∏

i=1

(0.5(ui + li ) − li ) ≥
p∏

i=1

0.5 ε =
(ε

2

)p
,

we obtain that vol(C(Lend
x̂ I

,U end)) ≤ vol(C(Lstart
x̂ I

,U start)) − ( ε
2 )

p.

The final case to consider is t̄ ∈ [0, 0.5]. In that case, the upper bound setU = U start

is updated using Algorithm 1 with update point f (x̄) ≤ l + t̄(u − l) ≤ 0.5(u + l). By
Definition 3.2 this implies that the open box ( f (x̄), u) is removed from C and with

vol(( f (x̄), u)) =
p∏

i=1

(ui − fi (x̄)) ≥
p∏

i=1

(ui − 0.5(ui + li ) ≥
p∏

i=1

0.5 ε =
(ε

2

)p
,

this implies that vol(C(Lend
x̂ I

,U end)) ≤ vol(C(Lstart
x̂ I

,U start)) − ( ε
2 )

p. ��

5 Computing integer assignments and global lower bounds

In this section, we present a method to compute the feasible integer assignments
x̂ I ∈ SI which are needed for the algorithmic treatment of the patches (P(x̂ I )).

But first, we introduce a method to compute a global lower bound set for the
nondominated set N of (MOMICP). To see that such a method to compute lower
bounds is needed, assume that there was an efficient way to compute all feasible
integer assignments, i.e., the set SI . There can be a large number of feasible integer
assignments of which only a few yield nondominated sets Nx̂ I that contribute to the
nondominated set of (MOMICP). However, to compute a global lower bound set L out
of the lower bounds Lx̂I , x̂ I ∈ SI , we would need to at least initialize D(x̂ I ) for each
x̂ I ∈ SI to ensure that we actually obtain a valid lower bound set. For example, let
there be three feasible integer assignments x1, x2, x3 ∈ SI . If D(x3) is not initialized
then we do not know whether L = Lx1 ∪ Lx2 is a valid lower bound set and hence,
if A(L,U ) is a valid enclosure for the nondominated set N of (MOMICP); see also
Fig. 2.

To overcome the problem of needing to initialize D(x̂ I ) for all x̂ I ∈ SI , we intro-
duce a strategy to compute a global lower bound set. More precisely, we compute
a lower bound set for a relaxation of (MOMICP) and then iteratively improve both
the relaxation and the corresponding lower bound set. For the relaxation, we lin-
earize the objective and constraint functions of (MOMICP) to obtain a multi-objective
mixed-integer linear optimization problem. We use that for any convex continuously
differentiable function h : R

n → R and every x̂ ∈ R
n it holds

h(x) ≥ h(x̂) + ∇h(x̂)�(x − x̂) for all x ∈ R
n . (3)
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Fig. 2 Preliminary enclosure based on the results for the patches P(x1) and P(x2) andD(x3) not initialized

The right hand side of this inequality is an affine function that approximates h at
the point x̂ and is called linearization of h with linearization point x̂ . Also, for x = x̂
we have equality in (3), i.e., an exact approximation. Thus, let ∅ �= X ⊆ R

n+m be a
(not necessarily finite) set of linearization points. Then we obtain a relaxed version of
(MOMICP) by

min
x,η

η s.t. fi (x̂) + ∇ fi (x̂)
�(x − x̂) ≤ ηi ∀i ∈ [p], ∀x̂ ∈ X ,

g j (x̂) + ∇g j (x̂)
�(x − x̂) ≤ 0 ∀ j ∈ [q], ∀x̂ ∈ X ,

x ∈ X , η ∈ R
p.

(R(X ))

Since we linearized both the objective and the constraint functions, the objective
functions have been lifted to the constraints by introducing a new variable η ∈ R

p.
This kind of relaxation is well known from single-objective mixed-integer convex
optimization and can be found for example in the context of outer approximation, see
Bonami et al. (2008), Fletcher and Leyffer (1994). To compute a global lower bound
set, we use weakly nondominated points of (R(X )) as update points and make use of
the following lemma.

Lemma 5.1 Let X be a set of linearization points with ∅ �= X ⊆ R
n+m and denote

by (x̄, η̄) a weakly efficient solution of (R(X )). Then η̄ /∈ f (S) + int(Rp
+).

Proof Assume that η̄ ∈ f (S) + int(Rp
+). Then there exist x ′ ∈ S and k ∈ int(Rp

+)

with η̄ = f (x ′) + k. Hence, for all i ∈ [p], j ∈ [q] and for all x̂ ∈ X it holds

η̄i − ki = fi (x
′) ≥ fi (x̂) + ∇ fi (x̂)

�(x ′ − x̂),

0 ≥ g j (x
′) ≥ g j (x̂) + ∇g j (x̂)

�(x ′ − x̂).

Since k > 0p this contradicts (x̄, η̄) being a weakly efficient solution of (R(X )). ��
Thus, if we denote by N 2 ⊆ R

p a set of weakly nondominated points η̄ of (R(X ))
with η̄ ∈ int(B) (also for different choices of X ), then L(N 2) is a lower bound set for

123



A hybrid patch decomposition approach to compute an…

the nondominated setN of (MOMICP) by Lemma 3.4 and Remark 3.5. We will state
this formerly for the final outcome set L of our algorithm in Lemma 6.1.

Besides the computation of lower bounds, this particular relaxation approach has
some more benefits in the context of our overall algorithm. First, the computations on
the patch level (see Algorithm 4) automatically generate linearization points, namely
all the points contained inD.E . Further, we can use (R(X )) to compute integer assign-
ments. Let X be a set of linearization points and (x, η) be a feasible point for (R(X )).
In particular, xI ∈ XI is an integer assignment of (MOMICP). To identify whether
this integer assignment is feasible, i.e., xI ∈ SI , or infeasible, i.e., xI /∈ SI , we solve
the convex feasibility problem

min
xC ,α

α s.t. g j (xC , x̂ I ) ≤ α ∀ j ∈ [q],
xC ∈ XC , α ∈ R

(F(x̂ I ))

with x̂ I = xI . If the optimal value ᾱ of (F(x̂ I )) is positive, then x̂ I /∈ SI . If ᾱ ≤ 0,
then x̂ I is a feasible integer assignment, i.e., x̂ I ∈ SI .

First, we consider the case that x̂ I /∈ SI . Denote by (x̄C , ᾱ) an optimal solution
of (F(x̂ I )). Then we can ensure that the same integer assignment is not generated
by (R(X )) again by including (x̄C , x̂ I ) in the set X of linearization points. This was
already shown in (Fletcher and Leyffer 1994, Lemma 1) for a more general feasibility
problem that includes (F(x̂ I )) as a special case. Hence, we include that lemma here
adapted to our notation.

Lemma 5.2 Let x̂I /∈ SI and (x̄C , ᾱ) be an optimal solution of (F(x̂ I )). Further, define
x̄ := (x̄C , x̂ I ). Then for every x ∈ Xx̂I there exists at least one index j ∈ [q] such
that x violates the constraint

g j (x̄) + ∇g j (x̄)
�(x − x̄) ≤ 0.

Next, we discuss the feasible integer assignments x̂ I ∈ SI . Such a feasible integer
assignment can be generated by (R(X )) infinitely often, i.e., for an arbitrary choice of
X there always exists a feasible point (x, η) for (R(X )) with xI = x̂ I . This is mainly
because (R(X )) is a relaxation of (MOMICP) and there always exists a feasible point
x ∈ S for (MOMICP) with xI = x̂ I .

When x̂ I is generated by (R(X )), i.e., found as part of a weakly efficient solution
of (R(X )), for the first time, then Algorithm 3 will be called to initialize the corre-
sponding D(x̂ I ). As long as D(x̂ I ).S = true, the corresponding patch (in particular
the lower bounds) will be improved by Algorithm 4 each time this integer assignment
is generated by (R(X )).

The challenging part is when x̂ I is generated by (R(X )) but the corresponding
patch is inactive, i.e., D(x̂ I ).S = false. In that situation, we need another mechanism
to keep improving the enclosure or compute a new integer assignment. We handle this
as follows: If there exists another active patch, i.e., some x̂ ′

I ∈ SI withD(x̂ ′
I ).S = true,

then we improve that patch using Algorithm 4. If no more active integer assignments
are available, then we need to compute a new integer assignment. Since this can be
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done in various ways, we consider this step as a black box, see Algorithm 5. We
briefly describe a realization of that algorithm when presenting our numerical results
in Sect. 7.

Algorithm 5 Search new integer assignment
Input: Linearization points X , integer data structure D
Output: Updated set X , integer data structure D (, bound sets L,U )
1: procedure SNIA(X ,D)
2: Search new x̃ ∈ X such that there exists no x ∈ X with xI = x̃ I

and D(x̃ I ) is not initialized
3: if no such x̃ exists then
4: Let L := {y ∈ D.L | y is nondominated given D.L w.r.t ≤}
5: Terminate Algorithm 6 with output sets L,U
6: else if x̃ I ∈ SI then
7: InitIDS(x̃ I ) � see Algorithm 3
8: else
9: Solve (F(x̃ I )) with optimal solution (x̄C , ᾱ)

10: Update linearization points: X = X ∪ {(x̄C , x̃ I )}
11: end if
12: end procedure

For the computation of lower bounds, see Lemma 5.1, and for the computation of
integer assignments,we need to computeweakly efficient solutions of (R(X )). By now,
the possibilities to efficiently solve multi-objective mixed-integer linear problems are
limited.While there exist some algorithms to solve bi-objective instances (e.g., Boland
et al. 2015; Perini et al. 2020), the development of solvers for higher dimensional
image spaces has just begun. Moreover, solvers for single-objective mixed-integer
linear optimization problems likeCPLEX(IBM2023) orGurobi (GurobiOptimization
LLC 2023) have become extremely fast. Since we only need to compute one integer
assignment, i.e., one feasible point of (R(X )), at a time, we decided to compute weakly
efficient solutions of (R(X )) by using a scalarization approach. More precisely, we
follow the same approach as on the patch level. This means, we loop through the lower
bound set L and for each l ∈ L select the upper bound u ∈ U with maximal s(l, u),
see Algorithm 6. Given l, u ∈ R

p with l < u we then compute a weakly efficient
solution of (R(X )) by solving the single-objective mixed-integer linear optimization
problem

min
x,η,t

t s.t. η − l − t(u − l) ≤ 0p,

fi (x̂) + ∇ fi (x̂)
�(x − x̂) ≤ ηi ∀i ∈ [p], ∀x̂ ∈ X ,

g j (x̂) + ∇g j (x̂)
�(x − x̂) ≤ 0 ∀ j ∈ [q], ∀x̂ ∈ X ,

x ∈ X , η ∈ R
p, t ∈ R.

(RSUP(X , l, u))

Again, we have by Göpfert et al. (2003, Proposition 2.3.4 and Theorem 2.3.1) that
for all nonempty sets X and all l, u ∈ R

p with l < u there exists an optimal solution
(x̄, η̄, t̄) of (RSUP(X , l, u)). By Pascoletti and Serafini (1984, Theorem 3.2) we also
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know that for every optimal solution (x̄, η̄, t̄) of (RSUP(X , l, u)) the point (x̄, η̂) is a
weakly efficient solution of (R(X )).

6 Main algorithmHyPaD

In the previous sections, we presented our method to compute upper bounds as well as
twomethods to compute lower bounds for the computation of an enclosureA(L,U ) of
the nondominated setN of (MOMICP). In this section,wemerge all thesemechanisms
and present our new hybrid algorithm to compute that enclosure. We call it a hybrid
algorithm since it is an ongoing interplay between improving the global lower bound
set using the methods from Sect. 5 and iteratively improving specific patch level lower
bound sets, see Sect. 4.

Algorithm 6 Hybrid patch decomposition algorithm for (MOMICP)
Input: Initial point x̂ ∈ X , quality ε > 0, and initial bounds z, Z ∈ R

p

Output: Lower and upper bound sets L,U ⊆ R
p

1: procedure HYPAD(x̂, ε, z, Z )
2: Initalize L = {z}, U = {Z}, X = {x̂}, D = ()

3: Solve (F(x̂ I )) with optimal solution (x̄C , ᾱ) and set x̄ := (x̄C , x̂ I )
4: if ᾱ ≤ 0 then
5: InitIDS(x̂ I ) � see Algorithm 3
6: Update linearization points: X = X ∪ D.E
7: end if
8: while w(A(L,U )) > ε do
9: for l ∈ L do
10: if ({l + εe} + int(Rp

+)) ∩U �= ∅ then
11: Select u ∈ ({l + εe} + int(Rp

+)) ∩U with maximal s(l, u)

12: Solve (RSUP(X , l, u)) with optimal solution (x̄, η̄, t̄)
13: Update lower bound set: L = UpdateLLB(L, η̄)

14: Solve (F(x̄ I )) with optimal solution (x̂C , α̂) and
set x̂ := (x̂C , x̄ I )

15: if α̂ ≤ 0 then
16: Improve(x̂, ε,U ,X ,D) � see Algorithm 7
17: Update linearization points: X = X ∪ D.E
18: else
19: Update linearization points: X = X ∪ {x̂}
20: end if
21: end if
22: end for
23: end while
24: end procedure

For a better overview, we have split the pseudocode of our algorithm into the part
that represents the computation of integer assignments and global lower bounds, see
Algorithm 6, and the part that represents the algorithmic treatment of the patches, see
Algorithm 7. We start by briefly explaining Algorithm 6. As described in the previous
section, that part of our algorithm solves (RSUP(X , l, u)) with l ∈ L and u ∈ U
to obtain a weakly efficient solution (x̄, η̄) and in particular a weakly nondominated
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point η̄ ∈ R
p of (R(X )). The weakly nondominated point η̄ is used to update the set

L which is indeed a lower bound set.

Lemma 6.1 Assume that Algorithm 6 is not terminated by Algorithm 5. Then at any
point in the algorithm the set L is a lower bound set in the sense of Definition 3.1.

Proof Since Algorithm 6 is not terminated by Algorithm 5, the set L is only updated
in Algorithm 6, line 13. We know by Eichfelder and Warnow (2021a, Lemma 3.7)
that since L is only updated using Algorithm 2, it is a local lower bound set. We start
with L = {z} and update this set using weakly nondominated points η̄ of (R(X ))
as update points for Algorithm 2. Without loss of generality, we only consider those
points η̄ ∈ R

p with η̄ > z since for an update point η̄ �> z the lower bound set
L would not be updated by Algorithm 2. Further, by the construction of the upper
bound set U (see Algorithm 1) we know that for all u ∈ U there exists x ∈ S
with f (x) ≤ u, f (x) < Z . This implies that for every optimal solution (x̄, η̄, t̄) of
(RSUP(X , l, u)) we have η̄ < Z . Thus, denote by N̄ ⊆ int(B) the set of all those
update points η̄, i.e., we start with N̄ = ∅ and then add the update points η̄ ∈ int(B)

obtained by solving (RSUP(X , l, u)) for different choices ofX , l, u. By Lemma 5.1 it
holds that N̄ ⊆ int(B)\( f (S) + int(Rp

+)). Together with Lemma 3.4 and Remark 3.5
this implies that L is a lower bound set. ��

The case that Algorithm 6 is terminated by Algorithm 5 will be considered in
Lemma 6.3. There, we will show that also in that case the output set L of Algorithm 6
is a lower bound set.

For the integer assignment x̄ I obtained from an optimal solution (x̄, η̄, t̄) of the
subproblem (RSUP(X , l, u)), see line 12 of Algorithm 6, we solve the corresponding
feasibility problem (F(x̂ I )) with optimal solution (x̂C , α̂) to decidewhether that integer
assignment is feasible, i.e., x̄ I ∈ SI , or not. The following result is then obtained using
Lemma 5.2.

Corollary 6.2 Let x̂I /∈ SI be an infeasible integer assignment. Then Algorithm 6
(line 12) computes at most once an optimal solution (x̄, η̄, t̄) of (RSUP(X , l, u)) with
x̄I = x̂ I .

Next, we focus on feasible integer assignments x̄ I ∈ SI . Denote by (x̂C , α̂) an
optimal solution of the corresponding feasibility problem (F(x̂ I )). Then α̂ ≤ 0 and
Algorithm 6 (line 16) calls Algorithm 7 to perform an improvement on the patch-level.

For a feasible integer assignment x̂ I ∈ SI there are exactly three possibilities
concerning the algorithmic treatment of the corresponding patch (P(x̂ I )), see also
Sect. 4. The first scenario is that this particular integer assignment was computed by
Algorithm 6 for the first time. This means that the corresponding entry D(x̂ I ) of the
integer data structure is not yet initialized. Hence, Algorithm 7 calls Algorithm 3 for
the initialization. The second case is that x̂ I already appeared in the algorithm before
and that the integer assignment is active, i.e.,D(x̂ I ) has already been initialized and it
isD(x̂ I ).S = true. As a result, Algorithm 7 calls Algorithm 4 for further improvement,
in particular with regard to the corresponding lower bound set Lx̂I . The final case to
consider is that D(x̂ I ) is initialized but D(x̂ I ).S = false, i.e., the integer assignment
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Algorithm 7 Improvement Step on Patch-Level
Input: Feasible point x̂ ∈ S, quality ε > 0, upper bound set U , set of linearization points X , and integer

data structure D
Output: Updated sets U ,X , and updated data structure D
1: procedure Improve(x̂, ε,U ,X ,D)
2: if D(x̂ I ) is not initialized then
3: InitIDS(x̂ I ) � see Algorithm 3
4: else if D(x̂ I ).S == true then
5: UpdateIDS(x̂ I , ε,U ,D) � see Algorithm 4
6: else if ∃ x ′

I ∈ SI with D(x ′
I ) initialized and D(x ′

I ).S == true then
7: UpdateIDS(x ′

I , ε,U ,D) � see Algorithm 4
8: else
9: SNIA(X ,D) � see Algorithm 5
10: end if
11: end procedure

is inactive. In that setting, Algorithm 7 implements exactly the approach that we
already discussed in Sect. 5 to ensure further progress of the overall algorithm. First,
Algorithm 7 checks if there exists another active integer assignment, i.e., some x ′

I ∈ SI
withD(x ′

I ) initialized andD(x ′
I ).S = true. If this is the case, thenAlgorithm4 is called

to improve the corresponding patch for exactly one such integer assignment x ′
I ∈ SI .

Otherwise, Algorithm 5 is called.
Algorithm 5 now searches for a new integer assignment x̃ I ∈ XI such that there

exists no x ∈ X with xI = x̃ I andD(x̃ I ) is not yet initialized. This leads to one of the
following three situations. The first situation is that all integer assignments xI ∈ XI

have already been computed. Then Algorithm 5 terminates Algorithm 6 and the global
lower bound set L is computed using the lower bounds from the patches.

Lemma 6.3 Assume that Algorithm 6 is terminated by Algorithm 5. Then the set L
computed in Algorithm 5, line 4 is a lower bound set in the sense of Definition 3.1.

Proof Denote by N the nondominated set of (MOMICP) and let ȳ ∈ N ⊆ f (S) be
some nondominated point. Then there exists x̄ = (x̄C , x̄ I ) ∈ S such that ȳ = f (x̄)
and D(x̄ I ) was initialized and updated until D(x̄ I ).S was set to false in Algorithm 4,
line 19. Thus, there exists l ∈ D(x̄ I ).L with l ≤ ȳ. The computation of L ensures that
there exists an l ′ ∈ L with l ′ ≤ l ≤ ȳ and as a result, L is a lower bound set. ��

The second situation which can occur in Algorithm 5 is that a new integer assign-
ment x̃ I ∈ XI is computed and that this integer assignment is feasible, i.e., x̃ I ∈ SI .
In this case, Algorithm 3 is called to initialize the corresponding patch with the corre-
sponding entry D(x̃ I ) of the integer data structure. The final case is that Algorithm 5
computes an infeasible integer assignment x̃ I /∈ SI . In that case, we solve (F(x̂ I ))
with optimal solution (x̄C , ᾱ) and (x̄C , x̃ I ) ∈ X is included in the set X of lineariza-
tion points to ensure that the same integer assignment is not considered again within
Algorithm 6.

Beforewe discuss the overall correctness ofAlgorithm6, i.e., that it really computes
an enclosure A of the nondominated set N of (MOMICP), we need to ensure that it
is finite. For that, we make use of our assumption that there are only finitely many
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integer assignments xI ∈ XI and the fact that each patch is only considered finitely
many times by Algorithm 7.

Lemma 6.4 Let x̂I ∈ SI be a feasible integer assignment withD(x̂ I ) initialized. Then
after finitely many calls of Algorithm 4 (with input x̂I ) D(x̂ I ).S is set to false.

Proof Let x̂ I ∈ SI be a feasible integer assignment with D(x̂ I ) initialized and
D(x̂ I ).S = true. We know by Theorem 4.1 that after a single call of Algorithm 4
either the volume of the coverage C of the nondominated setNx̂ I of (P(x̂ I )) is reduced
by at least

(
ε
2

)p or D(x̂ I ).S is set to false.
Hence, we only need to show that between two subsequent calls of Algorithm 4 the

volume of C = C(D(x̂ I ).L,U ) does not increase. First of all, the setD(x̂ I ).L of lower
bounds does not change outside of Algorithm 4. Thus, we consider the development
of the upper bound set U between two subsequent calls of Algorithm 4. Let U 1 be
the upper bound set at the end of the first call and U 2 be the upper bound set at the
beginning of the second one. The upper bound set (from Algorithm 6) is only updated
in Algorithm 4, line 15, for different input parameters, especially for different integer
assignments. In particular, it is always updated by Algorithm 1 that computes a new
generation of upper bounds as a projection of the old generation. For our setting this
means that for every u ∈ U 2 there exists u′ ∈ U 1 with u ≤ u′. As a result, we have
that vol(C(D(x̂ I ).L,U 2)) ≤ vol(C(D(x̂ I ).L,U 1)).

This implies that after at most
⌈
vol(B)/

(
ε
2

)p ⌉
calls of Algorithm 4 for x̂ I there

exist no more l ∈ D(x̂ I ).L and u ∈ U with ({l+εe}+ int(Rp
+))∩U �= ∅ andD(x̂ I ).S

is set to false. ��
Finally, we can combine the results of Corollary 6.2 and Lemma 6.4 to show finite-

ness of Algorithm 6.

Theorem 6.5 Algorithm 6 is finite.

Proof By Corollary 6.2 each infeasible integer assignment is computed at most once
in Algorithm 6, line 12. Since XI and the number of infeasible integer assignments is
finite, thismeans that for all optimal solutions (x̄, η̄, t̄) of (RSUP(X , l, u)) (in different
iterations) we have x̄ I /∈ SI only finitely many times.

Next, we consider the feasible integer assignments. With each iteration of the while
loop where α̂ ≤ 0, Algorithm 7 is called. This algorithm initializes or updates D(x̂ I )
for some x̂ I ∈ SI . By Lemma 6.4 we know that for each feasible integer assignment
this happens only finitely often until D(x̂ I ).S is set to false. Moreover, in case no
initialization or improvement is performed by Algorithm 7, Algorithm 5 is called to
compute a new integer assignment x̃ I ∈ XI . Once again, since XI is finite this is only
possible finitely often as well.

As a result, after finitely many iterations all infeasible integer assignments have
been computed and for all feasible integer assignments x̂ I ∈ SI the entry D(x̂ I ).S
is set to false. We obtain that at some point there exists no more x̃ I ∈ XI such that
there exists x ∈ X with xI = x̃ I and D(x̂ I ) not initialized. So after a finite number
of iterations either the condition w(A(L,U )) > ε for the while loop in Algorithm 6
is no longer fulfilled or Algorithm 5 terminates the overall algorithm. Both scenarios
imply that Algorithm 6 is finite. ��
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Although the proof of Theorem 6.5 is based on the fact that the number of integer
assignments is finite, i.e. |XI | < ∞, a central goal of our algorithm is to avoid a
full enumeration of all these integer assignments. This is the reason why we included
the second strategy to compute a lower bound set based on the optimal solutions of
(RSUP(X , l, u)). In general, the lower bound set computed by this second strategy
converges towards the upper bounds with w(A(L,U )) ≤ ε before all patches have
been initialized and set inactive such that Algorithm 6 is terminated before all integer
assignments have been computed.

So far we have shown in Theorem 6.5 that Algorithm 6 is finite and in Lemma 6.1
and Lemma 6.3 that the output set L is indeed a lower bound set. Thus, to show that
Algorithm 6 computes an enclosure it only remains to show that the computed set U
is an upper bound set.

Lemma 6.6 At any point of Algorithm 6, the set U is an upper bound set for the
nondominated set N of (MOMICP) in the sense of Definition 3.1.

Proof After the initialization of Algorithm 6 it is U = {Z}. Furthermore, U is only
updated in Algorithm 4 using Algorithm 1 with update points ȳ := f (x̄) ∈ f (S).
If we denote by N ⊆ f (S) the set of all these points, then U = U (N ). In general,
this set N is not stable, but we know by Remark 3.5 that for N ′ := {y ∈ N |
y is nondominated given N w.r.t. ≤} it holdsU (N ′) = U (N ). Finally, by Lemma 3.4
this implies that U is an upper bound set. ��

With all the results from this section we are now able to prove that Algorithm 6
works correctly and that the enclosure A(L,U ) corresponding to the sets L and U
computed by the algorithm is of the predefined quality ε.

Theorem 6.7 Let L and U be the output sets of Algorithm 6. Then L and U are lower
and upper bound sets in the sense of Definition 3.1 and for the width of the enclosure
A(L,U ) = (L +R

p
+)∩ (U −R

p
+) of the nondominated setN of (MOMICP) it holds

that w(A(L,U )) ≤ ε.

Proof By Lemmas 6.1, 6.3, and 6.6 we have that the sets L andU computed by Algo-
rithm 6 are lower and upper bound sets and hence define a corresponding enclosure
A(L,U ).

To prove that w(A(L,U )) ≤ ε, we consider two cases based on the termination
of Algorithm 6. The first case is that Algorithm 6 terminates because the condition
w(A(L,U )) > ε in the while loop is no longer satisfied. Then it obviously holds
w(A(L,U )) ≤ ε.

The second case to consider is that L was computed using the lower bounds of the
patches in Algorithm 5, line 4. Then, for every l ∈ L there exists an integer assignment
x̂ I ∈ SI with l ∈ D(x̂ I ).L . At some point in the algorithm this integer assignment was
set inactive and we denote by U ′ the upper bound set at that point. Since an integer
assignment can only be set inactive by Algorithm 4, we know that for all u′ ∈ U ′
there existed an index i ∈ [p] with u′

i − li ≤ ε. While the upper bound set U ′ might
have been updated after the integer assignment was set inactive, updating it using
Algorithm 1 ensures that upper bounds never get worse. This means that if U 1 is the
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upper bound set before calling Algorithm 1 and U 2 the set afterwards, then for all
u2 ∈ U 2 there exists u1 ∈ U 1 with u2 ≤ u1. Thus, for all u ∈ U with l ≤ u there
exists u′ ∈ U ′ and an index i ∈ [p] such that ui − li ≤ u′

i − li ≤ ε, which implies
w(A(L,U )) ≤ ε. ��

7 Numerical results

In this final section, we present our numerical results for selected test instances. In
addition to that, we provide a detailed discussion on the implementation details of the
HyPaD algorithm together with more than 30 test instances in Eichfelder andWarnow
(2021b). We performed all numerical tests in MATLAB R2021a on a machine with
Intel Core i9-10920X processor and 32GB of RAM. The average of the results of
bench(5) is: LU = 0.2045, FFT = 0.2127, ODE = 0.3666, Sparse = 0.3919, 2-D
= 0.1968, 3-D = 0.2290. The implementation of the HyPaD algorithm is publicly
available on GitHub (Eichfelder and Warnow 2022).

The initial bounds z, Z ∈ R
p are computed using interval arithmetic provided by

INTLAB (Rump 1999). This also allows for a fair comparison of our results with
the ones obtained by the MOMIBB algorithm from Eichfelder et al. (2022) since
that algorithm uses the same initial bounds for its computation of an enclosure. The
initial point x̂ ∈ X in Algorithm 6 is always computed as an optimal solution of a
scalarization of the integer-relaxed version of (MOMICP), i.e., (MOMICP) but with
x ∈ XC × [lI , uI ] ⊆ R

n × R
m instead of x ∈ XC × ([lI , uI ] ∩ Z

m) ⊆ R
n × Z

m . In
Eichfelder and Warnow (2021b), we present more details on the initialization phase
of the algorithm. The offset parameter for Algorithm 4 is chosen as σ := 10−3 ε. If
not stated otherwise, the quality parameter was set to ε = 0.1. For all test instances
we used a time limit of 3600s.

Algorithm 5 is realized by dividing the set of all integer assignments XI into a
fixed number of 16 boxes and then searching for a new integer assignment within the
box with the least number of already computed integer assignments. This procedure
is presented more in-depth in Eichfelder and Warnow (2021b, Section 2.3), where it
is also compared with some other possible approaches.

All of the single-objective mixed-integer linear problems within our algorithm are
solved using GUROBI (Gurobi Optimization LLC 2023). All single-objective (purely
continuous) convex problems are solved using fmincon. We also tested alternative
solvers, for example IPOPT (Wächter and Biegler 2005) via OPTI (Currie 2019).
However, this did not significantly improve the overall performance of our algorithm
and hence, we decided to use fmincon. Another benefit of choosing fmincon is
that this allows for a fair comparison of our results with those from De Santis et al.
(2020) and Eichfelder et al. (2022).

All results in this paper for the MOMIBB algorithm from Eichfelder et al. (2022)
have been computed using the same parameters as HyPaD, i.e., the same quality
parameter ε > 0, the same initial box B = [z, Z ] ⊆ R

p for the enclosure, the same
solvers for the subproblems, and the same time limit of 3600s. This allows a fair
comparison of HyPaD and MOMIBB both qualitatively and quantitatively.
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There are four different configurations of MOMIBB that have been presented in
Eichfelder et al. (2022, Section 6) as MOMIBB-c0, MOMIBB-c1, MOMIBB-c2, and
MOMIBBdirect. The last two configurations can only be used in special cases including
instances of (MOMICP) with convex quadratic objective and constraint functions.
Whenever comparing HyPaD with MOMIBB in the remaining part of this section, the
result for MOMIBB represents the best result (in terms of computation time) that was
obtained by all configurations ofMOMIBB that were applicable for the corresponding
test instance.

All results in this paper for MOMIX andMOMIX light fromDe Santis et al. (2020)
have been computed for δ = 0.1 as the corresponding quality parameter using the code
fromDeSantis et al. (2021).We have also discussed inEichfelder andWarnow (2021b)
that a quantitative comparison of the results is only possible to some extent. This is
due to the fact that the HyPaD algorithm works with a quality criterion in the criterion
space (based on the parameter ε > 0) and the authors of De Santis et al. (2020) work
with a quality criterion in the decision space (based on their parameter δ > 0). Still,
qualitative comparisons between HyPaD and MOMIX are possible.

Test instance 1 First, we consider a bi-objective test instance with quadratic constraint
functions and a non-quadratic objective function from De Santis et al. (2020). Both,
the number n = 2 of continuous and the number m = 1 of integer variables are fixed.
The test instance is given as

min (x1 + x3, x2 + exp(−x3))
� s.t. x21 + x22 ≤ 1,

xC ∈ [−2, 2]2,
xI ∈ [−2, 2] ∩ Z.

(T6)

The MOMIX algorithm from De Santis et al. (2020) involves solving single-objective
subproblems that are basically of the same type as the original problem (MOMICP).
For (T6) these would be single-objectivemixed-integer non-quadratic convex quadrat-
ically constrained optimization problems. Since those cannot be solved by Gurobi,
which is used as the solver for the single-objective mixed-integer subproblems in De
Santis et al. (2020), the MOMIX algorithm cannot be applied to this problem and one
needs to switch toMOMIX light. The latter is amodificationwhich uses purely contin-
uous subproblems and those can be solved by fmincon (even for the non-quadratic
case).

Only with (br2), which is one of two available branching rules, MOMIX light
computed a representation of the nondominated set of (T6), which took 1385.72 s.
For (br1) it exceeded the time limit of 3600s. HyPaD on the other hand computes an
enclosure within only a few seconds. For ε = 0.1 it computes an enclosure within
1.34 s and even for ε = 0.01 it only needs 6.09 s. For a visual comparison of the results
see Fig. 3.

For both choices of ε ∈ {0.1, 0.01}, Algorithm 6 is terminated by Algorithm 5, i.e.,
the enclosure of the overall nondominated set is computed using the lower bounds
D.L from the different patches and the global upper bound set U . In particular, this
means that all integer assignments xI ∈ XI have been computed by our algorithm.
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Fig. 3 Results for test instance 1

This is a very typical behavior of HyPaD if the number of integer assignments, i.e.,
|XI | , is quite small. For (T6) this is the case since we have |XI | = 5. Hence, HyPaD
is a highly effective algorithm for such problems with a small number of possible
integer assignments.

Another advantage of HyPaD is that the single-objective mixed-integer subprob-
lems (RSUP(X , l, u)) are always linear. Hence, these subproblems can always be
solved using Gurobi. This makes HyPaD the better choice (compared to the meth-
ods from De Santis et al. (2020)) if one of the objective or constraint functions of
(MOMICP) is non-quadratic.

The MOMIBB algorithm from Eichfelder et al. (2022) needs 15.33 s to solve (T6)
for ε = 0.1. This is roughly ten times slower than HyPaD, but also roughly ten times
faster than MOMIX. Since MOMIBB also computes an enclosure and hence has a
criterion space based termination criterion (the width of the enclosure), but besides
that is a decision space based branch-and-bound algorithm, it is not surprising that
its performance is in between HyPaD and MOMIX. A more detailed comparison of
MOMIBB and HyPaD is provided for the next test instance.

Test instance 2 Next, we consider a scalable test instance with quadratic objective
functions and a quadratic constraint function. Both the number n ∈ N of continuous
variables and the number m ∈ N of integer variables must be even.

min

⎛

⎜⎜⎜⎝

n/2∑
i=1

xi +
n+m/2∑
i=n+1

x2i −
n+m∑

i=n+m/2+1
xi

n∑
i=n/2+1

xi −
n+m/2∑
i=n+1

xi +
n+m∑

i=n+m/2+1
x2i

⎞

⎟⎟⎟⎠ s.t.

n∑
i=1

x2i ≤ 1,

xC ∈ [−2, 2]n,
xI ∈ [−2, 2]m ∩ Z

m .

(H1)
The computational results for various choices ofn andm are shown inTables 1 and2.

For HyPaDwe included the overall computation time t , the number of computed lower
and upper bounds, the number of subproblems (RSUP(X , l, u)) and (SUP(x̂ I , l, u))
as well as the exit flag which indicates whether Algorithm 6 was terminated by Algo-
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Table 1 Computational results of HyPaD compared to MOMIBB for (H1)

n m MOMIBB HyPaD
t t |L| |U | #(RSUP) #(SUP) flag

2 2 12.41 2.44 42 63 50 51 1

2 4 86.90 4.71 80 123 90 97 1

2 8 2108.21 25.70 222 280 293 184 1

2 10 – 79.54 458 433 573 290 1

2 12 – 446.60 1198 685 1441 459 1

2 14 – – – – – – − 1

4 2 283.32 3.63 52 75 59 70 1

4 4 1114.57 7.91 97 149 115 141 1

4 8 – 39.70 252 266 310 245 1

4 10 – 134.67 515 393 634 363 1

4 12 – 960.08 1214 546 1434 510 1

4 14 – – – – – – − 1

rithm 5 (flag = 0), by the condition in the main while loop (flag = 1) or by reaching
the time limit (flag = -1). For MOMIBB we only included the best result (in terms of
computation time) out of the four configurations that have been presented in Eichfelder
et al. (2022, Section 6). In Table 1, we present the results for realizations of (H1) with
n ∈ {2, 4}. These were the only realizations where MOMIBB was able to compute an
enclosure within the time limit of 3600s. In Table 2, we then present the results for all
other realizations of (H1), for which MOMIBB was not able to compute an enclosure
within the given time limit.

For all choices of n and m (where the time limit was not reached) HyPaD performs
significantly better than MOMIBB. In particular, HyPaD is able to solve even large
instances of (H1) with up to n = 256 continuous variables. One possible explanation
for this could be that while MOMIBB also computes an enclosure in the criterion
space, it mostly is a decision space branch-and-bound approach. As such it is usually
more influenced by the number of variables than our (purely) criterion space based
approach.

Given the results from Table 2, it might look like HyPaD has a scalability issue
with respect to the number of integer variables. This is not the case. The reason why
only instances of (H1) with less than 14 integer variables can be solved within the
time limit of 3600s is that, as the number of integer variables increases, the span of
the nondominated set of (H1) also increases. Thus, more boxes are needed to cover
the nondominated set and consequently more computations have to be performed by
HyPaD. For test instances where the nondominated set does not depend on the number
of integer variables, there are no such scaling effects. For example, HyPaD is able to
solve the test instance in Eichfelder et al. (2023, Example 4.8 (ii)) for up to m = 215

integer variables within less than 250s.

Test instance 3 With the following tri-objective test instance from De Santis et al.
(2020) we illustrate the capability of our algorithm to handle optimization problems

123



G. Eichfelder, L. Warnow

Table 2 Computational results of HyPaD for (H1)

n m HyPaD
t |L| |U | #(RSUP) #(SUP) flag

8 2 4.66 61 77 71 74 1

8 4 8.60 106 162 124 161 1

8 8 45.16 278 280 356 267 1

8 10 179.76 582 428 721 406 1

8 12 – – – – – − 1

8 14 – – – – – − 1

16 2 6.86 81 88 78 94 0

16 4 14.34 121 220 142 246 1

16 8 75.05 339 370 416 395 1

16 10 310.88 721 545 868 575 1

16 12 1730.75 1432 708 1696 709 1

16 14 – – – – – − 1

32 2 12.03 103 108 90 130 0

32 4 21.35 129 213 150 261 1

32 8 130.31 374 406 467 495 1

32 10 648.08 813 560 947 672 1

32 12 – – – – – − 1

32 14 – – – – – − 1

64 8 262.16 434 419 514 628 1

64 10 1115.92 787 543 940 912 1

64 12 – – – – – − 1

64 14 – – – – – − 1

128 8 547.94 461 492 527 851 1

256 8 1602.95 476 544 542 1070 1

512 8 – – – – – − 1

(MOMICP) with three and more objective functions.

min

⎛

⎝
x1 + x4
x2 − x4
x3 + x24

⎞

⎠ s.t.
3∑

i=1

x2i ≤ 1,

xC ∈ [−2, 2]3,
xI ∈ {−2,−1, 0, 1, 2}.

(T5)

We present here the results for different choices of ε such that the reader gets a better
idea of the impact of that parameter. For a visualization of the improvement comparing
ε = 0.5 and ε = 0.1 see Fig. 4.

While MOMIX (in the best of all four configurations) needs about 90 s to compute
the result for δ = 0.5, the HyPaD algorithm needs only about 9 s to compute the result
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Fig. 4 The enclosure computed for (T5) with ε = 0.5 on the left and ε = 0.1 on the right

for ε = 0.1. Again, the performance ofMOMIBB, with a computation time of roughly
75s needed for ε = 0.1, is in between HyPaD and MOMIX.
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